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Abstract
We discuss dynamic hedging of counterparty risk for a portfolio of credit derivatives
by the local risk-minimization approach.We study the problem from the perspective of
an investor who, trading with credit default swaps (CDS) referencing the counterparty,
wants to protect herself/himself against the loss incurred at the default of the counter-
party. We propose a credit risk intensity-based model consisting of interacting default
intensities by taking into account direct contagion effects. The portfolio of default-
able claims is of generic type, including CDS portfolios, risky bond portfolios and
first-to-default claims with payments allowed to depend on the default state of the ref-
erence firms and counterparty. Using the martingale representation of the conditional
expectation of the counterparty risk price payment stream under the minimal martin-
gale measure, we recover a closed-form representation for the locally risk minimizing
strategy in terms of classical solutions to nonlinear recursive systems of Cauchy prob-
lems. We also discuss applications of our framework to the most prominent classes of
credit derivatives.
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1 Introduction

Counterparty credit risk receives a lot of attention after the global financial crisis of
2007–2009; since then, the management of counterparty credit risk has become a key
issue for financial institutions. This risk refers to the possibility that one of the con-
tracting parties of derivatives transactions, carries out over the counter, defaults before
maturity. The vast majority of literature has focused on the valuation of counterparty
risk, i.e., credit valuation adjustment, abbreviated with CVA throughout this paper;
see also Capponi [14] for a survey. Despite the importance of dynamic hedging of
counterparty risk across policy makers and the financial industry, the literature on the
subject is still not as well developed.1

A larger body of literature has investigated dynamic hedging of defaultable claims
using mean-variance strategies, but without accounting for counterparty risk. Bielecki
et al. [7] and [8] introduce a framework for hedging risks in incomplete markets,
building on the classical Markowitz mean-variance portfolio selection framework.
They analyze quadratic hedgingmethods and consider strategies adapted to the default-
free market information as well as to the enlarged filtration inclusive of default events.
Bielecki et al. [9] consider a reduced form frameworkdrivenby aBrownianmotion, and
show that perfect hedging canbe achievedby continuously trading rolling credit default
swap (CDS) contracts. Frey and Backhaus [21] analyze hedging of synthetic CDO
tranches under a dynamic credit risk model with incomplete information, allowing
for default contagion and spread risk. They use the risk-minimization approach, and
choose single name credit swaps as their dynamic trading instruments.

In this paper, we study unilateral hedging of counterparty risk associated with
portfolio credit derivatives traded between a default-free investor and a default-
able counterparty in the local risk-minimization sense. The risk-minimization is a
quadratic hedging method, proposed in Föllmer and Sondermann [19] in the local
martingale case. It is extended in Schweizer [27] to the semimartingale case by intro-
ducing the weaker concept of the local risk-minimization. For the martingale case, the
risk-minimizing strategy can be characterized via the Galtchouk–Kunita–Watanabe
(GKW) decomposition. When the hedging instrument is a semimartingale, the locally
risk-minimizing strategy can be obtained in terms of the Föllmer-Schweizer (FS)
decomposition. In general, the FS decomposition is difficult to derive except the case
where the hedging instruments have continuous trajectories since it coincides with
the GKW decomposition under the minimal martingale measure (MMM). This is no
longer true in general if the hedging instrument has jumps, as in our framework. We
refer to Schweizer [29] for a survey. Themethodology has been subsequently extended
to a multidimensional setting including payment streams in Schweizer [30]. However,
in presence of jumps, the MMM and GKW-decomposition are still key tools to derive
the locally risk-minimizing strategy as proved in Choulli et al. [18].

We propose a general model of direct default contagion by extending the one con-
sidered in Bo et al. [11], which accounts for the impact of past defaults on the default
intensity of surviving firms. Our model can be specialized to capture the main sources

1 Canabarro [13] argues that the highmarket volatility experienced during the global financial crisis created
challenges for the dynamic hedge of CVA.
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of default correlation identified by empirical research. For instance, Azizpour et al.
[3] document the time decay effect of default contagion via a statistical analysis based
on historical corporate default data. As it is shown in Bo et al. [11], by choosing a
linear specification for the default intensity function, after a ramp-up for the instanta-
neous impact of a default, the default intensities of surviving firms would, over time,
mean revert to their long run averages. We consider the counterparty risk hedging of a
portfolio of defaultable claims of generic type, including classes of credit derivatives
routinely used by riskmanagement divisions such as CDS portfolios, risky bonds port-
folios and first-to-default claims. Moreover, the involved payments are also allowed to
be dependent on the default state of the reference firms and counterparty. We choose
the hedging instrument to be a CDS written on the (defaultable) counterparty. Our
choice is in line with current market practises. Major derivative desks routinely use
credit swaps to hedge counterparty exposures (see Chapter 2.4 in Gregory [23]), and
these contracts are highly requested by market participants during periods of con-
siderable market distress. The liquidity of credit swaps, typically higher than that of
the corresponding bonds, make them better instruments to implement cost-effective
hedging strategies. Hedging is only performed up to the earliest of the maturity of the
portfolio and the counterparty’s default time, that is hedging terminates if the portfolio
expires or if contingent payments are triggered by the counterparty’s default.

The main conceptual novelty of our paper is the development of a comprehen-
sive framework which simultaneously handles (i) a default intensity model enhanced
with feedback from defaults, and (ii) a dividend process for the hedging instrument
(CDS) whose dynamics is of the jump-diffusive type. Earlier studies [4–6,16] consider
hedging instruments with continuous trajectories by using an enlargement of filtration
approach. Ceci et al. [15] study the hedging of a default-free contingent claim via
trading instruments following a jump-diffusion process. Frey and Schmidt [22] also
employ the risk-minimization approach, but assume conditionally independent default
times whose intensities depend on an unobservable stochastic factor. Differently from
Frey and Backhaus [21] and Frey and Schmidt [22] who work directly under the risk-
neutral martingale measure used for pricing, we study the hedging problem under the
real-world probabilitymeasure. Other related studies on quadratic hedging approaches
to credit risk modeling include Okhrati et al. [25] who employ structural default mod-
els, and Wang et al. [32] who study vulnerable European contingent claims.

There are several technical contributions in our efforts, outlined next. We consider
the locally risk-minimizing hedging of the counterparty risk under the real-world
probability measure. This implies that we need to identify two additional probabil-
ity measures under our default contagion market model: the risk-neutral measure for
pricing purpose and the MMM for hedging purpose. In the discontinuous case, the
integrand of the GKW decomposition under the MMM differs from the integrand of
the FS decomposition. Hence the establishment of the hedging strategy in terms of
the predictable covariation between the hedging instrument and CVA prices under
the MMM can not be applied in our framework. We provide a model-independent
formula on the unique locally risk-minimizing strategy under the real-world measure
(see Proposition 3.4). Tankov [31] also uses a similar approach to hedge default-free
contingent claims in an exponential Lévy model. Finally, we characterize the locally
risk-minimizing hedging strategy in closed-form by deriving the martingale represen-
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tation of the conditional expectation of the counterparty risk price payment stream
under the MMM (see Proposition 3.7 and Theorem 3.9). This representation is given
in terms of the unique smooth solution to a nonlinear recursive system of Cauchy
problems. These Cauchy problems are defined on an unbounded domain, have non-
Lipschitz coefficients, and are linked through the default states of the economy. The
nonlinearity of this system of PDEs is inherited from the nonlinear structure of the
CVA. Our paper also makes other technical contributions related to the theory of
nonlinear PDEs. Our solution approach is to prove the uniform integrability of the
family generated by Feymann-Kac’s representations of the solution at any neighbor-
hood of a fixed space-time data point. Such a property allows us to apply existence
and uniqueness results from Heath and Schweizer [24] to our specific setting.

The rest of the paper is organized as follows. Section 2 develops the model and
formulate our hedging problem. Section 3 studies the locally risk-minimizing CVA
hedging strategy. Section 4 specializes our framework to concrete portfolio credit
derivatives. Some technical proofs are delegated to the Appendix.

2 TheModel and Hedging Problem on CVA

In this section, using the intensity-based approach, we propose an interacting default
intensitymodel which accounts for the impact of past defaults on the default intensities
of surviving firms. We assume the existence of N ≥ 1 risky entities, referred to as
name “1”, name “2”,..., name “N”. We use “N + 1” to denote the counterparty of the
investor in the contract. Section 2.2 develops an interacting default intensity model.
Section 2.3 gives the representation of a general defaultable claim.

2.1 Notations and Definitions

Let R+ := (0,∞) and S := {0, 1}N+1. The vector z = (z1, . . . , zN+1) ∈ S is used
to denote the default state of the portfolio with counterparty, with zi = 0 if the firm i
is alive and zi = 1 if it has defaulted. For each z ∈ S such that z j = 0, we use

z j := (z1, . . . , z j−1, 1, z j+1, . . . , zN+1), j = 1, . . . , N + 1 (1)

to denote the vector obtained from z by setting its j th component to 1. Let l ∈
{1, . . . , N + 1} and j1, . . . , jl ∈ {1, . . . , N + 1} be l distinct integers. Given z ∈ S
such that z j1 = · · · = z jl = 0, we use z j1,..., jl for the vector obtained from z by setting
its components j1, . . . , jl to 1. Namely, z j1,..., jl denotes a default state where the firms
j1, . . . , jl have defaulted. We set z j1,..., jl = z if l = 0. Clearly, 0 j1,..., jN+1 = eN+1
where eN+1 denotes the canonical row vector with all entries equal to 1. Let f (t, x, z)
be a deterministic function on ∈ [0, T ]×RN+1+ ×S. For j1, . . . , jl ∈ {1, . . . , N + 1}
with l = 1, . . . , N + 1, set

f (l)(t, x) := f (t, x, 0 j1,..., jl ), f (l+1),i (t, x) := f (t, x, 0 j1,..., jl ,i ), i /∈ { j1, . . . , jl}.
(2)
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We also set f (0)(t, x) := f (t, x, 0), and define | f |∞ := sup(t,x,z) | f (t, x, z)| if f is

bounded on [0, T ] ×RN+1+ ×S. To lighten notation in (2), we use the superscript l to
denote the number of defaults, but we are not specifying which firms have defaulted.

2.2 The Interacting Default Intensity Model

Let (�,F ,P) be a real-world probability space. Under this space, we give a d-
dimensional Brownian motion W (t) = (Wj (t))�j=1,...,d , t ≥ 0, and χ1, . . . , χN+1,
N + 1 square-integrable positive random variables (r.v.s) independent of W . Here
� denotes the transpose operator. Let F = (F(t))t≥0 with F(t) = σ(W (s); s ≤
t) ∨ σ(χi ; i = 1, . . . , N + 1). Denote by H(t) = (H1(t), . . . , HN+1(t)) the N + 1-
dimensional default indicator process, i.e., Hi (t) = 1 if the name i has defaulted before
or at time t , and zero otherwise. This implies that the state space of H = (H(t))t≥0 is
given by S = {0, 1}N+1. Define the filtration Hi = (Hi (t))t≥0 for i = 1, . . . , N + 1,
whereHi (t) = σ(Hi (s); s ≤ t). The global market filtration, including default event
information is given by G = (G(t))t≥0 = F ∨ H1 ∨ · · · ∨ HN+1 augmented by all
P-null sets so to satisfy the usual conditions.

In our model, the default intensity process is assumed to follow a jump-diffusion
process, where jumps capture the contagious impact that the default of a firm has on
the default intensities of the surviving firms. For t ≥ 0, the impact of all defaults
before or at time t on the default intensity of name i is captured by the following pure
jump process:

Ji (t) :=
N+1∑

j=1

wi j H j (t). (3)

The i-th entry of the weight vector w j = (wi j )i=1,...,N+1 ∈ [0,∞)N+1 measures the
extent to which the default of name i impacts the default intensity of name j .

Next, we introduce the interacting intensity model used in the paper. Under P,
the default intensity process satisfies a system of interacting SDEs given by, for i =
1, . . . , N + 1,

dXi (t) = μi (X(t))dt +
d∑

k=1

σik (X(t)) dWk(t) + d Ji (t), Xi (0) = χi . (4)

and X(t) = (Xi (t))�i=1,...,N+1 for t ≥ 0. If the weight wi j is high, the default of
name j increases substantially the default intensity of name i . If wi j ’s are high for
sufficiently many i , the probability of multiple firms defaulting within a short time
after the default of name j is high. This captures the default clustering phenomenon,
empirically documented in the literature (see, e.g., Azizpour et al. [3]). Throughout
the paper, we impose the following conditions on the coefficients of Eq. (4):
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(A1) The coefficients μ(x) = (μi (x))�i=1,...,N+1 and σ(x) =
(σik(x))i=1,...,N+1;k=1,...,d are locally Lipchitz continuous with linear growth
in x ∈ RN+1+ . Additionally, det((σσ�)(x)) �= 0 for x ∈ RN+1+ .

(A2) For (t, x) ∈ [0, T ]×RN+1+ , let X̃ t,x (s) = (X̃ t,x
i (s))�i=1,...,N+1 satisfy X̃ t,x (t) =

x and for s ∈ [t, T ],

d X̃ t,x (s) = μ(X̃ t,x (s))ds + σ(X̃ t,x (s))dW (s). (5)

Then it holds that P(X̃ t,x (s) ∈ RN+1+ for all s ∈ [t, T ]) = 1.

By TheoremV.38 in Protter [26], the condition (A1) implies that SDE (5) has a unique
(strong) solution, while the condition (A2) guarantees that X̃ t,x = (X̃ t,x (s))s≥t is
always strictly positive if the data is strictly positive at time t . Further, this implies
that the i-th default intensity process Xi = (Xi (t))t≥0 is strictly positive, see also
Proposition 2.1 below. The condition det((σσ�)(x)) �= 0 in (A1) implies that the
infinitesimal generator of X̃ t,s is uniformly elliptic, see also Lemma 3 in Heath and
Schweizer [24].

Proposition 2.1 establishes the existence of a default model (X , H) where the
N + 1-dimensional default indicator process H has the intensity given by X(t) =
(Xi (t))�i=1,...,N+1. The proof is similar to that in Bo et al. [11] and hence we omit it.

Proposition 2.1 Under assumptions (A1) and (A2), there exists a unique RN+1+ × S-
valued and G-adapted Markov process (X , H) satisfying (3), (4) and such that

Mi (t) := Hi (t) −
∫ t

0
(1 − Hi (s))Xi (s)ds, t ≥ 0 (6)

is a (P,G)-martingale.

From now on, we denote by τi the default time of the i-th name, i.e., τi := inf{t >

0; Hi (t) = 1} where inf ∅ = +∞ by convention. By the construction made in Bo et
al. [11], simultaneous jumps are not allowed, i.e., P(τi = τ j ) = 0 for all i �= j , and
further, by Bo and Capponi [10], W is also a (P,G)-Brownian motion.

2.3 Defaultable Claims

We introduce the formalism to describe the class of defaultable claims treated in this
paper. The specification is general enough to accommodate a large class of portfolio
credit derivatives, of which the credit valuation adjustment can be computed. In par-
ticular, we allow the dependence of payments on the default state of the portfolio with
counterparty.

Definition 2.1 A defaultable claim maturing at T > 0 is a quadruple (ξ, a, Z , K ),
where the r.v. ξ := ξ(H(T )), the processes a(t) := a(H(t)) and Z(t) := Z(H(t))
for t ∈ [0, T ]. The process K (t) := K (H(t)), t ∈ [0, T ], is the indicator function of
a positive G-stopping time τ̄ , i.e., it holds that K (t) = 1τ̄≤t . Here, with slight abuse
of notation, ξ(z), a(z), Z(z) and K (z) denote deterministic functions on z ∈ S.
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The financial meaning of the components of a defaultable claim becomes clear from
the definition of the dividend or total cash flow process. Such a process describes all
cash flows generated by the defaultable claim over its lifespan (0, T ], that is, after the
contract was initiated at time 0.

Definition 2.2 The dividend process D = (D(t))t≥0 associated with the defaultable
claim (ξ, a, Z , K ) maturing at T equals, for every t ≥ 0,

D(t) = ξ(1 − K (T ))1t=T +
∫ t∧T

0
(1 − K (u))a(u)du +

∫ t∧T

0
Z(u)dK (u). (7)

It is clear from the above definition that D is a process of finite variation. It admits
the following financial interpretation: the r.v. ξ is the promised payoff paid at the
maturity T if default has not happened before or at tme T , a = (a(t))t≥0 represents the
process of promised dividends paid until the earliest of T and default, and the process
Z = (Z(t))t≥0 specifies the payoff delivered at the default time if it has happened prior
to at time T . Notice that we allow for (ξ, a, Z , K ) to depend on the default indicator
process H , and that the process Z is not assumed to be G-predictable. Such a setup
differs from earlier works, see for instance Bielecki et al. [9], and allows us to use
the same general framework to hedge counterparty risk of a larger set of defaulable
claims, including those whose recovery process depends on a totally inaccessible
stopping time.

2.4 Examples

The proposed framework can be specialized to deal with a class of credit derivatives,
which are routinely used by investors to hedge risks. We assume that the notional
amount of the considered contracts is one.
Default intensities. For i = 1, . . . , N + 1, assume that the default intensity of the
i-th reference entity follows the dynamics:

dXi (t) = (κi − νi Xi (t))dt +
K∑

k=1

σk
√
Xi (t)dWk(t) + d Ji (t), Xi (0) = χi . (8)

The parameters κi , νi , i = 1, . . . , N +1, and σk , k = 1, . . . , K , are positive constants
satisfying the Feller’s boundary classification condition: 2κi ≥ ∑K

k=1 σ 2
k , for i =

1, . . . , N + 1. This implies that Assumption (A2) holds. The default intensity mean
reverts to its long-run level given by

κ j
ν j

> 0 between two consecutive default events.
This captures the empirically observed time decaying effect of default intensities.
When a firm i defaults, the default intensity of firm j instantaneously jumps upward.
The contagion effect decays at an exponential rate, see also Bo et al. [11].
CDS portfolio. Consider a portfolio of CDS contracts whose reference entities are
denoted by “1”, “2”, ..., “N”, and recall that the counterparty of the investor is denoted
by “N + 1”. For i = 1, . . . , N , a CDS on the entity i is a contract between the
protection buyer (the investor) and the protection seller (the counterparty), where the
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protection leg commits to paying a contractually specified spread premium εi > 0
until the earliest of the default time τi of the reference entity or the maturity T of the
contract. The protection seller pays the loss rate Li (t) := Li (H(t)) ∈ (0, 1] times the
given notional amount at τi that the i-th reference entity defaults. We also allow for
loss rate to depend on the default state of the portfolio.

Consider the case that all CDSs have the same maturity T > 0, and we view the
payoff from the point of view of the protection seller. The quadruple (ξi , ai , Zi , Ki )

for i = 1, . . . , N + 1, is specified as follows:

ξi = 0, ai (t) = −εi , Zi (t) = Li (t), Ki (t) = Hi (t),

i.e., Ki (t) = Hi (t) is the indicator of the default time of the i-th reference entity
(τ̄i = τi ). From Definition 2.2, the dividend process of the i-th CDS is given by

Di (t) = −εi

∫ t∧T

0
(1 − Hi (u))du +

∫ t∧T

0
Li (u)dHi (u)

= −εi (t ∧ T ∧ τi ) + Li (τi )1τi≤t∧T . (9)

Risky bonds portfolio. Consider a portfolio of coupon paying bonds underwritten
by firms “1”, “2”, ..., “N”. The seller of the bond of firm i receives the promised
coupon payments εi > 0 until the earliest of maturity or default of firm i . If the firm
i has not defaulted by T , then the seller also receives a notional payment equals to
1. If the firm i defaults before T , the owner of the bond receives the recovery rate
Ri (t) := 1 − Li (H(t)) ∈ [0, 1) at τi that firm i defaults. This recovery rate may
depend on the default state of the portfolio. Then the quadruple (ξi , ai , Zi , Ki ) for
i = 1, . . . , N , can be specified as follows:

ξi = 1, ai (t) = εi , Zi (t) = Ri (t) = 1 − Li (t), Ki (t) = Hi (t),

i.e., Ki (t) = Hi (t) is the indicator of the default time of the i-th reference entity
(τ̄i = τi ). Following Definition 2.2, the dividend process of the i-th risky bond is
given by

Di (t) = (1 − Hi (T ))1t=T + εi

∫ t∧T

0
(1 − Hi (u))du +

∫ t∧T

0
Ri (u)dHi (u)

= (1 − Hi (T ))1t=T + εi (t ∧ T ∧ τi ) + Ri (τi )1τi≤t∧T . (10)

First-to-default claim. In a first-to-default swap, the protection buyer will make the
spread premium payment ε > 0 to the protection seller. The protection seller, in return,
will be required to pay the loss rates times the given notational to the protection buyer
if and when any one of the reference entities “1”, . . ., “N” defaults before the contract
expires at T . The payment will only be made for the first entity to default, i.e., the
payment will be Li (t) := Li (H(t)) ∈ (0, 1] if i is the first entity to default. This
deal is typically executed by a firm which wants to hedge its exposure to a number of
different firms. Assume that the notional amount is 1, and we view the payoff from
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the point of view of the protection seller. Then the quadruple (ξ, a, Z , K ) is specified
as follows:

ξ = 0, a(t) = −ε, Z(t) =
N∑

i=1

Li (t)Hi (t), K (t) = 1 −
N∏

i=1

(1 − Hi (t)),

where τ̄1 = τ1 ∧ · · · ∧ τN is the first-to-default time.

Lemma 2.2 The dividend process of the first-to-default claimadmits the representation
given by

D(t) = −ε(t ∧ T ∧ τ̄1) +
N∑

i=1

Li (τ̄1)1τi=τ̄11τ̄1≤t∧T . (11)

2.5 Risk-Neutral Pricing and Gain Processes

Let (ξ, a, Z , K ) be a defaultable claim as in Definition 2.1. For a fixed time t ∈ [0, T ],
the process (D(u)−D(t))u∈[t,T ] represents all cash flows generated by the defaultable
claim (ξ, a, Z , K ) in the interval [t, T ]. Such a process may depend on the past
behavior of the claim as well as on the history of the market prior to time t . Clearly,
the past cash flows are not valued by the market, so that the market value at time t of
a defaultable claim only reflects future cash flows to be paid/received over the time
interval (t, T ]. We set the interest rate to be zero. Such an assumption allows us to
avoid unnecessary clutter of notation, and to highlight the main probabilistic forces.
The whole analysis can be generalized in a straightforward fashion to the case of
nonzero interest rate.

The price process (S(t, T ))t∈[0,T ] of the defaultable claim (ξ, a, Z , K ) equals Z(τ̄ )

at the default time τ̄ , and zero after the default, that is S(t, T ) = 0 on {t > τ̄ }. On
{τ̄ > t}, the pre-default price is given by its risk-neutral expected payoff of divi-
dend payments. Since our market is incomplete, the relation between the risk-neutral
probability measure Q and the actual probability measure P can be characterized by
the market price of (diffusion) risk and the default risk premium. More precisely, let
θ̃ (t) := (θ̃ j (X(t), H(t)))�j=1,...,d and ϑ(t) := (ϑi (X(t), H(t)))�i=1,...,N+1 represent,
respectively, the market price of (diffusion) risk and the default risk premium. We
assume that

(A3) For z ∈ S, θ̃ (x, z) = (θ̃ j (x, z))�j=1,...,d ∈ Rd is a bounded function such that

σ(x)θ̃ (x, z) is C1 in x , and ϑ(x, z) = (ϑi (x, z))�i=1,...,N+1 ∈ (−1,∞)N+1 is a

bounded and C1-function such that ϑi (x, z)xi is bounded for i = 1, . . . , N +1.

Then

dQ

dP

∣∣Gt
= Et

(∫ ·

0
θ̃ (s)�dW (s) +

∫ ·

0
ϑ(s)�dM(s)

)
, t ∈ [0, T ] (12)
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identifies the risk-neutral probability measure Q corresponding to the risk premium
(θ̃ , ϑ), where E(·) denotes the stochastic exponential. Moreover, we have that, under
the risk-neutral measure Q,

WQ(t) := W (t) −
∫ t

0
θ̃ (s)ds, t ∈ [0, T ] (13)

is a d-dimensional Brownian motion, and for i = 1, . . . , N + 1,

MQ
i (t) := Mi (t) −

∫ t

0
(1 − Hi (s))ϑi (s)Xi (s)ds, t ∈ [0, T ] (14)

is a G-martingale. Then, on {τ̄ > t},

S(t, T ) = E
Q
[
D(T ) − D(t)

∣∣Gt
]
, (15)

where EQ denotes the expectation under Q. Correspondingly, the gain process of the
defaultable claim (ξ, a, Z , K ) (see also Frey and Schmidt [22] for a related definition)
is given by, for t ∈ [0, T ],

Y (t) := E
Q[D(T )|Gt ]. (16)

Note that Y (t) = S(t, T )+ D(t) on {τ̄ > t}, i.e., the gain process is given by the sum
of the current market value and the dividend payments.

We next give the representation of the price S(t, T ) given by (15), which will be
used to characterize the CVA representation of the portfolio of defaultable claims in
the following subsection. The proof is provided in the Appendix.

Proposition 2.3 Let t ∈ [0, T ]. Then the price S(t, T ) given by (15) admits the fol-
lowing representation:

S(t, T ) = 1t �=T�1(t, X(t), H(t)) + �2(t, X(t), H(t)) − Z(t)K (t), (17)

where, for (t, x, z) ∈ [0, T ] × RN+1+ × S,

�1(t, x, z) := E
Q
t,x,z [ξ(1 − K (T ))] ,

�2(t, x, z) := E
Q
t,x,z

[
Z(T )K (T ) +

∫ T

t
(1 − K (u))a(u)du

−
N+1∑

j=1

∫ T

t
K (u)[Z j (u) − Z(u)](1 − Hj (u))(1 + ϑ j (u))X j (u)du

]
. (18)

Here we used E
Q
t,x,z[·] := E

Q[·|X(t) = x, H(t) = z], Z j (u) := Z(H j (u)) and
H j (u) has been defined in (1).
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In order to characterize the price S(t, T ) and the CVA representation, we next
study the functions �1,�2 given in (18). More precisely, for α = (α1, α2, α3) ∈ R3,
consider the following Cauchy problem, on (t, x, z) ∈ [0, T ) × RN+1+ × S,

(
∂

∂t
+ AQ

)
Fα(t, x, z) + α3(1 − K (z))a(z) − α3

N+1∑

j=1

K (z)[Z(z j )

−Z(z)](1 − z j )(1 + ϑ j (x, z))x j = 0 (19)

with the terminal condition

Fα(T , x, z) = α1ξ(z)(1 − K (z)) + α2Z(z)K (z), (x, z) ∈ RN+1+ × S. (20)

The operator AQ in (19) is the generator of Markov process (X , H) under Q, i.e., for
any function f (·, z) ∈ C2(RN+1+ ) with z ∈ S,

AQ f (x, z) := ÃQ f (x, z)+
N+1∑

j=1

[
f (x + w j , z

j )− f (x, z)
]
(1 − z j )(1+ϑ j (x, z))x j .

(21)

The vector of weights w j = (wi j )i=1,...,N+1, and recall that the default state z j has
been defined in (1). The operator ÃQ is defined by, for (x, z) ∈ RN+1+ × S,

ÃQ f (x, z) := (μ(x) + σ(x)θ(x, z))�Dx f (x, z) + 1

2
tr[(σσ�)(x)Dxx f (x, z)].

(22)

Here Dx f := (
∂ f
∂xi

)�i=1,...,N+1 and Dxx f := (
∂2 f

∂xi ∂x j
)i, j=1,...,N+1. By Assumption

(A2), the operator ÃQ is uniformly elliptic. In terms of (21), we can rewrite Eq. (19)
in the following equivalent form:

0 =
(

∂

∂t
+ ÃQ

)
Fα(t, x, z) + α3(1 − K (z))a(z)

−α3

N+1∑

j=1

K (z)[Z(z j ) − Z(z)](1 − z j )(1 + ϑ j (x, z))x j

+
N+1∑

j=1

[
Fα(t, x + w j , z

j ) − Fα(t, x, z)
]
(1 − z j )(1 + ϑ j (x, z))x j . (23)

Recall that z = 0 j1,..., jl denotes the vector with zero entries except for the compo-
nents j1 �= j2, · · · �= jl which are set to one. We distinguish two cases:

• l = N + 1, i.e., all names have defaulted. In this case, the Cauchy problem (23) is
reduced to
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(
∂

∂t
+ ÃQ

)
F (N+1)

α (t, x) + α3(1 − K (N+1))a(N+1) = 0 (24)

with the terminal condition F (N+1)
α (T , x) = α1ξ

(N+1)(1− K (N+1)) + α2Z (N+1)

K (N+1) for all x ∈ RN+1+ . It can be easily seen that the solution admits the closed-
form representation given by, for (t, x) ∈ [0, T ] × RN+1+ ,

F (N+1)
α (t, x) = α1ξ

(N+1)(1 − K (N+1)) + α2Z
(N+1)K (N+1)

+ α3(1 − K (N+1))a(N+1)(T − t). (25)

• 0 ≤ l ≤ N , i.e., the names j1, . . . , jl have defaulted. Then the Cauchy prob-
lem (23) becomes

0 =
(

∂

∂t
+ ÃQ

)
F (l)

α (t, x) −
⎛

⎝
∑

j /∈{ j1,..., jl }
(1 + ϑ

(l)
j (x))x j

⎞

⎠ F (l)
α (t, x)

+ α3(1 − K (l))a(l) − α3

∑

j /∈{ j1,..., jl }
K (l)[Z (l+1), j − Z (l)](1 + ϑ

(l)
j (x))x j

+
∑

j /∈{ j1,..., jl }
F (l+1), j

α (t, x + w j )(1 + ϑ
(l)
j (x))x j . (26)

The terminal condition is given by F (l)
α (T , x) = α1ξ

(l)(1−K (l))+α2Z (l)K (l) for
all x ∈ RN+1+ . Notice that F (l+1), j

α (t, x) = F (N+1)
α (t, x) given in (25) if l = N .

We next prove that theCauchy problem (26) has a unique bounded classical solution
F (l)

α (t, x) (which belongs toC1,2([0, T )×RN+1+ )∩C0([0, T ]×RN+1)) if the Cauchy

problem (23) admits a unique bounded classical solution F (l+1), j
α (t, x) if z = 0 j1,..., jl , j

for j /∈ { j1, . . . , jl}. Themain result is stated in the following proposition whose proof
is postponed to the Appendix.

Proposition 2.4 Let assumptions (A1)–(A3) hold. Assume that at the default state
z = 0 j1,..., jl , j for j /∈ { j1, . . . , jl}, the Cauchy problem (23) admits a unique bounded
classical solution F (l+1), j

α (t, x) on [0, T ] × RN+1+ . Then the Cauchy problem (26)

admits a unique bounded classical solution F (l)
α (t, x) on [0, T ] × RN+1+ .

Proposition 2.4 and the Feynman–Kac’s formula yield that

�1(t, x, z) = F(1,0,0)(t, x, z), �2(t, x, z) = F(0,1,1)(t, x, z). (27)

For the hedging purpose, the risk-neutral dynamics of the gain process Y =
(Y (t))t∈[0,T ] can be obtained from Proposition 2.4. The proof is provided in the
Appendix.
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Lemma 2.5 Let assumptions (A1)–(A3) hold. The gain process definedby (16) satisfies
the following dynamics, for t ∈ [t, T ],

dY (t) = V (t, X(t), H(t))�σ(X(t))dWQ(t) (28)

+
N+1∑

j=1

{
G j (t, X(t−), H(t−)) − K (t−)[Z j (t−) − Z(t−)]}dMQ

j (t).

Recall that Z(t) = Z(H(t)) and Z j (t) = Z(H j (t)), WQ = (WQ(t))t∈[0,T ]
is (Q,G)-Brownian motion defined by (13). For j = 1, . . . , N + 1, MQ

j =
(MQ

j (t))t∈[0,T ] is the (Q,G)-martingale defined by (14). For (t, x, z) ∈ [0, T ] ×
RN+1+ × S,

V (t, x, z) := Dx F(1,1,1)(t, x, z),

G j (t, x, z) := F(1,1,1)(t, x + w j , z
j ) − F(1,1,1)(t, x, z), (29)

for j = 1, . . . , N + 1. The function F(1,1,1)(t, x, z) is the unique classical solution of
Cauchy problems (19) and (20), in which we set α = (1, 1, 1).

2.6 Formulation of Hedging Problem on CVA

Our aim is to study dynamic hedging of the counterparty risk for a portfolio of credit
derivatives according to Definition 2.1. A portfolio of defaultable claims with coun-
terparty is defined as follows:

Definition 2.3 Let N̄ ≥ 1. For each i = 1, . . . , N̄ +1, let (ξi , ai , Zi , Ki ) be a default-
able claim as in Definition 2.1, where Ki (t) = Ki (H(t)) = 1τ̄i≤t for t ∈ [0, T ], and
τ̄i ’s, i = 1, . . . , N̄ + 1, are positive G-stopping times such that K1(t), . . . , KN̄+1(t)
do not jump simultaneously. We call (ξi , ai , Zi , Ki )i=1,...,N̄+1 a defaultable claim
portfolio.

We consider the problem from the perspective of a default-free investor who is trad-
ing with CDS referring the counterparty and wants to protect herself/himself against
the loss incurred at the default of the counterparty, this quantity is called the credit value
adjustment (CVA). Let Si (t, T ) be the price of the defaultable claim (ξi , ai , Zi , Ki )

in the portfolio, we define the exposure of the investor to the counterparty at time
t ∈ [0, τN+1],

εN̄ (t, T ) :=
N̄∑

i=1

bi Si (t, T )1τ̄i≥t . (30)

The weight bi ∈ R denotes the number of contracts referencing the entity i purchased
(bi > 0) or sold (bi < 0) by the investor. Let LN+1(t) := LN+1(H(t)) be the
percentage loss rate incurred by the investor when counterparty “N + 1” defaults on
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its obligations. Here LN+1(z) is a deterministic function on z ∈ S. Set x+ = x ∨0 for
x ∈ R. Then the CVA of the defaultable claim portfolio is given by the market value
of the counterparty risk loss, i.e., the replacement cost incurred by the investor at the
default time, τN+1, of the counterparty (see Brigo et al. [12]):

CVAN̄ (t, T ) = E
Q
[
LN+1(τN+1)1{t<τN+1≤T }{εN̄ (τN+1, T )}+

∣∣Gt
]
. (31)

Since our creditmarket is incomplete, perfect replication is not possible andwe choose,
among the quadratic hedging methods, the local risk minimization approach. Locally
risk-minimizing hedging strategies for contingent claims can be characterized via the
FS decomposition of their payoff, see Schweizer [28,29]. This approach has been
extended in Schweizer [30] for payment streams and in Biagini and Cretarola [6] who
allow for payment streams over a random time horizon. Differently from the hedging
instrument with continuous trajectories considered in Biagini and Cretarola [6], we are
using the CDS referring the counterparty as the hedging instrument whose dynamics
is of jump-diffusion processes, see (44) below. In the credit hedging literature (see,
e.g., Frey and Backhaus [21], Frey and Schmidt [22]), hedging instruments are usually
modeled directly under the risk-neutral measure. This avoids finding the MMM and
hence the risk-minimization hedging is performed under the risk-neutral measure (not
under the real-world measure). In this paper, we consider the locally risk-minimizing
hedging under the real-world measure. This implies that we need to identify two
additional probability measures: the risk-neutral measure Q introduced in Sect. 2.5
for pricing purpose and the MMM P̂. We will study the MMM in the forthcoming
section.

Remark 2.6 From a practical point of view, the choice of the counterparty is also
important to decide how to trade CDS. By considering this point, the framework may
be formulated as a coupled optimization problem, however, in general, it is difficult
to solve. Frei et al. [20] study how banks manage their default risk before bilaterally
negotiating the quantities and prices of OTC contracts resembling CDS. Therein,
Traders maximize their expected utility and find the equilibrium quantities that they
want to trade, which is based on comparing the certainty equivalents. In this paper,
we will not consider the choice of the counterparty and assume that the investor buys
a fixed portfolio of credit derivatives from a defaultable counterparty.

3 Locally Risk-Minimizing Hedging for CVA

This section studies dynamic hedging of CVA for a defaultable claim portfolio for-
mulated in Sect. 2.6.

3.1 Representation of CVA and Gain Processes of CDS

We give the representation of the exposure of the investor (see (30) in Sect. 2.6) at the
counterparty’s default time. Let t ∈ [0, T ]. For i = 1, . . . , N̄ + 1, recall that Si (t, T )

is the price of the defaultable claim (ξi , ai , Zi , Ki ) in a portfolio. By Proposition 2.3
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and (27), on {τ̄i > t},

Si (t, T ) = 1t �=T Fi;(1,0,0)(t, X(t), H(t)) + Fi;(0,1,1)(t, X(t), H(t)) − Zi (t)Ki (t).
(32)

Here Fi;(1,0,0)(t, x, z) and Fi;(0,1,1)(t, x, z) are the unique bounded classical solutions
to the following Cauchy problems in which we set, respectively, α = (1, 0, 0) and
α = (0, 1, 1): for α = (α1, α2, α3) ∈ R3, on (t, x, z) ∈ [0, T ) × RN+1+ × S,

(
∂

∂t
+ AQ

)
Fi;α(t, x, z) + α3(1 − Ki (z))ai (z)

− α3

N+1∑

j=1

Ki (z)[Zi (z
j ) − Zi (z)](1 − z j )(1 + ϑ j (x, z))x j = 0 (33)

with the terminal condition

Fi;α(T , x, z) = α1ξi (z)(1 − Ki (z)) + α2Zi (z)Ki (z), (x, z) ∈ RN+1+ × S. (34)

We obtain from (30) that

εN̄ (t, T ) =
N̄∑

i=1

bi Si (t, T )1τ̄i≥t =
N̄∑

i=1

bi Si (t ∧ τ̄i , T )1τ̄i≥t

=
N̄∑

i=1

bi
[
(1 − Ki (t))Si (t, T ) + Zi (τ̄i )1τ̄i=t

]
. (35)

Note that K1(t), . . . , KN̄+1(t) do not jump simultaneously. Then, the exposure of the
investor at the counterparty’s default time is given by

εN̄ (τN+1, T ) =
N̄∑

i=1

bi (1 − Ki (τN+1))Si (τN+1, T ). (36)

A popular approach to mitigate the counterparty risk loss is to account for dynamic
trading with CDS on the counterparty (see Chapter 2.4 in Gregory [23]). We are ready
to derive the dynamics of the gain process YN+1 = (YN+1(t))t∈[0,T ] of the CDS.
Recall Cauchy systems (33) and (34). For i = 1, . . . , N + 1, consider the Cauchy
problems associated with the CDS portfolio: on (t, x, z) ∈ [0, T ) × RN+1+ × S,

(
∂

∂t
+ AQ

)
Fcds
i (t, x, z) − (1 − zi )εi −

∑

j �=i

zi [Li (z
j )

− Li (z)](1 − z j )(1 + ϑ j (x, z))x j = 0 (37)
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with the terminal condition

Fcds
i (T , x, z) = Zi (z)Ki (z) = Li (z)zi , (x, z) ∈ RN+1+ × S. (38)

Lemma 2.5 leads to the following result.

Lemma 3.1 Under the assumptions (A1)–(A3), for i = 1, . . . , N+1, the gain process
Yi (t) = E

Q [Di (T )|Gt ] of the i-th CDS, i.e. associated with the defaultable claim
(ξi , ai , Zi , Ki ) specified in (9), admits the following dynamics, for t ∈ [0, T ],

dYi (t) = V cds
i (t, X(t), H(t))�σ(X(t))dWQ(t)

+
N+1∑

j=1

{
Gcds

i j (t, X(t−), H(t−)) − Hi (t
−)[L j

i (t
−) − Li (t

−)]}dMQ
j (t). (39)

Here recall that Li (t) := Li (H(t)) and L j
i (t) := Li (H j (t)). For (t, x, z) ∈ [0, T ] ×

RN+1+ × S and i, j = 1, . . . , N + 1,

V cds
i (t, x, z) := Dx F

cds
i (t, x, z),

Gcds
i j (t, x, z) := Fcds

i (t, x + w j , z
j ) − Fcds

i (t, x, z). (40)

Remark 3.2 Consider the special case that Zi (t) = Li (t) ≡ Li for i = 1, . . . , N + 1,
i.e. they are constants and independent of the default state z ∈ S. The Cauchy system
(37) then reduces to, on (t, x, z) ∈ [0, T ) × RN+1+ × S,

(
∂

∂t
+ AQ

)
Fcds
i (t, x, z) − (1 − zi )εi = 0 (41)

with the terminal condition Fcds
i (T , x, z) = Li zi for (x, z) ∈ RN+1+ ×S. Correspond-

ingly, the gain process Yi (t) = E
Q [Di (T )|Gt ] of the i-th CDS admits dynamics:

dYi (t) = V cds
i (t, X(t), H(t))�σ(X(t))dWQ(t) +

N+1∑

j=1

Gcds
i j (t, X(t−), H(t−))dMQ

j (t).

(42)

3.2 Payment Stream and CDS Hedging Instrument

The hedging instrument used by the investor is the CDS written on the investor’s
counterparty “N + 1” and a riskless asset. As we consider dynamic hedging of the
CVA, this may be seen as a payment stream on the random interval [0, T ∧ τN+1].
More precisely, its payment stream � = (�(t))t∈[0,T ] is given by
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{
�(t) = LN+1(τN+1)1τN+1≤t {εN̄ (τN+1, T )}+, t ∈ [0, T ),

�(T ) = 0, t = T .
(43)

The exposure εN̄ (τN+1, T ) is given by (36). Hedging is performed until the CVA
payoff is triggered. Hence, we work with hedging strategies only up to T ∧ τN+1,
i.e., the minimum between the maturity of the CVA claim and the default time of
the investor’s counterparty. As in Frey and Schmidt [22], Frey and Backhaus [21],
we use CDS as hedging instrument by considering the associated gain process: in
our framework, this is described by the process YN+1 = (YN+1(t))t∈[0,T ] whose Q-
dynamics is given in Lemma 3.1 under the choice of i = N + 1. Differently from
the above papers, we discuss the hedging problem under the real-world probability
measure P. We then rewrite the dynamics of YN+1 under P as:

dYN+1(t) = −
⎛

⎝ϒ(t, X(t), H(t))θ̃(X(t), H(t))

+
N+1∑

j=1

� j (t, X(t), H(t))ϑ j (X(t), H(t))X j (t)

⎞

⎠ dt

+ ϒ(t, X(t), H(t))dW (t) +
N+1∑

j=1

� j (t, X(t−), H(t−))dMj (t). (44)

Here the coefficients, for (t, x, z) ∈ [0, T ] × RN+1+ × S,

ϒ(t, x, z) := V cds
N+1(t, x, z)

�σ(x),

� j (t, x, z) := Gcds
N+1, j (t, x, z) − zN+1[LN+1(z

j ) − LN+1(z)], (45)

and V cds
N+1(t, x, z) and Gcds

N+1, j (t, x, z) are given by (40), choosing i = N + 1.
We remark that if YN+1 satisfies the so-called the structure condition (SC), the

locally risk-minimizing strategy can be characterized by the FS decomposition of the
CVA claim. This is equivalent to finding a strategy which perfectly replicates the CVA
claim, is self-financing on average and the associated cost turns out to be orthogonal
to the local martingale part of YN+1. For hedging instruments whose dynamics have
continuous trajectories, the FSdecomposition coincideswith theGKW-decomposition
under theMMM.This is no longer true in our framework becauseYN+1 exhibits jumps.
However, the conditional expectation of the counterparty risk price payment stream
under the MMM (see (53) below) plays an essential role to derive the locally risk
minimizing strategy in our framework (see Proposition 3.4 below).

3.3 TheMinimal Martingale Measure

In order to establish the MMM for YN+1, by the Ansel–Stricker Theorem (see Ansel
and Stricker [1]), we decompose the gain process YN+1 as, P-a.s.
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YN+1(t) = YN+1(0) + Q(t) + B(t), t ∈ [0, T ]. (46)

Here Q = (Q(t))t∈[0,T ] is the local P-martingale part of YN+1 and B = (B(t))t∈[0,T ]
is the finite-variation part of YN+1 under P. We define the real-valued function by, for
(t, x, z) ∈ [0, T ] × RN+1+ × S,

λ̂(t, x, z) := ϒ(t, x, z)θ̃ (x, z) +∑N+1
j=1 � j (t, x, z)(1 − z j )ϑ j (x, z)x j

|ϒ(t, x, z)|2 +∑N+1
j=1 �2

j (t, x, z)(1 − z j )x j
. (47)

It is not difficult to verify that B(t) = − ∫ t0 λ̂(s, X(s−), H(s−))d 〈Q〉 (s) for t ∈
[0, T ], i.e., the structure condition (SC) holds. Here 〈Q〉 denotes the predictable
quadratic variation of Q under P. Then, we have the following lemma whose proof is
provided in the Appendix.

Lemma 3.3 Let Assumption (A3) hold. Suppose that, for j = 1, . . . , N + 1 and
(t, x, z) ∈ [0, T ] × RN+1+ × S, 0 < 1 + λ̂(t, x, z)� j (t, x, z) ≤ ν j for some

ν j > 0. Then the MMM P̂ is given by dP̂
dP |Gt = ξ(t) for t ∈ [0, T ], where the

density process ξ = (ξ(t))t∈[0,T ] is given by the stochastic exponential ξ(t) =
Et (
∫ ·
0 λ̂(s, X(s−), H(s−))dQ(s)).

Under the conditions of Lemma 3.3 and the (SC), the P̂-dynamics of YN+1 is given
by

dYN+1(t) = ϒ(t, X(t), H(t))dŴ (t) +
N+1∑

j=1

� j (t, X(t−), H(t−))d M̂ j (t). (48)

The process Ŵ = (Ŵ (t))t∈[0,T ] is a d-dimensional (P̂,G)-Brownian motion defined
by Ŵ (t) := W (t)−∫ t0 λ̂(s, X(s), H(s))ϒ(s, X(s), H(s))�ds. For j = 1, . . . , N+1,

the process M̂ j = (M̂ j (t))t∈[0,T ] is a (P̂,G)-default martingale defined by M̂ j (t) :=
Hj (t)−∫ t0 (1−Hj (s))F̂j (s, X(s), H(s))ds. Here, for (t, x, z) ∈ [0, T ]×RN+1+ ×S,
the function

F̂j (t, x, z) := x j (1 + λ̂(t, x, z)� j (t, x, z)). (49)

We remark that if one takes the risk premium (θ, ϑ) ≡ (0, 0), then P̂ = Q = P.

3.4 Locally Risk-Minimizing Hedging: Setup and Tool

The definition of admissible hedging strategies is given by
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Definition 3.1 Let (Q, B) be defined in (46) and � be the space of all G-predictable
processes θ = (θ(t))t∈[0,T∧τN+1] such that

E

[∫ T∧τN+1

0
θ2(t)d 〈Q〉 (t) +

(∫ T∧τN+1

0
|θ(t)|dB(t)

)2]
< ∞. (50)

HereE denotes the expectation underP. An admissible strategy is a process ϕ = (θ, η)

where θ ∈ � and η is a real-valued G-adapted process such that the associated value
process V ϕ(t) := θ(t)YN+1(t) + η(t) is right-continuous and square integrable over
[0, T ∧ τN+1].
Here θ(t) denotes the number of shares of the gain process of the risky CDS contract
referencing the counterparty held at time t , whileη(t) is the amount invested in the risk-
less asset at time t . Note that for any θ ∈ �, the stochastic integral

∫ t
0 θ(u)dYN+1(u),

t ∈ [0, T ∧τN+1] is a square-integrable semimartingale (see Schweizer [29]). Follow-
ing Schweizer [30] who investigates the case of payment streams over a deterministic
time horizon, and Biagini and Cretarola [6] who allow for a random delivery date
which can be seen as a payment stream over a random time horizon, we assign a cost
process to each admissible strategy:

Definition 3.2 The cost process Cϕ of an admissible strategy ϕ = (θ, η) is given by

Cϕ(t) := �(t) + V ϕ(t) −
∫ t

0
θ(u)dYN+1(u), t ∈ [0, T ∧ τN+1], (51)

where �(t) is defined in (43). An admissible strategy ϕ is called mean self-financing
if its cost process Cϕ is a P-martingale. The risk process of ϕ, that is the conditional
variance of the hedging error, is given by

Rϕ(t) := E

[(
Cϕ(T ∧ τN+1) − Cϕ(t)

)2∣∣Gt
]
, t ∈ [0, T ∧ τN+1]. (52)

Similarly to the local risk minimization hedge of European contingent claims, the
final cost has to equal the final payment minus gains by trading, that is�(T ∧τN+1)−∫ T∧τN+1
0 θ(u)dYN+1(u). Thus, Definition 3.2 requires to look for admissible strategies
with the 0-achieving property, i.e., V ϕ(τN+1∧T ) = 0, P-a.s. (see also Schweizer [30]
for further details). We will not give the original definition of locally risk-minimizing
strategy that formalizes the intuitive idea that changing an optimal strategy over an
infinitesimal interval increases the risk process given by (52), because it is rather
technical. We here use an equivalent definition of the pseudo-locally risk-minimizing
strategy given below. Theorem 1.6 in Schweizer [30] proves the equivalence between
the local risk-minimization and pseudo-local risk-minimization if the (SC) and the
continuity of the mean-variance tradeoff hold.

Definition 3.3 Let � be the payment stream given in (43). We say that an admissible
strategy ϕ∗ is locally risk-minimizing for � if the following conditions hold:
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(i) ϕ∗ is 0-achieving, that is V ϕ∗
(τN+1 ∧ T ) = 0, P-a.s.

(ii) ϕ∗ is mean self-financing and Cϕ∗
is strongly orthogonal to the martingale part

Q of YN+1, (i.e., 〈Cϕ∗
, Q〉 = 0).

We next prove the main tool for deriving the locally risk-minimizing hedging strat-
egy. For this, define the process

V (t) := Ê
[
�(T ∧ τN+1)|Gt

]
, t ∈ [0, T ∧ τN+1]. (53)

Here Ê denotes the expectation under the MMM P̂. Then

Proposition 3.4 Let assumptions (A1)–(A3) hold. Let MV be the local P-martingale
part of V . Then, the payment stream � given by (43) admits a unique locally risk-
minimizing strategy ϕ∗ = (θ∗, η∗), where P-a.s.

θ∗(t) = d
〈
MV , Q

〉
(t)

d 〈Q〉 (t)
, t ∈ [0, T ∧ τN+1]. (54)

Moreover V ϕ∗
(t) = V (t) − �(t), t ∈ [0, T ∧ τN+1], P-a.s.

Proof Note that� is square integrablew.r.t.P because the price representation Si (t, T )

given by (32) is bounded for all i = 1, . . . , N̄ by Proposition 2.4. Assumption (A3)
implies that the mean-variance tradeoff process (see also (99) in the Appendix) is uni-
formly bounded. Then, there exists θ FS ∈ � such that the following FS decomposition
of �(T ∧ τN+1) w.r.t. YN+1 holds, P-a.s.

�(T ∧ τN+1) = �0 +
∫ T∧τN+1

0
θ FS(u)dYN+1(u) + Ã(T ∧ τN+1). (55)

Here, �0 ∈ R and Ã is a P-martingale null at time zero, strongly orthogonal to
the local martingale part Q of YN+1 under P. Using Proposition 3.7 in Biagini and
Cretarola [6], we have that the payment stream� given by (43) admits a unique locally
risk-minimizing strategy ϕ∗ = (θ∗, η∗), where, for t ∈ [0, T ∧ τN+1], P-a.s.

θ∗(t) = θ FS(t), and η∗(t) = V ϕ∗
(t) − θ FS(t)YN+1(t). (56)

and

V ϕ∗
(t) = �(0) +

∫ t

0
θ FS(u)dYN+1(u) + Ã(t) − �(t). (57)

The minimal cost is then given by Cϕ∗
(t) = �(0) + Ã(t). We next prove that, P-a.s.

V ϕ∗
(t) = V (t) − �(t), t ∈ [0, T ∧ τN+1]. (58)

First, let us observe that
∫ ·∧τN+1
0 θ FS(u)dYN+1(u) is a P̂-martingale, because∫ ·∧τN+1

0 θ FS(u)dQ(u) and the density process ξ = (ξ(t))t∈[0,T ] (see Lemma 3.3)
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are square integrable P-martingales. The definition of the MMM (see also Defini-
tion 2.2 in Arai [2]) yields that Ã = ( Ã(t))t∈[0,T ] is a P̂-martingale and hence the
process V ϕ∗

(t)+�(t) for t ∈ [0, T ∧ τN+1] turns out to be a P̂-martingale. Recalling
that V ϕ∗

(T ∧ τN+1) = 0, P-a.s., we get that

V ϕ∗
(t) + �(t) = Ê[�(T ∧ τN+1)|Gt ] = V (t), t ∈ [0, T ∧ τN+1].

Recall that MV is the local P-martingale part of V . Then, it follows from (57) that,
P-a.s.

MV (t) = �(0) +
∫ t

0
θ FS(u)dQ(u) + Ã(t), t ∈ [0, T ∧ τN+1].

Then we deduce (54) by the orthogonality between Ã and Q. This proves the propo-
sition. ��

3.5 Locally Risk-Minimizing Strategy

The aim of this section is to provide an explicit representation for the strategy θ∗.
We start providing the martingale decomposition of the process V defined by (53)
under the MMM, which will be given in Proposition 3.7 below. Toward this goal, we
consider the existence and uniqueness of classical solutions to a recursive system of
Cauchy problems, which will play an important role for the representation of θ∗.

3.5.1 A Related Cauchy Problem

Consider the following Cauchy problem, for (t, x, z) ∈ [0, T ) × RN+1+ × S,

0 =
(

∂

∂t
+ Â

)
g(t, x, z)

+ LN+1(z
N+1)

⎧
⎨

⎩

N̄∑

i=1

bi (1 − Ki (z
N+1))Fi (t, x + wN+1, z

N+1)

⎫
⎬

⎭
+

× (1 − zN+1)F̂N+1(t, x, z) (59)

with g(T , x, z) = 0 for all (x, z) ∈ RN+1+ × S. The operator Â is defined by

Â f (t, x, z) := Ā f (t, x, z)+
N+1∑

j=1

[
f (t, x + w j , z

j )− f (t, x, z)
]
(1 − z j )F̂j (t, x, z),

Ā f (t, x, z) := (μ(x) + λ̂(t, x, z)σ (x)ϒ(t, x, z)�)�Dx f (t, x, z)

+ 1

2
tr[(σσ�)(x)Dxx f (t, x, z)]. (60)
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The function Fi (t, x, z) is the unique bounded classical solution to the system (33) in
which we take α = (1, 1, 1). Rewrite Eq. (59) in a more convenient form:

0 =
(

∂

∂t
+ Ā

)
g(t, x, z) +

N+1∑

j=1

[
g(t, x + w j , z

j ) − g(t, x, z)
]
(1 − z j )F̂j (t, x, z)

+ LN+1(z
N+1)

⎧
⎨

⎩

N̄∑

i=1

bi (1 − Ki (z
N+1))Fi (t, x + wN+1, z

N+1)

⎫
⎬

⎭
+

× (1 − zN+1)F̂N+1(t, x, z). (61)

Similarly to the recursive system (19), we study the solvability of Eq. (61) recursively
through the default states z = 0 j1,..., jl for l = 0, 1, . . . , N+1.We also define g(l)(t, x)
and g(l+1),i (t, x)by (2)with f replaced by g. Itmaybe easily seen thatwhen l = N+1,
Eq. (61) simplifies to

(
∂

∂t
+ Ā

)
g(N+1)(t, x) = 0

with g(N+1)(T , x) = 0 for all x ∈ RN+1+ . It canbe immediately verified that this admits
the solution g(N+1)(t, x) = 0 for all (t, x) ∈ [0, T ]×RN+1+ . In the more general case
that z = 0 j1,..., jl where l = 0, 1, . . . , N , we need to deal with the following Cauchy
problem defined on the unbounded domain: on (t, x) ∈ [0, T ) × RN+1+ ,

0 =
(

∂

∂t
+ Ā

)
g(l)(t, x) −

⎛

⎝
∑

j /∈{ j1,..., jl }
F̂ (l)
j (t, x)

⎞

⎠ g(l)(t, x)

+
∑

j /∈{ j1,..., jl }
g(l+1), j (t, x + w j )F̂

(l)
j (t, x)

+ L(l+1),N+1
N+1

⎧
⎨

⎩

N̄∑

i=1

bi (1 − K (l+1),N+1
i )Fi (t, x + wN+1, 0

j1,..., jl ,N+1)

⎫
⎬

⎭
+

× F̂ (l)
N+1(t, x)1 j1,..., jl �=N+1 (62)

with g(l)(T , x) = 0 for all x ∈ RN+1+ . The function g(l+1), j (t, x) is the unique
classical solution of the Cauchy system (61) when the default state z = 0 j1,..., jl , j ,
for j /∈ { j1, . . . , jl}. Recall the notation L(l+1),N+1

N+1 = LN+1(0 j1,..., jl ,N+1) and

K (l+1),N+1
i = Ki (0 j1,..., jl ,N+1) for j1, . . . , jl �= N + 1.
Existence and uniqueness of (nonnegative) bounded classical solutions to Eq. (62)

can be proven inductively as stated in the following theorem. The proof is reported in
the Appendix.

Theorem 3.5 Let assumptions (A1)–(A3) hold and the condition of Lemma 3.3 is
satisfied. Assume that for j /∈ { j1, . . . , jl}, l = 0, 1, . . . , N, the Cauchy system (61)
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admits a unique (nonnegative) bounded classical solution g(l+1), j (t, x) when z =
0 j1,..., jl , j . Then the Cauchy system (61) also admits a unique (nonnegative) bounded
classical solution g(l)(t, x) when z = 0 j1,..., jl (i.e., the Cauchy problem (62) above
admits a unique (nonnegative) bounded classical solution).

3.5.2 Martingale Decomposition of V under the MMM P̂

In this section, we apply Theorem 3.5 to prove the martingale decomposition of the
process V defined by (53) under theMMM P̂. We need the following auxiliary lemma:

Lemma 3.6 The stopped payment stream of the CVA of a defaultable claim portfolio
(ξi , ai , Zi , Ki )i=1,...,N̄+1 before maturity admits the representation, P-a.s.

�(τN+1 ∧ T ) =
∫ T

0
1s<T L

N+1
N+1(s

−)

×
⎧
⎨

⎩

N̄∑

i=1

bi
(
1 − K N+1

i (s−)
)
Fi
(
s, X(s−) + wN+1, H

N+1(s−)
)
⎫
⎬

⎭
+
dHN+1(s). (63)

Here Fi (t, x, z) is the unique bounded classical solution to Cauchy problem (33) in
which we set α = (1, 1, 1), i.e., Fi (t, x, z) := Fi;(1,1,1)(t, x, z). We also used the

notations K j (t) = K (H j (t)) and L j
i (t) = Li (H j (t)).

Proof We have from (43) that, for t ∈ [0, T ],

�(t) = �(t)1t<T = LN+1(τN+1)1τN+1≤t {εN̄ (τN+1, T )}+1t<T .

Then we have

�(τN+1 ∧ T ) = �(τN+1)1τN+1≤T

= LN+1(τN+1)1τN+1≤τN+1{εN̄ (τN+1, T )}+1τN+1<T 1τN+1≤T

= LN+1(τN+1){εN̄ (τN+1, T )}+1τN+1<T

= LN+1(τN+1){εN̄ (τN+1, T )}+1τN+1≤T ,

where we used the fact that Si (T , T ) = 0 for all i = 1, . . . , N̄ using the price
representation (32). Hence, it holds that εN̄ (T , T ) = 0. It thus follows from the price
representation (32) that

�(τN+1 ∧ T ) =
∫ T

0
LN+1(s){εN̄ (s, T )}+dHN+1(s)

=
∫ T

0
1s<T LN+1(s)

⎧
⎨

⎩

N̄∑

i=1

bi (1 − Ki (s))Si (s, T )

⎫
⎬

⎭
+
dHN+1(s)
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=
∫ T

0
1s<T LN+1(s)

⎧
⎨

⎩

N̄∑

i=1

bi (1 − Ki (s))
[
1s �=T Fi;(1,0,0)(s, X(s), H(s))

+ Fi;(0,1,1)(t, X(s), H(s)) − Zi (H(s))Ki (H(s))]
⎫
⎬

⎭
+
dHN+1(s)

=
∫ T

0
1s<T LN+1(s)

⎧
⎨

⎩

N̄∑

i=1

bi (1 − Ki (s))
[
Fi;(1,0,0)(s, X(s), H(s))

+ Fi;(0,1,1)(t, X(s), H(s)) − Zi (H(s))Ki (H(s))]
⎫
⎬

⎭
+
dHN+1(s). (64)

Note that Fi;(1,0,0)(t, x, z) + Fi;(0,1,1)(t, x, z) = Fi;(1,1,1)(t, x, z). Thus, it holds that

�(τN+1 ∧ T )

=
∫ T

0
1s<T LN+1(s)

⎧
⎨

⎩

N̄∑

i=1

bi (1 − Ki (s))
[
Fi;(1,1,1)(s, X(s), H(s))

− Zi (H(s))Ki (s)]

⎫
⎬

⎭
+
dHN+1(s)

=
∫ T

0
1s<T LN+1(H

N+1(s−))

⎧
⎨

⎩

N̄∑

i=1

bi (1 − Ki (H
N+1(s−)))

×
[
Fi;(1,1,1)(s, X(s−) + wN+1, H

N+1(s−))

− Zi (H
N+1(s−))Ki (H

N+1(s−))
]
⎫
⎬

⎭
+
dHN+1(s).

This yields the representation (63) using that Fi (t, x, z) = Fi;(1,1,1)(t, x, z) and (1−
Ki (z))Ki (z) = 0. Therefore, the proof of the lemma is completed. ��

We prove the martingale decomposition of the process V under theMMM P̂, which
is given by

Proposition 3.7 Let assumptions (A1)–(A3) hold. The process V defined by (53)
admits the martingale decomposition under the MMM P̂, given by, for t ∈ [0, T ],
P̂-a.s.
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V (t) = V (0) +
∫ t

0
Dxg(s, X(s), H(s))�σ(X(s))dŴ (s)

+
∫ t

0
1s<T L

N+1
N+1(s

−)

⎧
⎨

⎩

N̄∑

i=1

bi (1 − K N+1
i (s−))Fi (s, X(s−)

+wN+1, H
N+1(s−))

⎫
⎬

⎭
+
d M̂N+1(s)

+
N+1∑

j=1

∫ t

0

[
g(s, X(s−) + w j , H

j (s−)) − g(s, X(s−), H(s−))
]
d M̂ j (s). (65)

For (t, x, z) ∈ [0, T ] × RN+1+ × S, g(t, x, z) is the unique nonnegative bounded
classical solution to Eq. (59). The function Fi (t, x, z) is the unique bounded classical
solution to the system (33) in which we set α = (1, 1, 1).

Proof We first have that �(T ) = �(τN+1 ∧ T ) and �(T ) = 0 on {τN+1 > T }. By
Lemma 3.6, for t ∈ [0, T ∧ τN+1], it holds that

V (t) = Ê
[
�(τN+1 ∧ T )|Gt

] = Ê

[∫ T

0
1s<T�sdHN+1(s)

∣∣∣∣Gt
]
,

where the G-predictable process

�s := LN+1(H
N+1(s−))

⎧
⎨

⎩

N̄∑

i=1

bi (1 − Ki (H
N+1(s−)))Fi (s, X(s−)

+wN+1, H
N+1(s−))

⎫
⎬

⎭
+

.

Then

V (t) = Ê

[ ∫ T

0
1s<T�sd M̂N+1(s)

∣∣∣∣Gt

]

+ Ê

[ ∫ T

0
�s(1 − HN+1(s

−))F̂N+1(s, X(s−), H(s−))ds

∣∣∣∣Gt

]

=
∫ t

0
1s<T�sd M̂N+1(s) +

∫ t

0
�s(1 − HN+1(s))F̂(s, X(s), H(s))ds + V2(t), (66)

where M̂N+1 = (M̂N+1)t∈[0,T ] is a (P̂,G)-martingale defined by

M̂N+1(t) := HN+1(t) −
∫ t

0
(1 − HN+1(s))F̂N+1(s, X(s), H(s))ds, (67)
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and the process V2 = (V2(t))t∈[0,T ] is defined by

V2(t) := Ê

[∫ T

t
�s(1 − HN+1(s))F̂N+1(s, X(s), H(s))ds

∣∣∣∣Gt
]

.

We next prove an explicit characterization of V2. For (t, x, z) ∈ [0, T ]×RN+1+ ×S,
define

g(t, x, z) := Êt,x,z

[∫ T

t
�s(1 − HN+1(s))F̂N+1(s, X(s), H(s))ds

]
. (68)

Because (X , H) is aG-Markov process, we have that V2(t) = g(t, X(t), H(t)) for t ∈
[0, T ]. Using Feymann-Kac’s formula, g(t, x, z) satisfies the Cauchy problem (59),
i.e., on (t, x, z) ∈ [0, T ) × RN+1+ × S,

0 =
(

∂

∂t
+ Â

)
g(t, x, z)

+ LN+1(z
N+1)

⎧
⎨

⎩

N̄∑

i=1

bi (1 − Ki (z
N+1))Fi (t, x + wN+1, z

N+1)

⎫
⎬

⎭
+

× (1 − zN+1)F̂N+1(t, x, z)

with g(T , x, z) = 0 for all (x, z) ∈ RN+1+ ×S. Thanks to Theorem 3.5, we can apply
Itô’s formula and obtain

g(t, X(t), H(t)) = g(0, X(0), H(0)) +
∫ t

0

(
∂

∂s
+ Â

)
g(s, X(s), H(s))ds

+
∫ t

0
Dxg(s, X(s), H(s))�σ(X(s))dŴ (s)

+
N+1∑

j=1

∫ t

0

[
g(s, X(s−) + w j , H

j (s−))

− g(s, X(s−), H(s−))
]
d M̂ j (s).

Using (59), it follows that

dg(t, X(t), H(t)) = −LN+1(H
N+1(t))

⎧
⎨

⎩

N̄∑

i=1

bi (1 − Ki (H
N+1(t)))Fi (t, X(t) + wN+1, H

N+1(t))

⎫
⎬

⎭
+

× (1 − HN+1(t))F̂N+1(t, X(t), H(t))dt

+ Dxg(t, X(t), H(t))�σ(X(t))dŴ (t)
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+
N+1∑

j=1

[
g(t, X(t−) + w j , H

j (t−))

− g(t, X(t−), H(t−))
]
d M̂ j (t). (69)

By applying the decomposition (66), we obtain the martingale representation (65)
under the MMM P̂. ��

3.5.3 Representation of the Locally Risk-Minimizing Strategy

In this section, we will characterize the locally risk-minimizing strategy for CVA and
prove that it is admissible. Prior to stating the main result, we first have the following
lemma. The proof is provided in the Appendix.

Lemma 3.8 Let assumptions (A1)–(A3) hold. Recall that g(t, x, z) is the unique
bounded classical solution of Eq. (59). Assume that (1 + ε)|λ̂ϒ |2∞T < 1 for some
ε > 0. Then, there exists a constant C = C(ε, T ) > 0 such that

E

[∫ T

0

∣∣∣Dxg(s, X(s), H(s))�σ(X(s))
∣∣∣
2
ds

]

≤ C(ε, T ) + C(ε, T )E

⎡

⎣
∫ T

0

N+1∑

j=1

X2
j (s)ds

⎤

⎦ . (70)

We next state the main result of this section.

Theorem 3.9 Let the conditions of Lemmas 3.3 and 3.8 be satisfied. The unique locally
risk-minimizing strategy θ∗ ∈ � associated with the investment in the risky CDS
contract referencing the counterparty “N + 1” is given by

θ∗(t) =
3∑

i=1

Ui (t, X(t−), H(t−))

�(t, X(t−), H(t−))
, t ∈ [0, T ∧ τN+1]. (71)

For (t, x, z) ∈ [0, T ] × RN+1+ × S, the functions

U1(t, x, z) := 〈Dxg(t, x, z)
�σ(x), ϒ(t, x, z)

〉
d;

U2(t, x, z) :=
N+1∑

j=1

[
g(t, x + w j , z

j ) − g(t, x, z)
]
� j (t, x, z)(1 − z j )x j ; (72)

U3(t, x, z) := LN+1(z
N+1)

⎧
⎨

⎩

N̄∑

i=1

bi
(
1 − Ki (z

N+1)
)
Fi
(
t, x + wN+1, z

N+1)
⎫
⎬

⎭
+

× �N+1(t, x, z)(1 − zN+1)xN+1.
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Here 〈·, ·〉d denotes the scalar product in Rd and

�(t, x, z) := ∣∣ϒ(t, x, z)
∣∣2 +

N+1∑

j=1

∣∣� j (t, x, z)
∣∣2x j (1 − z j ). (73)

For (t, x, z) ∈ [0, T ] × RN+1+ × S, the functions ϒ(t, x, z) and � j (t, x, z), j =
1, . . . , N+1, are given in (45). Recall that g(t, x, z) is the unique nonnegative bounded
classical solution of Eq. (59). The function Fi (t, x, z) is the unique bounded classical
solution of Eq. (33) in which we set α = (1, 1, 1).

Proof It follows from(46) thatdQ(t)=ϒ(t, X(t), H(t))dW (t)+∑N+1
j=1 � j (t, X(t−),

H(t−))dMj (t). Then d 〈Q〉 (t) = �(t, X(t−), H(t−))dt , P-a.s.. In view of Proposi-
tion 3.4, recall thatMV is the localP-martingale part of V . Then, for t ∈ [0, T ∧τN+1],
P-a.s.

MV (t) = V (0) +
∫ t

0
Dxg(s, X(s), H(s))�σ(X(s))dW (s)

+
∫ t

0
LN+1
N+1(s

−)

⎧
⎨

⎩

N̄∑

i=1

bi
(
1 − K N+1

i (s−)
)
Fi
(
s, X(s−)

+wN+1, H
N+1(s−)

)
⎫
⎬

⎭
+
dMN+1(s)

+
N+1∑

j=1

∫ t

0

[
g(s, X(s−) + w j , H

j (s−)) − g(s, X(s−), H(s−))
]
dMj (s).

This gives that d
〈
MV , Q

〉
(t) = ∑3

i=1Ui (t, X(t−), H(t−))dt . In terms of (54) in
Proposition 3.4, we deduce that, for t ∈ [0, T ∧ τN+1],

θ∗(t) = d
〈
MV , Q

〉
(t)

d
〈
Q
〉
(t)

=
3∑

i=1

Ui (t, X(t−), H(t−))

�(t, X(t−), H(t−))
.

Then we arrive at (71) under P. We next verify θ∗ ∈ �. Below, we use C to denote a
generic positive constant, which may be different from line to line. It is easy to have
that, for some C > 0,

E

[∫ T∧τN+1

0

∣∣θ∗(t)
∣∣2 d 〈Q〉 (t)

]
≤ C

3∑

i=1

E

[∫ T∧τN+1

0

|Ui (t, X(t−), H(t−))|2
�(t, X(t−), H(t−))

dt

]
.

(74)
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First, using the Hölder’s inequality, we have on [0, T ∧ τN+1] that, P-a.s.

|U1(t, X(t−), H(t−))|2
�(t, X(t−), H(t−))

≤
∣∣ϒ(t, X(t−), H(t−))

∣∣2 ∣∣Dxg(t, X(t−), H(t−))�σ(X(t−))
∣∣2

∣∣ϒ(t, X(t−), H(t−))
∣∣2

=
∣∣∣Dxg(t, X(t−), H(t−))�σ(X(t−))

∣∣∣
2
.

Using Theorem 3.5 and the Cauchy’s inequality, there exists a constant C > 0 such
that

|U2(t, x, z)|2
�(t, x, z)

≤ C

∣∣∑N+1
j=1 � j (t, x, z)x j (1 − z j )

∣∣2
∑N+1

j=1

∣∣� j (t, x, z)
∣∣2x j (1 − z j )

≤ C

⎛

⎝
N+1∑

j=1

x j

⎞

⎠ .

Finally, it holds from (73) that

�(t, x, z) ≥
N+1∑

j=1

∣∣� j (t, x, z)
∣∣2x j ≥ ∣∣�N+1(t, x, z)

∣∣2xN+1.

Then, it follows from Proposition 2.4 that, on t ∈ [0, T ∧τN+1], there exists a constant
C > 0 such that

|U3(t, x, z)|2
�(t, x, z)

≤ C

∣∣�N+1(t, x, z)xN+1
∣∣2

∣∣�N+1(t, x, z)
∣∣2xN+1

≤ CxN+1.

By applying (74), we deduce the existence of a constant C > 0 such that

E

[∫ T∧τN+1

0

∣∣θ∗(t)
∣∣2 d 〈Q〉 (t)

]
≤ C + CE

[∫ T

0

∣∣∣Dxg(t, X(t), H(t))�σ(X(t))
∣∣∣
2
dt

]

+ C

⎧
⎨

⎩

N+1∑

j=1

E

[∫ T

0
X j (t)dt

]⎫⎬

⎭ . (75)

It follows from Lemma 3.8 that there exists a constant C > 0 such that

E

[∫ T

0

∣∣∣Dxg(t, X(t), H(t))�σ(X(t))
∣∣∣
2
dt

]
≤ C

⎧
⎨

⎩1 +
N+1∑

j=1

E

[∫ T

0
X2

j (t)dt

]⎫⎬

⎭ .

Thus, the estimate (75) implies that there exists a constant C > 0 such that

E

[∫ T∧τN+1

0

∣∣θ∗(t)
∣∣2 d 〈Q〉 (t)

]
≤ C

⎧
⎨

⎩1 +
N+1∑

j=1

E

[∫ T

0
X2

j (t)dt

]⎫⎬

⎭ . (76)
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We next prove E[(∫ T∧τN+1
0 |θ∗(t)|dB(t))2] < ∞, where

dB(t) = ϒ(t, X(t), H(t))θ̃(X(t), H(t))dt

+
N+1∑

j=1

� j (t, X(t), H(t))ϑ j (X(t), H(t))X j (t)dt .

Assumption (A3) yields that for some C > 0,

E

[(∫ T∧τN+1

0
|θ∗(t)|dB(t)

)2]

≤ CE

⎡

⎣
∣∣∣∣∣

∫ T∧τN+1

0

3∑

i=1

Ui (t, X(t), H(t))

�(t, X(t), H(t))
ϒ(t, X(t), H(t))dt

∣∣∣∣∣

2⎤

⎦

+ CE

⎡

⎣
∣∣∣∣∣

∫ T∧τN+1

0

3∑

i=1

Ui (t, X(t), H(t))

�(t, X(t), H(t))

×
⎛

⎝
N+1∑

j=1

� j (t, X(t), H(t))ϑ j (X(t), H(t))X j (t)

⎞

⎠ dt

∣∣∣∣∣∣

2
⎤

⎥⎦ .

First of all, for some C > 0,

E

⎡

⎣
∣∣∣∣∣

∫ T∧τN+1

0

3∑

i=1

Ui (t, X(t), H(t))

�(t, X(t), H(t))
ϒ(t, X(t), H(t))dt

∣∣∣∣∣

2⎤

⎦

≤ CE

[∫ T∧τN+1

0

3∑

i=1

|Ui (t, X(t), H(t))|2
�(t, X(t), H(t))

|ϒ(t, X(t), H(t))|2
�(t, X(t), H(t))

dt

]

≤ C
3∑

i=1

E

[∫ T∧τN+1

0

|Ui (t, X(t), H(t))|2
�(t, X(t), H(t))

dt

]
≤ C

⎧
⎨

⎩1 +
N+1∑

j=1

E

[∫ T

0
X2

j (t)dt

]⎫⎬

⎭ ,

and also by Assumption (A3),

E

⎡

⎢⎣

∣∣∣∣∣∣

∫ T∧τN+1

0

3∑

i=1

Ui (t, X(t), H(t))

�(t, X(t), H(t))

⎛

⎝
N+1∑

j=1

� j (t, X(t), H(t))ϑ j (X(t), H(t))X j (t)

⎞

⎠ dt

∣∣∣∣∣∣

2
⎤

⎥⎦

≤ C
3∑

i=1

E

[∫ T∧τN+1

0

|Ui (t, X(t), H(t))|2
�(t, X(t), H(t))

∑N+1
j=1 �2

j (t, X(t), H(t))(ϑ j (X(t), H(t))X j (t))X j (t)

�(t, X(t), H(t))
dt

]
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≤ C
3∑

i=1

E

⎡

⎣
∫ T∧τN+1

0

|Ui (t, X(t), H(t))|2
�(t, X(t), H(t))

⎛

⎝
N+1∑

j=1

X j (t)

X j (t)(1 + λ̂(t, X(t), H(t))� j (t, X(t), H(t)))

⎞

⎠ dt

⎤

⎦

≤ C
3∑

i=1

E

⎡

⎣
∫ T∧τN+1

0

|Ui (t, X(t), H(t))|2
�(t, X(t), H(t))

⎛

⎝
N+1∑

j=1

δ−1
j

⎞

⎠ dt

⎤

⎦

≤ C

⎧
⎨

⎩1 +
N+1∑

j=1

E

[∫ T

0
X2

j (t)dt

]⎫⎬

⎭ .

We hence have that

E

[(∫ T∧τN+1

0
|θ∗(t)|dB(t)

)2]
≤ C

⎧
⎨

⎩1 +
N+1∑

j=1

E

[∫ T

0
X2

j (t)dt

]⎫⎬

⎭ . (77)

From (76) and (77), it suffices to estimate
∑N+1

j=1 E[∫ T0 X2
j (t)dt] < +∞. Recall the

default intensity process given by (4) under the actual probability measure P. Using
Itô’s formula, for j = 1, . . . , N + 1 and t ∈ [0, T ],

X2
j (t) = X2

j (0) + 2
∫ t

0
X j (s)μ j (X(s))ds + 2

K∑

k=1

∫ t

0
σ jk(X(s))X j (s)dWk(s)

+
K∑

k=1

∫ t

0
σ 2
jk(X(s))ds +

N+1∑

l=1

∫ t

0

[(
Xl(s

−) + w jl
)2 − X2

l (s
−)
]
dHl(s).

Using the linear growth condition satisfied by (μ, σ ) in Assumption (A1), there exists
a constant C > 0 such that for j = 1, . . . , N + 1 and t ∈ [0, T ],

E

[
X2

j (t)
]

≤ E

[
X2

j (0)
]

+ C + C
∫ t

0
E

[
X2

j (s)
]
ds + C

N+1∑

j=1

∫ t

0
E

[
X2

j (s)
]
ds

+
N+1∑

l=1

∫ t

0
E

[(
w2

jl + 2w jl Xl(s)
)
Xl(s)

]
ds.

For j = 1, . . . , N + 1 and t ∈ [0, T ], this leads that
N+1∑

j=1

E

[
X2

j (t)
]

≤
N+1∑

j=1

E

[
X2

j (0)
]

+ C(N + 1) + C(N + 2)
N+1∑

j=1

∫ t

0
E

[
X2

j (s)
]
ds

+ C
N+1∑

l=1

∫ t

0
E

[
X2
l (s)

]
ds + Ct .
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The Gronwall’s lemma implies that for all t ∈ [0, T ],

N+1∑

j=1

E

[
X2

j (t)
]

≤
⎧
⎨

⎩C(T + N + 1) +
N+1∑

j=1

E

[
X2

j (0)
]
⎫
⎬

⎭ eC(N+2)T .

The initial data X j (0) = χ j > 0 is square integrable for j = 1, . . . , N +1, this yields
that

N+1∑

j=1

∫ T

0
E

[
X2

j (t)
]
dt ≤

⎧
⎨

⎩C(T + N + 1) +
N+1∑

j=1

E

[
χ2
j

]
⎫
⎬

⎭ T eC(N+2)T < +∞.

(78)

Thus we proved the validity of (50) in Definition 3.1 using (76) and (77). This com-
pletes the proof of the theorem. ��

4 Applications

We specialize the locally risk-minimizing strategy θ∗ ∈ � in the CDS contract refer-
encing the counterparty “N+1” obtained in Theorem 3.9 to the casewhen the underly-
ing traded portfolio consists of credit default swaps, risky bonds, or of a first-to-default
claim. Recall the function Fi (t, x, z) satisfying the recursive system of the back-
ward Cauchy problems (33), in which α = (1, 1, 1) for i = 1, . . . , N̄ and g(t, x, z)
satisfies the recursive system (59). We here take the risk premium (θ̃ , ϑ) ≡ 0 for
convenience.

4.1 CDS Portfolio

In view of Definition 2.3, The CDS portfolio implies that N̄ = N and for i =
1, . . . , N + 1,

ξi = 0, ai (t) = −εi , Zi (t) = Li (t), Ki (t) = Hi (t).

For i = 1, . . . , N , the recursive system (33) reduces to the Cauchy system (37), i.e.,
on (t, x, z) ∈ [0, T ) × RN+1+ × S,
(

∂

∂t
+ AQ

)
Fcds
i (t, x, z) − (1 − zi )εi −

∑

j �=i

zi [Li (z
j ) − Li (z)](1 − z j )x j = 0

with Fcds
i (T , x, z) = Li (z)zi . On (t, x, z) ∈ [0, T ) ×RN+1+ × S, the Cauchy system

(59) becomes
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0 =
(

∂

∂t
+ AQ

)
gcds(t, x, z) + LN+1(z

N+1)

×
{

N∑

i=1

bi (1 − zi )F
cds
i (t, x + wN+1, z

N+1)

}

+
(1 − zN+1)xN+1,

and gcds(T , x, z) = 0. The unique risk-minimizing strategy is given by

θ∗
cds(t) =

3∑

i=1

U cds
i (t, X(t−), H(t−))

�(t, X(t−), H(t−))
, t ∈ [0, T ∧ τN+1]. (79)

For (t, x, z) ∈ [0, T ] × RN+1+ × S, the functions

U cds
1 (t, x, z) := 〈Dxg

cds(t, x, z)�σ(x), V cds
N+1(t, x, z)

�σ(x)
〉
d;

U cds
2 (t, x, z) :=

N+1∑

j=1

[
gcds(t, x + w j , z

j ) − gcds(t, x, z)
]

(80)

× {Gcds
N+1, j (t, x, z) − zN+1[LN+1(z

j ) − LN+1(z)]
}
x j (1 − z j );

U cds
3 (t, x, z) := LN+1(z

N+1)

{
N∑

i=1

bi (1 − zi )F
cds
i (t, x + wN+1, z

N+1)

}

+
× Gcds

N+1,N+1(t, x, z)xN+1.

Consider a portfolio consisting of a single name CDS, that is N = 1, traded against
the risky counterparty “2” of the investor. In this case, we obtain closed-form solutions
for the two types of recursive Cauchy systems. Using these closed-form solutions, one
can derive the risk-minimizing strategy θ∗

cds(t) using (79).Wedistinguish the following
cases:

• z = (1, 1). We have Fcds
i (t, x, (1, 1)) = Li ((1, 1)) for i = 1, 2 and

gcds(t, x, (1, 1)) = 0.
• z = (1, 0). We have gcds(t, x, (1, 0)) = 0 and

Fcds
1 (t, x, (1, 0)) = L1((1, 0))E

[
e− ∫ Tt X̃ (t,x)

2 (s)ds
]

+ L1((1, 0))E

[∫ T

t
X̃ (t,x)
2 (s)e− ∫ st X̃ (t,x)

2 (u)duds

]
;

Fcds
2 (t, x, (1, 0)) = E

[∫ T

t

{
L2((1, 1))X̃

(t,x)
2 (s) − ε2

}
e− ∫ st X̃ (t,x)

2 (u)duds

]
.
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• z = (0, 1). We have gcds(t, x, (0, 1)) = 0 and

Fcds
1 (t, x, (0, 1)) = E

[∫ T

t

{
L1((1, 1))X̃

(t,x)
1 (s) − ε1

}
e− ∫ st X̃ (t,x)

1 (u)duds

]
;

Fcds
2 (t, x, (0, 1)) = L2((0, 1))E

[
e− ∫ Tt X̃ (t,x)

1 (s)ds
]

+ L2((0, 1))E

[∫ T

t
X̃ (t,x)
1 (s)e− ∫ st X̃ (t,x)

1 (u)duds

]
.

• z = (0, 0). We have

gcds(t, x, (0, 0)) = L2((0, 1))E

[ ∫ T

t
X̃ (t,x)
2 (s)

{
b1F

cds
1 (s, X̃ (t,x)(s) + w2, (0, 1))

}

+

× e− ∫ st (X̃ (t,x)
1 (u)+X̃ (t,x)

2 (u))duds

]
,

andfinally Fcds
i (t, x, (0, 0)) canbe computedby theknowledgeof Fcds

i (t, x, (1, 0))
and Fcds

i (t, x, (0, 1)), i.e., for i = 1, 2,

Fcds
i (t, x, (0, 0)) = E

⎡

⎣
∫ T

t

⎛

⎝
2∑

j=1

Fcds
i (s, X̃ (t,x)(s), (0, 0) j )X̃ (t,x)

j (s) − εi

⎞

⎠

×e− ∫ st (X̃ (t,x)
1 (u)+X̃ (t,x)

2 (u))duds

⎤

⎦ .

4.2 Risky Bonds Portfolio

In view of Definition 2.3, the risky bonds portfolio implies that N̄ = N and for
i = 1, . . . , N ,

ξi = 1, ai (t) = εi , Zi (t) = 1 − Li (t), Ki (t) = Hi (t),

while for the counterpary

ξN+1 = 0, aN+1(t) = −εN+1, ZN+1(t) = LN+1(t), KN+1(t) = HN+1(t).

Then for i = 1, . . . , N , the recursive system (33) reduces to the Cauchy system given
by, on (t, x, z) ∈ [0, T ) × RN+1+ × S,
(

∂

∂t
+ AQ

)
Fbond
i (t, x, z) + (1 − zi )εi +

∑

j �=i

zi [Li (z
j ) − Li (z)](1 − z j )x j = 0

(81)
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with Fbond
i (T , x, z) = (1 − zi ) + (1 − Li (z))zi . The Cauchy system (59) is reduced

to, on (t, x, z) ∈ [0, T ) × RN+1+ × S,

0 =
(

∂

∂t
+ AQ

)
gbond(t, x, z) + LN+1(z

N+1)

×
{

N∑

i=1

bi (1 − zi )F
bond
i (t, x + wN+1, z

N+1)

}

+
(1 − zN+1)xN+1

and gbond(T , x, z) = 0. The unique risk-minimizing strategy on risky bonds portfolio
is given by

θ∗
bond(t) =

3∑

i=1

U bond
i (t, X(t−), H(t−))

�(t, X(t−), H(t−))
, t ∈ [0, T ∧ τN+1]. (82)

For (t, x, z) ∈ [0, T ] × RN+1+ × S, the functions

U bond
1 (t, x, z) := 〈Dxg

bond(t, x, z)�σ(x), V cds
N+1(t, x, z)

�σ(x)
〉
d ;

U bond
2 (t, x, z) :=

N+1∑

j=1

[
gbond(t, x + w j , z

j ) − gbond(t, x, z)
]

× {Gcds
N+1, j (t, x, z) − zN+1[LN+1(z

j ) − LN+1(z)]
}
x j (1 − z j );

U bond
3 (t, x, z) := LN+1(z

N+1)

{
N∑

i=1

bi (1 − zi )F
bond
i (t, x + wN+1, z

N+1)

}

+
× Gcds

N+1,N+1(t, x, z)xN+1. (83)

Consider a portfolio consisting of a single name risky bond, that is N = 1, traded
against the risky counterparty “2” of the investor. Again, the two types of recursive
Cauchy systems admits closed-form solutions, and thus allows us to derive the risk-
minimizing strategy θ∗

bond(t) using (82). We consider the following cases:

• z = (1, 1). We have Fbond
i (t, x, (1, 1)) = 1 − Li ((1, 1)) for i = 1, 2 and

gbond(t, x, (1, 1)) = 0.
• z = (1, 0). We have gbond(t, x, (1, 0)) = 0 and

Fbond
1 (t, x, (1, 0)) = (1 − L1((1, 0)))E

[
e− ∫ Tt X̃ (t,x)

2 (s)ds
]

+ (1 − L1((1, 0)))E

[∫ T

t
X̃ (t,x)
2 (s)e− ∫ st X̃ (t,x)

2 (u)duds

]
.
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• z = (0, 1). We have gbond(t, x, (0, 1)) = 0 and

Fbond
1 (t, x, (0, 1)) = E

[
e− ∫ Tt X̃ (t,x)

1 (u)du
]

+ E

[∫ T

t

{
(1 − L1((1, 1)))X̃

(t,x)
1 (s)+ε1

}
e− ∫ st X̃ (t,x)

1 (u)duds

]
.

• z = (0, 0). We have

gbond(t, x, (0, 0)) = L2((0, 1))E

[ ∫ T

t
X̃ (t,x)
2 (s)

{
b1F

bond
1 (s, X̃ (t,x)(s) + w2, (0, 1))

}

+

× e− ∫ st (X̃ (t,x)
1 (u)+X̃ (t,x)

2 (u))duds

]
,

and finally Fbond
i (t, x, (0, 0)) can be computed by the knowledge of Fbond

i (t, x,
(1, 0)) and Fbond

i (t, x, (0, 1)), i.e., for i = 1, 2,

Fbond
1 (t, x, (0, 0))

= E

[
e− ∫ Tt (X̃ (t,x)

1 (u)+X̃ (t,x)
2 (u))duds

]

+ E

⎡

⎣
∫ T

t

⎛

⎝
2∑

j=1

Fbond
1 (s, X̃ (t,x)(s), (0, 0) j )X̃ (t,x)

j (s) + ε1

⎞

⎠

×e− ∫ st (X̃ (t,x)
1 (u)+X̃ (t,x)

2 (u))duds

⎤

⎦ .

4.3 First-to-Default Claim

In view of Definition 2.3, the first-to default claim implies that N̄ = 1 and for i = 1, 2,

ξ1 = 0, a1(t) = ε, Z1(t) =
N∑

i=1

Li (t)Hi (t), K1(t) = 1 −
N∏

i=1

(1 − Hi (t));

ξ2 = 0, a2(t) = −εN+1, Z2(t) = LN+1(t), K2(t) = HN+1(t).

The recursive system (33) reduces to the Cauchy system given by, on (t, x, z) ∈
[0, T ) × RN+1+ × S,

(
∂

∂t
+ AQ

)
F ftd
1 (t, x, z) + ε

N∏

i=1

(1 − zi )

−
N+1∑

j=1

K1(z)[Z1(z
j ) − Z1(z)](1 − z j )x j = 0 (84)
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where

N+1∑

j=1

K1(z)[Z1(z
j ) − Z1(z)](1 − z j )x j

=
(
1 −

N∏

i=1

(1 − zi )

)
N+1∑

j=1

(1 − z j )x j

N∑

i=1

[
Li (z

j )zi1 j �=i + Li (z
i )(1 − zi ) − Li (z)zi

]
. (85)

The terminal condition is given by

F ftd
1 (T , x, z) =

(
N∑

i=1

Li (z)zi

)(
1 −

N∏

i=1

(1 − zi )

)
. (86)

The recursive Cauchy system (59) is reduced to, on (t, x, z) ∈ [0, T ) × RN+1+ × S,

0 =
(

∂

∂t
+ AQ

)
gftd(t, x, z) + LN+1(z

N+1)

×
{
b1(1 − K1(z

N+1))F ftd
1 (t, x + wN+1, z

N+1)
}

+ (1 − zN+1)xN+1,

and gftd(T , x, z) = 0. The unique risk-minimizing strategy of the CVA on the first-
to-default claim is given by

θ∗
ftd(t) =

3∑

i=1

U ftd
i (t, X(t−), H(t−))

�(t, X(t−), H(t−))
, t ∈ [0, T ∧ τN+1]. (87)

For (t, x, z) ∈ [0, T ] × RN+1+ × S, the functions

U ftd
1 (t, x, z) := 〈Dxg

ftd(t, x, z)�σ(x), V cds
N+1(t, x, z)

�σ(x)
〉
d;

U ftd
2 (t, x, z) :=

N+1∑

j=1

[
gftd(t, x + w j , z

j ) − gftd(t, x, z)
]

× {Gcds
N+1, j (t, x, z) − zN+1[LN+1(z

j ) − LN+1(z)]
}
x j (1 − z j );

U ftd
3 (t, x, z) := LN+1(z

N+1)
{
b1(1 − K1(z))F

ftd
1 (t, x + wN+1, z

N+1)
}
+

× Gcds
N+1,N+1(t, x, z)xN+1. (88)

Consider a first-to-default claim in a basket of two names, that is N = 2, traded
against the risky counterparty “3” of the investor. Both types of recursive Cauchy
systems can be solved in closed-form, and the risk-minimizing strategy θ∗

ftd(t) can
then be computed using Eq. (87). We have τ̄1 = τ1 ∧ τ2 and τ̄2 = τ3. We separately
treat the following cases:
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• z = (1, 1, 1). We have F ftd
1 (t, x, (1, 1, 1)) = L1((1, 1, 1)) + L2((1, 1, 1)) and

gftd(t, x, (1, 1, 1)) = 0.
• z = (1, 1, 0). We have

gftd(t, x, (1, 1, 0)) = L3((1, 1, 1))

(
2∑

i=1

Li ((1, 1, 1))

)
{b1}+

× E

[∫ T

t
X̃ (t,x)
3 (s)e− ∫ st X̃ (t,x)

3 (u)du
]

,

and

F ftd
1 (t, x, (1, 1, 0)) =

(
2∑

i=1

Li ((1, 1, 0))

){
E

[
e− ∫ Tt X̃ (t,x)

3 (s)ds
]

+E

[∫ T

t
X̃ (t,x)
3 (s)e− ∫ st X̃ (t,x)

3 (u)du
]}

.

• z = (1, 0, 1). We have gftd(t, x, (1, 0, 1)) = 0 and

F ftd
1 (t, x, (1, 0, 1)) = L1((1, 0, 1))

{
E

[
e− ∫ Tt X̃ (t,x)

2 (s)ds
]

+E

[∫ T

t
X̃ (t,x)
2 (s)e− ∫ st X̃ (t,x)

2 (u)du
]}

.

• z = (0, 1, 1). We have gftd(t, x, (0, 1, 1)) = 0 and

F ftd
1 (t, x, (0, 1, 1)) = L2((0, 1, 1))

{
E

[
e− ∫ Tt X̃ (t,x)

1 (s)ds
]

+E

[∫ T

t
X̃ (t,x)
1 (s)e− ∫ st X̃ (t,x)

1 (u)du
]}

.

• z = (1, 0, 0). We have

gftd(t, x, (1, 0, 0))

= E

[∫ T

t
X̃ (t,x)
2 (s)gftd(s, X̃ (t,x)(s), (1, 1, 0))e− ∫ st (X̃ (t,x)

1 (u)+X̃ (t,x)
2 (u))du

]
,

and

F ftd
1 (t, x, (1, 0, 0)) = L1((1, 0, 0))E

[
e− ∫ Tt (X̃ (t,x)

2 (s)+X̃ (t,x)
3 (s))ds

]

+ E

[ ∫ T

t

{
X̃ (t,x)
2 (s)

(
F ftd
1 (s, X̃ (t,x)(s), (1, 1, 0)) − L1((1, 1, 0))
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− L2((1, 1, 0)) + L1((1, 0, 0))
)

+ X̃ (t,x)
3 (s)

(
F ftd
1 (s, X̃ (t,x)(s), (1, 0, 1)) − L1((1, 0, 1))

− L2((1, 1, 0)) + L1((1, 0, 0))
)}

× e− ∫ st (X̃ (t,x)
2 (u)+X̃ (t,x)

3 (u))du
]
.

• z = (0, 1, 0). We have

gftd(t, x, (0, 1, 0))

= E

[∫ T

t
X̃ (t,x)
1 (s)gftd(s, X̃ (t,x)(s), (1, 1, 0))e− ∫ st (X̃ (t,x)

1 (u)+X̃ (t,x)
3 (u))du

]
,

and

F ftd
1 (t, x, (0, 1, 0)) = L2((0, 1, 0))E

[
e− ∫ Tt (X̃ (t,x)

1 (s)+X̃ (t,x)
3 (s))ds

]

+ E

[ ∫ T

t

{
X̃ (t,x)
1 (s)

(
F ftd
1 (s, X̃ (t,x)(s), (1, 1, 0))

− L1((1, 1, 0)) − L2((1, 1, 0)) + L2((0, 1, 0))
)

+ X̃ (t,x)
3 (s)

(
F ftd
1 (s, X̃ (t,x)(s), (0, 1, 1))

− L1((1, 1, 0)) − L2((0, 1, 1)) + L2((0, 1, 0))
)}

× e− ∫ st (X̃ (t,x)
1 (u)+X̃ (t,x)

3 (u))du
]
.

• z = (0, 0, 1). We have gftd(t, x, (0, 0, 1)) = 0 and

F ftd
1 (t, x, (0, 0, 1)) = E

[ ∫ T

t

{
X̃ (t,x)
1 (s)F ftd

1 (s, X̃ (t,x)(s), (1, 0, 1))

+ X̃ (t,x)
2 (s)F ftd

1 (s, X̃ (t,x)(s), (0, 1, 1))
}
e− ∫ st (X̃ (t,x)

1 (u)+X̃ (t,x)
2 (u))du

]
.

• z = (0, 0, 0). We have

gftd(t, x, (0, 0, 0)) = E

[ ∫ T

t

{
X̃ (t,x)
1 (s)gftd1 (s, X̃ (t,x)(s), (1, 0, 0))

+ X̃ (t,x)
2 (s)gftd(s, X̃ (t,x)(s), (0, 1, 0))

+ L3((0, 0, 1))X̃
(t,x)
3 (s)

{
b1F

ftd
1 (t, x + w3, (0, 0, 1))

}
+
}

× e− ∫ st (X̃ (t,x)
1 (u)+X̃ (t,x)

2 (u)+X̃ (t,x)
3 (u))du

]
,
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and

F ftd
1 (t, x, (0, 0, 0)) = E

[ ∫ T

t

{
X̃ (t,x)
1 (s)F ftd

1 (s, X̃ (t,x)(s), (1, 0, 0))

+ X̃ (t,x)
2 (s)F ftd

1 (s, X̃ (t,x)(s), (0, 1, 0))

+ X̃ (t,x)
3 (s)F ftd

1 (s, X̃ (t,x)(s), (0, 0, 1)) + ε
}
e− ∫ st (X̃ (t,x)

1 (u)+X̃ (t,x)
2 (u)+X̃ (t,x)

3 (u))du
]
.

The probabilistic representation of the above quantities makes it possible to develop
efficientMonte-Carlo simulationmethods to approximate the risk-minimizing hedging
strategy.
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Science Foundation of China under Grant 11471254.

A Proofs

Proof of Lemma 2.2 By Definition 2.2, we have the representation of the dividend
process of the first-to-default claim given by

D(t) = −ε

∫ t∧T

0
(1 − K (u))du +

N∑

i=1

∫ t∧T

0
Li (H(u))Hi (u)dK (u). (89)

The third term of the above dividend process is in fact given by

N∑

i=1

∫ t∧T

0
Li (H(u))Hi (u)dK (u) =

N∑

i=1

Li (H(τ̄1))Hi (τ̄1)1τ̄1≤t∧T

=
N∑

i=1

Li (H(τ̄1))1τi≤τ̄11τ̄1≤t∧T .

Notice that for all i = 1, . . . , N , we have τi ≥ τ̄1 = τ1 ∧ · · · ∧ τN , a.s.. Hence
1τi≤τ̄1 = 1τi=τ̄1 , a.s.. Thus the above equality becomes that

N∑

i=1

∫ t∧T

0
Li (H(u))Hi (u)dK (u) =

N∑

i=1

Li (H(τ̄1))1τi≤τ̄11τ̄1≤t∧T

=
N∑

i=1

Li (H(τ̄1))1τi=τ̄11τ̄1≤t∧T .

This results in the dividend representation given by Eq. (11). ��
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Proof of Proposition 2.3 Using (7), it holds that, for t ∈ [0, T ],

D(T ) − D(t) = ξ(H(T ))(1 − K (T ))1t �=T +
∫ T

t
(1 − K (u))a(u)du

+
∫ T

t
Z(u)dK (u).

Then, it follows from (15) that, for t ∈ [0, T ],

S(t, T ) = E
Q

[
ξ(H(T ))(1 − K (T ))1t �=T +

∫ T

t
(1 − K (H(u)))a(H(u))du

+
∫ T

t
Z(H(u))dK (H(u))

∣∣∣Gt
]
.

Recall that Z(z) and K (z) are deterministic functions on z ∈ S = {0, 1}N+1.
Using integrations by parts, it follows that

Z(H(T ))K (H(T )) = Z(H(t))K (H(t)) +
∫ T

t
Z(H(u))dK (H(u))

+
∫ T

t
K (H(u−))dZ(H(u)). (90)

On the other hand, Itô’s formula gives that for u ∈ [t, T ],

dZ(H(u)) =
N+1∑

j=1

[Z(H j (u−)) − Z(H(u−))]dHj (u)

=
N+1∑

j=1

[Z(H j (u−)) − Z(H(u−))]dMQ
j (u)

+
N+1∑

j=1

[Z(H j (u)) − Z(H(u))](1 − Hj (u))(1 + ϑ j (u))X j (u)du.

For j = 1, . . . , N + 1, MQ
j = (MQ

j (t))t∈[0,T ] is the G-martingale given in Proposi-
tion 2.1. Hence, Eq. (90) yields that

∫ T

t
Z(H(u))dK (H(u)) = Z(H(T ))K (H(T )) − Z(H(t))K (H(t))

−
∫ T

t
K (H(u−))dZ(H(u))

= Z(H(T ))K (H(T )) − Z(H(t))K (H(t))
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−
N+1∑

j=1

∫ T

t
K (H(u−))[Z(H j (u−)) − Z(H(u−))]dMQ

j (u)

−
N+1∑

j=1

∫ T

t
K (H(u))[Z(H j (u))

− Z(H(u))](1 − Hj (u))(1 + ϑ j (u))X j (u)du.

This results in the price representation given by S(t, T ) = F(t, X(t), H(t)) −
Z(H(t))K (H(t)), where

F(t, x, z) := E
Q
t,x,z

[
ξ(H(T ))(1 − K (H(T )))1t �=T + Z(H(T ))K (H(T ))

+
∫ T

t
(1 − K (H(u)))a(H(u))du

−
N+1∑

j=1

∫ T

t
K (H(u))[Z(H j (u))

− Z(H(u))](1 − Hj (u))(1 + ϑ j (u))X j (u)du

]
, (91)

using that the pair (X , H) is a G-adapted Markov process. Then the price representa-
tion (17) follows from the decomposition of F(t, x, z) given by

F(t, x, z) = 1t �=T�1(t, x, z) + �2(t, x, z), (t, x, z) ∈ [0, T ] × RN+1+ × S.

(92)

This completes the proof of the lemma. ��
Proof of Proposition 2.4 On (t, x) ∈ [0, T ) × RN+1+ , we rewrite (26) as follows:

(
∂

∂t
+ ÃQ

)
u(t, x) + h(x)u(t, x) + w(t, x) = 0 (93)

with u(T , x) = α1ξ
(l)(1 − K (l)) + α2Z (l)K (l) for all x ∈ RN+1+ . The coefficients

h(x) := −
∑

j /∈{ j1,..., jl }
(1 + ϑ

(l)
j (x))x j ,

w(t, x) :=
∑

j /∈{ j1,..., jl }
(1 + ϑ

(l)
j (x))x j

[
F (l+1), j

α (t, x + w j )

− α3K
(l)(Z (l+1), j − Z (l))

]+ α3(1 − K (l))a(l).

We will apply Theorem 1 of Heath and Schweizer [24] to prove existence and
uniqueness of classical solutions to Eq. (93) by verifying that their imposed con-
ditions [A1], [A2], [A3’] and [A3a’]-[A3e’] hold in our case. Consider a sequence of
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bounded domains Dn := ( 1n , n)N+1, n ∈ N, with smoothed corners and satisfying⋃∞
n=1 Dn = RN+1+ . Thus we verified that the condition [A3’] on the domain of the

equation holds. By the assumptions (A1)–(A3), the conditions [A1] and [A2] for the
coefficientsμ(x)+σ(x)θ̃ (x, z) and σ(x) can be satisfied. This also implies that [A3a’]
holds. Moreover, since σσ�(x) is continuous and invertible under the assumptions
(A1) and (A2), σσ�(x) is uniformly elliptic on (t, x) × Dn , i.e. [A3b’] holds. Notice
that F (l+1), j

α (t, x + w j ) is bounded and C1,2 in (t, x) by the induction hypothesis.
Additionally, notice that h(x) is linear in x . Then the conditions [A3c’] and [A3d’] on
the coefficients h(x) andw(t, x) on (t, x) ∈ [0, T ]×Dn are satisfied. Finally we need
to verify [A3e’]. For this, it suffices to prove the uniform integrability of the family

{∫ T

t
w(s, X̌ (t,x)(s))e− ∫ st h(X̌ (t,x)(u))duds; (t, x) ∈ [0, T ] × RN+1+

}
. (94)

Here, the underlyingRN+1+ -valued process (X̌ (t,x)(s))s∈[t,T ] is the unique strong solu-
tion of

d X̌ (t,x)(s) = (μ(X̌ (t,x)(s)) + σ(X̌ (t,x)(s))θ̃(X̌ (t,x)(s), 0 j1,..., jl ))ds

+ σ(X̌ (t,x)(s))dW (s), X̌ (t,x)(t) = x .

By the inductive hypothesis that F (l+1), j
α (t, x) is nonnegative and bounded on [0, T ]×

RN+1+ for all j /∈ { j1, . . . , jl}, there exists a constant C > 0 independent of (t, x)
such that for all (t, x) ∈ [0, T ] × RN+1+ ,

E

[∣∣∣∣
∫ T

t
w(s, X̌ (t,x)(s))e

∫ s
t h(X̌ (t,x)(u))duds

∣∣∣∣
2]

≤ CE

⎡

⎢⎣

∣∣∣∣∣∣

∫ T

t
e− ∫ st (

∑
k /∈{ j1,..., jl }(1+ϑk (X̌ (t,x)(u)))X̌ (t,x)

k (u))du

×
⎛

⎝1 +
∑

j /∈{ j1,..., jl }
(1 + ϑ j (X̌

(t,x)(s)))X̌ (t,x)
j (s)

⎞

⎠ ds

∣∣∣∣∣∣

2
⎤

⎥⎦

≤ 2CT 2

+ 2CE

⎡

⎢⎣

∣∣∣∣∣∣

∫ T

t
e− ∫ st (

∑
k /∈{ j1,..., jl }(1+ϑk (X̌ (t,x)(u)))X̌ (t,x)

k (u))du

× d

⎛

⎝
∫ s

t

∑

j /∈{ j1,..., jl }
(1 + ϑ j (X̌

(t,x)(u)))X̌ (t,x)
j (u)du

⎞

⎠

∣∣∣∣∣∣

2
⎤

⎥⎦
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≤ 2CT 2 + 2C

{
1 +

∣∣∣∣E
[
e− ∫ Tt (

∑
k /∈{ j1,..., jl }(1+ϑk (X̌ (t,x)(u)))X̌ (t,x)

k (u))du
]∣∣∣∣

2
}

≤ 2CT 2 + 4C . (95)

This yields the existence of a constant C > 0, independent of (t, x), such that

sup
(t,x)∈[0,T ]×RN+1+

E

[∣∣∣∣
∫ T

t
w(s, X̌ (t,x)(s))e

∫ s
t h(X̌ (t,x)(u))duds

∣∣∣∣
2]

≤ C < +∞.

This yields the uniform integrability of the family (94). It implies the condition [A3e’]
of Heath and Schweizer [24] is satisfied. Using Theorem 1 of Heath and Schweizer
[24], Eq. (93) admits a unique classical solution u(t, x) on [0, T ] × RN+1+ .

Further, the estimate (95) implies that this solution is bounded for all (t, x) ∈
[0, T ] × RN+1+ . This completes the proof of the proposition. ��
Proof of Lemma 2.5 It follows from Eq. (7) that

D(T ) = ξ(H(T ))(1 − K (T )) +
∫ T

0
(1 − K (u))a(u)du +

∫ T

0
Z(u)dK (u).

Using integration by parts (90), we have that

D(T ) = ξ(H(T ))(1 − K (H(T ))) +
∫ T

0
(1 − K (H(u)))a(u)du + Z(H(T ))K (H(T ))

− Z(H(0))K (H(0)) −
∫ T

0
K (H(u−))dZ(H(u)).

Since K (0) = 0, it follows from Proposition 2.4 that

Y (t) = F(1,1,1)(t, X(t), H(t)) +
∫ t

0
(1 − K (u))a(u)du −

∫ t

0
K (H(u−))dZ(H(u)).

(96)

Above, F(1,1,1)(t, x, z) is the unique bounded classical solution to the recursive system
of the backward Cauchy problems given by, on (t, x, z) ∈ [0, T ) × RN+1+ × S,

(
∂

∂t
+ AQ

)
F(1,1,1)(t, x, z) + (1 − K (z))a(z)

−
N+1∑

j=1

K (z)[Z(z j ) − Z(z)](1 − z j )(1 + ϑ j (x))x j = 0 (97)

with the terminal condition

F(1,1,1)(T , x, z) = ξ(z)(1 − K (z)) + Z(z)K (z), (x, z) ∈ RN+1+ × S. (98)
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Applying Itô’s formula and (97), we obtain that

F(1,1,1)(t, X(t), H(t)) = F(1,1,1)(0, X(0), H(0))

+
∫ t

0

⎧
⎨

⎩

N+1∑

j=1

K (H(u))[Z(H j (u)) − Z(H(u))](1 − Hj (u))

(1 + ϑ j (u))X j (u) − (1 − K (H(u)))a(H(u))

⎫
⎬

⎭ du

+
∫ t

0
Dx F(1,1,1)(u, X(u), H(u))�σ(X(u))dWQ(u)

+
N+1∑

j=1

∫ t

0
[F(1,1,1)(u, X(u−) + w j , H

j (u−))

− F(1,1,1)(u, X(u−), H(u−))]dMQ
j (u).

Using Eq. (96), we deduce

dY (t) = Dx F(1,1,1)(t, X(t), H(t))�σ(X(t))dWQ(t)

+
N+1∑

j=1

[F(1,1,1)(t, X(t−) + w j , H
j (t−)) − F(1,1,1)(t, X(t−), H(t−))]dMQ

j (t)

−
N+1∑

j=1

K (H(t−))[Z(H j (t−)) − Z(H(t−))]dMQ
j (t).

This yields the dynamics (28) of the gain process. ��
Proof of Lemma 3.3 We first verify that the density process ξ is strictly positive and
square integrable. The assumption of 0 < 1 + λ̂(t, x, z)� j (t, x, z) < ν j implies that
ξ is strictly positive using the SDE-representation of the stochastic exponential. We
next introduce the so-called mean-variance trade-off process given by

�(t) :=
∫ t

0
λ̂(s, X(s), H(s))2d 〈Q〉 (s)

=
∫ t

0

|ϒ(s)θ̃(s) +∑N+1
j=1 � j (s)(1 − Hj (s))ϑ j (s)X j (s)|2

|ϒ(s)|2 +∑N+1
j=1 �2

j (s)(1 − Hj (s))X j (s)
ds

≤ 2
∫ t

0
|θ̃ (s)|2ds + 2N+1

∫ t

0
ϑ2
j (s)X j (s)ds. (99)

Then Assumption (A3) yields that � = (�(t))t∈[0,T ] is uniformly bounded. Using
Proposition 3.7 of Choulli et al. [17], the process ξ satisfies the reverse Hölder inequal-
ity, see also Assumption 3.2 in Arai [2]. On the other hand, the structural condition
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given by B = − ∫ ·
0 λ̂(s, X(s−), H(s−))d 〈Q〉 (s) implies that YN+1ξ is a local P-

martingale (see Ansel and Stricker [1]). Using the arguments in Sect. 3 of Arai [2],
we have that ξ is the density process of the MMM P̂ w.r.t. P. ��
Proof of Theorem 3.5 Without any loss of generality, we set LN+1(z) = 1 for all z ∈ S.
Then, in the default state z = 0 j1,..., jl , we rewrite Eq. (62) in the following abstract
form: on (t, x) ∈ [0, T ) × RN+1+ ,

(
∂

∂t
+ Ā

)
u(t, x) + h(t, x)u(t, x) + w(t, x) = 0 (100)

with u(T , x) = 0 for all x ∈ RN+1+ . The coefficients are given by

h(t, x) := −
∑

j /∈{ j1,..., jl }
F̂ (l)
j (t, x),

w(t, x) :=
⎧
⎨

⎩

N̄∑

i=1

bi (1 − K (l+1),N+1
i )

[
F(1,1,1)i (t, x

+wN+1, 0
j1,..., jl ,N+1) − Z (l+1),N+1

i K (l+1),N+1
i

]
⎫
⎬

⎭
+

× F̂ (l)
N+1(t, x)1 j1,..., jl �=N+1 +

∑

j /∈{ j1,..., jl }
g(l+1), j (t, x + w j )F̂

(l)
j (t, x).

We next apply Theorem 1 of Heath and Schweizer [24] to prove existence and unique-
ness of classical solutions of Eq. (100) by verifying that their series of conditions [A1],
[A2], [A3’] and [A3a’]-[A3e’] hold in our case. We first consider bounded domains
Dn := ( 1n , n)N+1, n ∈ N, with smoothed corners such that

⋃∞
n=1 Dn = RN+1+ . We

can then verify that the condition [A3’] holds in the domain of the equation. Using
assumptions (A1)–(A3), the conditions [A1] and [A2] hold. The same assumption also
implies that [A3a’] holds. Moreover σσ�(x) is uniformly elliptic on (t, x) × Dn , i.e.
[A3b’] holds. Notice that the solution g(l+1), j (t, x+w j ) is bounded andC1,2 in (t, x)
by the induction hypothesis for j /∈ { j1, . . . , jl}. The function F(1,1,1)i (t, x) is also
bounded and C1,2 in (t, x) for i = 1, . . . , N̄ by Proposition 2.4. Note that the positive
F̂ (l)
j (t, x) is C1 in (t, x). Then the conditions [A3c’] and [A3d’] on the coefficients

h(t, x) and w(t, x), (t, x) ∈ [0, T ] × Dn , are satisfied. It is left to verify [A3e’]. For
this, it suffices to prove the uniform integrability of the family

{∫ T

t
w(s, X̂ (t,x)(s))e− ∫ st h(u,X̂ (t,x)(u))duds; (t, x) ∈ [0, T ] × RN+1+

}
. (101)

Here, for t ∈ [0, T ], the N+1-dimensionalMarkov process (X̂ (t,x)(s))s∈[t,T ] satisfies
a SDE with X̂ (t,x)(t) = x such that its infinitesimal generator is given by Ā in (60).

Consider first the case N + 1 ∈ { j1, . . . , jl}. Because g(l+1), j (t, x) is bounded on
[0, T ] × RN+1+ by the induction hypothesis, there exists a constant C > 0 such that
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E

[∣∣∣∣
∫ T

t
w(s, X̂ (t,x)(s))e

∫ s
t h(u,X̂ (t,x)(u))duds

∣∣∣∣
2]

≤ CE

⎡

⎢⎣

∣∣∣∣∣∣

∫ T

t

⎛

⎝
∑

j /∈{ j1,..., jl }
F̂ (l)
j (s, X̂ (t,x)(s))

⎞

⎠ e− ∫ st
∑

k /∈{ j1,..., jl } F̂
(l)
k (u,X̂ (t,x)(u))duds

∣∣∣∣∣∣

2
⎤

⎥⎦

= CE

⎡

⎢⎣

∣∣∣∣∣∣

∫ T

t
e− ∫ st

∑
k /∈{ j1,..., jl } F̂

(l)
k (u,X̂ (t,x)(u))dud

⎛

⎝
∫ s

t

∑

j /∈{ j1,..., jl }
F̂ (l)
j (u, X̂ (t,x)(u))du

⎞

⎠

∣∣∣∣∣∣

2
⎤

⎥⎦

≤ C

{
1 +

∣∣∣∣E
[
e− ∫ Tt

∑
k /∈{ j1,..., jl } F̂

(l)
k (u,X̂ (t,x)(u))du

]∣∣∣∣
2
}

≤ C,

where C > 0 is independent of (t, x). Next, consider the case N + 1 /∈ { j1, . . . , jl}.
Also notice that F(1,1,1)i (t, x) is bounded and C1,2 in (t, x) for i = 1, . . . , N̄ by
Proposition 2.4. Then there exists a constant C > 0 such that

E

[∣∣∣∣
∫ T

t
w(s, X̂ (t,x)(s))e

∫ s
t h(u,X̂ (t,x)(u))duds

∣∣∣∣
2]

≤ CE

⎡

⎢⎣

∣∣∣∣∣∣

∫ T

t
e− ∫ st

∑
k /∈{ j1,..., jl } F̂

(l)
k (u,X̂ (t,x)(u))du

×
⎛

⎝F̂ (l)
N+1(s, X̂

(t,x)(s)) +
∑

j /∈{ j1,..., jl }
F̂ (l)
j (s, X̂ (t,x)(s))

⎞

⎠ ds

∣∣∣∣∣∣

2
⎤

⎥⎦ .

Since N + 1 ∈ { j1, . . . , jl}c, F̂ (l)
N+1(s, X̂

(t,x)(s)) ≤ ∑
k /∈{ j1,..., jl } F̂

(l)
k (s, X̂ (t,x)(s)),

a.s.. This implies that

E

[∣∣∣∣
∫ T

t
w(s, X̂ (t,x)(s))e

∫ s
t h(u,X̂ (t,x)(u))duds

∣∣∣∣
2]

≤ 4CE

⎡

⎢⎣

∣∣∣∣∣∣

∫ T

t
e− ∫ st

∑
k /∈{ j1,..., jl } F̂

(l)
k (u,X̂ (t,x)(u))dud

⎛

⎝
∫ s

t

∑

j /∈{ j1,..., jl }
F̂ (l)
j (u, X̂ (t,x)(u))du

⎞

⎠

∣∣∣∣∣∣

2
⎤

⎥⎦

≤ 4C

{
1 +

∣∣∣∣E
[
e− ∫ Tt

∑
k /∈{ j1,..., jl } F̂

(l)
k (u,X̂ (t,x)(u))du

]∣∣∣∣
2
}

≤ 4C,

whereC > 0 is independent of (t, x). Thus we have verified the existence of a constant
C > 0, independent of (t, x), such that
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sup
(t,x)∈[0,T ]×RN+1+

E

[∣∣∣∣
∫ T

t
w(s, X̂ (t,x)(s))e

∫ s
t h(u,X̂ (t,x)(u))duds

∣∣∣∣
2]

≤ C < +∞.

This yields the uniform integrability of the family (101). It implies that the condition
[A3e’] of Heath and Schweizer [24] holds. Using Theorem 1 of Heath and Schweizer
[24], we conclude that Eq. (100) admits a unique classical solution u(t, x) on [0, T ]×
RN+1+ .

We next prove the solution is nonnegative and bounded on [0, T ]×RN+1+ . Using the
Feymann-Kac’s representation of the classical solution u(t, x), for (t, x) ∈ [0, T ] ×
RN+1+ ,

u(t, x) = E

[ ∫ T

t
e− ∫ st

∑
k /∈{ j1,..., jl } F̂

(l)
k (u,X̂ (t,x)(u))du

×
( ∑

j /∈{ j1,..., jl }
F̂ (l)
j (s, X̂ (t,x)(s))g(l+1), j (t, X̂ (t,x)(s) + w j )

+
⎧
⎨

⎩

N̄∑

i=1

bi (1 − K (l+1),N+1
i )

[
F(1,1,1)i (s, X̂

(t,x)(s)

+wN+1, 0
j1,..., jl ,N+1) − Z (l+1),N+1

i K (l+1),N+1
i

]
⎫
⎬

⎭
+

× F̂ (l)
N+1(s, X̂

(t,x)(s))1 j1,..., jl �=N+1

)
ds

]
. (102)

If N + 1 ∈ { j1, . . . , jl}, then Eq. (102) reduces to

u(t, x) = E

⎡

⎣
∫ T

t
e− ∫ st

∑
k /∈{ j1,..., jl } F̂

(l)
k (u,X̂ (t,x)(u))du

×
⎛

⎝
∑

j /∈{ j1,..., jl }
F̂ (l)
j (s, X̂ (t,x)(s))g(l+1), j (t, X̂ (t,x)(s) + w j )

⎞

⎠ ds

⎤

⎦ .

Since the nonnegative function g(l+1), j (t, x) is bounded on [0, T ] × RN+1+ by the
inductive hypothesis, there exists a constant C > 0 such that

0 ≤ u(t, x) ≤ C
∑

j /∈{ j1,..., jl }
E

[∫ T

t
F̂ (l)
j (s, X̂ (t,x)(s))e− ∫ st

∑
k /∈{ j1,..., jl } F̂

(l)
k (u,X̂ (t,x)(u))duds

]

= C

{
1 − E

[
e− ∫ Tt

∑
k /∈{ j1,..., jl } F̂

(l)
k (u,X̂ (t,x)(u))du

]}
.

Obviously, the above inequality yields the existence of a constant C > 0 such that
0 ≤ u(t, x) ≤ C for all (t, x) ∈ [0, T ] × RN+1+ . Next, consider the case N + 1 /∈
{ j1, . . . , jl}. It follows from (102) that
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u(t, x) = E

[ ∫ T

t
e− ∫ st

∑
k /∈{ j1,..., jl } F̂

(l)
k (u,X̂ (t,x)(u))du

×
( ∑

j /∈{ j1,..., jl }
F̂ (l)
j (s, X̂ (t,x)(s))g(l+1), j (t, X̂ (t,x)(s) + w j )

+
⎧
⎨

⎩

N̄∑

i=1

bi (1 − K (l+1),N+1
i )

[
F(1,1,1)i (t, X̂

(t,x)(s)

+wN+1, 0
j1,..., jl ,N+1) − Z (l+1),N+1

i K (l+1),N+1
i

]
⎫
⎬

⎭
+

× F̂ (l)
N+1(s, X̂

(t,x)(s))

)
ds

]
.

Then there exists a constant C > 0 such that

0 ≤ u(t, x) ≤ CE

⎡

⎣
∫ T

t
e− ∫ st

∑
k /∈{ j1,..., jl } F̂

(l)
k (u,X̂ (t,x)(u))du

×
⎛

⎝
∑

j /∈{ j1,..., jl }
F̂ (l)
j (s, X̂ (t,x)(s)) + F̂ (l)

N+1(s, X̂
(t,x)(s))

⎞

⎠ ds

⎤

⎦ .

Since N + 1 ∈ { j1, . . . , jl}c, we have that

0 ≤ u(t, x) ≤ 2C

{
1 − E

[
e− ∫ Tt

∑
k /∈{ j1,..., jl } F̂

(l)
k (u,X̂ (t,x)(u))du

]}
.

The above inequality gives a constant C > 0 such that 0 ≤ u(t, x) ≤ C for all
(t, x) ∈ [0, T ] × RN+1+ . This completes the proof of the theorem. ��
Proof of Lemma 3.8 It follows from (69) that

∫ t

0
Dxg(s, X(s), H(s))�σ(X(s))dW (s)

=
∫ t

0
Dxg(s, X(s), H(s))�σ(X(s))(λ̂ϒ)(s, X(s), H(s))�ds

+
∫ t

0
LN+1(H

N+1(s))

⎧
⎨

⎩

N̄∑

i=1

bi (1 − Ki (H
N+1(s)))Fi (t, X(s) + wN+1, H

N+1(s))

⎫
⎬

⎭
+

× (1 − HN+1(s))F̂N+1(s, X(s), H(s))ds + g(t, X(t), H(t)) − g(0, X(0), H(0))

+
N+1∑

j=1

∫ t

0

[
g(s, X(s) + w j , H

j (s)) − g(s, X(s), H(s))
]
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× (1 − Hj (s))ϑ j (X(s), H(s))X j (s)ds

−
N+1∑

j=1

[
g(s, X(s−) + w j , H

j (s−)) − g(s, X(s−), H(s−))
]
dMj (s)

=:
∫ t

0
Dxg(s, X(s), H(s))�σ(X(s))(λ̂ϒ)(s, X(s), H(s))�ds + E(t).

Then, for any ε > 0,

E

[∣∣∣∣
∫ t

0
Dxg(s, X(s), H(s))�σ(X(s))dW (s)

∣∣∣∣
2
]

= E

[∣∣∣∣
∫ t

0
Dxg(s, X(s), H(s))�σ(X(s))(λ̂ϒ)(s, X(s), H(s))�ds + E(t)

∣∣∣∣
2
]

≤ (1 + ε)E

[∣∣∣∣
∫ t

0
Dxg(s, X(s), H(s))�σ(X(s))(λ̂ϒ)(s, X(s), H(s))�ds

∣∣∣∣
2
]

+
(
1 + 1

ε

)
E[|E(t)|2]

≤ (1 + ε)E

[(∫ t

0

∣∣∣(λ̂ϒ)(s, X(s), H(s))
∣∣∣
2
ds

)

×
(∫ t

0
|Dxg(s, X(s), H(s))�σ(X(s))|2ds

)]

+
(
1 + 1

ε

)
E[|E(t)|2].

By the assumption of the lemma, we have that E[∫ T0 |(λ̂ϒ)(s, X(s), H(s))|2ds] ≤
|λ̂ϒ |2∞T . Since g(t, x, z) is the unique bounded classical solution of Eq. (59) by
Theorem 3.5. Further, by Proposition 2.4 and Assumption (A3), there exists a constant
C = C(T ) > 0 such that E[|E(T )|2] ≤ C(T ) + C(T )E[∫ T0

∑N+1
j=1 X2

j (s)ds]. This
gives that

E

[∫ T

0

∣∣∣Dxg(s, X(s), H(s))�σ(X(s))
∣∣∣
2
ds

]
≤
(
1 + 1

ε

)
C(T )

+ (1 + ε)|λ̂ϒ |2∞TE

[∫ T

0

∣∣∣Dxg(s, X(s), H(s))�σ(X(s))
∣∣∣
2
ds

]

+
(
1 + 1

ε

)
C(T )E

⎡

⎣
∫ T

0

N+1∑

j=1

X2
j (s)ds

⎤

⎦ .

Using the condition (1 + ε)|λ̂ϒ |2∞T < 1 for some ε > 0, we get the estimate (70).
��

123



Applied Mathematics & Optimization (2020) 82:799–850 849

References

1. Ansel, J., Stricker, C.: Unicité et existence de la loi minimale. In: Séminaire de Probabilités XXVII,
22–29. Springer, New York (1993)

2. Arai, T.: Minimal martingale measures for jump diffusion processes. J. Appl. Probab. 41, 263–270
(2004)

3. Azizpour, S., Giesecke, K., Schwenkler , G.: Exploring the sources of default clustering. J. Financ.
Econom. Forthcoming (2017)

4. Biagini, F., Cretarola, A.: Quadratic hedging methods for defaultable claims. Appl. Math. Optim. 56,
425–443 (2007)

5. Biagini, F., Cretarola, A.: Local risk-minimization for defaultable markets. Math. Financ. 19, 669–689
(2009)

6. Biagini, F., Cretarola, A.: Local risk-minimization for defaultable claims with recovery process. Appl.
Math. Optim. 65, 293–314 (2012)

7. Bielecki, T., Jeanblanc, M., Rutkowski , M.: Hedging of defaultable claims. In: R.A. Carmona, E.
Cinlar, I. Ekeland, E. Jouini, N. Touzi (eds.) Paris-Princeton Lectures on Mathematical Finance 2003.
Lecture Notes in Mathematics, 1–32, Springer, Berlin (2004a)

8. Bielecki, T., Jeanblanc, M., Rutkowski, M.: Pricing and hedging of credit risk: replication and mean-
variance approaches I. In: Yin, G., Zhang, Q. (eds.) Mathematics of Finance, pp. 37–53. AMS,
Providence, RI (2004b)

9. Bielecki, T., Jeanblanc,M., Rutkowski,M.: Pricing and trading credit default swaps in a hazard process
model. Ann. Appl. Probab. 18, 2495–2529 (2008)

10. Bo, L., Capponi, A.: Portfolio choice with market-credit risk dependencies. SIAM J. Control Optim.
56(4), 3050–3091 (2018)

11. Bo, L., Capponi, A., Chen, P.C.: Credit Portfolio selection with decaying contagion intensities. Math.
Financ. (2018). https://doi.org/10.1111/mafi.12177

12. Brigo, D., Capponi, A., Pallavicini, A.: Arbitrage-free bilateral counterparty risk valuation under col-
lateralization and application to credit default swaps. Math. Financ. 24, 125–146 (2014)

13. Canabarro, E.: Pricing and hedging counterparty risk: lessons re-learned? Chapter 6. In: Canabarro,
E. (ed.) Counterparty Credit Risk. Risk Books, London (2010)

14. Capponi, A.: Pricing and mitigation of counterparty credit exposure. In: Fouque, J.P., Langsam, J.
(eds.) Handbook of Systemic Risk. Cambridge University Press, Cambridge (2013)

15. Ceci, C., Colaneri, K., Cretarola, A.: Local risk-minimization under restricted information on asset
prices. Electron. J. Probab. 20, 1–30 (2015)

16. Ceci, C., Colaneri, K., Cretarola, A.: Unit-linked life insurance policies: optimal hedging in partially
observable market models. Insurance Math. Econ. 76, 149–163 (2017)

17. Choulli, T., Krawczyk, L., Stricker, C.: E-martingales and their applications in mathematical finance.
Ann. Probab. 26, 853–876 (1998)

18. Choulli, T., Vandaele, N., Vanmaele, M.: The Föllmer-Schweizer decomposition: comparison and
description. Stoch. Process. Appl. 120, 853–872 (2010)

19. Föllmer, H., Sondermann, D.: Hedging of non-redundant contingent claims. In: Hildenbrand, W.,
Mas-Colell, A. (eds.) Contributions to Mathematical Economics, pp. 205–223. Elsevier, Amsterdam
(1985)

20. Frei,C.,Capponi,A.,Brunetti,C.:Managing counterparty risk inOTCmarkets. Finance andEconomics
Discussion Series Divisions of Research & Statistics and Monetary Affairs Federal Reserve Board,
Washington, DC. https://www.federalreserve.gov/econres/feds/files/2017083pap.pdf (2017)

21. Frey, R., Backhaus, J.: Dynamic hedging of synthetic CDO tranches with spread risk and default
contagion. J. Econ. Dyn. Contr. 34, 710–724 (2010)

22. Frey, R., Schmidt, T.: Pricing and hedging of credit derivatives via the innovations approach to nonlinear
filtering. Financ. Stoch. 16, 105–133 (2012)

23. Gregory, J.: Counterparty Credit Risk: The New Challenge for Global Financial Markets. Wiley,
Chichester (2010)

24. Heath, D., Schweizer, M.: Martingales versus PDEs in finance: an equivalence result with examples.
J. Appl. Probab. 37, 947–957 (2000)

25. Okhrati, R., Balbás, A., Garridoz, J.: Hedging of defaultable claims in a structural model using a locally
risk-minimizing approach. Stoch. Process. Appl. 124, 2868–2891 (2014)

26. Protter, P.: Stochastic Integration and Differential Equations, 2nd edn. Springer, New York (2005)

123

https://doi.org/10.1111/mafi.12177
https://www.federalreserve.gov/econres/feds/files/2017083pap.pdf


850 Applied Mathematics & Optimization (2020) 82:799–850

27. Schweizer, M.: Hedging of Options in a General Semimartingale Model, p. 8615. Diss. ETH, Zurich
(1988)

28. Schweizer, M.: On the minimal martingale measure and the Föllmer-Schweizer decomposition. Stoch.
Anal. Appl. 13, 573–599 (1995)

29. Schweizer, M.: A guided tour through quadratic hedging approaches. In: Jouini, E., Cvitanic, J.,
Musiela, M. (eds.) Option Pricing, Interest Rates and Risk Management, pp. 538–574. Cambridge
University Press, Cambridge (2001)

30. Schweizer, M.: Local risk-minimization for multidimensional assets and payment streams. Banach
Cent. Publ. 83, 213–229 (2008)

31. Tankov, P.: Pricing and hedging in exponential Lévy models: review of recent results. Paris-Princeton
Lecture Notes in Mathematics Finance. Springer, New York (2010)

32. Wang, W., Zhou, J., Qian, L., Su, X.: Local risk minimization for vulnerable European contingent
claims on non tradable assets under regime switching models. Stoch. Anal. Appl. 34, 662–678 (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Locally Risk-Minimizing Hedging of Counterparty Risk for Portfolio of Credit Derivatives
	Abstract
	1 Introduction
	2 The Model and Hedging Problem on CVA
	2.1 Notations and Definitions
	2.2 The Interacting Default Intensity Model
	2.3 Defaultable Claims
	2.4 Examples
	2.5 Risk-Neutral Pricing and Gain Processes
	2.6 Formulation of Hedging Problem on CVA

	3 Locally Risk-Minimizing Hedging for CVA
	3.1 Representation of CVA and Gain Processes of CDS
	3.2 Payment Stream and CDS Hedging Instrument
	3.3 The Minimal Martingale Measure
	3.4 Locally Risk-Minimizing Hedging: Setup and Tool
	3.5 Locally Risk-Minimizing Strategy
	3.5.1 A Related Cauchy Problem
	3.5.2 Martingale Decomposition of V under the MMM 
	3.5.3 Representation of the Locally Risk-Minimizing Strategy


	4 Applications
	4.1 CDS Portfolio
	4.2 Risky Bonds Portfolio
	4.3 First-to-Default Claim

	Acknowledgements
	A Proofs
	References




