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Abstract
Trailing stop is a popular stop-loss trading strategy by which the investor will sell the
asset once its price experiences a pre-specified percentage drawdown. In this paper,
we study the problem of timing to buy and then sell an asset subject to a trailing stop.
Under a general linear diffusion framework, we study an optimal double stopping
problem with a random path-dependent maturity. Specifically, we first analytically
solve the optimal liquidation problemwith a trailing stop, and in turn derive the optimal
timing to buy the asset. Ourmethod of solution reduces the problem of determining the
optimal trading regions to solving the associated differential equations. For illustration,
we implement an example and conduct a sensitivity analysis under the exponential
Ornstein–Uhlenbeck model.
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1 Introduction

Trailing stops are a popular trade order widely used by proprietary traders and retail
investors to provide downside protection for an existing position. In contrast to a
stop-loss exit that closes a position at a fixed price, a trailing stop is characterized
by a stochastic floor that moves based on the running maximum of the asset price.
This provides a dynamic downside protection as the stochastic floor is automatically
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adjusted upward whenever the asset price moves to a new high. A trailing stop is
triggered when the prevailing price of an asset falls below the stochastic floor. In
essence, it allows an investor to specify a limit on the maximum possible loss while
not limiting themaximumpossible gain. This is particularly relevant in common trend-
following strategies, and trailing stop provides an automatic trigger to exit when prices
start to trend downward due to, for example, regime switching [1].

In addition to setting a trailing stop order, the investor can also use a limit order to
sell at a certain price target. If the price is sufficiently high, the investor may prefer to
take profit immediately, rather than waiting further with the possibility of setting off
the trailing stop. The investor’s position will be liquidated by either order, whichever
comes first.

In this paper,we investigate themathematical problemof optimal timing to liquidate
a position subject to a trailing stop. Mathematically, we recognize the trailing stop as
a stochastic timing constraint in the sense that it installs a path-dependent random
maturity into the liquidation problem, rending the problem significantly more difficult
to analyze or solve. Furthermore, the investor can decide when to establish the position
in the first place. This leads us to also analyze the optimal timing to enter the market.
In sum, we study an optimal double stopping problem subject to a trailing stop. Using
excursion theory of linear diffusion, we derive the value functions using the smallest
concave majorant characterization, and discuss the effect of trailing stopping on the
optimal trading strategies analytically and numerically. Among our results, we reduce
the problem of finding the optimal timing strategies to solving anODE problem, which
forms the basis of our numerical scheme in determining the optimal asset acquisition
and liquidation regions.

In general, a trailing stop can be defined as the first time when the asset price
X drops below f (X), where X is the running maximum process of X , and f is an
increasing function such that f (x) < x for all x in the support of X . In applied
probability literature, such a stopping time is related to the drawdown process and its
first passage time. We refer to [2–4], for a partial list of studies on drawdowns under
linear diffusions. Moreover, the optimality of trailing stops in exercising (generalized)
Russian options and detecting abrupt changes can be found in [5–7], respectively

Despite being commonly used by practitioners, trailing stops have been scarcely
studied in the mathematical finance literature. We trace back to [8], who studied the
expected discounted reward at a trailing stop under a discrete-time random walk or
a geometric Brownian motion (GBM) model, and found that it would be optimal
to never use the trailing stop if the stock followed a GBM with a positive drift. In
contrast, our study is conducted in a more general linear diffusion framework, and
provides concrete illustrative example on how to the use of a trailing stop will affect
the optimal timing to sell an asset under the exponential Ornstein-Uhlenbeck model.
In a random walk model, [9] performed a probabilistic analysis of a variant of trailing
stop. [10] implemented a stochastic approximation scheme to determine the optimal
percentage trailing stop level that maximizes the expected discounted simple return
from liquidation. The recent study by [11] compared the performance of a number
of trading rules with fixed and trailing stops under an arithmetic Brownian motion
model.
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Compared to these works, we tackle the trading problem by formulating an optimal
double stopping with a stochastic timing constraint induced by the trailing stop, and
we rigorously derive the optimal trading strategy. Our method of solution applies to a
general linear diffusion framework, and our analytical results facilitate computation of
the value function and optimal timing strategies (see Sect. 5). In our optimal liquidation
problem subject to the trailing stop, we show that it is optimal to use a limit sell order
at a sufficiently high price. In other words, once the investor enters the market, he/she
can immediately set the optimal limit sell order together with the trailing stop order,
and wait for either order to be executed automatically.

The trailing stop can be viewed as a random maturity or stopping time constraint
in the optimal stopping problem, in the sense that any admissible stopping time must
come before triggering the trailing stop. Related studies by the authors include optimal
stopping problems with maturities determined by an occupation time ([12,13]) or by
a default time ([14]), and optimal mean reversion trading with a fixed stop-loss exit
([15]). In particular, part of our study (Sect. 3) generalizes the analytical framework
of [15] to general linear diffusions, and the results from optimal stopping subject to a
fixed stop-loss exit will prove to be directly useful for solving the analogous problem
with a trailing stop.

The remaining of the paper is structured as follows. Section 2 presents stochastic
framework for our trading problem. In Sect. 3, we study an optimal trading prob-
lem with a fixed stop-loss. Then, in Sect. 4, we study the optimal stopping problems
for trading with a trailing stop. To illustrate our analytical results, we consider trad-
ing under the exponential Ornstein-Uhlenbeck model, and numerically compute the
optimal acquisition and liquidation regions in Sect. 5. We also provide a sensitivity
analysis on the optimal trading strategies with respect to model parameters. Detailed
proofs are collected in the Appendix.

2 Model Formulation

Let us consider a risky asset value process X · = {Xt }t≥0 modeled by a linear diffusion
on I ≡ (l, r) ⊂ R with the infinitesimal generator:

L = 1

2
σ 2(x)

∂2

∂x2
+ μ(x)

∂

∂x
, ∀x ∈ I , (1)

where (μ(·), σ (·)) is a pair of real-valued functions on I such that

1 + |μ(·)|
σ 2(·) ∈ L

1
Loc(I ) and σ(x) > 0, ∀x ∈ I .

For any x̄ ∈ I , the running maximum of X is denoted by

Xt := x̄ ∨ sup
s∈[0,t]

Xs, t ≥ 0.
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We denote the unique probability law of X · by Px,x̄ given {X0 = x, X0 = x̄} for
any x, x̄ ∈ I with x ≤ x̄ . The expectation associated with Px,x̄ is denoted by Ex,x̄ . In
calculations and results where the initial value X0 = x̄ is irrelevant, we simply write
Px and Ex to denote the probability law of X · and the associated expectation given
{X0 = x}. Throughout, we assume that the both boundaries l, r are inaccessible.

We consider an investorwhoholds long one unit of the risky asset X . Our objective is
to investigate the optimal trading strategy with a trailing stop. To this end, we consider
the problem of optimal early liquidation of this risky asset, given a pre-specified
trailing stop mandatory liquidation order. Specifically, we will model liquidation time
by a stopping time τ of the underlying process X ·, and the reward to be realized upon
liquidation by h(Xτ ), where h(·) is a real-valued increasing function on I , such that
{x ∈ I : h(x) > 0} 	= ∅. Fix a function f (·) on I , such that

f (·) is continuous, strictly increasing on I ,
for all x ∈ I , f (x) ∈ I , f (x) < x .

(2)

Then, we define the stochastic floor by f (X), where X is the running maximum of X .
The trailing stop, denoted by ρ f , is defined as the first time the asset value X reaches
the stochastic floor f (X) from above. That is,1

ρ f := inf{t > 0 : Xt < f (Xt )}. (3)

Remark 2.1 Wegive two standard choices of the floor function f (·) here. For example,
if I = R, setting f (x) = x − a for some a > 0 gives the absolute drawdown floor,
and ρ f is the first time X falls from its maximum X by a units. Another specification
when I = R+, f (x) = (1−α)x for some α ∈ (0, 1), gives the percentage drawdown,
and ρ f is the first time X falls from its maximum X by (100 × α)%, as depicted in
Fig. 1 with α = 0.3.

The investor faces the following optimal stopping problem:

v f (x, x̄) := sup
τ∈T T

f

Ex,x̄ (e
−qτh(Xτ )1{τ<∞}). (4)

where q > 0 is a subjective discounting rate, and T T
f is the set of all stopping times of

X that stop no later than the trailing stop ρ f . Notice that ρ f puts a mandatory selling
order of the risky asset, pre-specified by the investor.

To quantify the gain in terms of expected discounted reward from liquidating earlier
than the trailing stop timeρ f , we define the early liquidation premium by the difference

p f (x, x̄) :=v f (x, x̄) − g f (x, x̄), (5)

1 As usual, we set inf ∅ = ∞.
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Fig. 1 Sample paths of the asset price (solid black), its running maximum (gray dashed), and the 30%-
drawdown floor representing the trailing stop (red dashed) (Color figure online)

where the second term represents the expected discounted reward from waiting to sell
at the trailing stop, that is,

g f (x, x̄) := Ex,x̄ (e
−qρ f h(Xρ f )1{ρ f <∞}). (6)

As a convention, we define ∞ − ∞ = ∞ if both terms on the right-hand side of (5)
are infinity. Clearly, we have p f (x, x̄) ≥ 0 for all x, x̄ ∈ I with x ≤ x̄ . For our study,
the early liquidation premium turns out to be amenable to analysis and give intuitive
interpretations. The related concepts of early/delayed exercise/purchase premiumhave
been analyzed in pricing American options (see [16]) and derivatives trading ([17]),
among other applications.

Remark 2.2 If floor functions f1(·), f2(·) both satisfy (2), and f1(x) ≤ f2(x) for all
x ∈ I , then for every fixed x ∈ I , we have the inequalities:

h(x) ≤ v f2(x, x̄) ≤ v f1(x, x̄) ≤ sup
τ∈T

Ex (e
−qτh(Xτ )1{τ<∞}), (7)

where T is the set of all stopping times of X .

Given the optimal value v f (x, x̄), another related problem is

v
(1)
f (x) = sup

τ∈T
Ex (e

−qτ (v f (Xτ , Xτ ) − hb(Xτ ))1{τ<∞}), (8)

where hb(·) is an increasing function on I such that hb(x) ≥ h(x) for all x ∈ I ,2 and
supx∈I (v f (x, x) − hb(x)) > 0, T is the set of all stopping times w.r.t. the filtration
generated by X . The problem arises, for example, in optimal acquisition of the asset

2 If there is an x ∈ I such that hb(x) < h(x), then immediate selling after purchasing when the asset price
is at x yields a strictly positive profit with certainty, hence an arbitrage.
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X when hb(x) = x + cb, where cb ≥ 0 is a transaction fee.3 In general, if we assume
that hb(X) is the price the investor need to pay to acquire one unit of the risky asset,
then (8) represents the problem of finding the optimal time to purchase this risk asset.
Note that the investor will select the optimal time to sell but subject to a trailing stop
exit. For this reason, we will call the problem in (8) the optimal acquisition problem
with a trailing stop, even for a general reward hb(·).

Remark 2.3 Note that in (8), we apply the value function v f (x, x̄) only with x = x̄ .
From a practical point of view, this is the most relevant case since a trailing stop should
be placed based on the price at which the asset was purchased, rather than an arbitrary
reference price.

In summary, the solutions to (8) and (4) yield the optimal trading strategy that
involves buying a risky asset and selling it later while being protected by a trailing
stop.

2.1 Preliminaries of Linear Diffusions

It is well known that (see, for example, [18]), for any q > 0, the Sturm-Liouville
equation (L − q)u(x) = 0 has a positive increasing solution φ+

q (·) and a positive
decreasing solution φ−

q (·). In fact, for an arbitrary fixed κ ∈ I , the solutions can be
expressed as

φ+
q (x) =

⎧
⎨

⎩

Ex (e−qτ+
X (κ)), if x ≤ κ

1

Eκ (e−qτ
+
X (x)

)
, if x > κ

, φ−
q (x) =

⎧
⎨

⎩

1

Eκ (e−qτ
−
X (x)

)
, if x ≤ κ

Ex (e−qτ−
X (κ)), if x > κ

, (9)

where τ+
X (y) and τ−

X (y) are the first passage times of X to level y ∈ I from below
and above, respectively,

τ±
X (y) := inf{t > 0 : Xt ≷ y}, ∀y ∈ I . (10)

The functionsφ±
q (·) are also closely related to two-sided exit problems of X . Specif-

ically, we have:

Lemma 2.1 [2] Suppose that l < y ≤ x ≤ z < r , then for q > 0, we have

Ex (e
−qτ−

X (y)1{τ−
X (y)<τ+

X (z)}) = φ−
q (x)

φ−
q (y)

ψq(z) − ψq(x)

ψq(z) − ψq(y)
,

Ex (e
−qτ+

X (z)1{τ−
X (y)>τ+

X (z)}) = φ−
q (x)

φ−
q (z)

ψq(x) − ψq(y)

ψq(z) − ψq(y)
,

3 In this case, h(x) = x − cs where cs ≥ 0 is a transaction fee.
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where ψq : I �→ R+ is a strictly increasing function defined as

ψq(x) := φ+
q (x)

φ−
q (x)

, ∀x ∈ I . (11)

Remark 2.4 By the boundary behavior of X , we have φ−
q (l+) = φ+

q (r−) = ∞, hence
ψq(I ) = (0,∞). See [18, pp. 18–19] for more details.

2.2 Standing Assumption and Its Implications

We now discuss the following standing assumption on the reward function h(·).
Assumption 2.1 The reward function h(·) is increasing, twice differentiable on I , and
there is an x0 in the interior of I such that

(L − q)h(x) ≥ 0 if and only if x ≤ x0. (12)

Moreover, we have

lim
x→r

h(x)

φ+
q (x)

< sup
x>x0

h(x)

φ+
q (x)

< ∞, (13)

Remark 2.5 By [19, Proposition 5.10], it is easily seen that Assumption 2.1 ensures
the finiteness of the upper bound in (7) for all x ∈ I . Moreover, the assumption implies
that the optimal stopping time for the upper bound is of threshold type, as proved in
the following lemma.

Lemma 2.2 Under Assumption 2.1, there is an x
 ∈ [x0, r) such that,

sup
τ∈T

Ex (e
−rτh(Xτ )1{τ<∞}) = Ex (e

−rτ+
X (x
)h(Xτ+

X (x
))1{τ+
X (x
)<∞}).

Lemma 2.2 shows that Assumption 2.1 is sufficient for the optimality of upcrossing
strategy T+

x
 in optimal stopping problem supτ∈T Ex (e−rτh(Xτ )1{τ<∞}), where x
 is
a constant in (x0, r). Since h(Xτ ) represents the proceeds from selling the risky asset,
the economic insight of Lemma 2.2 is that, under no constraint (i.e. no trailing stop),
it is optimal to sell the asset when its price is sufficiently high. Thus, apart from
analytical tractability considerations, Assumption 2.1 is also economically reasonable
for our trading problem.

Remark 2.6 We give a few examples in which Assumption 2.1 holds. First, let h(x) =
x − K for some constant K > 0, and X · be the Black-Scholes model, i.e. μ(x) =
μx, σ (x) = σ x for all x ∈ I = R+, with constants μ < q, σ > 0.4 Second, we can
let h(x) = x and X · be the Ornstein-Uhlenbeck process, i.e. μ(x) = λ(θ − x) and
σ(x) = σ for x ∈ I = R, with constants λ, σ > 0 and θ ∈ R.

4 It is well-known that if μ ≥ q, then the optimal stopping region is the empty set.
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3 Optimal Trading with a Fixed Stop-Loss

To gain some intuition for our solution method for the problem in (4) with a trailing
stop, we first consider the optimal stopping problems when the investor uses a fixed
stop-loss exit instead of a trailing stop. Precisely, arbitrarily fix a y ∈ I , we consider
the following class of problems indexed by y:

Vy(x) := sup
τ∈T S

y

Ex (e
−qτh(Xτ )1{τ<∞}), (14)

where T S
y is the set of all stopping times of X that stops no later than the first passage

time to level y, i.e.

τ−
X (y) = inf{t > 0 : Xt < y}, (15)

and c ∈ [0, supx∈I (Vy(x) − h(x))) is a transaction fee for asset acquisition. The
problem in (14) puts a mandatory liquidation constraint upon hitting the fixed stop-
loss level y from above.

The special cases of the problem in (14) with the reward function h(x) = x − c
driven by the OU and CIR processes have been studied in [15,20–22]. In this section,
we present the analysis of problem (14) driven by a general linear diffusion.

3.1 Optimal Liquidation Subject to a Stop-Loss Exit

We now study the optimal liquidation problem (14) where X follows a general linear
diffusion (see (1)). To facilitate our analysis, we also consider the extended case of
(14) for y = l, in which case we have

Vl(x) = sup
τ∈T

Ex (e
−qτh(Xτ )1{τ<∞}). (16)

Notice that the value function Vl(·) has already been derived in Lemma 2.2.

Remark 3.1 For eachfixed x ∈ I , themapping y �→ Vy(x) is obviously non-increasing
over [l, r).
Remark 3.2 The connection between (4) and (14) can be seen as follows. For any
x, x̄ ∈ I such that x ∈ ( f (x̄), x̄], by the Px,x̄ -a.s. inequality that ρ f ≤ τ−

X ( f (x̄)), we
know that T T

f ⊂ T S
f (x̄). Hence, v f (x, x̄) ≤ V f (x̄)(x). As a consequence, if we define

the optimal liquidation regions

ST ,L
f (x̄) := {x ∈ (l, x̄] : v f (x, x̄) = h(x)}, ∀x̄ ∈ I , (17)

SS,L
y := {x ∈ I : Vy(x) = h(x)}, ∀y ∈ I , (18)

then we have
(
SS,L

f (x̄) ∩ (l, x̄]
)

⊂ ST ,L
f (x̄), ∀x̄ > 0.
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Additionally, if x̄ ∈ SS,L
f (x̄) then we have

(
SS,L

f (x̄) ∩ (l, x̄]
)

= ST ,L
f (x̄), since in this case

it is optimal to liquidate before X reaching a new maximum.

Proposition 3.1 Under Assumption 2.1, for any fixed y ∈ (l, x0), there is a finite
threshold b(y) ∈ (x0, r) such that 5

Vy(x) = Ex (e
−q(τ+

X (b(y))∧τ−
X (y))h(Xτ+

X (b(y))∧τ−
X (y))), ∀x ∈ I . (19)

Here b(y) can be identified as the smallest solution over (x0, r) to

h′(b) − h(b)
φ

−,′
q (b)

φ−
q (b)

= φ−
q (b)ψ ′

q(b)

ψq(b) − ψq(y)

(
h(b)

φ−
q (b)

− h(y)

φ−
q (y)

)

. (20)

Moreover, themapping y :�→ b(y) is strictly decreasing and differentiable over (l, x0),
with limits b(x0−) = x0, and b(l+) ≤ x∗ < r , where x∗ is defined in Lemma 2.2.

Corollary 3.1 If y ∈ [x0, r), then the stopping region SS,L
y = I , i.e. there is no

continuation region.

4 Optimal Trading with a Trailing Stop

In this section, we apply the results we obtained to study the optimal liquidation
problem (4) and the optimal acquisition problem (8).

4.1 Optimal Liquidation

Returning to the problem in (4), we will first using results in Theorem 3.1 to construct
a candidate threshold type strategy for liquidation before the trailing stop ρ f .

Corollary 4.1 There is a unique b

f ≥ x0 such that b( f (x̄)) > x̄ if and only if x̄ < b


f .

Moreover, b

f can be identified as the unique solution over (x0, f −1(x0)) to (x̄) = 0,

where

(x̄) := 1

ψ ′
q(x̄)

(
h′(x̄)
φ−
q (x̄)

− h(x̄)φ−,′
q (x̄)

(φ−
q (x̄))2

)

− 1

ψq(x̄) − ψq( f (x̄))

(
h(x̄)

φ−
q (x̄)

− h( f (x̄))

φ−
q ( f (x̄))

)

. (21)

Moreover, (x̄) > 0 if l < x̄ < b

f , and (x̄) < 0 if f −1(x0) > x̄ > b


f .

5 Notice that in the expectation (19) we don’t have the indicator 1{τ+
X (b(y))∧τ−

X (y)<∞}, as it is equal to 1

almost surely.
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Remark 4.1 Webriefly explain the rationale behind the characterization of b

f in Corol-

lary 4.1 here. Instead of solving the stopping problemwith a trailing stop (4) optimally,
let us consider a sub-optimal, myopic strategy. The strategy that will be considered
is the optimal strategy given in Theorem 3.1 when y = f (x), where x is the initial
level of the running maximum. We call this strategy myopic because the strategy is
obtained by fixing a stop-loss level, instead of allowing the stop level moving along
with the running maximum. Typically, it is impossible to attain the optimal myopic
stopping threshold without establishing a new high for the running maximum, unless
the initial maximum level is already sufficiently high. The threshold b


f is the critical
level beyond which, the above myopic strategy becomes optimal. In fact, when the
initial running maximum x = b


f , the optimal stopping threshold for the fixed stop-
loss level at y = f (b


f ) is exactly at b

f . Hence, (21) is obtained by imposing (20) to

hold when b = x and y = f (x).

Let us suppose for now that x̄ ≥ b

f . Then,

1. If we still have f (x̄) < x0, then by the definition of b

f given in Corollary 4.1, we

have b( f (x̄)) ≤ x̄ . Thus, by Remark 3.2,

h(x) ≤ v f (x, x̄) ≤ V f (x̄)(x), ∀x, x̄ ∈ I with x ≤ x̄,

((l, f (x̄)] ∩ [b( f (x̄)), x̄]) ≡
(
SS,L

f (x̄) ∪ (l, x̄]
)

= ST ,L
f (x̄).

2. If f (x̄) ≥ x0, then by Corollary 3.1, we can use the same argument as above to

conclude that (l, x̄] ≡
(
SS,L

f (x̄) ∩ (l, x̄]
)

= ST ,L
f (x̄).

As a consequence we obtain the following theorem:

Theorem 4.1 Under Assumption 2.1, for x, x̄ ∈ I with x ≤ x̄ and x̄ ≥ b

f , we have

v f (x, x̄) ≡ V f (x̄)(x).

So the optimal stopping time is ρ f ∧ τ+
X (b( f (x̄))).

In what follows we consider the remaining case l < x ≤ x̄ < b

f and we shall

establish the optimality of the stopping rule τ+
X (b


f )∧ρ f . To this end, we first calculate
the associated value of this strategy, denoted by u f (x, x̄). In particular, by the strong
Markov property of X , applying Lemma 2.1 we have for any x ∈ ( f (x̄), x̄) with
x̄ < b


f ,

u f (x, x̄) := Ex,x̄ (e
−r(ρ f ∧τ+

X (b

f ))h(Xρ f ∧τ+

X (b

f ))

))

= h( f (x̄))Ex (e
−qτ−

X ( f (x̄))1{τ−
X ( f (x̄))<τ+

X (x̄)}) + u f (x̄, x̄)Ex (e
−qτ+

X (x̄)1{τ+
X (x̄)<τ−

X ( f (x̄))})

= φ−
q (x)

(
h( f (x̄))

φ−
q ( f (x̄))

ψq(x̄) − ψq(x)

ψq(x̄) − ψq( f (x̄))
+ u f (x̄, x̄)

φ−
q (x̄)

ψq(x) − ψq( f (x̄))

ψq(x̄) − ψq( f (x̄))

)

, (22)
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where for x̄ < b

f , we have

u f (x̄, x̄)

φ−
q (x̄)

= h(b

f )

φ−
q (x̄)

Ex̄,x̄ (e
−qτ+

X (b

f )1{τ+

X (b

f )<ρ f })

+ 1

φ−
q (x̄)

Ex̄,x̄ (e
−qρ f h(Xρ f )1{ρ f <τ+

X (b

f )}). (23)

The two expectations in (23) can be computed using standard calculation using excur-
sion theory:

Lemma 4.1 For any b > x̄ , we have

Ex̄,x̄ (e
−qρ f h(Xρ f )1{ρ f <τ+

X (b)})

= φ−
q (x̄)

∫ b

x̄

h( f (v))

φ−
q ( f (v))

ψ ′
q(v)

ψq(v) − ψq( f (v))
exp

(

−
∫ v

x̄

ψ ′
q(u) du

ψq(u) − ψq( f (u))

)

dv,

and

Ex̄,x̄ (e
−qτ+

X (b)1{τ+
X (b)<ρ f }) = φ−

q (x̄)

φ−
q (b)

exp

(

−
∫ b

x̄

ψ ′
q(u)du

ψq(u) − ψq( f (u))

)

.

In particular, as b → r we obtain the value of the plain trailing stop (defined in (6))

g f (x̄, x̄) = φ−
q (x̄)

∫ r

x̄

h( f (v))

φ−
q ( f (v))

ψ ′
q(v)

ψq(v) − ψq( f (v))
exp

(

−
∫ v

x̄

ψ ′
q(u) du

ψq(u) − ψq( f (u))

)

dv,

and for f (x̄) < x ≤ x̄ ,

g f (x, x̄) = φ−
q (x)

(
(h f (x̄))

φ−
q ( f (x̄))

ψq(x̄) − ψq(x)

ψq(x̄) − ψq( f (x̄))
+ g f (x̄, x̄)

φ−
q (x̄)

ψq(x) − ψq( f (x̄))

ψq(x̄) − ψq( f (x̄))

)

.

To establish the optimality of τ+
X (b


f ) ∧ ρ f when 0 < x ≤ x̄ < b

f , we need to

show that the value of the rule u f (x, x̄) dominates the reward function h(x). This
claim can be proved by using (22) and the optimality of b


f (see Corollary 4.1).

Lemma 4.2 For all x̄ ∈ (l, b

f ) and x ∈ ( f (x̄), x̄], we have u f (x, x̄) > h(x̄).

Lemma 4.2 says that waiting until τ+
X (b


f ) ∧ ρ f yields positive “time value”
u f (x, x̄) − h(x) > 0 for all f (x̄) < x ≤ x̄ < b


f , so this region should be part
of the optimal continuation region. On the one hand, before hitting b


f , this region is
obviously the maximum possible continuation region. Furthermore, upon hitting b


f
we have x̄ = b


f , and the case has already been treated in Theorem 4.1, which suggest

immediate stopping at τ+
X (b


f ). So we know that the stopping time τ+
X (b


f ) ∧ ρ f is
optimal for problem (4) if x̄ < b


f .
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Theorem 4.2 Under Assumption 2.1, we have for all l < x ≤ x̄ < b

f that,

v f (x, x̄) ≡ u f (x, x̄) = Ex,x̄ (e
−q(τ+

X (b

f )∧ρ f ))h(Xτ+

X (b

f )∧ρ f

),

where b

f is defined inCorollary4.1.Moreover, themapping f �→ b


f is non-increasing
over all functions satisfying (2).

Proof The only claim that needs a proof is the monotonicity of f �→ b

f . But that is

due to Remark 2.2 and the structure of the optimal stopping region. ��
Corollary 4.2 The value of the plain trailing stop g f (x, x̄) given in Lemma 4.1 is
finite. Moreover, for any f (x̄) < x ≤ x̄ < b


f , the early liquidation premium given
the trailing stop ρ f is given by

p f (x, x̄) = φ−
q (x)

φ−
q (b


f )

ψq(x) − ψq( f (x̄))

ψq(x̄) − ψq( f (x̄))
exp

(∫ b

f

x̄

−ψ ′
q(u)du

ψq(u) − ψq( f (u))

)

(
h(b


f ) − g f (b


f , b



f )

)
,

where g f (b

f , b



f ) is given in Lemma 4.1. If f (x̄) < x0, x̄ ≥ b


f and f (x̄) < x <

b( f (x̄)) (see Proposition 3.1 for the existence of b(y)), then the early liquidation
premium given the trailing stop ρ f is

p f (x, x̄) = φ−
q (x)

φ−
q (b( f (x̄)))

ψq(x) − ψq( f (x̄))

ψ(b( f (x̄))) − ψq( f (x̄))

(
h(b( f (x̄))) − g f (b( f (x̄)), x̄)

)
.

Finally, if f (x̄) < x0, x̄ ≥ b

f and b( f (x̄)) ≤ x ≤ x̄ , or f (x̄) ≥ x0 and f (x̄) < x ≤ x̄ ,

then the early liquidation premium given the trailing stop ρ f is

p f (x, x̄) =h(x) − g f (x, x̄).

Remark 4.2 If the first inequality in (13) is an equality, then the optimal threshold b

f

may be at the boundary r , in which case, it will be optimal not to liquidate before the
trailing stop. That is, p f (x, x̄) = 0 for all x, x̄ ∈ I such that x ∈ ( f (x̄), x̄].

4.2 Optimal Acquisition with a Trailing Stop

In this section, we solve the optimal stopping problem related to acquisition with a
trailing stop, which we recall as follows:

v
(1)
f (x) = sup

τ∈T
Ex (e

−qτ (v f (Xτ , Xτ ) − hb(Xτ ))1{τ<∞}), (24)

where T is the set of all stopping times of X , and supx∈I (v f (x, x) − hb(x)) > 0.
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Let us define the optimal acquisition region with a trailing stop as

ST ,A
f := {x ∈ I : v

(1)
f (x) = v f (x, x) − hb(x)}.

Following [19, Proposition 5.10] and (23), to determine ST ,A
f , it suffices to obtain the

smallest concave majorant of

H (1)(z) := v f (x, x) − hb(x)

φ−
q (x)

, where z = ψq(x) ∈ R+, x ∈ I . (25)

In light of Theorem 4.1, we know that for x ≥ b

f , we have v f (x, x) − hb(x) =

h(x) − hb(x) ≤ 0, so we must have ST ,A
f ⊂ I\[b


f , r) = (l, b

f ). Therefore, if we

denote by

z
f := sup arg max
z∈R+

H (1)(z). (26)

Then we have H (1)(z
f ) > 0 (since supx>0(v f (x, x) − hb(x)) > 0), and z
f ∈
[0, ψq(b


f )), and the smallest concave majorant of H (1)(·) over [z
f ,∞)must be given

by the constant function H (1)(z
f ), so we can deduce that S
T ,A
f ⊂ (l, ψ−1

q (z
f )]. How-
ever, no further information about ST ,A

f is available under general diffusions, mainly

due to lack of information about the concavity of H (1)(·). In fact, as seen in Lemma
4.3 below, even in the special case hb(·) ≡ h(·), function H (1)(·) over (0, ψq(b


f ))

is the difference between a convex function H f (·) over (0, ψq(b

f )) and a function

H(·) that is convex over (0, ψq(x0)) and is strictly concave over (ψq(x0), ψq(b

f )),

so we only know that H (1)(·) is convex on (ψq(x0), ψq(b

f )), but the concavity of this

function over (0, ψq(x0)) is not available to us.

Lemma 4.3 Consider function

H f (z) := v f (x, x)

φ−
q (x)

, H(z) := h(x)

φ−
q (x)

, where z = ψq(x) ∈ R+. (27)

Then H f (·) is convex on (0, ψq(b

f )), and H(·) is strictly concave on (ψq(x0),∞)

and is convex on (0, ψq(x0)).

Remark 4.3 If X follows the Black-Scholes model with drift μ < q, and volatility
σ > 0, then as in [22], it is never optimal to acquire the stock given h(x) = x − cs
and hb(x) = x + cb, with transaction fees cs > 0 and cb ≥ 0. To see this, we
recall that v f (x, x) < V0(x) = 1{x<b}( xb )β

+
(b − cs) + 1{x≥b}(x − cs), where β+ =

δ +
√

δ2 + 2q
σ 2 > 1 with δ = μ

σ 2 − 1
2 , and b = βcs

β−1 . The convexity of V0(·) implies
that V0(x) − h(x) < cs for all x ∈ R+, so v f (x, x) − h(x) < cs for all x ∈ R+,
for any floor function f (·) that satisfies (2). Thus, we have v f (x, x) − hb(x) =
v f (x, x) − h(x) − (cb + cs) < −cb ≤ 0, so the payoff function for problem (24)
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to be negative throughout R+, yielding an empty optimal stopping region. For some
other forms of h(·), one may obtain a non-empty stopping region for problem (24)
(see Example 4.1 below).

Example 4.1 Assuming that μ(x) = μx, σ (x) = σ x, h(x) = hb(x) = x − Kx−ε for
all x ∈ I ≡ R+, where μ ∈ R such that μ < q, and σ, K > 0 and ε ≥ 0 such that
1
2σ

2ε(ε + 1) − με − q < 0. Let f (x) = (1− α)x for some α ∈ (0, 1). Then we have

ST ,A
f = (0, b


f ], where b

f := ψ−1

q (z
f ) with z
f given in (26), or equivalently, with
z
f as the unique root to (50) in the Appendix. That is, for all x ∈ I

v
(1)
f (x) = Ex (e

−qτ−
X (b


f )(v f (Xτ−
X (b


f )
, Xτ−

X (b

f )

) − hb(Xτ−
X (b


f )
))1{τ−

X (b

f )<∞}).

In general, one can analyze the concavity of H (1)(·) (and hence the optimal stopping
region) on a case-by-case basis with possibly helps of numerical computation. To
demonstrate the idea, let us define

z
f := ψq(b


f ), ϕ(z) := ψq( f (ψ

−1
q (z))), ∀z ∈ R+. (28)

It is clear that ϕ(·) is an increasing function such that 0 < ϕ(z) < z. From Lemma 4.1
we have for all z ∈ (0, z
f )

H f (z) = exp

(

−
∫ z
f

z

dν

ν − ϕ(ν)

)

H(z
f ) +
∫ z
f

z
H(ϕ(ν))

exp

(

−
∫ ν

z

dw

w − ϕ(w)

)
dν

ν − ϕ(ν)
, (29)

where H f (·) is defined in (27). To obtain the smallest concave majorant of H (1)(z) =
H f (z)− H(z)− c/φ−

q (ψ−1
q (z)), we need to numerically evaluate H f (·). To that end,

it will be more convenient to rewrite (29) into an equivalent first-order linear ODE
form:

{
H ′

f (z) = H f (z)−H(ϕ(z))
z−ϕ(z) , ∀z ∈ (0, z
f ),

subject to H f (z
f ) = H(z
f ).
(30)

Then we can useMathematica’s NDSolve command to efficiently compute the values
of H (1)(·) and its derivatives.6

6 The procedure can be conveniently generalized to allow for distinct discounting rates for the acquisition
and liquidation problems.

123



Applied Mathematics & Optimization (2021) 83:669–698 683

5 Case Study: Trading with a Trailing Stop Under the Exponential OU
Model

In this section, we apply our results in Sect. 4 to an exponential Ornstein-Uhlenbeck
(OU) model:

dXt = Xt

(

λ(θ − log Xt ) + 1

2
σ 2

)

dt + σ XtdWt , X0 = x ∈ I ≡ R+, (31)

where W is a standard Brownian motion, λ, σ > 0 are positive constants, and θ ∈ R

is the long term average for the log-price log X :

d(log Xt ) = λ(θ − log Xt )dt + σdWt .

With reference to (9), it is well-known (see p. 542 of [18]) that

φ+
q (x) = e

λ

2σ2
(y−θ)2D− q

λ

(√
2λ

σ
(y − θ)

)
,

φ−
q (x) = e

λ

2σ2
(y−θ)2D− q

λ

(√
2λ

σ
(θ − y)

)
,

where y = log x , and Dν(·) is the parabolic cylinder function with parameter ν. We
are interested in optimal liquidation and acquisition of one unit of an risky asset whose
price is modeled by X . To that end, we let

h(x) = x − c0, , hb(x) = x + c0, ∀x ∈ I ,

where c0 ≥ 0 is a transaction cost to buy or sell. Then it follows that, for any q > 0

(L − q)h(x) =
(

λ(θ − log x) + 1

2
σ 2 − q

)

x + qc0, ∀x ∈ I ,

which is a strictly decreasing function with range equal toR. Moreover, by the asymp-
totic behavior of Dν(·) (see e.g. equation (1.8) of [23]), we know that the reward
function h(·) satisfies Assumption 2.1. A number of related studies, such as [24–26],
have also analyzed the optimal buy-low-sell-high strategy under the OU or exponen-
tial OU model, with or without a fixed stop-loss exit. Compared to them, we study a
different optimal stopping problem with a random maturity due to the trailing stop.

5.1 Value Function and Optimal Strategy

Upon purchasing of the asset, we set a percentage drawdown trailing stop, i.e. f (x) =
(1 − α)x , where α ∈ (0, 1) is a constant.

In this study, we select the following parameter values:

λ = 0.6, θ = 1, σ = 0.2, q = 0.05, c0 = 0.02, α = 0.3. (32)
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(a)

(c) (d)

(b)

Fig. 2 Numerical results under the exponential OU model (31): a Plots of function H(z) (dashed gray) and
H f (z) (solid black). The “pasting point” ψq (b


f ) = 1.0674 is indicated by the black dot. b Plots of the
reward function h(x) (dashed gray) and the value function v f (x, x) (solid black). The “pasting point” is

b

f = 2.8845 (black dot). c Plots of the reward function H (1)(z) (dashed gray) and its smallest concave

majorant (solid black), along with the “pasting point” z̄
f = 0.5441 (black dot). d Plots of the reward

function v f (x, x) − hb(x) (dashed gray) and the value function v
(1)
f (x) (solid black), and the “pasting

point” b

f = 1.9488 (black dot)

This means that we will liquidate the asset whenever its price drops from its running
maximum since the acquisition by more than 30%.

In Fig. 2a, we plot the function H(·) defined as in (27). We also have plotted the
function H f (·) defined as in (23) (see also (29)), which is obtained by first solving
equation (21) with f (x) = (1 − α)x for b


f (= 2.8845), and then using ODE (29) to
numerically obtain H f (·). We notice that, in contrast to the value function for a fixed
stop-loss level (Theorem 3.1, see also [15]), the function H f (·) is not concave over
(0, ψq(b


f )). This is because, althoughφ−
q (x)H f (ψq(x)) = v f (x, x) is the value func-

tion for the optimal stopping problem (4) when x = x̄ , it does not yield a martingale
of (Xt , Xt ), which requires using the function v f (x, x̄), not v f (x, x).

In Fig. 2b, we plot the reward function h(x) and the value function v f (x, x) for the
optimal liquidation problem (4) with x = x̄ .

In Fig. 2c, we plot the function H (1)(z) defined in (25) under the current exponential
OU model. By checking the function’s derivative numerically, we conclude that it is
concave to the left of its maximum point. Hence, the smallest concave majorant is
given by
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Fig. 3 Earlier liquidation premium (black) p f (x, x) and function x − f (x) = αx (dashed) under the
exponential OU model (31)

Ĥ (1)
f ,q(z) = H (1)(z ∧ z
f ), ∀z ∈ R+.

Therefore, in this case, the optimal acquisition strategy is to purchase the asset once
the price is lower than b


f = 1.9488.

In Fig. 2d, we plot the function v f (x, x)− hb(x) and the value function v
(1)
f (x) for

the optimal acquisition problem (8), and the “pasting point” is at ψ−1
q (z̄
f ) = 1.9488.

In summary, for the exponential OUmodel (31)with parameters as given in (32), the
optimal trading strategy is to purchase the asset when price is lower than ψ−1

q (z̄
f ) =
1.9488, and setup the 30% trailing stop order as an exit plan, and then wait until either
the trailing stop is being activated or the price reaches target b


f = 2.8845.

Lastly, in Fig. 3 we plot the early liquidation premium of ρ f ∧ τ+
X (b


f ) over the
plain trailing stop ρ f when x = x̄ . This measure the “value” of our result in problem
(4). By Corollary 4.2, we know that, for each x ∈ I ,

p f (x, x) = exp

(∫ b

f ∨x

x

−ψ ′
q(u)du

ψq(u) − ψq( f (u))

)
(
h(b


f ∨ x)−g f (b


f ∨ x, b


f ∨ x)
)

.

(33)

To numerically evaluate (33), we use the fusion of a “limiting order” τ+
X (b) and the

trailing stop ρ f , with b chosen sufficiently large so that

Ex (e−q(τ+
X (b)∧ρ f )1{τ+

X (b)<ρ f }) < 0.005,

0 < h(b)Ex (e−q(τ+
X (b)∧ρ f )1{τ+

X (b)<ρ f }) < 0.03,

for all x in the plotting region of Fig. 3. Then g f (x, x) is approximated by the value
of this strategy, which is subsequently solved using an ODE similar as (30).

In Fig. 3, we compare the early liquidation premium p f (x, x) with the function
x − f (x) = αx (α = 0.3), which is the maximum loss of the trailing stop order if the
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price X reaches the trailing floor immediately (but without an overshoot). We notice
that, for large x , the gain from our strategy over the plain trailing stop approaches 30%
of the price level. Take into account of discounting and transaction costs, this example
suggests that setting a trailing stop when the asset price is high will almost always
incur a 30% loss at exit.

5.2 Sensitivity Analysis and Financial Interpretations

The following illustrative numerical examples will shed light on the sensitivity of
the optimal acquisition and liquidation thresholds, b


f and b

f , with respect to the

trailing stop level α, and transaction cost c0. This involve numerical computation of
the thresholds, as well as the critical level where function (L − q)h(x) vanishes. In
Fig. 4a, we plot (b


f , x0, b


f ) as a function of the trailing stop level α, with x0 (the

dashed line) defined in Assumption 2.1. The optimal liquidation level b

f is increasing

in α, confirming our result in Theorem 4.2. Moreover, the optimal acquisition level b

f

is also increasing in α. Recalling that a higher α means a lower trailing stop trigger,
this means that a larger downside protection induces the investor to enter the market
earlier. As seen in Fig. 4a, the investor with a higher α will acquire the asset at a price
level closer to the critical level x0. Our numerical results also suggest that, for small
α, it may not be optimal to initiate the position at all, because the gain to be realized at
the sell order at b


f or at the trailing stop will be too low compared to the transaction
cost c0. In such cases, we observe that supx∈R(v f (x, x) − h(x)) < c0 = 0.02.

In Fig. 4b, we plot (b

f , x0, b



f ) as a function of the asset’s volatility parameter σ .

We see that, as σ increases, the optimal liquidation level increases, thanks to stronger
force from the Brownian motion. However, the acquisition price level is lower for
higher σ , which means that the investor is willing to establish a position at a lower
price. However, higher volatility will increase the likelihood for the asset price to reach
low levels earlier, so the actual entry time by the investor may be earlier or later. The
decreasing pattern of b


f with respect to σ suggests that the investor voluntarily lowers
the take-profit level to mitigate the risk of realizing a reduced profit or a loss at the
trailing stop in a more volatile market.

Figure 4c illustrates the effect of the asset’s rate of mean reversion λ. A higher λ

means that the log-price will move around its long-term mean θ faster. As a response,
the investor enters the market earlier at a higher entry level and exit at a lower level,
resulting in a quick roundtrip, as reflected in the plot by the increasing trends of b


f and
b

f with respect to λ. Moreover, their distance is shrinking as λ continues to increase.

Intuitively, since the asset price tends to rapidly revert to the mean, it does not make
sense to select entry and exit price levels that are far apart and away from the mean as
the chance of execution is too low.

The effect of transaction cost c0 is shown in Fig. 4d, where we plot (b

f , x0, b



f ) as

a function of c0. The optimal liquidation level b

f increases slightly with respect to c0

while the optimal acquisition level b

f decreases in c0. To interpret, higher transaction

costs discourage both acquisition and liquidation, though the effect is not significant.
Nevertheless, as pointed out in our analysis above,while there is always a finite optimal
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(a)

(c) (d)

(b)

Fig. 4 Sensitivity of thresholds b

f (black), b


f (gray), and the root x0 (red dashed) of (L − q)h(x) = 0,
under the exponential OUmodel (31): a Dependence on α ∈ [0.1, 0.4]; bDependence of on σ ∈ [0.1, 0.4];
c Dependence of on λ ∈ [0.2, 1.2], and d Dependence of on c0 ∈ [0, 0.04]. In all figures, other parameters
are set as in (32) (Color figure online)

liquidation price b

f given any transaction cost, a high transaction cost may make the

trade unprofitable and thus exclude market entry.

A Proofs

Proof of Lemma 2.2 Following [19], let us define For any b ∈ I , let us define

H(z) := h(x)

φ−
q (x)

, where z = ψq(x) ∈ R+. (34)

By [19, Proposition 5.11], we know that the value function

V (x) := sup
τ∈T

Ex (e
−rτh(Xτ )1{τ<∞}),

is given byφ−
q (x)Ĥ(ψq(x)), where Ĥ(·) is the smallest nonnegative concavemajorant

of H(·) on R+. On the other hand, by [19, Section 6], we have

H ′′(z) = 2

σ 2(x)φ−
q (x)(ψ ′

q(x))
2

((L − q)h(x)) , for z = ψq(x).
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So Assumption 2.1 implies that H(·) is convex on (0, ψq(x0)), and concave on
(ψq(x0),∞). We now examine the behavior of H(·) near 0 and ∞. From (34) we
know that,

1. if h(l+) ≥ 0, then h(l+) is finite, and H(0+) = limx↓l h(x)
φ−
q (x)

= 0;

2. if h(l+) < 0, then H(z) < 0 for sufficiently small z > 0.

Moreover, from

F(z) := H(z)

z
= h(x)

φ+
q (x)

, where z = ψq(x)

we know H(z) > 0 for sufficiently large z > 0. Here, function F(·) is twice continu-
ously differentiable on R+, and by Assumption 2.1 we know that supz≥ψq (x0) F(z) =
F(z∗) for some z∗ ∈ [ψq(x0),∞). Obviously F(z∗) > 0, which implies that
H(z) = h(x)

φ−
q (x)

> 0 for all z > z∗ since h(·) is monotone. Furthermore, z∗ must

satisfy the first order condition

1

z∗
(H ′(z∗) − F(z∗)) = 0. (35)

Now define function

H̃(z) = F(z∗)z1{z<z∗} + H(z)1{z≥z∗},

which is clearly continuously differentiable and concave onR+, thanks to (35). Func-
tion H̃(·) is also positive on R+, which is evident from the construction. Hence we
conclude that H̃(·) is the smallest concave majorant of H(·). So the optimal stopping
region is given by

ψ−1
q ({z ∈ R+ : H̃(z) = H(z)}) = (ψ−1

q (z∗), r).

Therefore, x
 = ψ−1
q (z∗) is the optimal stopping threshold. ��

Proof of Proposition 3.1 The proof is similar as that for Lemma 2.2. In the spirit of
[19], we derive the optimal value function and the stopping region by constructing
the smallest concave majorant of H(z) on [ψq(y),∞). By the convexity of H(·), we
know this concave majorant is given by

Ĥy(z) =
{
H(ψq(y))

z(y)−z
z(y)−ψq (y) + H(z(y))

z−ψq (y)
z(y)−ψq (y) , ∀z ∈ (ψq(y), z(y)),

H(z), ∀z /∈ (ψq(y), z(y)),
(36)

where z(y) is defined as

z(y) := inf argmax
z>ψq (x0)

H(z) − H(ψq(y))

z − ψq(y)
. (37)
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Thus, the optimal stopping region is given by

SS,L
y = ψ−1

q (R+\(ψq(y), z(y))) = (l, y] ∪ [ψ−1
q (z(y)), r).

Therefore, the optimal stopping barrier is given by b(y) := ψ−1
q (z(y)).

From Remark 3.1 we know that, for l ≤ y1 < y2 < x0, the equalities hold:

((l, y1] ∪ [b(y1), r)) ≡ SS,L
y1 ⊂ SS,L

y2 ≡ ((l, y2] ∪ [b(y2), r)) .

Thus necessarily, b(y2) ≤ b(y1) ≤ b(l) = x∗ < r . Because z(y) is an interior
maximizer in the objective function in (37), it must satisfy the first order condition:

1

z(y) − ψq(y)

(

H ′(z(y)) − H(z(y)) − H(ψq(y))

z(y) − ψq(y)

)

= 0. (38)

This gives (20).
As y ↑ x0, b(y) converges to some limit in [x0, r). Suppose that b(x0−) ≡ b > x0,

then the concavity of H(·) over (ψq(x0),∞) implies that

H ′(ψq(b)) ≤ H(ψq(b)) − H(ψq(x0))

ψq(b) − ψq(x0)
.

However, taking limit in (38) as y ↑ x0, we know that the above inequality is in fact
an equality. This, together with the concavity of H(·) implies that H(·) is in fact a
straight line over [ψq(x0), ψq(b)], but then (by the definition of z(y), again) we must
have b(x0−) = x0 instead.

We use implicit differentiation to prove b(y) is strictly decreasing and differentiable
on (l, x0). To that end, we denote z = z(y) and u = ψq(y), then the first order equation
in (38) reads as

f (z, u) = 0, where f (z, w) = H ′(z) − H(z) − H(u)

z − u
.

By the definition of z ≡ z(y) we have

∂ f

∂u
= H ′(u) − H(z) − H(u)

(z − u)
< 0,

∂ f

∂z
= H ′′(z) − 1

z − u
f (z, u) = H ′′(z) < 0.

Thus, we know that z(y) is strictly decreasing and differentiable in ψq(y). In order
words, z(y) is differentiable in y and z′(y) < 0 for any y ∈ (l, x0). ��
Proof of Corollary 4.1 From Theorem 3.1 we know that x̄ �→ b( f (x̄)) is strictly
decreasing and continuous over ( f −1(l), f −1(x0)), and themapping x̄ :�→ x̄ is strictly
increasing over the same domain. Therefore, the difference D(x̄) := b( f (x̄)) − x̄ is
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strictly decreasing, and D(x̄) ≥ D(x0) > 0 for all x̄ ∈ ( f −1(l), x0], and by Proposi-
tion 3.1,

lim
x̄↑ f −1(x0)

D(x̄) = x0 − f −1(x0) < 0.

As a consequence, we can define b

f := inf{x̄ < f −1(x0) : D(x̄) ≤ 0}, and b


f ∈
(x0, f −1(x0)), so f (b


f ) ≤ x0.
Now for all x̄ < b


f , by the construction of b

f we have b( f (x̄)) > x̄ , by def-

inition of z( f (x̄)) ≡ ψq(b( f (x̄))) in the proof of Proposition 3.1 we know that
z( f (x̄)) > ψq(x̄). Because the line segment l0 connecting (ψq( f (x̄)), H(ψq( f (x̄))))
and (z( f (x̄)), H(ψq( f (x̄)))) gives part of the concavemajorant of H(·), we know that
the line segment l1 connecting (ψq( f (x̄)), H(ψq( f (x̄)))) and (ψq(x̄), H(ψq(x̄))),
which is below line segment l0, must go below the graph of H(·) at ψq(x̄). This
implies that the derivative of H(·) at ψq(x̄) must be strictly greater than that of line
segment l1. That is,

H ′(ψq(x̄)) >
H(ψq(x̄)) − H(ψq( f (x̄)))

ψq(x̄) − ψq( f (x̄))
⇔ (x̄) > 0.

On the other hand, for all f −1(x0) > x̄ > b

f , we have b( f (x̄)) < x̄ . Using similar

argument as above, we know that z( f (x̄)) = ψq(b( f (x̄))) < ψq(x̄). Since the line
segment l1 connecting (ψq( f (x̄)), H(ψq( f (x̄)))) and (ψq(x̄), H(ψq(x̄))) is a line
segment connecting two points on the graph of a concave function Ĥ(·), which is the
smallest concave majorant of H(·) over [ψq( f (x̄)),∞), we know that

Ĥ ′(ψq(x̄)) = H ′(ψq(x̄)) <
H(ψq(x̄)) − H(ψq( f (x̄)))

ψq(x̄) − ψq( f (x̄))
⇔ (x̄) < 0.

Expressing H(·) and its derivative with h(·), φ−
q (·), ψq(·) and their derivatives yields

(21) and completes the proof. ��
Proof of Lemma 4.1 Let us denote by eq an exponential random variable with mean
1/q, which is independent of X . Then we notice that

Ex̄,x̄ (e
−qρ f h(Xρ f )1{τ+

X (b)<ρ f }) =Ex̄,x̄ (h(Xρ f )1{ρ f <τ+
X (b)∧eq }),

Ex̄,x̄ (e
−qτ+

X (b)1{τ+
X (b)<ρ f }) =Px̄,x̄ (τ

+
X (b) < ρ f ∧ eq).

To calculate the right-hand sides of the above, we consider an excursion of X below
u (notice that τ+

X (u−) = inf{t > 0 : Xt ≥ u} is the first hitting time of X to u):

εu = {εu(s) := Xτ+
X (u−) − Xτ+

X (u−)+s}0<s≤τ+
X (u)−τ+

X (u−),

which is defined for all u ≥ X0 = X0 = x̄ such that its lifetime ζ(εu) := τ+
X (u) −

τ+
X (u−) > 0. When ζ(εu) = 0 we set εu = ∂ , an isolated point. Then the process
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{(u, εu)}u≥x̄ is a Poisson point process with jump measure du × dnu , where nu is the
excursion measure for εu . Define T f (εu) := inf{0 < s < ζ(εu) : εu(s) > u − f (u)}.
It is known from [27] and Lemma 2.1 that,

nu(eq < ζ(εu) ∧ T f (εu)) = lim
x↑u

1

u − x

(
1 − Ex (e

−qτ+
X (u)1{τ+

X (u)<τ−
X ( f (u))})

)

− lim
x↑u

Ex (e−qτ−
X ( f (u))1{τ−

X ( f (u))<τ+
X (u)})

u − x

= φ
−,′
q (u)

φ−
q (u)

+
(

1 − φ−
q (u)

φ−
q ( f (u))

)
ψ ′
q(u)

ψq(u) − ψq( f (u))
,

nu(T f (εu) < ζ(εu) ∧ eq) = lim
x↑u

Ex (e−qτ−
X ( f (u))1{τ−

X ( f (u))<τ+
X (u)})

u − x

= φ−
q (u)

φ−
q ( f (u))

ψ ′
q(u)

ψq(u) − ψq( f (u))
.

Hence,

nu(eq < ζ(εu) ∧ T f (εu) or T f (εu) < ζ(εu) ∧ eq) = φ
−,′
q (u)

φ−
q (u)

− ψ ′
q(u)

ψq(u) − ψq( f (u))
.

Let A be the space of all excursions εu such thatT f (εu) < ζ(εu)∧eq , and B be the space
of all excursions εu such that eq < ζ(εu)∧T f (εu).We have that A∩B = ∅. Consider a
Poisson process (with time indexed by the running maximum X ) that jumps whenever
the current excursion εX ∈ A∪ B, then from the above calculation, we know that this
Poisson process has jump intensity nu(eq < ζ(εu)∧ T f (εu) or T f (εu) < ζ(εu)∧ eq).
So Px̄,x̄ (τ

+
X (b) < ρ f ∧ eq) is the same as the probability that this Poisson process has

no jump over [x̄, b), which is given by

exp
(

−
∫ b

x̄
nu(eq < ζ(εu) ∧ T f (εu) or T f (εu) <

ζ(εu) ∧ eq)du
)

= φ−
q (x̄)

φ−
q (b)

exp

(

−
∫ b

x̄

ψ ′
q(u)du

ψq(u) − ψq( f (u))

)

.

Moreover, for any v ∈ [x̄, b), the probability that the Poisson process will have the
first jump at “time” dv as a result of εv ∈ A, is given by

exp

(

−
∫ v

x̄
nu(eq < ζ(εu) ∧ T f (εu) or T f (εu)

< ζ(εu) ∧ eq)du
)

· nv(T f (εv) < ζ(εv) ∧ eq

)

dv
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=φ−
q (x̄)

φ−
q (v)

exp

(

−
∫ v

x̄

ψ ′
q(u)du

ψq(u) − ψq( f (u))

)

× φ−
q (v)

φ−
q ( f (v))

ψ ′
q(v)

ψq(v) − ψq( f (v))
dv

= φ−
q (x̄)

φ−
q ( f (v))

ψ ′
q(v)

ψq(v) − ψq( f (v))
exp

(

−
∫ v

x̄

ψ ′
q(u)du

ψq(u) − ψq( f (u))

)

dv,

which is the same as Px̄,x̄ (Xρ f ∈ dv, ρ f < τ+
X (b) ∧ eq). The proof is complete by

integrating in v over [x̄, b). ��
Proof of Lemma 4.2 Let us define for any b ≥ x̄

H̄(ψq(x̄), b) := H(ψq(b)) exp

(

−
∫ b

x̄

ψ ′
q(u) du

ψq(u) − ψq( f (u))

)

+
∫ b

x̄

ψ ′
q(v) H(ψq( f (v)))

w(v) − w( f (v))
exp

(

−
∫ v

x̄

ψ ′
q(u)

ψq(u) − ψq( f (u))
du

)

dv.

It is clear that H̄(ψq(x̄), x̄) = H(ψq(x̄)) = h(x̄)
φ−
q (x̄)

, and for b > x̄ we have the right

derivative of H f (ψq(x̄), b) in b:

∂

∂b
H̄(ψq(x̄), b) = ψ ′

q(b) exp

(

−
∫ b

x̄

ψ ′
q(u)du

ψq(u) − ψq( f (u))

)

(

H ′+(ψq(b)) − H(ψq(b)) − H(ψq( f (b)))

ψq(b) − ψq( f (b))

)

.

It follows that the sign of ∂
∂b H̄(ψq(x̄), b) depends on that of

(b) = H ′(ψq(b)) − H(ψq(b)) − H(ψq( f (b)))

ψq(b) − ψq( f (b))
.

But the latter is known to be positive for all b < b

f , thanks to Corollary 4.1. Because

H ′(ψq(·)) is continuous, so is (·). So we know that

u f (x, x̄)

φ−
q (x)

= H̄(ψq(x̄), b


f ) = H(ψq(x̄)) +

∫ b

f

x̄

∂

∂u
H̄(ψq(x̄), u)du > H(ψq(x̄))

= h(x)

φ−
q (x)

,∀x̄ < b

f .

This completes the proof. ��
Proof of Corollary 4.2 If f (x̄) < x ≤ x̄ < b


f , then by the strong Markov property of
X , we have
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p f (x, x̄) = Ex,x̄ ([e−qτ+
X (b


f )h(Xτ+
X (b


f )
) − e−qρ f h(Xρ f )]1{τ+

X (b

f )<ρ f <∞})

= Ex,x̄ (e
−qτ+

X (b

f )1{τ+

X (b

f )<ρ f })

(
h(b


f ) − Eb

f ,b



f
(e−qρ f h(Xρ f )1{ρ f <∞})

)
,

where Eb

f ,b



f
(e−qρ f h(Xρ f )1{ρ f <∞}) = g f (b


f , b


f ) is given in Lemma 4.1, which is

finite since we know that it is dominated from above by v f (b

f , b



f ) = h(b


f ). On the
other hand, by the analysis in (22) and the results in Lemma 4.1, we have

Ex,x̄ (e
−qτ+

X (b

f )1{τ+

X (b

f )<ρ f }) = φ−

q (x)

φ−
q (b


f )

ψq(x) − ψq( f (x̄))

ψq(x̄) − ψq( f (x̄))

exp

(

−
∫ b


f

x̄

ψ ′
q(u)du

ψq(u) − ψq( f (u))

)

.

We obtain the claimed formula by combining the above results.
If f (x̄) < x0 and x̄ ≥ b


f , then from Theorem 3.1 and Theorem 4.1 we know that
b( f (x̄)) ≤ x̄ , and for all f (x̄) < x < b( f (x̄)),

p f (x, x̄) = Ex (e
−qτ+

X (b( f (x̄)))1{τ+
X (b( f (x̄)))<τ−

X ( f (x̄))}) (h(b( f (x̄)))

−Eb( f (x̄), x̄(e
−qρ f h(Xρ f )1{ρ f <∞})

)
.

By using Lemma 2.1 we obtain that

Ex (e
−qτ+

X (b( f (x̄)))1{τ+
X (b( f (x̄)))<τ−

X ( f (x̄))}) = φ−
q (x)

φ−
q (b( f (x̄)))

ψq(x) − ψq( f (x̄))

ψ(b( f (x̄))) − ψq( f (x̄))
.

The claim in this case follows from Lemma 4.1.
In the last case that f (x̄) < x0, x̄ ≥ b


f and b( f (x̄)) ≤ x ≤ x̄ , or f (x̄) ≥ x0
and f (x̄) < x ≤ x̄ , from Theorem 3.1 and Theorem 4.1 we know that the optimal
stopping rule for problem (4) is 0, so we have

p f (x, x̄) = h(x) − Ex,x̄ (e
−qρ f h(Xρ f )1{ρ f <∞}).

The completes the proof. ��

Proof of Lemma 4.3 The convexity of H(·) has already been proved in the proof of
Lemma 2.2, so we only need to prove that for H f (·). To that end, we recall (30) that

H ′
f (z) = H f (z) − H(ϕ(z))

z − ϕ(z)
, ∀z ∈ (0, z
f ),

from which we obtain that, for z ∈ (0, z
f ),
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dH ′
f (z) =

H f (z)−H(ϕ(z))
z−ϕ(z) dz − H ′(ϕ(z))dϕ(z)

z − ϕ(z)
− H f (z) − H(ϕ(z))

(z − ϕ(z))2
(dz − dϕ(z))

=
(
H f (z) − H(ϕ(z))

z − ϕ(z)
− H ′(ϕ(z))

)
dϕ(z)

z − ϕ(z)

≥
(
H(z) − H(ϕ(z))

z − ϕ(z)
− H ′(ϕ(z))

)
dϕ(z)

z − ϕ(z)
. (39)

We prove that the embraced expression in (39) is positive, which implies that H ′
f (·)

is increasing so H f (·) is convex.
To prove the claim, we notice that for z ∈ (0, z
f ), we have ϕ(z) < ϕ(z
f ) =

ψq( f (ψ−1
q (z
f ))) = ψq( f (b


f )) < ψq(x0), thanks to Corollary 4.1. We now prove
that the line segment connecting (ϕ(z), H(ϕ(z))) and (z, H(z)) stays above the graph
of H(·). Suppose not, then by the convexity of H(·) this can happen only if the line
segment crosses the graph of H(·) twice, and z > ψq(b(ψ−1

q (ϕ(z)))), the latter of
which is the point where the tangent line of H(·) that crosses (ϕ(z), H(ϕ(z))) touches
the graph of H(·). In other words,

ψ−1
q (z) > b(ψ−1

q (ϕ(z)). (40)

On the other hand, by the monotonicity of b(y) (see Proposition 3.1) we know that

b(ψ−1
q (ϕ(z)) > b(ψ−1

q (ϕ(z
f )) = b

f , (41)

where we used the definition of b

f in Corollary 4.1. However, (40) is contradictory

to (41). Thus, the the line segment connecting (ϕ(z), H(ϕ(z))) and (z, H(z)) stays
above the graph of H(·). Given that H(·) is convex at ϕ(z), we know that the slope of
this line segment, H(z)−H(ϕ(z))

z−ϕ(z) , is larger than H ′(ϕ(z)). ��
Lemma A.1 Define the constant β± := −δ ± γ, where

δ = μ

σ 2 − 1

2
, γ =

√

δ2 + 2q

σ 2 .

Then, we have β+ > 1 and

−ε − β−

2γ
,

1 − β−

2γ
∈ (0, 1). (42)

Proof First, since g(1) = μ−q < g(β+) = 0 where g(β) = 1
2σ

2β(β −1)+μβ −q,
we conclude that 1 < β+. It follows from δ < γ that −β− = δ + γ < 2γ , so

−β−
2γ < 1. From g(−ε) < g(β−) = 0 where g(β) = 1

2σ
2β(β − 1) + μβ − q, we

know that −ε > β−. Moreover, 1 − β− − 2γ = 1 + δ − γ = 1 + δ −
√

δ2 + 2q
σ 2 <

δ + 1 −
√

δ2 + 2μ
σ 2 = δ + 1 − √

δ2 + 2δ + 1 ≤ 0, so 1−β−
2γ < 1. ��
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Proof of Example 4.1 First of all, we verify that h(·) satisfies Assumption 2.1. To that
end, we calculate

(L − q)h(x) = (μ − q)x −
[
1

2
σ 2ε(1 + ε) − με − q

]

Kx−ε,

from which we know that (12) holds. From [18] we know that

φ±
q (x) = xβ±

, ψq(x) = xβ+−β− = x2γ , (43)

where β± is defined in Lemma A.1. Condition (13) holds since β+ > 1, and thus,
Assumption 2.1 holds.

Using (43) and f (x) = (1 − α)x we obtain that

H(z) = z
1−β−
2γ − Kz

−ε−β−
2γ , ϕ(z) = (z

1
2γ (1 − α))2γ = (1 − α)2γ z =: ᾱz.

H ′′(z) = n1(n1 − 1)zn1−2 − Kn2(n2 − 1)zn2−2

= zn2−2[n1(n1 − 1)zn1−n2 + Kn2(1 − n2)]
1

2
σ 2(−ε)(−ε − 1) − με − q < 0,

1

2
σ 2ε(ε + 1) − με − q < 0. (44)

It follows that

H f (z) = exp

(

−
∫ z
f

z

dν

ν − ϕ(ν)

)

H(z
f ) +
∫ z
f

z
H(ϕ(ν))

exp

(

−
∫ ν

z

dw

w − ϕ(w)

)
dν

ν − ϕ(ν)

=
(

z

z
f

) 1
1−ᾱ

[

(z
f )
1−β−
2γ − K (z
f )

−ε−β−
2γ

]

+ (ᾱ)
1−β−
2γ

(1 − ᾱ)
1−β−
2γ − 1

[

(z
f )
1−β−
2γ

(
z

z
f

) 1
1−ᾱ − z

1−β−
2γ

]

− K
(ᾱ)

−ε−β−
2γ

(1 − ᾱ)
−ε−β−

2γ − 1

[

(z
f )
−ε−β−

2γ

(
z

z
f

) 1
1−ᾱ − z

−ε−β−
2γ

]

. (45)

Notice that (42) ensures that two detonators in the last line of (45) are negative.
Using (43), (44) and (45), we obtain

H (1)(z)

= H f (z) − H(z)

=
(

(ᾱ)
1−β−
2γ + (1 − ᾱ)

1−β−
2γ − 1

(1 − ᾱ)
1−β−
2γ − 1

(z
f )
1−β−
2γ
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− K
(ᾱ)

−ε−β−
2γ + (1 − ᾱ)

−ε−β−
2γ − 1

(1 − ᾱ)
−ε−β−

2γ − 1
(z
f )

−β−
2γ

)(
z

z
f

) 1
1−ᾱ

− (ᾱ)
1−β−
2γ + (1 − ᾱ)

1−β−
2γ − 1

(1 − ᾱ)
1−β−
2γ − 1

(z
f )
1−β−
2γ

(
z

z
f

) 1−β−
2γ

+ K
(ᾱ)

−ε−β−
2γ + (1 − ᾱ)

−ε−β−
2γ − 1

(1 − ᾱ)
−ε−β−

2γ − 1
(z
f )

−β−
2γ

(
z

z
f

)−ε−β−
2γ

=: k( z

z
f
), (46)

where k(u) is a polynomial in u:

k(u) = Aun1 + Bun2 + Cun3 , ∀u ∈ (0, 1] (47)

with

1

1 − ᾱ
≡ n1 > 1 > n2 ≡ 1 − β−

2γ
> n3 ≡ −ε − β−

2γ
> 0,

and unambiguous definitions of the coefficients A, B, andC .We can show thatC > 0.

In view of the fraction inside C , we let g(x) = x p + p(1 − x) − 1 for p = −ε−β−
2γ ∈

(0, 1). Then g(1) = 0 and g′(x) = p(x p−1 − 1) > 0 for all x ∈ (0, 1) so g(·) is
strictly increasing over (0, 1). In particular, g(ᾱ) < g(1) = 0. Since the denominator
in C is also negative, we conclude that C > 0.

Also, observe that k(0+) = 0 = H (1)(0+). Now, taking derivative of k(u) in (47),
we get

u1−n3k′(u) = An1u
n1−n3 + Bn2u

n2−n3 + Cn3. (48)

From limu↓0 u1−n3k′(u) = Cn3 > 0 we know that H (1),′(z) > 0 for sufficiently small
z > 0. Moreover,

u2−n3k′′(u) = An1(n1 − 1)un1−n3 + Bn2(n2 − 1)un2−n3 + Cn3(n3 − 1). (49)

Using standard argument by taking the derivative, it can be shown that functions like
the right hand side of (49) can change monotonicity at most once over (0, 1). Clearly,
the right hand side of (49) converges to Cn3(n3 −1) < 0 as u ↓ 0. On the other hand,
because H f (z) − H(z) is convex over (ψq(x0), ψq(b


f )) (see Lemma 4.3), we know
that the right hand side of (49) is positive as u ↑ 1. Given that k(u) is maximized

at
z
f
z
f
, we know that k′′(u) changes sign exactly once over (0, 1). More specifically,

there are u1 ∈ (0, 1) such that k′′(u) < 0 for all u ∈ (0, u1), and k′′(u) > 0 for all
u ∈ (u1, 1). This proves the pattern of convexity change for H (1)(·). It follows that
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H (1)(·) is strictly increasing from 0 to z
f , in particular, H
(1)(z) > 0 for all z ∈ (0, z
f ).

Thus, the smallest nonnegative concave majorant of H (1)(·) is given by

H (1)(z ∧ z
f ),

and the optimal stopping region for (24) is given by ψ−1
q ((0, z
f ]) = (0, b


f ]. Finally,
the global maximum z
f is the unique solution to

k′( z

z
f
) = 0,

z
f
z
f

∈ (0, u1). (50)

��
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