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Abstract
Wediscuss two distinctminimality principles for general supremal first order function-
als for maps and characterise them through solvability of associated second order PDE
systems. Specifically, we consider Aronsson’s standard notion of absolute minimisers
and the concept of ∞-minimal maps introduced more recently by the second author.
We prove that C1 absolute minimisers characterise a divergence system with parame-
ters probability measures and that C2 ∞-minimal maps characterise Aronsson’s PDE
system. Since in the scalar case these different variational concepts coincide, it follows
that the non-divergenceAronsson’s equation has an equivalent divergence counterpart.

Keywords Calculus of variations in L∞ · L∞ variational principle · Aronsson
system · ∞-Laplacian · Absolute minimisers · ∞-minimal maps
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1 Introduction

Let n, N ∈ N and H ∈ C2
(
� × R

N × R
N×n

)
with � ⊆ R

n an open set. In this paper
we consider the supremal functional

E∞(u,O) := ess sup
O

H(·, u,Du), u ∈ W 1,∞
loc (�;RN ), O � �, (1.1)
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defined on maps u : Rn ⊇ � −→ R
N . In (1.1) and subsequently, we see the gradient

as a matrix map Du = (Di uα)α=1...N
i=1...n : Rn ⊇ � −→ R

N×n . Variational problems for
(1.1) have been pioneered by Aronsson in the 1960s in the scalar case N = 1 ([1–
5]). Nowadays the study of such functionals (and of their associated PDEs describing
critical points) form a fairly well-developed area of vivid interest, called Calculus
of Variations in L∞. For pedagogical general introductions to the theme we refer to
[7,19,31].

One of the main difficulties in the study of (1.1) which prevents us from utilising
the standard machinery of Calculus of Variations for conventional (integral) func-
tionals as e.g. in [22] is that it is non-local, in the sense that a global minimisers
u of E∞(·,�) in W 1,∞

g (�;RN ) for some fixed boundary data g may not minimise
E∞(·,O) in W 1,∞

u (O;RN ). Namely, global minimisers are not generally local min-
imisers, a property which is automatic for integral functionals. The remedy proposed
by Aronsson (adapted) to the vector case is to build locality into the minimality notion:

Definition 1 Let u ∈ W 1,∞
loc (�;RN ). We say that u is an absolute minimiser of (1.1)

on � if

∀ O � �,

∀ φ ∈ W 1,∞
0 (O;RN )

}
�⇒ E∞(u,O) ≤ E∞(u + φ,O). (1.2)

In the scalar case of N = 1, Aronsson’s concept of absolute minimisers turns
out to be the appropriate substitute of mere minimisers. Indeed, absolute minimisers
possess the desired uniqueness properties subject to boundary conditions and, most
importantly, the possibility to characterise them through a necessary (and sufficient)
condition of satisfaction of a certain nonlinear nondivergence second order PDE,
known as the Aronsson equation ([7,8,10–13,16–18,20,26,37,42]). The latter can be
written for functions u ∈ C2(�) as

HP (·, u,Du) · D(
H(·, u,Du)

) = 0. (1.3)

The Aronsson equation, being degenerate elliptic and non-divergence when formally
expanded, is typically studied in the framework of viscosity solutions. In the above,
HP ,Hη,Hx denotes the derivatives of H(x, η, P) with respect to the respective argu-
ments and “·” is the Euclidean inner product.

In this paper we are interested in characterising appropriately defined minimisers
of (1.1) in the general vectorial case of N ≥ 2 through solvability of associated PDE
systems which generalise the Aronsson equation (1.3). As the wording suggests and
we explain below, when N ≥ 2 Aronsson’s notion of Definition 1 is no longer the
unique possible L∞ variational concept. In any case, the extension of Aronsson’s
equation to the vectorial case reads

HP (·, u,Du)D
(
H(·, u,Du)

)

+ H(·, u,Du) [HP (·, u,Du)]⊥
(
Div

(
HP (·, u,Du)

) − Hη(·, u,Du)
)

= 0.
(1.4)
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In the above, for any linear map A : Rn −→ R
N , [A]⊥ symbolises the orthogonal

projection ProjR(A)⊥ on the orthogonal complement of its range R(A) ⊆ R
N . We

will refer to the PDE system (1.4) as the “Aronsson system”, in spite of the fact it was
actually derived by the second author in [27], wherein the connections between general
vectorial variational problems and their associated PDEs were first studied, namely
those playing the role of Euler-Lagrange equations in L∞. The Aronsson system was
derived through the well-known method of L p-approximations and is being studied
quite systematically since its discovery, see e.g. [27–30,32,36]. The additional normal
term which is not present in the scalar case imposes an extra layer of complexity, as
it might be discontinuous even for smooth solutions (see [28,30]).

For simplicity and in order to illustrate the main ideas in a manner which minimises
technical complications, in this paper we restrict our attention exclusively to regular
minimisers and solutions. In general, solutions to (1.4) are nonsmooth and the lack
of divergence structure combined with its vectorial nature renders its study beyond
the reach of viscosity solutions. To this end, the theory of D-solutions introduced in
[32] and subsequently utilised in several works (see e.g. [9,21,32,33]) offers a viable
alternative for the study of general locally Lipschitz solutions to (1.4), and in fact it
works far beyond the realm of Calculus of Variations in L∞. We therefore leave the
generalisation of the results herein to a lower regularity setting for future work.

Additionally to absolute minimisers, for reasons to be explained later, in the paper
[29] a special case of the next L∞ variational concept was introduced (therein for
H(x, η, P) = |P|2):

Definition 2 Let u ∈ C1(�;RN ). We say that u is an ∞-minimal map for (1.1) on �

if (i) and (ii) below hold true:
(i) u is a rank-one absolute minimiser, namely it minimises with respect to essentially
scalar variations vanishing on the boundary along fixed unit directions:

∀ O � �, ∀ ξ ∈ R
N

∀ φ ∈ C1
0(O; span[ξ ])

}
�⇒ E∞(u,O) ≤ E∞(u + φ,O). (1.5)

(ii) u has ∞-minimal area, namely it minimises with respect to variations which are
normal to the range of the matrix field HP (·, u,Du) and free on the boundary:

∀ O � �, ∀ φ ∈ C1(Rn;RN )

with φHP (·, u,Du) = 0 on O
}

�⇒ E∞(u,O) ≤ E∞(u + φ,O). (1.6)

In the above,

C1
0(O;RN ) := {

ψ ∈ C1(Rn;RN ) : ψ = 0 on ∂O}
.

Note also thatwhen N = 1absoluteminimisers and∞-minimalmaps coincide, at least
when {HP = 0} ⊆ {H = 0}. Further, in the event that HP (·, u,Du) has discontinuous
rank on O, the only continuous normal vector fields φ may be only those vanishing
on the set of discontinuities.
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In [29] it was proved that C2 ∞-minimal maps of full rank (namely immersions or
submersions) are ∞-Harmonic, that is solutions to the so-called ∞-Laplace system.
The latter is a special case of (1.4), corresponding to the choice H(x, η, P) = |P|2:

Du D
(|Du|2) + |Du|2 [Du]⊥	u = 0. (1.7)

The fullness of rank was assumed because of the possible discontinuity of the coeffi-
cient [Du]⊥, which may well happen even for smooth solutions (for explicit examples
see [28]). In this paper we bypass this difficulty by replacing the orthogonal projec-
tion [ · ]⊥ by the projection on the subspace of those normal vectors which have local
normal C1 extensions in a open neighbourhood:

Definition 3 Let V : Rn ⊇ � −→ R
N×n be a matrix field and note that

R(V (x))⊥ = N(V (x)),

where for any x ∈ �, N(V (x)) is the nullspace of the transpose V (x) ∈ R
n×N .

We define the orthogonal projection

[[V (x)]]⊥ := ProjÑ(V (x)), [[V (·)]]⊥ : R
n ⊇ � −→ R

N×N ,

where Ñ(V (x)) is the reduced nullspace, given by

Ñ(V (x)) :=
{
ξ ∈N(V (x))

∣∣∣ ∃ ε > 0 & ∃ ξ̄ ∈ C1(Rn;RN ) :
ξ̄ (x) = ξ & ξ̄ (y) ∈ N(V (y)), ∀ y ∈ Bε(x)

}
.

It is a triviality to check that Ñ(V (x)) is indeed a vector space and that

[[V (x)]]⊥[V (x)]⊥ = [[V (x)]]⊥,

where [V (x)]⊥ = ProjN(V (x)). Note that the definition could be written in a more
concisemanner by using the algebraic language of sheaves and germs, butwe refrained
from doing so as there is no real benefit in this simple case.

The first main result in this paper is the next variational characterisation of the
Aronsson system (1.4).

Theorem 4 (Variational Structure of Aronsson’s system) Let u : Rn ⊇ � −→ R
N be

a map in C2(�;RN ). Then:
(I) If u is a rank-one absolute minimiser for (1.1) on � (Definition 2(i)), then it solves

HP (·, u,Du)D
(
H(·, u,Du)

) = 0 on �. (1.8)

The opposite is true if in addition H does not depend on η ∈ R
N and HP (·,Du) has

full rank on �.
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(II) If u has ∞-minimal area for (1.1) on � (Definition 2(ii)), then it solves

H(·, u,Du) [[HP (·, u,Du)]]⊥
(
Div

(
HP (·, u,Du)

)−Hη(·, u,Du)
)
=0 on �. (1.9)

The opposite is true if in addition for any x ∈ �, H(x, ·, ·) is convex on Rn× R
N×n.

(III) If u is ∞-minimal map for (1.1) on �, then it solves the (reduced) Aronsson
system

A∞u := HP (·, u,Du)D
(
H(·, u,Du)

)

+ H(·, u,Du) [[HP (·, u,Du)]]⊥
(
Div

(
HP (·, u,Du)

) − Hη(·, u,Du)
)

= 0.

The opposite is true if in addition H does not depend on η ∈ R
N , HP (·,Du) has full

rank on � and for any x ∈ � H(x, ·) is convex in RN×n.

The emergence of two distinct sets of variations and a pair of separate PDE systems
comprising (1.4) might seem at first glance mysterious. However, it is a manifestation
of the fact that the (reduced) Aronsson system in fact consists of two linearly indepen-
dent differential operators because of the perpendicularity between [[HP ]]⊥ and HP ;
in fact, one may split A∞u = 0 to

⎧
⎨

⎩

HP (·, u,Du)D
(
H(·, u,Du)

) = 0,

H(·, u,Du) [[HP (·, u,Du)]]⊥
(
Div

(
HP (·, u,Du)

) − Hη(·, u,Du)
)

= 0.

Theorem 4 makes clear that Aronsson’s absolute minimisers do not characterise the
Aronsson system when N ≥ 2, at least when the additional natural assumptions
hold true. This owes to the fact that, unlike the scalar case, the Aronsson system
admits arbitrarily smooth non-minimising solutions, even in the model case of the
∞-Laplacian. For details we refer to [36].

Since Aronsson’s absolute minimisers do not characterise the Aronsson system, the
natural question arises as to what is their PDE counterpart. The next theorem which
is our second main result answers this question:

Theorem 5 (Divergence PDE characterisation of Absolute minimisers) Let u : Rn ⊇
� −→ R

N be a map in C1(�;RN ). Fix also O � � and consider the following
statements:
(I) u is a vectorial minimiser of E∞(·,O) in C1

u(O;RN ).
(II)We have

max
Argmax{H(·,u,Du) :O}

[
HP (·, u,Du) : Dψ + Hη(·, u,Du) · ψ

]
≥ 0,

for any ψ ∈ C1
0(O;RN ).

(III) For any ψ ∈ C1
0(O;RN ), there exists a non-empty compact set

Kψ ≡ K ⊆ Argmax
{
H(·, u,Du) : O}

(1.10)
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such that,

(
HP (·, u,Du) : Dψ + Hη(·, u,Du) · ψ

)∣∣∣
K

= 0. (1.11)

Then, (I) �⇒ (II) �⇒ (III). If additionally H(x, ·, ·) is convex on R
N × R

N×n for
any fixed x ∈ �, then (III) �⇒ (I) and all three statements are equivalent. Further,
any of the statements above are deducible from the statement:
(IV) For any Radon probability measure σ ∈ P(O) satisfying

supp(σ ) ⊆ Argmax
{
H(·, u,Du) : O}

, (1.12)

we have

− div
(
HP (·, u,Du)σ

) + Hη(·, u,Du)σ = 0, (1.13)

in the dual space (C1
0(O;RN ))∗.

Finally, all statement are equivalent if K = Argmax
{
H(·, u,Du) : O}

in (III) (this
happens for instance when the argmax is a singleton set).

The result above provides an interesting characterisation of Aronsson’s concept of
Absoluteminimisers in terms of divergencePDEsystemswithmeasures as parameters.
The exact distributional meaning of (1.13) is

∫

O

(
HP (·, u,Du) : Dψ + Hη(·, u,Du) · ψ

)
dσ = 0

for all ψ ∈ C1
0(O;RN ), where the “:” notation in the PDE symbolises the Euclidean

(Frobenius) inner product in RN×n .
The idea of Theorem 5 is inspired by the paper [24] of Evans and Yu, wherein a

particular case of the divergence system is derived (in the special scalar case N = 1
for the ∞-Laplacian and only for � = O), as well as by new developments on higher
order Calculus of variations in L∞ in [34,35,38].

Note that, it does not suffice to consider only � = O as in [24] in order to describe
absolute minimisers. For a subdomainO ⊆ �, it may well happen that the only mea-
sure σ “charging” the points ofOwhere the energy densityH(·, u,Du) ismaximised is
theDiracmeasure at a single point x ∈ ∂O. This is for instance the case for the standard
“Aronsson solution” of the ∞-Laplacian on R

2, given by u(x, y) = |x |4/3 − |y|4/3,
as well as for any other ∞-Harmonic function which is nowhere Eikonal (i.e. |Du| is
non-constant on all open subsets).

We conclude this introduction by noting that the two vectorial variational concepts
we are considering herein (Definitions 1–2) do not exhaust the plethora variational
concepts in L∞. In particular, in the paper [41] the concept of tight maps was intro-
duced in the case of H(x, η, P) = ‖P‖ where ‖ · ‖ is the operator norm on R

N×n .
Additionally, in the papers [9,33] a concept of special affine variations was considered
which also characterises theAronsson system, in fact in the generality ofmerely locally
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Lipschitz D-solutions. Finally, in the paper [6] new concepts of absolute minimisers
for constrained minimisation problems have been proposed, whilst results relevant to
variational principles in L∞ and applications appear in [14,15,17,25,39,40].

2 Proofs and aMaximum–Minimum Principle for H(·,u,Du)
In this section we prove our main results Theorems 4–5. Before delving into that, we
establish a result of independent interest, which generalises a corresponding result
from [29].

Proposition 6 (Maximum–Minimum Principles) Suppose Let u ∈ C2(�;RN ) be a
solution to (1.8), such that H satisfies
(a) HP (·, u,Du) has full rank on �,
(b) there exists c > 0 such that

(
ξHP (x, η, P)

) · (
ξP) ≥ c

∣∣ξHP (x, η, P)
∣∣2,

for all ξ ∈ R
N and all (x, η, P) ∈ � × R

N × R
N×n.

Then, for any O � � we have:

sup
O

H(·, u,Du) = max
∂O

H(·, u,Du), (2.1)

inf
O

H(·, u,Du) = min
∂O

H(·, u,Du). (2.2)

The proof is based on the usage of the following flow with parameters:

Lemma 7 Let u ∈ C2(�;RN ). Consider the parametric ODE system

{
γ̇ (t) = ξHP (·, u,Du)

∣∣
γ (t), t �= 0,

γ (0) = x,
(2.3)

for given x ∈ � and ξ ∈ R
N . Then, we have

d

dt

(
H(·, u,Du)

∣∣
γ (t)

)
= ξHP (·, u,Du)D

(
H(·, u,Du)

)∣∣
γ (t), (2.4)

d

dt
ξu

(
γ (t)

) ≥ c
∣
∣∣ξHP (·, u,Du)

∣∣
γ (t)

∣
∣∣
2
. (2.5)

Proof of Lemma 7. The identity (2.4) follows by a direct computation and (2.3). For
the inequality (2.5), we have

d

dt
ξu

(
γ (t)

) =
(
ξDu

(
γ (t)

)) · γ̇ (t)

=
(
ξDu

(
γ (t)

)) ·
(
ξHP (·, u,Du)

∣∣
γ (t)

)

≥ c
∣∣∣ξHP (·, u,Du)

∣∣
γ (t)

∣∣∣
2
.
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The lemma ensues. ��

Proof of Proposition 6 Fix O � �. Without loss of generality, we may suppose O
is connected. Consider first the case where rk

(
HP (·, u,Du)

) ≡ n ≤ N . Then, the
matrix-valued map HP (·, u,Du) is pointwise left invertible. Therefore, by (1.8),

(
HP (·, u,Du)

)−1HP (·, u,Du)D
(
H(·, u,Du)

) = 0

which, by the connectivity of O, gives H(·, u,Du) ≡ const on O. The lat-
ter equality readily implies the desired conclusion. Consider now the case where
rk

(
HP (·, u,Du)

) ≡ N ≤ n. Fix x ∈ O and a unit vector ξ ∈ R
n and consider the

parametricODE system (2.3) of Lemma7.By the fullness of the rank ofHP (·, u,Du)
)
,

we have that

∣∣ξHP (·, u,Du)
)∣∣ ≥ c1 > 0 on O.

We will now show that the trajectory γ (t) reaches ∂O in finite time. To this end, we
estimate

‖Du‖L∞(O)diam(O) ≥ ‖Du‖L∞(O)

∣∣γ (t) − γ (0)
∣∣∣ ≥

∣
∣∣∣
d

dt

∣∣∣
t̂
ξu(γ (t))

∣
∣∣∣ t,

for some t̂ ∈ (0, t), by the mean value theorem. Hence,

‖Du‖L∞(O)diam(O) ≥
∣∣∣∣
d

dt

∣∣∣
t̂
ξu(γ (t))

∣∣∣∣ t

=
∣∣
∣ξDu(γ (t̂)) · γ̇ (t̂)

∣∣
∣ t

=
∣∣∣ξDu(γ (t̂)) ·

(
ξHP (·, u,Du)

∣∣
γ (t̂)

)∣∣∣ t

≥ c0
∣∣∣ξHP (·, u,Du)

∣∣
γ (t̂)

∣∣∣
2
t

≥ (c0c
2
1) t .

This proves the desired claim. Further, since u solves (1.8), by (2.4) of Lemma 7 it
follows that H(·, u,Du) is constant along the trajectory. Thus, if x ∈ O is chosen as a
point realising either the maximum or the minimum in O, then by moving along the
trajectory, we reach a point y ∈ ∂O such that H(·, u,Du)

∣∣
x = H(·, u,Du)

∣∣
y . This

establishes both the maximum and minimum principle. The proposition ensues. ��

Remark 8 (Danskin’s theorem) The central ingredient in the proofs of Theorems 4–
5 is the next consequence of Danskin’s theorem: for any O � � and any u, φ ∈
C1(�;RN ), we have the identities
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⎧
⎪⎪⎨

⎪⎪⎩

d

dt

∣∣∣
t=0+E∞(u + tφ,O) = max

O(u)

(
HP (·, u,Du) : Dφ + Hη(·, u,Du) · φ

)
,

d

dt

∣∣∣
t=0−E∞(u + tφ,O) = min

O(u)

(
HP (·, u,Du) : Dφ + Hη(·, u,Du) · φ

)
,

(2.6)

where

O(u) := Argmax
{
H(·, u,Du) : O}

.

Indeed, by [23, Theorem 1, page 643] and the chain rule we have

d

dt

∣
∣∣
t=0+E∞(u + tφ,O) = d

dt

∣
∣∣
t=0+

(
max
O

H
(·, u + tφ,Du + tDφ

))

= max
O(u)

(
d

dt

∣∣∣
t=0+H

(·, u + tφ,Du + tDφ
))

= max
O(u)

(
HP (·, u,Du) : Dφ + Hη(·, u,Du) · φ

)
.

This establishes the first identity of (2.6). The second one follows through the substi-
tutions φ � −φ, t � −t .

Now we may establish Theorem 4.

Proof of Theorem 4 (I) Suppose first that u is a rank-one absolute minimiser on �.
The aim is to show that (1.8) is satisfied on �. This conclusion in fact follows by the
results in [27], but below we provide a new shorter proof. To this end, fix x ∈ � and
ρ ∈ (0, dist(x, ∂�)) and let O := Bρ(x). We fix also ξ ∈ R

N and choose

φ(y) := ξ
(|y − x |2 − ρ2).

Then, φ ∈ C1
0

(
B̄ρ(x); span[ξ ]). By Remark 8 and our minimality assumption, the

definition of one-sided derivatives yields

d

dt

∣∣∣
t=0−E∞(u + tφ,O) ≤ 0 ≤ d

dt

∣∣∣
t=0+E∞(u + tφ,O). (2.7)

Hence, by (2.7), (2.6) and continuity there exists a point xρ with |xρ − x | ≤ ρ which
lies in the argmax set

(Bρ(x))(u) = Argmax
{
H(·, u,Du) : B̄ρ(x)

}

such that

(
HP (·, u,Du) : Dφ + Hη(·, u,Du) · φ

)∣∣
∣
xρ

= 0. (2.8)
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Therefore,

ξ(
2HP (·, u,Du)

∣
∣
xρ

(xρ − x) + Hη(·, u,Du)
∣
∣
xρ

(|xρ − x |2 − ρ2)
)

= 0. (2.9)

If xρ lies in the interior of Bρ(x), then it is an interior maximum and therefore

D
(
H(·, u,Du)

)∣∣
xρ

= 0.

This means that (1.8) is satisfied at xρ . If xρ lies on the boundary of Bρ(x), then this
means that

∀ y ∈ B̄ρ(x), we have H(·, u,Du)
∣∣
y ≤ H(·, u,Du)

∣∣
xρ

.

The above can be rewritten as

B̄ρ(x) ⊆ H(xρ) :=
{
H(·, u,Du) ≤ H(·, u,Du)

∣∣
xρ

}
,

and note also that xρ ∈ ∂Bρ(x) ∩ ∂H(xρ). Hence, the sublevel setH(xρ) satisfied an
interior sphere condition at xρ . If D

(
H(·, u,Du)

)∣∣
xρ

= 0 then (1.8) is again satisfied
at xρ . If on the other hand

D
(
H(·, u,Du)

)∣∣
xρ

�= 0

then ∂H(xρ) is a C1 manifold near xρ and the gradient above is the normal vector
at the point xρ . Due to the interior sphere condition, this implies that this is also the
normal vector to the sphere ∂Bρ(x) at xρ . Thus, there exists λ �= 0 such that

xρ − x = λD
(
H(·, u,Du)

)∣∣
xρ

. (2.10)

By inserting (2.10) into (2.9) and noting that |xρ − x | = ρ, we infer that

2λ ξ(
HP (·, u,Du)D

(
H(·, u,Du)

))∣
∣
xρ

= 0.

By dividing by 2λ and letting ρ → 0, we deduce that (1.8) is satisfied at the arbitrary
x ∈ �.

Conversely, suppose that u satisfies (1.8) on�, together with the additional assump-
tions of the statement. FixO � � andφ ∈ C1

0(O; span[ξ ]).Without loss of generality,
wemay supposeO is connected. Since φ = (ξφ)ξ , for convenience we set g := ξφ

and then we may write φ = gξ with g ∈ C1
0(O). Then, the matrix-valued map

HP (·,Du) is pointwise left invertible. Therefore, by (1.8)

(
HP (·,Du)

)−1HP (·,Du)D
(
H(·,Du)

) = 0 on O,
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which, by the connectivity of O, gives

H(·,Du) ≡ const on O.

Since g ∈ C1(Rn) with g = 0 on ∂O, there exists at least one interior critical point
x̄ ∈ O such that Dg(x̄) = 0. By the previous, we have

E∞(u,O) = H
(
x̄,Du(x̄)

)

= H
(
x̄,Du(x̄) + ξ ⊗ Dg(x̄)

)

= H
(
x̄,Du(x̄) + Dφ(x̄)

)

≤ sup
x∈O

H
(
x,Du(x) + Dφ(x)

)

= E∞(u + φ,O).

The conclusion ensues.
(II) Suppose that u has ∞-minimal area. Fix x ∈ � and ρ ∈ (0, dist(x, ∂�)). Fix

ξ ∈ Ñ
(
HP (·, u,Du)

∣∣
x

)
,

noting also that byDefinition 3 the above set is the reduced nullspace of HP (·, u,Du)
at x . This implies that there exists a C1 extension ξ̄ ∈ C1(Rn;RN ) such that ξ̄ (x) =
ξ and (ξ̄ )HP (·, u,Du) = 0 on the closed ball B̄ε(x) for some ε ∈ (0, ρ). By
differentiating the relation (ξ̄ )HP (·, u,Du) = 0 and taking its trace, we obtain

ξ̄ · div(HP (·, u,Du)
) + Dξ̄ : HP (·, u,Du) = 0, (2.11)

on B̄ε(x). Since u has ∞-minimal area and ξ̄ is an admissible normal variation, by
using Remark 8 and arguing as in the beginning of part (I), it follows that

(
ξ̄ · Hη(·, u,Du) + Dξ̄ : HP (·, u,Du)

)∣∣∣
xε

= 0 (2.12)

for some xε ∈ (Bε(x))(u), where

(Bε(x))(u) = Argmax
{
H(·, u,Du) : B̄ε(x)

}
.

By (2.11)–(2.12), we infer that

ξ̄ (xε) ·
(
div

(
HP (·, u,Du)

) − Hη(·, u,Du)
)∣∣∣

xε

= 0
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and by letting ε → 0, we deduce that

ξ ·
(
div

(
HP (·, u,Du)

) − Hη(·, u,Du)
)∣∣
∣
x

= 0,

for any ξ ∈ Ñ
(
HP (·, u,Du)

∣
∣
x

)
. Hence, u satisfies (1.9) at the arbitrary x ∈ �.

Conversely, suppose that u solves (1.9) on�. FixO � � andφ ∈ C1(Rn;RN ) such
that φHP (·, u,Du) = 0 onO. Note further that by the continuity up to the boundary
of all functions involved, the latter identity in fact holds on O. By the satisfaction of
(1.9) and Definition 3, it follows that

φ ·
(
div

(
HP (·, u,Du)

) − Hη(·, u,Du)
)

= 0,

on O ⊆ �. By differentiating φHP (·, u,Du) = 0, we obtain

φ · div(HP (·, u,Du)
) + Dφ : HP (·, u,Du) = 0,

on O. By the above two identities, we deduce

φ · Hη(·, u,Du) + Dφ : HP (·, u,Du) = 0,

on O. Since O(u) ⊆ O, Remark 8 yields that u is a critical point since the left and
right derivative of E∞(u + tφ,O) at t = 0 coincide and vanish. Since by assumption
H(x, ·, ·) is convex onRN×R

N×n , it follows that E∞(·,O) is convex on C1(O;RN ).
Hence, the critical point u is in fact a minimum point for this class of variations. This
establishes our claim.
(III) This is an immediate corollary of items (I) and (II). ��

Now we conclude by establishing Theorem 5.

Proof of Theorem 5 FixO � � and u, φ ∈ C1(�;RN ). We show that (I)�⇒ (II)�⇒
(III) and that (III) �⇒ (I) under the additional convexity assumption. By recalling
Remark 8, note that if

E∞(u + tφ,O) ≥ E∞(u,O), for all t ∈ R, (2.13)

then directly by (2.13) and the definition of one-sided derivatives, we have

d

dt

∣∣
∣
t=0−E∞(u + tφ,O) ≤ 0 ≤ d

dt

∣∣
∣
t=0+E∞(u + tφ,O). (2.14)

This shows (I) �⇒ (II). If (II) holds, note that one also has that

min
Argmax{H(·,u,Du) :O}

[
HP (·, u,Du) : Dφ + Hη(·, u,Du) · φ

]
≤ 0,
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for any φ ∈ C1
0(O;RN ). By (2.6) we see that (2.14) is satisfied and by continuity we

obtain the existence of a non-empty compact set K = Kφ ⊆ O(u) such that

(
HP (·, u,Du) : Dφ + Hη(·, u,Du) · φ

)∣∣∣
K

= 0. (2.15)

Hence, (III) ensues. If now (2.15) holds true for some non-empty compact set K ⊆
O(u), then by (2.6) we have that (2.14) is true. If further H(x, ·, ·) is convex for all
x ∈ �, then by Lemma 9 given right after the proof, t �→ E∞(u+ tφ,O) is minimised
at t = 0 and (2.13) holds true.
(IV) �⇒ (III): Let σ ∈ P(O) be any Radon probability measure satisfying (1.12).
Then, by assumption

∫

O

(
HP (·, u,Du) : Dφ + Hη(·, u,Du) · φ

)
dσ = 0

for all φ ∈ C1
0(O;RN ). Fix any point x̄ ∈ O(u). By choosing the Dirac measure

σ̄ ∈ P(O) given by

σ̄ := δx̄

which evidently satisfies supp(σ̄ ) = {x̄} ⊆ O(u), we obtain

(
HP (·, u,Du) : Dφ + Hη(·, u,Du) · φ

)∣
∣∣
x̄

=
∫

O

(
HP (·, u,Du) : Dφ + Hη(·, u,Du) · φ

)
dσ̄

= 0,

for any x̄ ∈ O(u). The conclusion ensues with K = O(u).
(III) �⇒ (IV): If we have K = O(u) and

(
HP (·, u,Du) : Dφ + Hη(·, u,Du) · φ

)∣∣∣
K

= 0,

then for any Radon probability measure σ ∈ P(O) with supp(σ ) ⊆ K, we have

∫

O

(
HP (·, u,Du) : Dφ + Hη(·, u,Du) · φ

)
dσ = 0

for all φ ∈ C1
0(O;RN ). Hence, we have shown that

−div
(
HP (·, u,Du)σ

) + Hη(·, u,Du)σ = 0,

in the dual space (C1
0(O;RN ))∗. ��
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The next result which was utilised in the proof of Theorem 5 completes our argu-
ments.

Lemma 9 Let f : R −→ R be a convex function. If the one-sided derivatives f ′(0±)

exist and f ′(0−) ≤ 0 ≤ f ′(0+), then f (0) is the global minimum of f on R.

Proof of Lemma 9 By the convexity of f on R, for any fixed s ∈ R there exists a
sub-differential ps ∈ R such that

f (t) − f (s) ≥ ps(t − s), for all t ∈ R. (2.16)

For the choice t = 0 and s > 0, we have

f (s) − f (0)

s
≤ ps

and note also that since convex functions are locally Lipschitz, the set (ps)0<s<1 is
bounded. Thus, since f ′(0+) exists and is non-negative, the above inequality yields

0 ≤ f ′(0+) ≤ lim inf
s→0+ ps < ∞.

Hence, by passing to the limit as s → 0+ in the inequality (2.16) for t > 0 fixed, we
obtain f (t) − f (0) ≥ 0. The case of t < 0 follows by arguing similarly. ��
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