
Applied Mathematics & Optimization (2020) 82:949–981
https://doi.org/10.1007/s00245-019-09564-3

Simple Algorithms for Optimization on Riemannian
Manifolds with Constraints

Changshuo Liu1,2 · Nicolas Boumal2

Published online: 28 March 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
We consider optimization problems on manifolds with equality and inequality con-
straints. A large body of work treats constrained optimization in Euclidean spaces.
In this work, we consider extensions of existing algorithms from the Euclidean case
to the Riemannian case. Thus, the variable lives on a known smooth manifold and is
further constrained. In doing so, we exploit the growing literature on unconstrained
Riemannian optimization. For the special case where the manifold is itself described
by equality constraints, one could in principle treat the whole problem as a con-
strained problem in a Euclidean space. The main hypothesis we test here is whether
it is sometimes better to exploit the geometry of the constraints, even if only for a
subset of them. Specifically, this paper extends an augmented Lagrangian method and
smoothed versions of an exact penalty method to the Riemannian case, together with
some fundamental convergence results. Numerical experiments indicate some gains
in computational efficiency and accuracy in some regimes for minimum balanced cut,
non-negative PCA and k-means, especially in high dimensions.

Keywords Riemannian optimization · Constrained optimization · Differential
geometry · Augmented Lagrangian method · Exact penalty method · Nonsmooth
optimization

Mathematics Subject Classification 65K05 · 90C30 · 53A99

B Nicolas Boumal
nboumal@math.princeton.edu

Changshuo Liu
liuchangshuo@outlook.com

1 PACM and Mathematics Department, Princeton University, Princeton, NJ, USA

2 Mathematics Department, Princeton University, Princeton, NJ, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00245-019-09564-3&domain=pdf

950 Applied Mathematics & Optimization (2020) 82:949–981

1 Introduction

We consider the following problem:

min
x

f (x)

subject to x ∈ M
gi (x) ≤ 0 for i ∈ I = {1, . . . , n},
h j (x) = 0 for j ∈ E = {n + 1, . . . , n + m},

(1)

where M is a Riemannian manifold and f , {gi }, {h j } are twice continuously differ-
entiable functions from M to R. The problems of this class have extra constraints in
addition to the manifold constraint. Following the convention, we call problem (1)
an Equality Constrained Problem (ECP) when only equality constraints exist, and an
Inequality Constrained Problem (ICP) when only inequality constraints exist. If both
equality and inequality constraints are present, we call it aMixed Constrained Problem
(MCP). Such problems feature naturally in applications. For instance, non-negative
principal component analysis (PCA) is formulated as an optimization problem on a
sphere in R

n with non-negativity constraints on each entry [54]. As another exam-
ple, k-means can be formulated as a constrained optimization problem on the Stiefel
manifold [23]. We discuss these more in Sect. 5.

Necessary and sufficient optimality conditions for the general problem class (1)
were derived in [53] and also recently in [10]—we summarize them in the next section.
Some algorithmic approaches have been put forward in [14,29,39,40,55]. Neverthe-
less, and somewhat surprisingly, we find that there has been no systematic effort to
survey and compare some of the most direct approaches to solve (1) based on prior
work on the same problem class without the manifold constraint [12] and with only
the manifold constraint [2].

Part of the reason may be that, in many applications, the manifoldM is a subman-
ifold of a Euclidean space, itself defined by equality constraints. In such cases, the
manifold constraint can be treated as an additional set of equality constraints, and the
problem can be solved using the rich expertise gained over the years for constrained
optimization inRn . There are also existing software packages for it, such as Lancelot,
KNITRO and Algencan [16,20,27].

Yet, based on the literature for unconstrained optimization on manifolds, we see
that if themanifoldM is nice enough, it pays to exploit its structure fully. In particular,
much is now understood about optimizing over spheres, orthogonal groups, the Stiefel
manifold of orthonormal matrices, the set of fixed-rank matrices, and many more.
Furthermore, embracing the paradigm of optimization on manifolds also allows us to
treat problems of class (1) whereM is an abstract manifold, such as the Grassmannian
manifold of linear subspaces. Admittedly, owing to Whitney’s embedding theorem,
abstract manifolds can also be embedded in a Euclidean space, and hence even those
problems could in principle be treated using algorithms from the classical literature,
but the mere existence of an embedding is often of little practical use.

In this paper, we survey some of the more classical methods for constrained opti-
mization inRn and straightforwardly extend them to the more general class (1), while

123

Applied Mathematics & Optimization (2020) 82:949–981 951

preserving and exploiting the smooth geometry of M. For each method, we check if
some of the essential convergence results known in R

n extend as well. Then, we set
up a number of numerical experiments for a few applications and report performance
profiles. Our purpose in doing so is to gain some perspective as to which methods are
more likely to yield reliable generic software for this problem class.

1.1 Contributions

As a first contribution, we study the augmented Lagrangian method (ALM) and the
exact penalty method on general Riemannian manifolds. For ALM, we study local and
global convergence properties. For the exact penalty method, each iteration involves
the minimization of a sum of maximum functions, which we call a mini-sum-max
problem. For this nonsmooth optimization subproblem, we study and tailor two types
of existing algorithms—subgradient descent and smoothing methods. In particular,
we propose a robust subgradient method without gradient sampling for mini-sum-
max problems, which may be of interest in itself. For smoothing methods, we study
the effect of two classical smoothing functions: Log-sum-exp and ‘Linear-Quadratic
+ Huber loss’.

As a second contribution, we perform numerical experiments on non-negative PCA,
k-means and theminimum balanced cut problems to showcase the strengths andweak-
nesses of each algorithm. As a baseline, we compare our approach to the traditional
approach, which would simply consider the manifold as an extra set of equality con-
straints. For this, we use fmincon: a general-purpose nonlinear programming solver
in Matlab. For these problems, we find that some of our methods perform better than
fmincon in high dimensional scenarios. Our solvers are generally slower in the
low-dimensional case.

We present the algorithms and convergence analyses for ALM and the exact penalty
method on Riemannian manifolds in Sects. 3 and 4 respectively. Proofs are deferred to
the appendix. Numerical experiments on various applications are reported in Sect. 5.

1.2 Related Literature

Dreisigmeyer [29] tackles ICPs on Euclidean submanifolds by pulling back the
inequality constraints onto the tangent spaces ofM, and running direct search meth-
ods there. Yang et al. [53] provide necessary optimality conditions for our problem
class (1). Bergmann and Herzog [10] extend a range of constraint qualifications from
the Euclidean setting to the smooth manifold setting. Kovnatsky et al. [40] generalize
the alternating direction method of multipliers (ADMM) to the Riemannian case—the
method handles nonsmooth optimization on manifolds via variable splitting, which
produces an ECP. In [14], Birgin et al. deal withMCP in the Euclidean case by splitting
constraints into upper-level and lower-level, and perform ALM on upper-level con-
strained optimization problems in a search space confined by lower-level constraints.
When M is a submanifold of a Euclidean space chosen to describe the lower-level
constraints, our Riemannian ALM reduces to their method. Khuzani and Li [39] pro-
pose a primal-dual method to address ICP on Riemannian manifolds with bounded

123

952 Applied Mathematics & Optimization (2020) 82:949–981

sectional curvature in a stochastic setting. Zhang et al. [55] propose an ADMM-like
primal-dual method for nonconvex, nonsmooth optimization problems on submani-
folds of Euclidean space coupled with linear constraints. Weber and Sra [52] recently
study a Franke–Wolfe method on manifolds to design projection-free methods for
constrained, geodesically convex optimization on manifolds.

2 Preliminaries and Notations

We briefly review some relevant concepts from Riemannian geometry, following the
notations of [2]. Let the Riemannian manifold M be endowed with a Riemannian
metric 〈·, ·〉x on each tangent space TxM, where x is in M. Let ‖ · ‖x be the associ-
ated norm. We often omit the subscript x when it is clear from context. Throughout
the paper, we assume that M is a complete, smooth, finite-dimensional Riemannian
manifold.

2.1 Gradients and Hessians onManifolds

The gradient at x of a smooth function f : M → R, grad f (x), is defined as the
unique tangent vector at x such that

〈grad f (x), v〉x = D f (x)[v], ∀v ∈ TxM,

where the right-hand side is the directional derivative of f at x along v. Let
dist(x, y) denote the Riemannian distance between x, y ∈ M. For each x ∈ M,
let Expx : TxM → M denote the exponential map at x (that is, the map such that
t 	→ Expx (tv) is a geodesic passing through x at t = 0 with velocity v ∈ TxM). The
injectivity radius is defined as:

i(M) = inf
x∈M

sup{ε > 0 : Expx |{η∈TxM:‖η‖<ε} is a diffeomorphism}. (2)

For any x, y ∈ M with dist(x, y) < i(M), there is a unique minimizing geodesic
connecting them, which gives rise to a parallel transport operator Px→y : TxM →
TyM as an isometry between two tangent spaces.

Definition 2.1 (Hessian, [2], Definition 5.5.1) Given a smooth function f : M → R,
the Riemannian Hessian of f at a point x in M is the linear mapping Hess f (x) of
TxM into itself defined by

Hess f (x)[ξx] = ∇ξx grad f

for all ξx in TxM, where ∇ is the Riemannian connection on M.

Using the exponential map, one can also understand the Riemannian gradient and
Hessian through the following identities [2, Eq. (4.4) and Prop. 5.5.4]:

grad f (x) = grad(f ◦ Expx)(0x), Hess f (x) = Hess(f ◦ Expx)(0x), (3)

123

Applied Mathematics & Optimization (2020) 82:949–981 953

where 0x is the zero vector in TxM and f ◦ Expx : TxM → R is defined on a
Euclidean space with a metric, so that its gradient and Hessian are defined in the usual
sense. The composition f ◦ Expx is also called the pullback of f to the tangent space
at x .

2.2 Optimality Conditions

Let � denote the set of feasible points on M satisfying the constraints in (1). At
x ∈ M, let I denote the set of n inequality constraints, and E the set of m equality
constraints. Let A(x) denote the active set of constraints, that is,

A(x) = E ∪ {i ∈ I|gi (x) = 0}. (4)

The Langrangian of (1) is defined similarly to the Euclidean case as

L(x, λ, γ) = f (x) +
∑

i∈I
λi gi (x) +

∑

j∈E
γ j h j (x), (5)

where λi , γ j are vector entries of λ ∈ R
n and γ ∈ R

m . Following [53], constraint
qualifications and optimality conditions are generalized as follows:

Definition 2.2 (LICQ, [53], eq. (4.3)) Linear independence constraint qualifications
(LICQ) are said to hold at x ∈ M if

{grad gi (x), grad h j (x), i ∈ A(x) ∩ I, j ∈ E} are linearly independent in TxM.

(6)

Definition 2.3 (First-Order Necessary Conditions (KKT conditions), [53], eq. (4.8))
Given an MCP as in (1), x∗ ∈ � is said to satisfy KKT conditions if there exist
Lagrange multipliers λ∗ and γ ∗ such that the following hold:

grad f (x∗) +
∑

i∈I
λ∗
i grad gi (x) +

∑

j∈E
γ ∗
i grad h j (x) = 0,

h j (x
∗) = 0, for all j ∈ E, and

gi (x
∗) ≤ 0, λ∗

i ≥ 0, λ∗
i gi (x

∗) = 0 for all i ∈ I. (7)

For the purpose of identifying second-order optimality conditions at x∗ with asso-
ciated λ∗ and γ ∗, consider the critical cone F(x∗, λ∗, γ ∗) inside the tangent space at
x∗ defined as follows; see [53, §4.2], [47, §12.4]:

v ∈ F(x∗, λ∗, γ ∗) ⇔

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v ∈ Tx∗M,

〈grad h j (x
∗), v〉 = 0 for all j ∈ E,

〈grad gi (x
∗), v〉 = 0 for all i ∈ A(x∗) ∩ I with λ∗

i > 0, and

〈grad gi (x
∗), v〉 ≤ 0 for all i ∈ A(x∗) ∩ I with λ∗

i = 0.

(8)

123

954 Applied Mathematics & Optimization (2020) 82:949–981

Definition 2.4 (Second-Order Necessary Conditions (SONC), [53], Theorem 4.2)
Given anMCP as in (1), x∗ ∈ � is said to satisfy SONCs if it satisfies KKT conditions
with associated Lagrange multiplier λ∗ and γ ∗, and if

〈v,HessxL(x∗, λ∗, γ ∗)v〉 ≥ 0, for any v ∈ F(x∗, λ∗, γ ∗),

where the Hessian is taken with respect to the first variable of L, onM.

Definition 2.5 (Second-Order SufficientConditions (SOSC), [53],Theorem4.3) Given
an MCP as in (1), x∗ ∈ � is said to satisfy SOSCs if it satisfies KKT conditions with
associated Lagrange multiplier λ∗ and γ ∗, and if

〈v,HessxL(x∗, λ∗, γ ∗)v〉 > 0, for any v ∈ F(x∗, λ∗, γ ∗), v �= 0.

Proposition 2.6 ([53], Theorem 4.1, 4.2) If x∗ is a local minimum of a given MCP and
LICQ holds at x∗, then x∗ satisfies KKT conditions and SONCs.

Proposition 2.7 ([53], Theorem 4.3) If x∗ satisfies SOSCs for a given MCP, then it is
a strict local minimum.

3 Riemannian Augmented LagrangianMethods

The augmented Lagrangian method (ALM) is a popular algorithm for constrained
nonlinear programming of the form of (1) with M = R

d . At its core, ALM relies on
the definition of the augmented Lagrangian function [16, eq. (4.3)]:

Lρ(x, λ, γ) = f (x) + ρ

2

⎛

⎝
∑

j∈E

(
h j (x) + γ j

ρ

)2

+
∑

i∈I
max

{
0,

λi

ρ
+ gi (x)

}2
⎞

⎠,

(9)

where ρ > 0 is a penalty parameter, and γ ∈ R
m, λ ∈ R

n, λ ≥ 0. ALM alternates
between updating x and updating (λ, γ). To update x , any algorithm for unconstrained
optimizationmaybe adopted tominimize (9)with (λ, γ)fixed.We shall call the chosen
solver the subsolver. To update (λ, γ), a clipped gradient-type update rule is used. A
vast literature covers ALM in the Euclidean case. We direct the reader in particular to
the recent monograph by Birgin and Martínez [16].

The Lagrangian function as defined in (9) generalizes seamlessly to the Riemannian
case simply by restricting x to live on themanifoldM. Importantly,Lρ is continuously
differentiable in x under our assumptions. The corresponding ALM algorithm is easily
extended to the Riemannian case as well: subsolvers are now optimization algorithms
for unconstrained optimization onmanifolds.We refer to this approach as Riemannian
ALM, or RALM; see Algorithm 1, in which the clip operator is defined by

clip[a,b](x) = max{a,min(b, x)}.

123

Applied Mathematics & Optimization (2020) 82:949–981 955

Algorithm 1: Riemannian augmented Lagrangian method (RALM)
1 Require: Riemannian manifold M, twice continuously differentiable functions f , {gi }i∈I ,

{h j } j∈E : M → R.

2 Input: Starting point x0 ∈ M, starting Lagrangian vectors λ0 ∈ R
n, γ 0 ∈ R

m, accuracy tolerance
εmin, starting accuracy ε0 > 0, starting penalty coefficient ρ0, constants θε ∈ (0, 1), θρ > 1,
multiplier boundaries λmax ∈ R

n, γmin, γmax ∈ R
m with γmin

i ≤ γmax
i for each i ∈ I, ratio

θσ ∈ (0, 1), minimum step size dmin.
3 for k = 0, 1, . . . do
4 Compute xk+1—an approximate solution to the following problem within a tolerance εk :

min
x∈M Lρk (x, λ

k , γ k). (10)

5 if dist(xk , xk+1) < dmin and εk ≤ εmin then
6 Return xk+1;
7 end

8 γ k+1
j = clip[γmin

j ,γmax
j](γ

k
j + ρkh j (xk+1)), for j ∈ E ;

9 λk+1
i = clip[λmin

i ,λmax
i](λ

k
i + ρk gi (xk+1)), for i ∈ I;

10 σ k+1
i = max

{
gi (xk+1), − λki

ρk

}
, for i ∈ I;

11 εk+1 = max {εmin, θεεk };
12 if k = 0 or max j∈E,i∈I

{
|h j (xk+1)|, |σ k+1

i |
}

≤ θσ max j∈E,i∈I
{
|h j (xk)|, |σ k

i |
}
then

13 ρk+1 = ρk ;
14 else
15 ρk+1 = θρρk ;
16 end
17 end

In practice, solving (10) (approximately) involves running any standard algorithm
for smooth, unconstrained optimization on manifolds with warm-start at xk . Various
kinds of tolerances for this subproblem solve will be discussed, which lead to different
convergence results. We note that this approach of separating out a subset of the
constraints that have special, exploitable structure in ALM is in the same spirit as the
general approach in [5] and in [12, §2.4].

Notice that, in Algorithm 1, there are safeguards designed for multipliers and a
conditioned update on the penalty coefficient ρ—updates are executed only when
constraint violations are shrinking fast enough, which helps alleviate the effect of
ill-conditioning and improves robustness; see [16,38]. As each subproblem (10)
is an unconstrained problem with sufficiently smooth objective function, various
Riemannian optimization methods can be used. In particular, we mention the Rie-
mannian gradient descent, non-linear conjugate gradients and trust-regions methods,
all described in [2] and available in ready-to-use toolboxes [18,35,51].

Global and local convergence properties of ALM in the Euclidean case have been
studied extensively; see [5,6,13–15], among others. Some of the results available in
the literature are phrased in sufficiently general terms that they readily apply to the
Riemannian case, even though the Riemannian case was not necessarily explicitly
acknowledged. This applies to Proposition 3.1 below. To extend certain other results,

123

956 Applied Mathematics & Optimization (2020) 82:949–981

minor modifications to the Euclidean proofs are necessary. Propositions 3.2 and 3.4
are among those. Here and in the next section, we state some of the more relevant
results explicitly for the Riemannian case. For the sake of completeness, we include
full proofs in the appendix, stressing again that they are either existing proofs or simple
adaptations of existing proofs.

Whether or not Algorithm 1 converges depends on the tolerances for the subprob-
lems, and the ability of the subsolver to return a point that satisfies them. In general,
solving the unconstrained subproblem (9) to global optimality—even within a toler-
ance on the objective function value—is hard. In practice, that step is implemented by
running a local optimization solver which, often, can only guarantee convergence to
an approximate first- or second-order stationary point. Nevertheless, practice suggests
that formany applications these local solvers performwell. An important question then
becomes: assuming the subproblems are indeed solved within appropriate tolerances,
doesAlgorithm1 converge? In the following three propositions,we partially character-
ize the limit points generated by the algorithm assuming either that the subproblems
are solved almost to global optimality, which is difficult to guarantee, or assuming
approximate stationary points are computed, which we can guarantee [3,8,17,56].

We first consider the case when we have a global subsolver up to some tolerance
on the cost for each iteration. This affords the following result:

Proposition 3.1 In Algorithm 1 with εmin = 0 (so that the algorithm produces an
infinite sequence with εk → 0), if at each iteration k the subsolver produces a point
xk+1 satisfying

Lρk (xk+1, λ
k, γ k) ≤ Lρk (z, λ

k, γ k) + εk, (11)

where z is a feasible global minimizer of the original MCP, and if {xk}∞k=0 has a limit
point x, then x is a global minimizer of the original MCP.

Proof See Theorems 1 and 2 in [15]. The proofs in that reference apply verbatim to
the Riemannian case. ��

However, most Riemannian optimization methods only return approximately first-
or second-order approximate stationary points. In the first-order case, we have the
following:

Proposition 3.2 In Algorithm 1 with εmin = 0, if at each iteration k the subsolver
produces a point xk+1 satisfying

‖ gradx Lρk (xk+1, λ
k, γ k)‖ ≤ εk, (12)

and if the sequence {xk}∞k=0 has a limit point x ∈ � where LICQ is satisfied, then x
satisfies KKT conditions of the original MCP.

Proof The proof is an easy adaptation of that of Theorem 4.2 in [5]: see Appendix A.
��

123

Applied Mathematics & Optimization (2020) 82:949–981 957

In the second-order case, we consider problems with equality constraints only,
because when inequality constraints are present the augmented function (9) may not
be twice differentiable. (See [12] for possible solutions to this particular issue.) We
consider the notion ofWeak Second-Order Necessary Conditions onmanifolds, which
parallels the Euclidean case definition in [7,32].

Definition 3.3 (Weak Second-Order Necessary Conditions (WSONC)) Given an MCP
as in (1), a feasible point x∗ ∈ � satisfies WSONC if it satisfies KKT conditions with
multipliers λ∗ ∈ R

n+ and γ ∗ ∈ R
m such that1

〈v,HessxL(x∗, λ∗)v〉 ≥ 0, for any v ∈ CW (x∗),

where

v ∈ CW (x∗) ⇔

⎧
⎪⎨

⎪⎩

v ∈ Tx∗M,

〈grad h j (x∗), v〉 = 0 for all j ∈ E, and

〈grad gi (x∗), v〉 = 0 for all i ∈ A(x∗) ∩ I.

Note that the cone CW in Definition 3.3 is smaller than the cone F (8) used to define
SONC. Even in Euclidean space, most algorithms do not converge to feasible SONC
points in general, so we would not expect more in the Riemannian case; see [7,30].
CW is called weak critical cone in [7, Def. 2.2].

Proposition 3.4 Consider an ECP (problem (1) without inequalities) with |E | <

dim(M). In Algorithm 1 with εmin = 0, suppose that at each iteration k the sub-
solver produces a point xk+1 satisfying

‖ gradx Lρk (xk+1, λ
k, γ k)‖ < εk (13)

and

HessxLρk (xk+1, λ
k, γ k) � −εk I (14)

(meaning all eigenvalues of theHessian are at or above−εk). If the sequence generated
by the algorithm has a limit point x ∈ � where LICQ is satisfied, then x satisfies the
WSONC conditions of the original ECP.

Proof The proof is adapted from Section 3 in [7]: see Appendix B. ��

4 Exact Penalty Method

Another standard approach to handle constraints is the so-called exact penalty method.
As a replacement for the constraints, the method supplements the cost function with a

1 Note that this condition involves L as defined in Sect. 2.2, not Lρ .

123

958 Applied Mathematics & Optimization (2020) 82:949–981

weighted L1 penalty for violating the constraints. This leads to a nonsmooth, uncon-
strained optimization problem. In the Riemannian case, to solve problem (1), this
approach suggests solving the following program, where ρ > 0 is a penalty weight:

min
x∈M

f (x) + ρ

⎛

⎝
∑

i∈I
max{0, gi (x)} +

∑

j∈E
|h j (x)|

⎞

⎠ . (15)

In the Euclidean case, it is known that only a finite penalty weight ρ is needed for exact
satisfaction of constraints, hence the name [47, Ch. 15, 17]. We have the following
analogous property in the Riemannian case.

Proposition 4.1 If x∗ is a local minimum for problem (1) and it satisfies SOSC with
KKT multipliers λ∗, γ ∗, then for any ρ such that ρ > maxi∈I, j∈E {|λ∗

i |, |γ ∗
j |}, x∗ is

also a local minimum for (15).

Proof The proof resembles that of Theorem 6.9 in [50]: see Appendix C. ��
Notice that the resulting penalized cost function is nonsmooth: such problems may

be challenging in general. Fortunately, the cost function in (15) is a sum of maximum
functions and absolute values functions: this special structure can be exploited algo-
rithmically.We explore two general strategies: first, we explore smoothing techniques;
then, we explore a particular nonsmooth Riemannian optimization algorithm.

4.1 Smoothing Technique

We discuss two smoothing methods for (15). A first approach is to note that the
absolute value function can be written as a max function: |x | = max{x,−x}. Thus,
the nonsmooth part of the cost function in (15) is a linear combination ofmax functions
between two terms. A popular smoothing for a two-termmaximum is the log-sum-exp
function [25]: max{a, b} ≈ u log(ea/u +eb/u), with smoothing parameter u > 0. This
yields the following smooth, unconstrained problem on a manifold, where ρ, u are
fixed constants:

min
x∈M

Qlse(x, ρ, u) = f (x) + ρ
∑

i∈I
u log(1 + egi (x)/u)

+ ρ
∑

j∈E
u log(eh j (x)/u + e−h j (x)/u).

(16)

Another common approach is to smooth the absolute value and the max in (15)
separately, using respectively a pseudo-Huber loss [21] and a linear-quadratic loss
[49]. Here, still with smoothing parameter u > 0, we use |x | ≈ √

x2 + u2 and
max{0, x} ≈ P(x, u) where

P(x, u) =

⎧
⎪⎨

⎪⎩

0 if x ≤ 0
x2
2u if 0 ≤ x ≤ u

x − u
2 if x ≥ u.

123

Applied Mathematics & Optimization (2020) 82:949–981 959

Such approximation yields, for fixed constants ρ, u, the following problem:

min
x∈M

Qlqh(x, ρ, u) = f (x) + ρ
∑

i∈I
P(gi (x), u) + ρ

∑

j∈E

√
h j (x)2 + u2. (17)

Note that Qlse and Qlqh are both continuously differentiable and thus we can opti-
mize themwith smooth solvers onmanifolds. In view of Proposition 4.1, in the absence
of smoothing, there exists a threshold such that, if ρ is set above that threshold, then
optima of the penalized problem coincide with optima of the target problem. However,
we often do not know this threshold, and furthermore setting ρ at a high value with
a poor initial iterate can lead to poor conditioning and slow convergence. A common
practice is to set a relatively low initial ρ, optimize, and iteratively increase ρ and
re-optimize with a warm start. This is formalized in Algorthm 2, which we here call
Riemannian Exact Penalty Method via Smoothing (REPMS). In the algorithm and
in the discussion below, updateρ is a (fixed) Boolean flag indicating whether ρ is
dynamically increased or not: this allows to discuss both versions of the algorithm.

Algorithm 2: Riemannian Exact Penalty Method via Smoothing (REPMS)
1 Require: Riemannian manifold M, twice continuously differentiable functions f , {gi }i∈I ,

{h j } j∈E : M → R.
2 Input: Starting point x0 ∈ M, accuracy tolerance εmin , starting accuracy ε0, starting penalty
coefficient ρ0, starting approx-accuracy u0, minimum approx-accuracy umin , constants
θε, θu ∈ (0, 1), θρ > 1, τ ≥ 0, Q ∈ {Qlse, Qlqh}, minimum step length dmin,
updateρ ∈ {True,False}.

3 for k = 0,1,2… do
4 To obtain xk+1, choose any subsolver to approximately solve

min
x∈M Q(x, ρk , uk) (18)

with warm-start at xk and stopping criterion

‖ grad Q(x, ρk , uk)‖ ≤ εk .

5 if dist(xk , xk+1) < dmin and εk ≤ εmin and uk ≤ umin then
6 Return xk+1;
7 end
8 εk+1 = max{εmin, θεεk }; uk+1 = max{umin, θuuk };
9 if updateρ = True and (k = 0 or max j∈E,i∈I

{|h j (xk+1)|, gi (xk+1)
} ≥ τ) then

10 ρk+1 = θρρk
11 else
12 ρk+1 = ρk ;
13 end
14 end

The stopping criterion parameters (dmin, umin, εmin) are lower-bounds introduced
in the algorithm for practical purposes. The algorithm terminates when the step size is
too small while the approximation accuracy is high and the tolerance for the subsolver

123

960 Applied Mathematics & Optimization (2020) 82:949–981

is low. On the other hand, if uk is too small, numerical difficulties may arise in these
two approximation functions. Numerical concerns aside, in theory (exact arithmetic),
if we set these parameters to 0, then the following convergence result holds, similar
to its Euclidean counterpart of quadratic penalty method [47, §17.1].

Proposition 4.2 In Algorithm 2, suppose we set dmin = umin = εmin = 0 and
updateρ = False. If the sequence {xk} produced by the subsolver admits a feasible
limit point x where LICQ conditions hold, then x satisfies KKT conditions for (1).

Proof See Appendix D. ��
The conditions of this proposition are only likely to hold if ρ0 (the initial penalty) is

sufficiently large, as described in Proposition 4.1. Instead of trying to set ρ0 above the
unknown threshold, we may increase ρ in every iteration. When updateρ = True, the
update of ρ is a heuristic featured in [49] in the Euclidean case: it gives a conditioned
increase on the penalty parameter. Intuitively, when the obtained point is far from
feasible, the penalty coefficient is likely too small so that the penalty parameter is
increased.

4.2 A Subgradient Method for Sums of Maximum Functions

Instead of smoothing, one may attempt to optimize the nonsmooth objective function
directly. In this pursuit, the subgradient descent algorithm on Riemannian manifolds,
and its variants, have received much attention in recent years; see [1,31,33]. These
algorithms work for general locally Lipschitz objective functions on manifolds, and
would work here as well. However, notice that (15) takes the exploitable form of
minimizing a sum of maximum functions:

min
x∈M

f (x) +
∑

i∈I
max{0, ρgi (x)} +

∑

i∈E
max{ρhi (x),−ρhi (x)}. (19)

We hence propose a robust version of subgradient descent for sums of maximum
functions, which may be of interest in its own right.We refer to it as Riemannian Exact
Penalty Method via Subgradient Descent (REPMSD). However, due to the lengthy
specification of this method and its poor performance in numerical experiments, we
will only give an overview here and report its performance in Sect. 5.

In the Euclidean case, subgradient descent with line search performs two steps—
finding a good descent direction and performing line search to get the next point. To
find a descent direction, one often wants access to the subdifferential at the current
point, because it contains a descent direction. This generalizes to the Riemannian case.
We refer readers to [26,31,33] for the definition of generalized subdifferential, which
we denote as ∂ f (x) for f : M → R. Note that obtaining full information of the
subdifferential is generally difficult, and thus many algorithms sample the gradients
around the current point to approximate it. However, for a sum of maximum functions,
the subdifferential is directly accessible. This class of problems, which includes (19),
takes the form:

123

Applied Mathematics & Optimization (2020) 82:949–981 961

min
x∈M

f (x) =
m∑

i=1

max{ fi, j (x)| j = 1, . . . , ni }, (20)

where each function fi, j : M → R is twice continuously differentiable. Notice that

f (x) =
m∑

i=1

max{ fi, j (x)| j = 1, . . . , ni } = max
1≤ ji≤ni for i=1...m

m∑

i=1

fi, ji (x). (21)

For a given i in 1, . . . ,m and a given x ∈ M, let Ii index the set of functions fi, j
which attain the maximum for that i :

Ii = {1 ≤ j ≤ ni | fi, j (x) = max{ fi, ji (x)| ji = 1 . . . ni }}.

It is clear that for any choice of ji ’s (one for each i) such that
∑

i fi, ji (x) = f (x), we
have ji ∈ Ii for all i . Thus, from the regularity of the maximum function as defined in
[26] and Proposition 2.3.12 in that same reference, exploiting the fact that pullbacks
f ◦ Expx are defined on the tangent space TxM which is a linear subspace, it can be
shown using standard definitions of subdifferentials that

∂(f ◦ Expx)(0x) = Conv

⎧
⎨

⎩

m∑

i=1

Grad(fi, ji ◦ Expx)(0x)

∣∣∣∣ all possible choices of ji ∈ Ii

⎫
⎬

⎭ ,

wherewe use the notationGrad to stress that this is a Euclidean gradient of the pullback
on the tangent space, and the operator Conv returns the convex hull of given vectors. To
be explicit, for each i , pick some ji in Ii : this produces one vector by summation over
i as indicated; the convex hull is taken over all possible choices of the ji ’s. Then, with
Proposition 2.5 of [34], analogously to (3), we see that the generalized subdifferential
of f at x is given by

∂ f (x) = Conv

{
m∑

i=1

grad fi, ji (x)

∣∣∣∣ all possible choices of ji ∈ Ii
}

. (22)

This gives an explicit formula for the subdifferential of f onM. Whilst the traditional
approach is often to get a descent direction directly from this subdifferential or to
sample around the point, numerically, it makes sense to relax the condition and to
replace Ii with an approximate subdifferential based on the (larger) set

Ii,ε = {1 ≤ j ≤ ni | fi, j (x) ≥ max{ fi, j (x)| j = 1, . . . , ni } − ε},

where ε > 0 is a tolerance. Then, one looks for a descent direction in the subdifferen-
tial (22) extended by substituting Ii,ε for Ii . For the latter, the classical approach with
ε = 0 is to look for a tangent vector of minimum norm in the convex hull: this involves
solving a convex quadratic program. We here compute a minimum norm vector in the
extended convex hull. For the rest of the algorithm, we perform a classical Wolfe line

123

962 Applied Mathematics & Optimization (2020) 82:949–981

search and use a limited-memory version of Riemannian BFGS (LRBFGS) updates
based on the now well-known observation that BFGS works surprisingly well with
nonsmoothness on Euclidean spaces [44] as well as on manifolds [33]—unfortunately
we could not run full Riemannian BFGS as this is expensive on high dimensional
manifolds. For details onWolfe line search and BFGS, see Chapters 3, 8 and 9 of [47].

In closing, we note that there exist other methods for nonsmooth optimization,
some of which apply on manifolds as well. In particular, we mention proximal point
algorithms [9,48], Douglas–Rachford-type methods [11] and iteratively reweighted
least squares [24]. We did not experiment with these methods here.

5 Numerical Experiments and Discussion

5.1 Problems and Data

We describe three applications which can bemodeled within the framework of (1). For
each, we describe how we construct ‘baskets’ of problem instances. These instances
will be used to assess the performance of various algorithms. Code and datasets to
reproduce the experiments are freely available.2

5.1.1 Minimum Balanced Cut for Graph Bisection

The minimum balanced cut problem is a graph problem: given an undirected graph,
one seeks to partition the vertices into two clusters (i.e., bisecting the graph) such that
the number of edges between clusters is as small as possible, while simultaneously
ensuring that the two clusters have about the same size. A spectral method called ratio
cut tackles this problem via optimization where the number of crossing edges and the
imbalance are penalized in the objective function. However, in [41], the author notes
that for ‘power law graphs’—graphs whose degrees follow a power law distribution—
this approach fails to enforce balance. Hence, the author proposes a method with
stronger constraints to enforce balance: we sketch it below.

Let L ∈ R
n×n denote the discrete Laplacian matrix of the given graph (L = D− A,

where D is the diagonal degree matrix and A is the adjacency matrix). Furthermore,
let x ∈ R

n be an indicator vector with entries in {−1, 1} indicating which cluster
each vertex belongs to. One can check that 1

4 x
T Lx evaluates to the number of edges

crossing the two clusters. Let e be the vector of 1’s with length n. To enforce balance,
xT e = 0 is imposed, i.e., the number of vertices in the two clusters is the same (this
only applies to graphs with an even number of vertices). However, directly solving
this integer programming problem is difficult. The authors thus transform this discrete
optimization problem into a continuous one. As a first step, the constraints xi = ±1
for all i are replaced by diag(xxT) = e, and the constraint xT e = 0 is replaced by
(xT e)2 = eT (xxT)e = 0. Then, x ∈ R

n is relaxed to a matrix X ∈ R
n×k for some

chosen k in 1 . . . n. Carrying over the constraints gives diag(XXT) = e, so that each
row of X is a unit vector, and eT (XXT)e = 0 is imposed. The problem then becomes:

2 https://github.com/losangle/Optimization-on-manifolds-with-extra-constraints.

123

https://github.com/losangle/Optimization-on-manifolds-with-extra-constraints

Applied Mathematics & Optimization (2020) 82:949–981 963

min
X∈Rn×k

− 1

4
tr(LXXT)

subject to diag(XXT) = e, eT X XT e = 0,
(23)

For k = 1, the problem is equivalent to the original problem. For k = n, the problem
is equivalent to solving a (convex) semidefinite program (SDP) by considering XXT

as a positive semidefinite matrix (X can be recovered from Cholesky factorization).
One may then use a standard clustering algorithm (for example k-means) on the rows
of X to obtain two clusters. By choosing k > 1, the problem becomes continuous (as
opposed to discrete), which much extends the class of algorithms that we may apply
to solve this problem. Furthermore, since for k = n the problem is essentially convex
(being equivalent to an SDP), we heuristically expect that for k > 1 the problem may
be easier to solve than with k = 1.

To keep the dimensionality of the optimization problem low, it is of interest to
consider k > 1 smaller than n, akin to a Burer–Monteiro approach [19]. We notice
that diag(XXT) = e defines an oblique manifold (a product of n unit spheres in Rk).
Thus, we can view (23) as a problem on the oblique manifold with a single constraint:

min
X∈Oblique(n,k)

− 1

4
tr(XT LX)

subject to eT X XT e = 0.

(24)

This fits our problem class (1) withM = Oblique(n, k) as an embedded Riemannian
submanifold of Rn×k and a single quadratic equality constraint.

Input. We generate power law graphs with the Barabási–Albert algorithm [4]. It
starts off with a seed of a small connected graph, iteratively adds a vertex to the graph,
and attaches l edges to the existing vertices. For each edge, it is attached to a vertexwith
probability proportional to the current degree of the vertex. We generate the seed with
Erdős–Rényi random graphs G(nseed, p), that is: G(nseed, p) is a random graph with
nseed nodes such that every two nodes are connected with probability p independently
of other edges. For each dimension n ∈ {50, 200, 500, 1000, 2000, 5000}, we collect
a basket of problems by selecting a density m ∈ {0.005, 0.01, 0.02, 0.04, 0.08}, such
that l = mn. For each set of parameters, we repeat the experiment four times with
new graphs and new starting points. The seed is generated by G(2�mn�, 0.5).

5.1.2 Non-Negative PCA

We follow Montanari and Richard [46] for this presentation of non-negative PCA.
Let v0 ∈ R

d be the spiked signal with ‖v0‖ = 1. In the so-called spiked model, we
are given the matrix Z = √

SN R v0v
T
0 + N , where N is a random symmetric noise

matrix and SN R is the signal to noise ratio. For N , its off-diagonal entries follow a
Gaussian distributionN (0, 1

n) and its diagonal entries follow a Gaussian distribution
N (0, 2

n), i.i.d. up to symmetry. In classical PCA, we hope to recover the signal v0 from
finding the eigenvector that corresponds to the largest eigenvalue. That is, to solve the
following problem:

123

964 Applied Mathematics & Optimization (2020) 82:949–981

min
v∈Rd

− vT Zv

subject to ‖v‖ = 1.
(25)

However, it is well known that in the high dimensional regime, n = O(d), this
approach breaks down—theprincipal eigenvector of Z is asymptotically less indicative
of v0; see [37].

One way of dealing with this problem is by introducing structures such as sparsity
on the solution space. In [46], the authors impose nonnegativity of entries as prior
knowledge, and propose to solve PCA restricted to the positive orthant:

min
v∈Rd

− vT Zv

subject to ‖v‖ = 1, v ≥ 0.
(26)

Since ‖v‖ = 1 defines the unit sphere Sd−1 in R
d , one can write the above problem

as

min
v∈Sd−1

− vT Zv

subject to v ≥ 0.
(27)

This falls within the framework of (1), withM = Sd−1 as an embedded Riemannian
submanifold of Rd and d inequality constraints.

Input. Similar to [39], we synthetically generate data following the symmetric
spiked model as described above. We consider dimensions d = {10, 50, 200, 500,
1000, 2000}, and let n = d. For each dimension, we consider the basket of problems
parametrized by SN R ∈ {0.05, 0.1, 0.25, 0.5, 1.0, 2.0} which controls the noise level
and δ ∈ {0.1, 0.3, 0.7, 0.9} which controls sparsity. Furthermore, we let the support
S ⊆ {1, . . . , n} of the true principal direction v0 be uniformly random,with cardinality
|S| = �δd�, and

v0,i =
{

1√|S| if i ∈ S,

0 otherwise.

Note that S controls how sparse v0 is. For each set of parameters, the experiment was
repeated four times with different random noise N . As there are 6 choices for d, 4 for
δ, 6 for SN R, this gives 144 problems in each basket.

5.1.3 k-Means via Low-Rank SDP

k-means is a traditional clustering algorithm in machine learning. Given a set of data
points {xi }ni=1, xi ∈ R

l for some l, and a desired number of clusters k, this algorithm
aims to partition the data into k subsets {S j }kj=1 such that the following is minimized:

123

Applied Mathematics & Optimization (2020) 82:949–981 965

Table 1 Details of the datasets
used in k-means

Dataset name Number of data features clusters

Iris 150 4 3

ecoli 336 5 8

pima 768 8 2

sonar 208 60 2

vehicle 846 18 4

wine 178 13 3

cloud 2048 10 4

D({S j }kj=1) =
k∑

j=1

∑

xi∈S j
‖xi − m j‖2,

wherem j = 1
|S j |

∑
xi∈S j xi is the center ofmass of the points selected by S j . Following

[23], an equivalent formulation is as follows (I is the identity matrix):

min
Y∈Rn×k

− tr(Y T DY)

subject to Y T Y = I , Y ≥ 0, YY T e = e,
(28)

where Di j = ‖xi − x j‖2 is the squared Euclidean distance matrix. The constraint
Y T Y = I indicates Y has orthonormal columns. The set of such matrices is called the
Stiefel manifold. Thus, we can rewrite the problem as:

min
Y∈Stiefel(n,k)

− tr(Y T DY)

subject to Y ≥ 0, YY T e = e.
(29)

This falls within the framework of (1) with M the Stiefel manifold (as an embedded
Riemannian submanifold of Rn×k), n equality constraints and nk inequality con-
straints.

Input.We take data sets from the UCI Machine Learning repository [45]. For each
dataset, we clean the data by removing categorical data and normalizing each feature.
This gives X = [x1 . . . xN], and we get D via Di j = ‖xi − x j‖2. The specifications
of the cleaned data are described in Table 1.

5.2 Methodology

Wecompare themethods discussed above against each other. In addition, as a control to
test the hypothesis that exploiting the geometry of themanifold constraint is beneficial,
we also compare against Matlab’s built-in constrained optimization solver fmincon,
which treats themanifold as supplementary equality constraints.We choosefmincon
because it is a general purpose solver which combines various algorithms to enhance

123

966 Applied Mathematics & Optimization (2020) 82:949–981

performance and it has been refined over years of developments, and thus acts as a
good benchmark. To summarize, the methods are:

• RALM: Riemannian Augmented Lagrangian Method, Sect. 3;
• REPMS(Qlqh): exact penalty method with smoothing (linear-quadratic and
pseudo-Huber), Sect. 4.1;

• REPMS(Qlse): exact penalty method with smoothing (log-sum-exp), Sect. 4.1;
• REPMSD: exact penalty method via nonsmooth optimization, Sect. 4.2;
• Matlab’s fmincon: does not exploit manifold structure.

We supply fmincon with the gradients of both the objective function and the
constraints. We use the default settings: minimum step size is 10−10 and relative
constraint violation tolerance is 10−6.3 Furthermore, we disable the stopping criterion
based on a maximum number of iterations or queries in order to allow fmincon to
converge to good solutions. For all of our methods, we define dmin = 10−10, ε0 =
10−3, εmin = 10−6, θε = (εmin/ε0)

1
30 , ρ0 = 1, θρ = 3.3. Specifically, for RALM,

θσ = 0.8; for exact penalty methods, τ = 10−6, u0 = 10−1, umin = 10−6, θu =
(umin/u0)

1
30 . As subsolver for RALM and the smoothing methods REPMS, we use

LRBFGS: a Riemannian, limited-memory BFGS [36] as implemented inManopt [18].
For REPMSD, we use a minimum-norm tangent vector in the extended subgradient,
then we use a type of LRBFGS inverse Hessian approximation for Hessian updates
to choose the update direction [33]. For these limited-memory subsolvers, we let the
memory be 30, the maximum number of iterations be 200, and the minimum step
size be 10−10. For each experiment, all solvers have the same starting point randomly
chosen on the manifold. An experiment is also terminated if it runs over one hour.
We register the last produced iterate. Maximum constraint violation (Maxvio), cost
function value and computation time are recorded for each solver, where Maxvio is
defined as:

Maxvio =max
({|h j (x)|

∣∣ j ∈ E} ∪ {gi (x)|i ∈ I} ∪ {0}) .

Forminimum balanced cut and non-negative PCA, we present performance profiles
to compare computation time across problem instances for the various solvers. Per-
formance profiles were popularized in optimization by Dolan and Moré [28]. Quoting
from that reference, performance profiles show “(cumulative) distribution functions
for a performance metric as a tool for benchmarking and comparing optimization
software.” In particular, we show “the ratio of the computation time of each solver
versus the best time of all of the solvers as the performance metric.” The profiles of
REPMSD are only shown in lower dimensions to reduce computation time. See Fig. 1
for further details.

We consider that a point is feasible if Maxvio is smaller than 5×10−4. By denoting
fmin as theminimumcost among all feasible solutions returned by solvers, we consider
a solution to bebest-in-class if it is feasibleand the cost f satisfies | f / fmin − 1| < 2%.

3 When the step size is of order 10−10, we believe that the current point is close to convergence. We also
conducted experiments with minimum step size 10−7 for minimum balanced cut and non-negative PCA,
and the performance profiles are visually similar to those displayed here.

123

Applied Mathematics & Optimization (2020) 82:949–981 967

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

P
er

fo
rm

an
ce

 P
ro

fil
e

Dimension 50

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

P
er

fo
rm

an
ce

 P
ro

fil
e

Dimension 200

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

P
er

fo
rm

an
ce

 P
ro

fil
e

Dimension 500

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

P
er

fo
rm

an
ce

 P
ro

fil
e

Dimension 1000

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

P
er

fo
rm

an
ce

 P
ro

fil
e

Dimension 2000

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

P
er

fo
rm

an
ce

 P
ro

fil
e

Dimension 5000

Fig. 1 Performance profiles of computation time for different dimensions of the minimum balanced cut
problem (with maximum constraint violation and cost accounted for—see Sect. 5.2). For each dimension,
all solvers are run on a basket of problems. For each problem that could be solved, one solver obtained the
fastest computation time. The curve for a solver passes through point (log2 τ, q) if it solved a fraction q of
the problems within a factor τ of the fastest solver (which may change for each problem). Thus, upper-left
is best. In particular, for τ = 1 (log2 τ = 0), the curve of solver A passes at level q if solver A was the
fastest on a fraction q of the problems. These may not sum to 100% since some problems were not solved
by any solver (and there could be ties, though that is unlikely)

In view of the objective functions of these two problems, a relative error tolerance is
reasonable. We consider that a solver solves the problem if the returned point is best-
in-class.

For k-means, we give a table of experimental results for Maxvio, cost and time
across all datasets.

123

968 Applied Mathematics & Optimization (2020) 82:949–981

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

P
er

fo
rm

an
ce

 P
ro

fil
e

Dimension 10

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

P
er

fo
rm

an
ce

 P
ro

fil
e

Dimension 50

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

P
er

fo
rm

an
ce

 P
ro

fil
e

Dimension 200

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

P
er

fo
rm

an
ce

 P
ro

fil
e

Dimension 500

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

P
er

fo
rm

an
ce

 P
ro

fil
e

Dimension 1000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

P
er

fo
rm

an
ce

 P
ro

fil
e

Dimension 2000

Fig. 2 Performance profile of computation time for different dimensions of non-negative PCA (with max-
imum constraint violation and cost accounted for—see Sect. 5.2). See caption of Fig. 1 for details on
performance profiles

5.3 Results and Analysis

5.3.1 Minimum Balanced Cut for Graph Bisection

We display in Fig. 1 the performance profiles for various dimensions, corresponding
to the number of vertices in the graph. We note that apart from REPMSD, all methods
perform well in the low dimensional case. In the high dimensional case, fmincon
fails: in all test cases it converges to points far from feasible despite having no iteration
limit; exact penalty methods and RALM are still able to give satisfactory results in
some cases.

123

Applied Mathematics & Optimization (2020) 82:949–981 969

Table 2 Maximum constraint violation, cost function value, and computation time results of different
algorithms for k-means. For dataset ‘cloud’ (which does not come with a specified number of clusters), we
set the number of clusters k to 4

RALM REPMS(Qlqh) REPMS(Qlse) fmincon REPMSD

Iris Maxvio 1.92 × 10−5 6.49 × 10−6 4.26 × 10−2 4.44 × 10−5 2.13 × 10−7

Cost 3.31 × 10−1 4.43 × 10−2 8.20 × 10+0 1.14 × 10+1 2.80 × 10−1

Time (s) 4.72 × 10+2 4.89 × 10+2 1.70 × 10+2 3.13 × 10+2 3.86 × 10+3

Wine Maxvio 7.25 × 10−5 6.62 × 10−4 4.81 × 10−2 1.75 × 10−5 –

Cost 1.89 × 10+0 1.68 × 10−1 8.43 × 10+0 1.19 × 10+1 –

Time (s) 3.45 × 10+2 2.87 × 10+2 1.85 × 10+2 1.59 × 10+2 –

Sonar Maxvio 3.02 × 10−5 1.42 × 10−5 5.48 × 10−2 6.65 × 10−7 –

Cost 8.99 × 10−1 9.50 × 10+0 1.50 × 10+1 1.80 × 10+1 –

Time (s) 5.28 × 10+2 3.48 × 10+2 2.55 × 10+2 6.70 × 10+2 –

Ecoli Maxvio 8.33 × 10−4 2.65 × 10−3 6.73 × 10−2 9.67 × 10−1 –

Cost 4.08 × 10+1 1.24 × 10−1 1.87 × 10+1 6.45 × 10+0 –

Time (s) 1.75 × 10+3 1.44 × 10+3 1.01 × 10+3 3.62 × 10+3 –

Pima Maxvio 2.10 × 10−10 1.82 × 10−3 9.10 × 10−2 2.34 × 10−5 –

Cost 2.60 × 10−2 9.48 × 10−3 1.56 × 10+0 2.13 × 10+1 –

Time (s) 1.37 × 10+3 1.25 × 10+3 5.79 × 10+2 3.62 × 10+3 –

Vehicle Maxvio 8.87 × 10−3 4.35 × 10−4 9.17 × 10−2 2.71 × 10+2 –

Cost 3.18 × 10+0 3.77 × 10−2 2.23 × 10+1 6.71 × 10+2 –

Time (s) 2.88 × 10+3 2.70 × 10+3 2.61 × 10+3 3.63 × 10+3 –

Cloud Maxvio 1.81 × 10−2 1.83 × 10−3 6.79 × 10−1 3.70 × 10+3 –

Cost 1.36 × 10−1 5.49 × 10−4 1.97 × 10+0 2.20 × 10+3 –

Time (s) 4.08 × 10+3 3.65 × 10+3 3.78 × 10+3 3.84 × 10+3 –

For all other datasets, we used the number of clusters recommended by the dataset documentation

5.3.2 Non-negative PCA

Table 2 displays the performance profiles for non-negative PCA for various dimen-
sions, corresponding to the length of the sought vector. RALM and REPMS(Qlqh)
outperform fmincon as dimension increases. REPMS(Qlse) is rather slow. Notice
that in this problem there are lots of inequality constraints involved. ForREPMS(Qlqh),
when we compute the gradient of the objective function, gradients of constraints that
are not violated at the current point are not computed— they are 0. However, they are
computed in REPMS(Qlse), which slows down the algorithm. This observation sug-
gests that, for problems with a large number of inequality constraints, REPMS(Qlse)
may not be the best choice.

5.3.3 k-means

Table 2 gives the results for k-means clustering. As the dimension gets larger,
fmincon performsworse than RALMand REPMS in bothMaxvio and Cost. Among

123

970 Applied Mathematics & Optimization (2020) 82:949–981

all these methods, REPMS(Qlqh) and RALM are the better methods since they have
relatively shorter solving time and lower Maxvio. In addition, REPMS(Qlqh) achieves
the lowest cost for high dimensions.

6 Conclusion

In this paper, augmented Lagrangian methods and exact penalty methods are extended
to Riemannian manifolds, along with some essential convergence results. These are
compared on three applications against a baseline, which is to treat the manifold as
a set of general constraints. The three applications are minimum balanced cut, non-
negative PCA and k-means. The conclusions from the numerical experiments are that,
in high dimension, it seems to be beneficial to exploit the manifold structure; as to
which Riemannian algorithm is better, the results vary depending on the application.

We consider this work to be a first systematic step towards understanding the
empirical behavior of straightforward extensions of various techniques of constrained
optimization from the Euclidean to the Riemannian case. One direct advantage of
exploiting the Riemannian structure is that this part of the constraints is satisfied up to
numerical accuracy at each iteration. While our numerical experiments indicate that
some of these methods perform satisfactorily as compared to a classical algorithm
which does not exploit Riemannian structure (especially in high dimension), the gains
are moderate. For future research, it is of interest to pursue refined versions of some
of the algorithms we studied here, possibly inspired by existing refinements in the
Euclidean case but also by a more in depth study of the geometry of the problem class.
Furthermore, it is interesting to pursue the study of the convergence properties of
these algorithms—and the effects of the underlying Riemannian geometry—beyond
the essential results covered here, in particular because the Riemannian approach
extends to general abstract manifolds, including some which may not be efficiently
embedded in Euclidean space through practical equality constraints.

Acknowledgements We thank an anonymous reviewer for detailed and helpful comments on the first
version of this paper. NB is partially supported by NSF grant DMS-1719558.

A Proof of Proposition 3.2

We first introduce two supporting lemmas. The first lemma is a well-known fact for
which we provide a proof for completeness.4

Lemma A.1 Let p be a point on a Riemannian manifold M, and let v be a tangent
vector at p. Let U be a normal neighborhood of p, that is, the exponential map maps
a neighbourhood of the origin of TpM diffeomorphically to U . Define the following
vector field on U:

∀q ∈ U , V (q) = Pp→qv,

4 The proof follows an argument laid out by John M. Lee: https://math.stackexchange.com/questions/
2307289/parallel-transport-along-radial-geodesics-yields-a-smooth-vector-field.

123

https://math.stackexchange.com/questions/2307289/parallel-transport-along-radial-geodesics-yields-a-smooth-vector-field
https://math.stackexchange.com/questions/2307289/parallel-transport-along-radial-geodesics-yields-a-smooth-vector-field

Applied Mathematics & Optimization (2020) 82:949–981 971

where parallel transport is done along the (unique) minimizing geodesic from p to q.
Then, V is a smooth vector field on U .
Proof Parallel transport from p is along geodesics passing through p. To facilitate
their study, set up normal coordinates φ : U ⊂ R

d → U around p (in particular,
φ(0) = p), where d is the dimension of the manifold. For a point φ(x1, . . . , xd), by
definition of normal coordinates, the radial geodesic from p is c(t) = φ(t x1, . . . , t xd).
Our vector field of interest is defined by V (p) = v and the fact that it is parallel along
every radial geodesic c as described.

For a choice of point φ(x) and corresponding geodesic, let

V (c(t)) =
d∑

k=1

vk(t)∂k(c(t))

for some coordinate functions v1, . . . , vd , where ∂k is the kth coordinate vector field.
These coordinate functions satisfy the following ordinary differential equations (ODE)
[22, Prop. 2.6, eq. (2)]:

0 = dvk(t)

dt
+

∑

i, j

�k
i j (t x1, . . . , t xd)v j (t)xi , k = 1, . . . , d,

where � denotes Christoffel symbols. Expand V (p) into the coordinate vector fields:
v = ∑d

k=1 wk∂k(p). Then, the initial conditions are vk(0) = wk for each k. Because
these ODEs are smooth, solutions vk(t;w) exist, and they are smooth in both t and
the initial conditions w [42, Thm. D.6]. But this is not enough for our purpose.

Crucially, we wish to show smoothness also in the choice of x ∈ U . To this end,
following a classical trick,we extend the set of equations to let x be part of the variables,
as follows:

{
0 = dvk (t)

dt + ∑
i, j �

k
i j (tu1(t), . . . , tud(t))v j (t)ui (t), k = 1, . . . , d,

0 = duk (t)
dt , k = 1, . . . , d.

The extended initial conditions are:

vk(0) = wk, uk(0) = xk, k = 1, . . . , d.

Clearly, the functions uk(t) are constant: uk(t) = xk . These ODEs are still smooth,
hence solutions vk(t;w, x) still exist and are identical to those of the previous set of
ODEs, except we now see they are also smooth in the choice of x . Specifically, for
every x ∈ U ,

V (φ(x)) = V (c(1)) =
d∑

k=1

vk(1;w, x)∂k(φ(x)),

and each vk(1;w, x) depends smoothly on x . Hence, V is smooth on U = φ(U).
��

123

972 Applied Mathematics & Optimization (2020) 82:949–981

Lemma A.2 Given a Riemannian manifoldM, a function f : M → R (continuously
differentiable), and a point p ∈ M, if p0, p1, p2, . . . is a sequence of points in a
normal neighborhood of p and convergent to p, then the following holds:

lim
k→∞

∥∥Ppk→p grad f (pk) − grad f (p)
∥∥
p = 0,

where Ppk→p is the parallel transport from TpkM to TpM along the minimizing
geodesic.

Proof of LemmaA.2 As parallel transport is an isometry, it is equivalent to show

lim
k→∞

∥∥grad f (pk) − Pp→pk grad f (p)
∥∥
pk

= 0. (30)

Under our assumptions, grad f is a continuous vector field. Furthermore, by
LemmaA.1, in a normal neighborhood of p, the vector field V (y) = Pp→y grad f (p)
is a continuous vector field as well. Hence, grad f − V is a continuous vector field
around p; since grad f (p) − V (p) = 0, the result is proved: limk→∞ grad f (pk) −
V (pk) = grad f (p) − V (p) = 0. ��
Proof of Proposition 3.2 Restrict to a convergent subsequence if needed, so that
limk→∞ xk = x . Further exclude a (finite) number of xk’s so that all the remain-
ing points are in a neighborhood of x where the exponential map is a diffeomorphism.
In this proof, letA denoteA(x) for ease of notation: this is the set of active constraints
at the limit point. Then, there exist constants c, k1 such that gi (xk) < c < 0 for all
k > k1 with i ∈ I \ A.

When {ρk} is unbounded, since multipliers are bounded, there exists k2 > k1 such
that λki + ρkgi (xk+1) < 0 for all k ≥ k2, i ∈ I \A. Thus, by definition, λk+1

i = 0 for
all k ≥ k2, i ∈ I \ A.

When instead {ρk} is bounded, limk→∞ |σ k
i | = 0. Thus for i ∈ I \ A, in view of

gi (xk) < c < 0 for all k > k1, we have limk→∞
−λki
ρk

= 0. Then, for large enough k,

λki + ρkgi (xk+1) < 0 and thus there exists k2 > k1 such that λki = 0 for all k ≥ k2.
So in either case, we can find such k2.

As LICQ is satisfied at x , by continuity of the gradients of {gi } and {h j }, the
tangent vectors {grad h j (xk)} j∈E ∪ {grad gi (xk)}i∈I∩A are linearly independent for
all k > k3 > k2 for some k3. Define

λ
k
i = max

{
0, λk−1

i + ρk−1gi (xk)
}

, and γ k
j = γ k−1

j + ρk−1h j (xk)

as the unclipped update. Define Sk := max{‖γ k‖∞, ‖λk‖∞}. We are going to discuss
separately for situationswhen Sk is bounded andwhen it is unbounded. If it is bounded,

then denote a limit point of λ
k
, γ k as λ and γ . Let

v = grad f (x) +
∑

j∈E
γ j grad h j (x) +

∑

i∈I∩A
λi grad gi (x).

123

Applied Mathematics & Optimization (2020) 82:949–981 973

In order to prove that v is zero, we compare it to a similar vector defined at xk , for all
large k, and consider the limit k → ∞. Unlike the Euclidean case in the proof in [5],
we cannot directly compare tangent vectors in the tangent spaces at xk and x : we use
parallel transport to bring all tangent vectors to the tangent space at x :

‖v‖ ≤
∥∥∥∥∥∥
grad f (x) − Pxk→x grad f (xk)+

∑

j∈E
γ j

(
grad h j (x) − Pxk→x grad h j (xk)

)

+
∑

i∈I∩A
λi

(
grad gi (x) − Pxk→x grad gi (xk)

)
∥∥∥∥∥

+
∥∥∥∥∥∥
Pxk→x grad f (xk) +

∑

j∈E
γ jPxk→x grad h j (xk)

+
∑

i∈I∩A
λiPxk→x grad gi (xk)

∥∥∥∥∥ .

By Lemma A.2, the first term vanishes in the limit k → ∞ since xk → x . We can
understand the second term using isometry of parallel transport and linearity:

∥∥∥∥∥∥
Pxk→x grad f (xk) +

∑

j∈E
γ jPxk→x grad h j (xk) +

∑

i∈I∩A
λiPxk→x grad gi (xk)

∥∥∥∥∥∥
x

=
∥∥∥∥∥∥
grad f (xk) +

∑

j∈E
γ j grad h j (xk) +

∑

i∈I∩A
λi grad gi (xk)

∥∥∥∥∥∥
xk

≤
∥∥∥∥∥∥

∑

j∈E
(γ j − γ k

j) grad h j (xk) +
∑

i∈I∩A
(λi − λ

k
i) grad gi (xk)

∥∥∥∥∥∥
xk

+
∥∥∥∥∥∥
grad f (xk) +

∑

j∈E
γ k

j grad h j (xk) +
∑

i∈I
λ
k
i grad gi (xk)

∥∥∥∥∥∥
xk

+
∥∥∥∥∥∥

∑

i∈I\A
λ
k
i grad gi (xk)

∥∥∥∥∥∥
xk

.

Here, the second term vanishes in the limit because it is upper bounded by εk (by
assumption) and we let limk→∞ εk = 0; the last term vanishes in the limit because
of the discussion in the second paragraph; and the first term attains arbitrarily small
values for large k as norms of gradients are bounded in a neighbourhood of x and
by definition of λ and γ . Since v is independent of k, we conclude that ‖v‖ = 0.
Therefore, x satisfies KKT conditions.

123

974 Applied Mathematics & Optimization (2020) 82:949–981

On the other hand, if {Sk} is unbounded, then for k ≥ k3, we have

∥∥∥∥∥∥
1

Sk
grad f (x) +

∑

j∈E

γ j

Sk
grad h j (x) +

∑

i∈I

λi

Sk
grad gi (x)

∥∥∥∥∥∥
≤ εk

Sk
.

As all the coefficients on the left-hand side are bounded in [−1, 1], and by definition of
Sk , the coefficient vector has a nonzero limit point. Denote it as λ and γ . By a similar
argument as above, taking the limit in k, we can obtain

∥∥∥∥∥∥

∑

j∈E
γ grad h j (x) +

∑

i∈I∩A
λ grad gi (x)

∥∥∥∥∥∥
= 0,

which contradicts the LICQ condition at x . Hence, the situation that {Sk} is unbounded
does not take place, so we are left with the cases where it is bounded, for which we
already showed that x satisfies KKT condition. ��

B Proof of Proposition 3.4

Proof The proof is adapted from Section 3 in [7]. Define γ k
j = γ k−1

j + ρk−1h j (xk).
By Proposition 3.2, x is a KKT point and by taking a subsequence of {xk} if needed,
γ k is bounded and converges to γ .

For any tangent vector d ∈ CW (x), we have 〈d, grad h j (x)〉 = 0 for all j ∈ E . Let
m = |E |, and dimension of M be n ≥ m. Let ϕ be a chart such that ϕ(x) = 0. From
[42, Prop. 8.1], the component functions of h j with respect to this chart are smooth.
Let ∂1 . . . ∂n be the basis vectors of the given local chart. Let d = (d1∂1, . . . , dn∂n).
Define: F : Rn+m → R

m , i.e. for x ∈ R
n, y ∈ R

m, j ∈ {1, . . . ,m} as

F j (x, y) = 〈(y1∂1, . . . , ym∂m, dm+1∂m+1, . . . , dn∂n), grad h j (ϕ
−1(x))〉ϕ−1(x).

If we denote hlj as the lth coordinate of vector grad h j in this system, and Gx as
gram matrix for the metric where Gxp,q = 〈∂p, ∂q〉x , then the above expression can
be written as

F j (x, y) = [y1, . . . , ym, dm+1, . . . , dn]Gϕ−1(x)[h1j (ϕ−1(x)), . . . hnj (ϕ
−1(x))]T .

and by abuse of notation where [1 . . .m] means extracting the first m columns, we
have

∂F j

∂ y
=

(
[h1j (ϕ−1(x)), . . . hnj (ϕ

−1(x))]Gϕ−1(x)

)

[1···m] .

Notice that [h1(ϕ−1(x)), . . . hn(ϕ−1(x))] has full row rank (by LICQ), so it has rank
m. As Gϕ−1(x) is invertible, ∂F

∂ y (x) must be invertible (reindex the columns from

123

Applied Mathematics & Optimization (2020) 82:949–981 975

the top of the proof for this m × n matrix if needed so that the m columns form a
full rank matrix). Then, by the implicit function theorem, for a small neighbourhood
U of ϕ−1(x), we have a continuously differentiable function g : U → R

m , where
g(ϕ−1(x)) = [d1, . . . , dm] and

F(x, g(ϕ−1(x))) = 0.

For each x locally around x , let

dx = [g(ϕ−1(x))1∂1, . . . , g(ϕ
−1(x))m∂m, dm+1∂m+1, . . . , dn∂n] ∈ TxM.

These vectors then forms a smooth vector field such that 〈dx , grad h j (x)〉 = 0 for all
j ∈ E , and d = dx . Then we have that

HessxLρk−1(xk, γ
k−1)(dxk , dxk)

= 〈dxk ,Hess f (xk)dxk 〉 + ρk−1

∑

j∈E
〈dxk ,∇dx (h j (x) + γ k−1

j

ρk−1
) grad h j (x)〉xk

= 〈dxk ,Hess f (xk)dxk 〉 + ρk−1

∑

j∈E
dx [h j (x) + γ k−1

j

ρk−1
](xk)〈dx , grad h j (x)〉xk

+
∑

j∈E
(ρk−1h j (xk) + γ k−1

j)〈dx ,∇dx grad h j (x)〉xk

= 〈dxk ,Hess f (xk)dxk 〉 +
∑

j∈E
(ρk−1h j (xk) + γ k−1

j)〈dx ,∇dx grad h j (x)〉xk

= 〈dxk ,∇dxk
grad f (xk)〉 +

∑

j∈E
γ k

j 〈dx ,∇dx grad h j (x)〉xk

where the second equality is by definition of connection; the third is by orthogonality
of d with {grad h j }; the fourth is from the definition of Hessian and γ . Therefore we
have

〈dx ,∇dx grad f (x)〉xk +
∑

j∈E
γ k

j 〈dx ,∇dx grad h j (x)〉xk ≥ −εk‖dxk‖2

Since the connectionmaps two continuously differentiable vector fields to a continuous
vector field, we can take a limit and state:

〈d,∇d grad f (x)〉 +
∑

j∈E
γ j 〈d,∇d grad h j (x)〉 ≥ 0

which is just HessL(x, γ)(d, d) ≥ 0. ��

123

976 Applied Mathematics & Optimization (2020) 82:949–981

C Proof of Proposition 4.1

In the proof below, we use the following notation:

v ∈ F ′(x∗, λ∗, γ ∗) ⇔

⎧
⎪⎨

⎪⎩

v ∈ Tx∗M,

〈grad h j (x∗), v〉 = 0 for all j ∈ E, and

〈grad gi (x∗), v〉 ≤ 0 for all i ∈ A(x∗) ∩ I.

(31)

Proof Consider the function Q, defined by:

Q(x, ρ) = f (x) + ρ

⎛

⎝
∑

i∈I
max{0, gi (x)} +

∑

j∈E
|h j (x)|

⎞

⎠ .

In a small enough neighbourhood of x∗, terms for inactive constraints disappear and
Q is just:

Q(x, ρ) = f (x) + ρ

⎛

⎝
∑

i∈A(x∗)∩I
max{0, gi (x)} +

∑

j∈E
|h j (x)|

⎞

⎠ .

Although Q is nonsmooth, it is easy to verify that it has directional derivative in all
directions:

lim
τ→0

max{0, gi (Expx∗(τd))} − max{0, gi (x∗)}
τ

= lim
τ→0

max{0, gi (Expx∗(τd))}
τ

and since gi ◦ Expx∗ is sufficiently smooth, discussing separately the sign of d
dτ

(gi ◦
Expx∗)(τd), we have the right hand side equal to max{0, d

dτ
(gi ◦ Expx∗)(τd)} =

max{0, 〈grad gi (x∗), d〉}. Similarly, we have

lim
τ→0

|h j (Expx∗(τd))| − |h j (x∗)|
τ

=
∣∣∣∣
d

dτ
(h j ◦ Expx∗)(τd)

∣∣∣∣ = |〈grad h j (x
∗), d〉|.

Hence, the directional derivative along direction d, Q(x∗, ρ; d), is well defined:

Q(x∗, ρ; d) = 〈grad f (x∗), d〉

+ρ

⎛

⎝
∑

i∈A(x∗)∩I
max{0, 〈grad gi (x

∗), d〉} +
∑

j∈E
|〈grad h j (x

∗), d〉|
⎞

⎠ .

(32)

As x∗ is a KKT point,

grad f (x∗) +
∑

i∈A(x∗)∩I
λ∗
i grad gi (x

∗) +
∑

j∈E
γ ∗
j grad h j (x

∗) = 0.

123

Applied Mathematics & Optimization (2020) 82:949–981 977

Thus,

0 = 〈grad f (x∗), d〉 +
∑

i∈A(x∗)∩I
λ∗
i 〈grad gi (x

∗), d〉 +
∑

j∈E
γ ∗
j 〈grad h j (x

∗), d〉

≤ 〈grad f (x∗), d〉 +
∑

i∈A(x∗)∩I
λ∗
i max{0, 〈grad gi (x

∗), d〉}

+
∑

j∈E
γ ∗
j |〈grad h j (x

∗), d〉|.

Combining with equation (32), we have

Q(x∗, ρ; d) ≥
∑

i∈A(x∗)∩I
(ρ − λ∗

i)max{0, 〈grad gi (x
∗), d〉}

+
∑

j∈E
(ρ − γ ∗

j)|〈grad h j (x
∗), d〉|. (33)

For contradiction, suppose x∗ is not a local minimum of Q. Then, there exists {yk}∞k=1,
limk→∞ yk = x∗ such that Q(yk, ρ) < Q(x∗, ρ) = f (x∗). By restricting to a small
enough neighbourhood, there exists ηk = Exp−1

x∗ (yk). Considering only a subsequence
if needed, we have limk→∞ ηk‖ηk‖ = η̄. It is easy to see that Q(Expx∗(·), ρ) is locally
Lipschitz continuous at 0x∗ , which gives

Q(Expx∗(‖ηk‖η̄), ρ) = Q(Expx∗(ηk), ρ) + o(‖ηk‖) = Q(yk, ρ) + o(‖ηk‖).

Subtract Q(x∗, ρ) and take the limit:

lim
k→∞

Q(Expx∗(‖ηk‖η̄), ρ) − Q(x∗, ρ)

‖ηk‖ = lim
k→∞

Q(yk, ρ) − Q(x∗, ρ)

‖ηk‖
+ lim

k→∞
o(‖ηk‖)
‖ηk‖ ≤ 0.

Notice the left-most expression is just Q(x∗, ρ; η̄). Since coefficients on the right-
hand side of (33) are strictly positive, we must have 〈grad gi (x∗), η̄〉 ≤ 0 and
〈grad h j (x∗), η̄〉 = 0. Since the exponential mapping is of second order, we have
a Taylor expansion for f ,

f (yk) = f (x∗) + 〈grad f (x∗), ηk〉 + 1

2
〈ηk,Hess f (x∗)[ηk]〉 + o(‖ηk‖2),

123

978 Applied Mathematics & Optimization (2020) 82:949–981

and similarly for gi and h j . Notice that

Q(yk, ρ) = f (yk) + ρ

⎛

⎝
∑

i∈A(x∗)∩I
max{0, gi (yk)} +

∑

j∈E
|h j (yk)|

⎞

⎠

≥
⎛

⎝ f (yk) +
∑

i∈A(x∗)∩I
λ∗
i gi (yk) +

∑

j∈E
γ ∗
j h j (yk)

⎞

⎠

+
∑

i∈A(x∗)∩I
(ρ − λ∗

i)max{0, gi (yk)}

+
∑

j∈E
(ρ − γ ∗

j)|h j (yk)|

≥ f (x∗) + 〈grad f (x∗) +
∑

i∈A(x∗)∩I
λ∗
i grad gi (x

∗)

+
∑

j∈E
γ ∗
j grad h j (x

∗), ηk〉

+1

2
〈ηk,Hess(f (x∗) +

∑

i∈A(x∗)∩I
λ∗
i gi (x

∗)

+
∑

j∈E
γ ∗
j h j (x

∗))[ηk]〉 + o(‖ηk‖2) + P(yk)

= f (x∗) + 0 + 1

2
〈ηk,Hess(L(x, λ∗, γ ∗)(x∗)[ηk])〉 + o(‖ηk‖2) + P(yk)

where P(yk) = ∑
i∈A(x∗)∩I(ρ − λ∗

i)max{0, gi (yk)} + ∑
j∈E (ρ − γ ∗

j)|h j (yk)|. The
first inequality follows from quadratic approximation of f + ∑

i∈A(x∗)∩I λi gi +∑
j∈E γ j h j and bilinearity of the metric. The last equality comes from the defini-

tion of KKT points. Dividing the equation through by ‖η‖2, we obtain

lim
k→∞

Q(yk, ρ) − f (x∗)
‖η‖2 = lim

k→∞
1

2

〈
ηk

‖ηk‖ ,Hess(L(x, λ∗, γ ∗)(x∗)
[

ηk

‖ηk‖
]〉

+ 0 + lim
k→∞

P(yk)

‖η‖2 . (34)

If η̄ ∈ F ′, then as P(yk) ≥ 0, the first term on the right hand side will be strictly
larger than 0, which is a contradiction to Q(yk, ρ) < f (x∗) for all k. If η̄ ∈ F − F ′,
then there exists gi ′ such that 〈grad gi ′(x), η̄〉 > 0. Then,

gi ′(yk) = gi ′(x
∗) + 〈grad gi ′(x

∗), ηk〉 + o(‖η̄‖) = 〈grad gi ′(x
∗), ηk〉 + o(‖ηk‖).

123

Applied Mathematics & Optimization (2020) 82:949–981 979

Hence, dividing the above expression by ‖ηk‖ gives

lim
k→∞

gi ′(yk)

‖ηk‖ ≥ lim
k→∞

〈
grad gi ′(x

∗), ηk

‖ηk‖
〉
+ 0 = 〈grad gi ′(x

∗), η̄k〉 > 0.

Notice that P(yk)
‖η‖2 ≥ gi ′ (yk)‖ηk‖ for large enough k and a contradiction is obtained by

plugging it into (34). ��

D Proof of Proposition 4.2

Proof We give a proof for Qlse—it is analogous for Qlqh. For each iteration k and for
each i ∈ I and j ∈ E , define the following coefficients:

λki = egi (xk+1)/uk

1 + egi (xk+1)/uk
, and γ k

j = eh j (xk+1)/uk − e−h j (xk+1)/uk

eh j (xk+1)/uk + e−h j (xk+1)/uk
.

Then, a simple calculation shows that (under our assumptions, ρk = ρ0 for all k; we
simply write ρ):

grad Qlse(xk+1, ρk, uk) = grad f (xk+1) + ρ
∑

i∈I
λki grad gi (xk+1)

+ ρ
∑

j∈E
γ k
j grad h j (xk+1).

Notice that the multipliers are bounded: γ k
j ∈ [−1, 1] and λki ∈ [0, 1]. Hence, as

sequences indexed by k, they have a limit point: we denote them by γ ∈ [−1, 1] and
λ ∈ [0, 1]. Furthermore, since x is feasible, there exists k1 such that for any k > k1,
i ∈ I \ A(x), gi (xk) < c for some constant c < 0. Then, as uk → 0, by definition,
λki goes to 0 for i ∈ I \ A(x). This shows λi = 0 for i ∈ I \ A(x). Considering
a convergent subsequence if needed, there exists k2 > k1 such that, for all k > k2,
dist(xk, x) < i(x) (the injectivity radius). Thus, parallel transport from each xk to x
is well defined. Consider

v = grad f (x) + ρ
∑

i∈I∩A(x)

λi grad gi (x) + ρ
∑

j∈E
γ j grad hi (x).

Notice that its coefficients are bounded, so we can get ‖v‖ = 0 similar to the proof of
Proposition 3.2. ��

References

1. Absil, P.-A., Hosseini, S.: A collection of nonsmooth Riemannian optimization problems. Technical
Report UCL-INMA-2017.08, Université catholique de Louvain (2017)

123

980 Applied Mathematics & Optimization (2020) 82:949–981

2. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton
University Press, Princeton (2008)

3. Agarwal, N., Boumal, N., Bullins, B., Cartis, C.: Adaptive regularization with cubics on manifolds
(2018). arXiv preprint arXiv:1806.00065

4. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97
(2002)

5. Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.L.: On augmented Lagrangian methods with
general lower-level constraints. SIAM J. Optim. 18(4), 1286–1309 (2007)

6. Andreani, R., Haeser, G., Martínez, J.M.: On sequential optimality conditions for smooth constrained
optimization. Optimization 60(5), 627–641 (2011)

7. Andreani, R., Haeser, G., Ramos, A., Silva, P.J.: A second-order sequential optimality condition asso-
ciated to the convergence of optimization algorithms. IMA J. Numer. Anal. 37, 1902–1929 (2017)

8. Bento, G., Ferreira, O., Melo, J.: Iteration-complexity of gradient, subgradient and proximal point
methods on Riemannian manifolds. J. Optim. Theory Appl. 173(2), 548–562 (2017)

9. Bento, G.C., Ferreira, O.P., Melo, J.G.: Iteration-complexity of gradient, subgradient and proximal
point methods on Riemannian manifolds. J. Optim. Theory Appl. 173(2), 548–562 (2017)

10. Bergmann, R., Herzog, R.: Intrinsic formulation of KKT conditions and constraint qualifications on
smooth manifolds (2018). arXiv preprint arXiv:1804.06214

11. Bergmann, R., Persch, J., Steidl, G.: A parallel Douglas-Rachford algorithm for minimizing ROF-like
functionals on images with values in symmetric Hadamard manifolds. SIAM J. Imaging Sci. 9(3),
901–937 (2016)

12. Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Athena Scientific, Bel-
mont (1982)

13. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1999)
14. Birgin, E., Haeser, G., Ramos, A.: Augmented Lagrangians with constrained subproblems and con-

vergence to second-order stationary points. Optimization Online (2016)
15. Birgin, E.G., Floudas, C.A., Martínez, J.M.: Global minimization using an augmented Lagrangian

method with variable lower-level constraints. Math. Program. 125(1), 139–162 (2010)
16. Birgin, E.G., Martínez, J.M.: Practical Augmented LagrangianMethods for Constrained Optimization.

SIAM (2014)
17. Boumal, N., Absil, P.-A., Cartis, C.: Global rates of convergence for nonconvex optimization on

manifolds. IMA J. Numer. Anal. (2018)
18. Boumal, N., Mishra, B., Absil, P.-A., Sepulchre, R.: Manopt, a Matlab toolbox for optimization on

manifolds. J. Mach. Learn. Res. 15(1), 1455–1459 (2014)
19. Burer, S., Monteiro, R.D.: A nonlinear programming algorithm for solving semidefinite programs via

low-rank factorization. Math. Program. 95(2), 329–357 (2003)
20. Byrd, R.H., Nocedal, J., Waltz, R.A.: Knitro: An integrated package for nonlinear optimization. In:

Large-Scale Nonlinear Optimization, pp. 35–59. Springer (2006)
21. Cambier, L., Absil, P.-A.: Robust low-rank matrix completion by Riemannian optimization. SIAM J.

Sci. Comput. 38(5), S440–S460 (2016)
22. Carmo, MPd: Riemannian Geometry. Birkhäuser, Boston (1992)
23. Carson, T.,Mixon, D.G., Villar, S.:Manifold optimization for k-means clustering. In: Sampling Theory

and Applications (SampTA), 2017 International Conference on, pp. 73–77. IEEE (2017)
24. Chatterjee, A., Madhav Govindu, V.: Efficient and robust large-scale rotation averaging. In: The IEEE

International Conference on Computer Vision (ICCV) (December 2013)
25. Chen, C., Mangasarian, O.L.: Smoothing methods for convex inequalities and linear complementarity

problems. Math. Program. 71(1), 51–69 (1995)
26. Clarke, F.H.: Optimization and nonsmooth analysis. SIAM (1990)
27. Conn, A.R., Gould, G., Toint, P.L.: LANCELOT: A Fortran Package for Large-Scale Nonlinear Opti-

mization (Release A), vol. 17. Springer, New York (2013)
28. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Pro-

gram. 91(2), 201–213 (2002)
29. Dreisigmeyer, D.W.: Equality constraints. Riemannian manifolds and direct search methods.

Optimization-Online (2007)
30. Gould, N.I., Toint, P.L.: A note on the convergence of barrier algorithms to second-order necessary

points. Math. Program. 85(2), 433–438 (1999)

123

http://arxiv.org/abs/1806.00065
http://arxiv.org/abs/1804.06214

Applied Mathematics & Optimization (2020) 82:949–981 981

31. Grohs, P., Hosseini, S.: ε-subgradient algorithms for locally Lipschitz functions on Riemannian man-
ifolds. Adv. Comput. Math. 42(2), 333–360 (2016)

32. Guo, L., Lin, G.-H., Jane, J.Y.: Second-order optimality conditions for mathematical programs with
equilibrium constraints. J. Optim. Theory. Appl. 158(1), 33–64 (2013)

33. Hosseini, S., Huang, W., Yousefpour, R.: Line search algorithms for locally Lipschitz functions on
Riemannian manifolds. SIAM J. Optim. 28(1), 596–619 (2018)

34. Hosseini, S., Pouryayevali, M.: Generalized gradients and characterization of epi-Lipschitz sets in
Riemannian manifolds. Nonlinear Anal. 74(12), 3884–3895 (2011)

35. Huang, W., Absil, P.-A., Gallivan, K., Hand, P.: ROPTLIB: an object-oriented C++ library for opti-
mization on Riemannian manifolds. Technical Report FSU16-14.v2, Florida State University (2016)

36. Huang, W., Gallivan, K.A., Absil, P.-A.: A Broyden class of quasi-Newton methods for Riemannian
optimization. SIAM J. Optim. 25(3), 1660–1685 (2015)

37. Johnstone, I.M., Lu, A.Y.: On consistency and sparsity for principal components analysis in high
dimensions. J. Am. Stat. Assoc. 104(486), 682–693 (2009)

38. Kanzow, C., Steck, D.: An example comparing the standard and safeguarded augmented Lagrangian
methods. Oper. Res. Lett. 45(6), 598–603 (2017)

39. Khuzani,M.B.,Li,N.: Stochastic primal-dualmethodonRiemannianmanifoldswith bounded sectional
curvature (2017). arXiv preprint arXiv:1703.08167

40. Kovnatsky, A., Glashoff, K., Bronstein, M.M.: Madmm: a generic algorithm for non-smooth optimiza-
tion on manifolds. In: European Conference on Computer Vision, pp. 680–696. Springer (2016)

41. Lang,K.: Fixing twoweaknesses of the spectralmethod. In:Advances inNeural InformationProcessing
Systems, pp. 715–722 (2006)

42. Lee, J.: Introduction to SmoothManifolds. Graduate Texts inMathematics, vol. 218, 2nd edn. Springer,
New York (2012)

43. Lee, J.M.: Smooth manifolds. In: Introduction to Smooth Manifolds, pp. 1–29. Springer (2003)
44. Lewis, A.S., Overton, M.L.: Nonsmooth optimization via BFGS. SIAM J. Optim 1–35 (Submitted)

(2009)
45. Lichman, M.: UCI machine learning repository (2013)
46. Montanari, A., Richard, E.: Non-negative principal component analysis: message passing algorithms

and sharp asymptotics. IEEE Trans. Inf. Theory 62(3), 1458–1484 (2016)
47. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)
48. Parikh, N., Boyd, S.: Proximal Algorithms, vol. 1. Now Publishers inc., Hanover (2014)
49. Pinar, M.Ç., Zenios, S.A.: On smoothing exact penalty functions for convex constrained optimization.

SIAM J. Optim. 4(3), 486–511 (1994)
50. Ruszczyński, A.P.: Nonlinear Optimization, vol. 13. Princeton University Press, Princeton (2006)
51. Townsend, J., Koep, N., Weichwald, S.: Pymanopt: a Python toolbox for optimization on manifolds

using automatic differentiation. J. Mach. Learn. Res. 17, 1–5 (2016)
52. Weber, M., Sra, S.: Frank–Wolfe methods for geodesically convex optimization with application to the

matrix geometric mean (2017). arXiv preprint arXiv:1710.10770
53. Yang, W.H., Zhang, L.-H., Song, R.: Optimality conditions for the nonlinear programming problems

on Riemannian manifolds. Pac. J. Optim. 10(2), 415–434 (2014)
54. Zass,R., Shashua,A.:Nonnegative sparse pca. In:Advances inNeural InformationProcessingSystems,

pp. 1561–1568 (2007)
55. Zhang, J., Ma, S., Zhang, S.: Primal-dual optimization algorithms over Riemannian manifolds: an

iteration complexity analysis (2017). arXiv preprint arXiv:1710.02236
56. Zhang, J., Zhang, S.: A cubic regularized Newton’s method over Riemannian manifolds (2018). arXiv

preprint arXiv:1805.05565

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1703.08167
http://arxiv.org/abs/1710.10770
http://arxiv.org/abs/1710.02236
http://arxiv.org/abs/1805.05565

	Simple Algorithms for Optimization on Riemannian Manifolds with Constraints
	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Related Literature

	2 Preliminaries and Notations
	2.1 Gradients and Hessians on Manifolds
	2.2 Optimality Conditions

	3 Riemannian Augmented Lagrangian Methods
	4 Exact Penalty Method
	4.1 Smoothing Technique
	4.2 A Subgradient Method for Sums of Maximum Functions

	5 Numerical Experiments and Discussion
	5.1 Problems and Data
	5.1.1 Minimum Balanced Cut for Graph Bisection
	5.1.2 Non-Negative PCA
	5.1.3 k-Means via Low-Rank SDP

	5.2 Methodology
	5.3 Results and Analysis
	5.3.1 Minimum Balanced Cut for Graph Bisection
	5.3.2 Non-negative PCA
	5.3.3 k-means

	6 Conclusion
	Acknowledgements
	A Proof of Proposition 3.2
	B Proof of Proposition 3.4
	C Proof of Proposition 4.1
	D Proof of Proposition 4.2
	References

