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Abstract
The paper investigates control problems for a class of nonlinear elliptic variational–
hemivariational inequalities with constraint sets. Based on the well posedness of a
variational–hemivariational inequality, we prove some results on continuous depen-
dence and existence of optimal pairs to optimal control problems. We obtain some
continuous dependence results in which the strong dependence and weak dependence
are considered, respectively. A frictional contact problem is given to illustrate our
main results.
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1 Introduction

In this paper we present systematic approaches to continuous dependence and opti-
mal control for a class of nonlinear elliptic variational–hemivariational inequalities.
Theoretical results are delivered in the general framework of abstract inequalities in a
reflexive Banach space. The main feature of such inequalities lies in the fact that they
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are governed by a nonlinear operator, a convex set of constraints and two nondiffer-
entiable functionals, among which at least one is convex.

Variational–hemivariational inequalities appear in a variety of mechanical prob-
lems, for example, the unilateral contact problems in nonlinear elasticity, the problems
describing the adhesive and friction effects, the nonconvex semipermeability problems,
themasonry structures, and the delamination problems inmultilayered composites (see
e.g. [13,17]). Hemivariational inequalities have been introduced by Panagiotopoulos
in 1981 as the variational formulation of important classes of unilateral and inequal-
ity problems in mechanics (see [18]). The notion of hemivariational inequality is
a generalization of variational inequality for a case where the function involved is
nonconvex and nonsmooth. The hemivariational inequalities are based on a con-
cept of the generalized gradient of Clarke (see [3,4,13]). They cover boundary value
problems for partial differential equations with nonmonotone, possibly multivalued
and nonconvex nonlinearities. In the last few years many kinds of variational and
hemivariational inequalities have been investigated (see [6,21]) and the study of
variational–hemivariational inequalities has emerged today as a new and interesting
branch of applied mathematics.

Various models in applied sciences can conveniently be formulated as variational–
hemivariational inequality problems involving certain parameters. These parameters
are known and they often characterize some physical properties of the underlying
model. In recent years, the field of inverse and identification problems emerged as one
of the most vibrant and developing branches of applied and industrial mathematics
because of their wide applications, see [1,2,5,7,8] and the references therein. Stability
of inverse problems with respect to perturbations of the original problem and of cost
functional can be found in [10–12] and some related optimal control problem in [9,19].

The variational–hemivariational inequality studied in the present paper can be for-
mulated as follows. Let X , P andQ be reflexive Banach spaces. For p ∈ P , let K (p)
be a nonempty, closed and convex set of constraints in X . Given a nonlinear pseu-
domonotone operator A : X → X∗, a linear continuous control operator B : Q → X∗,
a convex functional ϕ : X × X → R, a locally Lipschitz (in general nonconvex) func-
tional j : X → R and an element f ∈ X∗ with some properties to be specified later,
the abstract variational–hemivariational inequality has the form:

Problem 1 For given p ∈ P, q ∈ Q, find u ∈ K (p) such that

〈Au, v−u〉X +ϕ(u, v)−ϕ(u, u)+ j0(u; v − u)≥〈 f +Bq, v−u〉X , ∀v ∈ K (p).

Here j0(u; v) stands for the generalized (Clarke) directional derivative of j at a point
u ∈ X in the direction v ∈ X .

In the first part of the paper we first provide results on the well posedness of the
above abstract problem. The existence and uniqueness of solution to Problem 1 has
been recently obtained in [14,19]. Then, we prove some continuous dependence results
in which the strong dependence and weak dependence are considered, respectively,
and show a new result saying that the mapping P × Q 	 (p, q) 
→ u(p, q) ∈ X is
continuous. This continuous dependence result is fundamental to obtain the existence
of solution to an optimal control problem in which we minimize an appropriate cost
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functional F defined on the space of admissible parameters Pad × Qad ⊂ P × Q.
The novelty of this paper is that the constraint set K depends on p. The linear and
nonlinear cases are considered.

The second part of the paper is devoted to an optimal control problem for a frictional
unilateral contact problem in nonlinear elasticity in which u represents the displace-
ment field. Moreover, since the abstract problem is a variational–hemivariational
inequality, we are able to incorporate in this setting various complicated physical
phenomena modeled by nonmonotone and nondifferentiable potentials which are met
in industrial processes. On the other hand, the contact problem under consideration
offers some nontrivial mathematical interest. Finally, we note that the techniques and
results discussed in this paper could be also used in many other optimal control prob-
lems in mechanics.

The rest of this paper is organized as follows. In the next section, we will briefly
introduce some necessary preliminary material. In Sect. 3, we give the result on the
existence and uniqueness of solution to Problem 1. In Sect. 4, we provide some con-
tinuous dependence results for Problem 1. In Sect. 5, we establish some existence
and convergence results for an optimal control problem. Finally, we elaborate on a
frictional contact problem to illustrate our main results.

2 Preliminaries

Let (X , ‖ · ‖X ) be a Banach space. We denote by X∗ its dual space and by 〈·, ·〉X the
duality pairing between X∗ and X . We denote by “→” the strong convergence and by
“⇀” the weak convergence.

We recall the following definitions, see [3,4,13].

Definition 2 A function f : X → R is said to be

(i) (weakly) upper semicontinuous (u.s.c.) at x0, if for any sequence {xn}n≥1 ⊂ X
with (xn⇀x0) xn → x0, we have lim sup f (xn) ≤ f (x0).

(ii) (weakly) lower semicontinuous (l.s.c.) at x0, if for any sequence {xn}n≥1 ⊂ X
with (xn⇀x0) xn → x0, we have f (x0) ≤ lim inf f (xn).

(iii) f is said to be (weakly) u.s.c. (l.s.c.) on X , if for all x ∈ X f is (weakly) u.s.c.
(l.s.c.) at x .

Definition 3 Let ϕ : X → R ∪ {+∞} be a proper, convex and l.s.c. function. The
mapping ∂ϕ : X → 2X

∗
defined by

∂ϕ(u) = {u∗ ∈ X∗ | 〈u∗, v − u〉X ≤ ϕ(v) − ϕ(u) for all v ∈ X}

for u ∈ X , is called the subdifferential of ϕ. An element x∗ ∈ ∂ϕ(x) is called a
subgradient of ϕ in u.

Definition 4 Given a locally Lipschitz function ϕ : X → R, we denote by ϕ0(u; v)

the Clarke generalized directional derivative of ϕ at the point u ∈ X in the direction
v ∈ X defined by
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ϕ0(u; v) = lim sup
λ→0+, ζ→u

ϕ(ζ + λv) − ϕ(ζ )

λ
.

The Clarke subdifferential or the generalized gradient of ϕ at u ∈ X , denoted by
∂ϕ(u), is a subset of X∗ given by

∂ϕ(u) = { u∗ ∈ X∗ | ϕ0(u; v) ≥ 〈u∗, v〉X for all v ∈ X }.

Definition 5 A single-valued operator F : X → X∗ is said to be pseudomonotone, if
it is bounded and satisfies the inequality

〈Fu, u − v〉 ≤ lim inf〈Fun, un − v〉X for all v ∈ X ,

where un⇀u in X with lim sup〈Fun, un − u〉X ≤ 0.

Lemma 6 [13, Proposition 1.3.66] Let F : X → X∗ be a single-valued opera-
tor defined on a reflexive Banach space X. The operator F is pseudomonotone if
and only if F is bounded and satisfies the following condition: if un⇀u in X and
lim sup〈Fun, un − u〉X ≤ 0, then Fun⇀Fu in X∗ and lim〈Fun, un − u〉X = 0.

The following notion of the Mosco convergence of sets will be useful in the next
sections. For the definitions, properties and other modes of set convergence, we refer
to [4, Chap. 4.7] and [15].

Definition 7 Let (X , ‖ · ‖) be a normed space and {Kn}n∈N ⊂ 2X \ {∅}. We say that

Kn converge to K in the Mosco sense, as n → ∞, denoted by Kn
M−→ K if and only

if the two conditions hold
(m1) for each x ∈ K , there exists {xn}n∈N such that xn ∈ Kn and xn → x in X as
n → ∞,
(m2) for each subsequence {xn}n∈N such that xn ∈ Kn and xn⇀x in X , we have
x ∈ K .

3 Existence and Uniqueness Result

In this section we provide a result on existence and uniqueness of solution to the
variational–hemivariational inequality of the following form.

Problem 8 Find u ∈ K such that

〈Au, v − u〉X + ϕ(u, v) − ϕ(u, u) + j0(u; v − u) ≥ 〈 f , v − u〉X , ∀v ∈ K .
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We need the following hypotheses on the data of Problem 8.

K is a nonempty, closed, convex subset of X . (1)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

A : X → X∗ is such that
(a) there exists αA > 0 such that

〈Au1 − Au2, u1 − u2〉X ≥ αA ‖u1 − u2‖2X
for all u1, u2 ∈ X .

(b) there exists LA > 0 such that
‖Au1 − Au2‖ ≤ L A‖u1 − u2‖X

for all u1, u2 ∈ X .

(2)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ : X × X → R is such that
(a) ϕ(u, ·) : X → R is convex and l.s.c. on X , for all u ∈ X .

(b) there exists αϕ > 0 such that
ϕ(u1, v2) − ϕ(u1, v1) + ϕ(u2, v1) − ϕ(u2, v2)

≤ αϕ ‖u1 − u2‖X‖v1 − v2‖X
for all u1, u2, v1, v2 ∈ X .

(c) ϕ(u, λv) = λϕ(u, v), ϕ(v, v) ≥ 0 for all u, v ∈ X , λ > 0.

(3)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j : X → R is such that
(a) j is locally Lipschitz.
(b) there exist c0, c1 ≥ 0 such that

‖∂ j(u)‖X∗ ≤ c0 + c1‖u‖X
for all u ∈ X .

(c) there exists α j > 0 such that
j0(u1; u2 − u1) + j0(u2; u1 − u2) ≤ α j ‖u1 − u2‖2X

for all u1, u2 ∈ X .

(4)

We have the following existence and uniqueness result.

Theorem 9 Assume that (1)–(4) hold and the following smallness condition is satisfied

αϕ + α j < αA. (5)

Then for any f ∈ X∗, Problem 8 has a unique solution u ∈ X. Moreover, u satisfies
the following estimate

‖u‖X ≤ 1

αA − α j
(‖A0X‖X∗ + ‖ f ‖X∗ + c0). (6)

Note that a result on existence and uniqueness of solution to the variational–
hemivariational inequality in Problem 8 has been recently provided in [14, Theo-
rem 18]. The results on existence and uniqueness of solution and the estimate (6)
follow from [19, Theorem 8] and [19, Lemma 10], respectively.
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4 Continuous Dependence

In this section, we consider some continuous dependence results which play a crucial
role in the study of the optimal control problem. At first, we have the following result
which is a corollary of Theorem 9.

Theorem 10 Assume that (1)–(5) hold. Then for every f ∈ X∗, p ∈ P, q ∈ Q,
Problem 1 has a unique solution u(p, q) ∈ K (p). Moreover, u satisfies the following
estimate

‖u(p, q)‖X ≤ 1

αA − α j
(‖A0X‖X∗ + ‖ f ‖X∗ + ‖B‖‖q‖Q + c0). (7)

We start with two continuous dependence results which play a crucial role in the
study of the optimal control problem. We need the following hypotheses on the data.

K (pn)
M−→ K (p) as pn → p. (8)

{
For any {un} ⊂ X with un⇀u in X , and all v ∈ X , we have

lim sup(ϕ(un, v) − ϕ(un, un)) ≤ ϕ(u, v) − ϕ(u, u).
(9)

{
For any {un} ⊂ X with un⇀u in X , and all v ∈ X , we have
lim sup j0(un; v − un) ≤ j0(u; v − u).

(10)

For any {qn} ⊂ Q with qn → q in Q,we have Bqn → Bq in X∗. (11)

The first continuous dependence result reads as follows.

Theorem 11 Assume that (1)–(5) hold. Suppose also that (8)–(11) hold. Then,

pn → p in P, qn → q in Q ⇒ u(pn, qn) → u(p, q) in X as n → ∞.

Proof Let pn ∈ P , qn ∈ Q and un = u(pn, qn) ∈ K (pn) be a unique solution to
Problem 1, i.e.,

〈Aun, v − un〉X + ϕ(un, v) − ϕ(un, un) + j0(un; v − un)

≥ 〈 f + Bqn, v − un〉X , ∀v ∈ K (pn). (12)

From (7) we have

‖un‖X ≤ 1

αA − α j
(‖A0X‖X∗ + ‖ f ‖X∗ + ‖B‖‖qn‖Q + c0). (13)

Now, let {pn} ⊂ P with pn → p inP for some p ∈ P and {qn} ⊂ Qwith qn → q inQ
for some q ∈ Q. It follows from (13) that {un} is a bounded sequence in X . Therefore,
by the reflexivity of X , we may suppose, passing to a subsequence if necessary, that

un⇀u in X as n → ∞ with u ∈ X . Since un ∈ K (pn) and K (pn)
M−→ K (p), by

the condition (m2) of Definition 7, we have u ∈ K (p). From (m1) in Definition 7,
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we find a sequence {u′
n} such that u′

n ∈ K (pn) and un → u in X , as n → ∞. We set
v = u′

n in (1), and obtain

lim sup〈Aun, un − u〉X
= lim sup〈Aun, un − u′

n + u′
n − u〉X

≤ lim sup〈Aun, un − u′
n〉X + lim sup〈Aun, u′

n − u〉X
≤ lim sup〈Aun, un − u′

n〉X
≤ 〈 f + Bqn, un − u′

n〉X + ϕ(un, u
′
n) − ϕ(un, un) + j0(un; u′

n − un).

Using hypotheses (9)–(11) we have

lim sup〈Aun, un − u〉X ≤ 0.

It is well known that a monotone Lipschitz continuous operator is pseudomonotone
and hence, (2) implies that A is pseudomonotone. Therefore, we infer

lim inf〈Aun, un − v〉X ≥ 〈Au, u − v〉X , ∀v ∈ X .

Subsequently, we are in a position to pass to the limit in (12). Let w ∈ K (p). From
(m1) in Definition 7, we find a sequence {wn} such that wn ∈ K (pn) and wn → w in
X , as n → ∞. We set v = wn in (12), and obtain

〈Aun, wn − un〉X + ϕ(un, wn) − ϕ(un, un) + j0(un;wn − un)

≥ 〈 f + Bqn, wn − un〉X .

Then from (9)–(11), we have

〈Au, u − w〉X
≤ lim sup 〈Aun, un − w〉X
≤ lim sup 〈Aun, un − wn〉X + lim sup 〈Aun, wn − w〉X
≤ lim sup

(

〈 f + Bqn, wn − un〉X + ϕ(un, wn) − ϕ(un, un) + j0(un;wn − un)

)

≤ 〈 f + Bq, w − u〉X + ϕ(w, u) − ϕ(u, u) + j0(u;w − u).

Since w ∈ K (p) is arbitrary, we have shown that

〈Au, w − u〉X + ϕ(w, u) − ϕ(u, u) + j0(u;w − u)

≥ 〈 f + Bq, w − u〉X , ∀w ∈ K (p),

which implies that u ∈ K (p) solves Problem 1. Since every subsequence {un} con-
verges weakly to the same limit, the whole original sequence {un} converges weakly
to u ∈ K (p).
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Finally, we show that un → u, as n → ∞. Since K (pn)
M−→ K (p) as n → ∞,

by the condition (m1) of Definition 7, we can find a sequence {ũn}, ũn ∈ K (pn) such
that ũn → u, as n → ∞. Choosing v = ũn in (1), we have

mA‖un − ũn‖2X ≤ 〈Aun − Aũn, un − ũn〉X
= 〈Aun, un − ũn〉X − 〈Aũn, un − ũn〉X
≤ ϕ(un, ũn) − ϕ(un, un) + j0(un; ũn − un)

+〈 f + Bqn − Aũn, un − ũn〉X .

Passing to the upper limit in the last inequality, as n → ∞, and exploiting (9)–(11) and
Lemma 6, we deduce lim sup ‖un − ũn‖2X ≤ 0. Hence, we obtain ‖un − ũn‖X → 0.
Finally, we have

0 ≤ lim ‖un − u‖X ≤ lim ‖un − ũn‖X + lim ‖ũn − u‖X = 0,

which implies that un → u in X , as n → ∞. This completes the proof. ��

We need the following hypotheses on the data.

K (pn)
M−→ K (p) as pn⇀p. (14)

For any {qn} ⊂ Q with qn⇀q in Q,we have Bqn → Bq in X∗. (15)

Similar to Theorem 11, we have the following result.

Theorem 12 Assume that (1)–(5) hold. Suppose also that (9), (10), (14), (15) hold.
Then,

pn⇀p in P, qn⇀q in Q ⇒ u(pn, qn) → u(p, q) in X as n → ∞.

Consider the constraint sets K (p) satisfy the following hypothesis

⎧
⎪⎪⎨

⎪⎪⎩

K (p) = c(p)K + d(p)θ is such that
(a) K is a nonempty, closed and convex subset of X .

(b) 0X ∈ K (p) and θ is a given element of X .

(c) c, d : P → R are continuous and c(p) > 0 for all p ∈ P.

(16)

Remark 13 We observe that if K (p), for p ∈ P , is defined by (16), then K (pn)
M−→

K (p) as pn → p. In fact, if pn → p, then c(pn) → c(p) and d(pn) → d(p), and

hence K (pn)
M−→ K (p), see [15].

We also need the additional hypothesis on function ϕ to obtain the second contin-
uous dependence result.
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϕ : X × X → R is such that there exists function cϕ : R+ → R+
and for each k ∈ N there exists a constant Nk > 0 such that
cϕ(r) ≤ Nk for all r ∈ [0, k] and
ϕ(u, v1) − ϕ(u, v2) ≤ cϕ(‖u‖X )‖v1 − v2‖X ,

for all u, v1, v2 ∈ X .

(17)

Theorem 14 Assume that (2), (3), (4) and (5) hold. Suppose also that (11), (16) and
(17) hold. Then,

pn → p in P, qn → q in Q ⇒ u(pn, qn) → u(p, q) in X as n → ∞.

Proof The existence and uniqueness of solution follow from Remark 13 and Theo-
rem 9. Let pn, p ∈ P, qn, q ∈ Q with pn → p and qn → q as n → +∞ and
un = u(pn, qn) ∈ K (pn), u = u(p, q) ∈ K (p) be the corresponding solutions, that
is,

〈Au, v − u〉X + ϕ(u, v) − ϕ(u, u) + j0(u; v − u)

≥ 〈 f + Bq, v − u〉X , ∀v ∈ K (p), (18)

〈Aun, vn − un〉X + ϕ(un, vn) − ϕ(un, un) + j0(un; vn − un)

≥ 〈 f + Bqn, vn − un〉X , ∀vn ∈ K (pn). (19)

By the definition of K (pn), we get un−d(pn)θ
c(pn)

∈ K . Let cn = c(p)
c(pn)

. Taking v =
cn(un − d(pn)θ) + d(p)θ ∈ K (p) in (18) we obtain

〈Au − f − Bq, cn(un − d(pn)θ) + d(p)θ − u〉X
+ϕ(u, cn(un − d(pn)θ) + d(p)θ) − ϕ(u, u)

+ j0(u; cn(un − d(pn)θ) + d(p)θ − u) ≥ 0.

Taking vn = 1
cn

(u − d(p)θ) + d(pn)θ ∈ K (pn) in (19) and multiplying by cn we
obtain

〈Aun − f − Bqn, u − d(p)θ − cn(un − d(pn)θ)〉X
+ϕ(un, u − d(p)θ + cnd(pn)θ) − ϕ(un, cnun)

+ j0(un; u − d(p)θ − cn(un − d(pn)θ)) ≥ 0.

Adding the above two inequalities we obtain

〈Aun − Au, un − u〉X
≤ 〈Aun − Au,−d(p)θ − (cn − 1)un + cnd(pn)θ〉X

+〈Bq − Bqn, u − d(p)θ − cn(un − d(pn)θ)〉X
+ϕ(u, cn(un − d(pn)θ) + d(p)θ) − ϕ(u, u)

+ϕ(un, u − d(p)θ + cnd(pn)θ) − ϕ(un, cnun)
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+ j0(u; cn(un − d(pn)θ) + d(p)θ − u)

+ j0(un; u − d(p)θ − cn(un − d(pn)θ)).

From (3)(c) and (17) we have

ϕ(u, cn(un − d(pn)θ) + d(p)θ) − ϕ(u, u)

+ϕ(un, u − d(p)θ + cnd(pn)θ) − ϕ(un, cnun)

= ϕ(u, cn(un − d(pn)θ) + d(p)θ) − ϕ(u, u − d(p)θ + cnd(pn)θ)

+ϕ(un, u − d(p)θ + cnd(pn)θ) − ϕ(un, cn(un − d(pn)θ) + d(p)θ)

+ϕ(u, u − d(p)θ + cnd(pn)θ) − ϕ(u, u)

+ϕ(un, cn(un − d(pn)θ) + d(p)θ) − ϕ(un, cnun)

≤ αϕ‖un − u‖X‖cnun − u + 2d(p)θ − 2cnd(pn)θ‖X
+‖cnd(pn)θ − d(p)θ‖(cϕ(‖un‖X ) + cϕ(‖u‖X )).

Next, using the identity

cnun − u = un − u + (cn − 1)un,

we obtain

ϕ(u, cn(un − d(pn)θ) + d(p)θ) − ϕ(u, u)

+ϕ(un, u − d(p)θ + cnd(pn)θ) − ϕ(un, cnun)

≤ αϕ‖un − u‖X‖cnun − u + 2d(p)θ − 2cnd(pn)θ‖X
+‖cnd(pn)θ − d(p)θ‖(cϕ(‖un‖X ) + cϕ(‖u‖X ))

≤ αϕ‖un − u‖2X + αϕ‖un − u‖X‖(cn − 1)un + 2d(p)θ − 2cnd(pn)θ‖V
+‖cnd(pn)θ − d(p)θ‖(cϕ(‖un‖X ) + cϕ(‖u‖X )).

From (4)(b) we have

j0(u; cn(un − d(pn)θ) + d(p)θ − u)

+ j0(un; u − d(p)θ − cn(un − d(pn)θ))

≤ α j‖un − u‖X‖cn(un − d(pn)θ) + d(p)θ − u‖X
≤ α j‖un − u‖X‖un − u + (cn − 1)un − cnd(pn)θ + d(p)θ‖X
≤ α j‖un − u‖2X + α j‖un − u‖X‖cn − 1)un − cnd(pn)θ + d(p)θ‖X .

Then, we have

(αA − αϕ − α j )‖un − u‖2X
≤ L A‖ − d(p)θ − (cn − 1)un + cnd(pn)θ‖X‖un − u‖X

+‖Bqn − Bq‖X∗‖u − d(p)θ − cn(un − d(pn)θ)‖X
+αϕ‖un − u‖X‖(cn − 1)un + 2d(p)θ − 2cnd(pn)θ‖X
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+‖cnd(pn)θ − d(p)θ‖(cϕ(‖un‖X ) + cϕ(‖u‖X ))

+α j‖un − u‖X‖ c(p)

(c(pn)
− 1)un − cnd(pn)θ + d(p)θ‖X

≤
(

L A|(cn − 1|‖un‖X + |cnd(pn) − d(p)|‖θ‖X )

+αϕ(|cn − 1|‖un‖X + |2d(p) − 2cnd(pn)|‖θ‖X )

+α j (| c(p)

(c(pn)
− 1|‖un‖X + |cnd(pn) − d(p)|‖θ‖X

)

‖un − u‖X
+‖Bqn − Bq‖X∗(‖u‖X + |d(p)|‖θ‖X + |cn|‖un‖X + |d(pn)|‖θ‖X )

+ |cnd(pn) − d(p)|‖θ‖X (cϕ(‖un‖X ) + cϕ(‖u‖X )).

Let

k = 1

αA − α j
(‖A0X‖X∗ + ‖ f ‖X∗ + ‖B‖(‖q‖Q + 1) + c0).

Then, for sufficiently large n we have

{
cϕ(‖un‖X ) ≤ Nk,

cϕ(‖u‖X ) ≤ Nk .
(20)

and hence

(αA − αϕ − α j )‖un − u‖2X
≤

(

L A|(cn − 1|k + |cnd(pn) − d(p)|‖θ‖X )

+αϕ(|cn − 1|k + |2d(p) − 2cnd(pn)|‖θ‖X )

+α j (| c(p)

(c(pn)
− 1|k + |cnd(pn) − d(p)|‖θ‖X

)

‖un − u‖X
+‖Bqn − Bq‖X∗(k + |d(p)|‖θ‖X + |cn|k + |d(pn)|‖θ‖X )

+ 2Nk |cnd(pn) − d(p)|‖θ‖X .

From the following inequality

x, a, b ≥ 0 and x2 ≤ ax + b ⇒ x ≤ a + √
b,

it follows that

‖un − u‖X
≤ 1

αA − αϕ − α j

(

L A|(cn − 1|k + |cnd(pn) − d(p)|‖θ‖X )

+αϕ(|cn − 1|k + |2d(p) − 2cnd(pn)|‖θ‖X )
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+α j (| c(p)

(c(pn)
− 1|k + |cnd(pn) − d(p)|‖θ‖X

)

+
√

1

αA − αϕ − α j

(

‖Bqn − Bq‖X∗(k + |d(p)|‖θ‖X + |cn|k + |d(pn)|‖θ‖X )

+ 2Nk |cnd(pn) − d(p)|‖θ‖X
) 1

2

.

Since c(pn) → c(p), d(pn) → d(p) and Bqn → Bq as n → +∞, we deduce that
the right-hand side of above inequality tends to 0 as n → +∞, and hence un → u as
n → +∞. The proof is complete. ��
Remark 15 We observe that if d(p) = 0 for all p ∈ P in (16), then from the proof of
above theorem, we can omit the condition (17).

Consider the constraint sets K (p) satisfy the following hypothesis

⎧
⎪⎪⎨

⎪⎪⎩

K (p) = c(p)K + d(p)θ is such that
(a) K is a nonempty, closed and convex subset of X .

(b) 0X ∈ K (p) and θ is a given element of X .

(c) c, d : P → R are linear and continuous and c(p) > 0 for all p ∈ P.

(21)

Remark 16 We observe that if K (p), for p ∈ P , is defined by (21), then K (pn)
M−→

K (p) as pn⇀p. In fact, if pn⇀p, since c, d : (0,+∞) → R are linear and continuous,
it is weakly continuous, then c(pn) → c(p) and d(pn) → d(p) in R. By Remark 13,

we obtain K (pn)
M−→ K (p).

Similar to Theorem 14, we have the following result.

Theorem 17 Assume that (1)–(5) hold. Suppose also that (15)–(21) hold. Then,

pn⇀p in P, qn⇀q in Q ⇒ u(pn, qn) → u(p, q) in X as n → ∞.

5 Optimal Control Problems

In this section we provide some existence results for an optimal control problem
which state is described by the variational–hemivariational inequality formulated in
Problem 1.

Consider the following optimal control problem. Given admissible subsets of
parameters Pad ⊂ P , Qad ⊂ Q and a cost functional F : P × Q × X → R, find a
solution (p∗, q∗) ∈ Pad × Qad to the following problem

F(p∗, q∗, u(p∗, q∗)) = min F(p, q, u(p, q)), (22)

where u = u(p, q) ∈ K (p) denotes the unique solution of Problem 1 corresponding
to parameters p, q.
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We are now in a position to state the main result on the existence of solutions to
problem (22). We admit the following hypotheses

Pad is a compact subset of P, (23)

Pad is a weakly compact subset of P, (24)

Qad is a compact subset of Q, (25)

Qad is a weakly compact subset of Q, (26)

F : P × Q × X → R is l.s.c. on Pad × Qad × X , (27)

F : P × Q × X → R is weakly-weakly-strongly l.s.c. on Pad × Qad × X .

(28)

Theorem 18 Assume hypotheses of Theorem 11, (23), (25) and (27) hold. Then the
problem (22) has at least one solution.

Proof Let {(pn, qn, un)} ⊂ Pad×Qad×X be aminimizing sequence of the functional
F , i.e.,

lim F(pn, qn, un) = inf{ F(p, q, u) | p ∈ Pad , q ∈ Qad},

where pn ∈ Pad , qn ∈ Qad and un ∈ K (pn) is the unique solution of Problem 1 that
corresponds to pn, qn , i.e., un = u(pn, qn). From (23) and (25), there are subsequence
of {pn} and {qn}, denoted in the same way, such that pn → p inP with some p ∈ Pad

and qn → q in Q with some q ∈ Qad . From Theorem 11, we infer that the sequence
{un} ⊂ K (pn) converges weakly in X to the unique solution u(p, q) ∈ K (p) of
Problem 1. Finally, from (27), we have

F(p, q, u(p, q)) ≤ lim inf F(pn, qn, un) = inf{ F(p, q, u) | p ∈ Pad , q ∈ Qad},

which shows that (p, q) is a solution of the problem (22). This completes the proof. ��
Similarly, we have the following results.

Theorem 19 Assume hypotheses of Theorem 12, (24), (26) and (28) hold. Then the
problem (22) has at least one solution.

Theorem 20 Assume hypotheses of Theorem 14, (23), (25) and (27) hold. Then
the problem (22) has at least one solution.

Theorem 21 Assume hypotheses of Theorem 17, (24), (26) and (28) hold. Then the
problem (22) has at least one solution.

Next, we consider a special case of F .
Let F(p, q, u) = P(p) + Q(q) + U (u), where P : P → R, Q : Q → R and

U : X → R. Assume that the following hypotheses hold.

P : P → R is weakly lower semicontinuous, positive and coercive, (29)

Q : Q → R is weakly lower semicontinuous, positive and coercive, (30)

U : X → R is continuous, bounded and positive. (31)
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Consider the following optimal control problem.
Find a pair (p∗, q∗) ∈ P × Q such that

F(p∗, q∗, u(p∗, q∗)) = min
p∈P,q∈Q

F(p, q, u(p)). (32)

Theorem 22 Assume hypotheses of Theorem 17, (29)–(31) hold. Then the problem
(32) has at least one solution.

Proof Let {(pn, qn, un)} ⊂ P × Q × X be a minimizing sequence of the functional
F , i.e.,

lim F(pn, qn, un) = inf
p∈P,q∈Q

F(p, q, u(p)),

where un ∈ K (pn) is the unique solution of Problem 1 that corresponds to pn , i.e.,
un = u(pn, qn). From (29)–(31) it follows that the sequences {pn} and {qn} are
bounded. In fact, since

F(pn, qn, un) = P(pn) + Q(qn) +U (un) ≥ P(pn),

we can deduce that F(pn, qn, un) → +∞ if ‖pn‖P → +∞. Then there is a subse-
quence of {pn}, denoted in the same way, such that pn⇀p in P with some p ∈ Pad .
Similarly, there is a subsequence of {qn}, denoted in the same way, such that qn⇀q in
Q with some q ∈ Qad . From Theorem 11, we infer that the sequence {un} ⊂ K (pn)
converges weakly in X to the unique solution u(p, q) ∈ K (p) of Problem 1. Finally,
from (29)–(31), we have

F(p, q, u(p)) ≤ lim inf F(pn, qn, un) = inf
p∈P,q∈Q

F(p, q, u(p)),

which shows that (p, q) is a solution of the problem (32). This completes the proof. ��

6 Frictional Contact Problem

In this section, we consider an optimal control problem for a frictional contact problem
from theory of elasticity to which our main results of Sects. 4 and 5 can be applied.
We provide the classical formulation of the contact problem and give its variational
formulation for which we obtain a result on its unique weak solvability. Then, we
study the optimal control problem for the contact problem and deliver a result on its
solvability.

Consider the following physical setting. An elastic body occupies an open, bounded
and connected set 	 ⊂ R

d , d = 1, 2, 3. The boundary of 	 is denoted by 
 = ∂	

and it is assumed to be Lipschitz continuous. We denote by ν = (νi ) the outward unit
normal at 
. We suppose that 
 consists of three mutually disjoint and measurable
parts 
1, 
2 and 
3 such that meas (
1) > 0. Moreover, the notation S

d stands for

123



Applied Mathematics & Optimization (2020) 82:637–656 651

the space of second order symmetric tensors on R
d . On R

d and S
d we use the inner

products and the Euclidean norms defined by

u · v = uivi , ‖u‖ = (u · u)1/2 for all u = (ui ), v = (vi ) ∈ R
d ,

σ · τ = σiτi , ‖σ‖ = (σ · σ )1/2 for all σ = (σi j ), τ = (τi j ) ∈ S
d ,

respectively. Given a vector field u, notation uν and uτ represent its normal and
tangential components on the boundary defined by

uν = u · ν and uτ = u − uνν.

For a tensor σ , the symbols σν and σ τ denote its normal and tangential components
on the boundary, i.e.,

σν = (σν) · ν and σ τ = σν − σνν.

Sometimes, we omit the explicit dependence on x ∈ 	 ∪ 
. We also denote by P,Q
the normed spaces of parameters. The classical model for the contact process is the
following.

Problem 23 Given p ∈ P , find a displacement field u : 	 → R
d , a stress field

σ : 	 → S
d and an interface force η : 
3 → R such that

σ = A(ε(u)) in 	, (33)

Divσ + f 0 = 0 in 	, (34)

u = 0 on 
1, (35)

σν = f 2 + Bq on 
2, (36)

uν ≤ g(p), σν + η ≤ 0, (uν − g(p))(σν + η) = 0, η ∈ ∂ jν(uν) on 
3,

(37)

‖σ τ‖ ≤ Fb(uν), − σ τ = Fb(uν)
uτ

‖uτ‖ if ‖uτ‖ �= 0 on 
3. (38)

Note that Problem 23 was first investigated in [14] where results on its unique weak
solvability, continuous dependence on the data and penalty method were obtained. In
this problem (33) represents the elastic constitutive law in which A is the elasticity
operators and ε(u) denotes the linearized strain tensor defined by

ε(u) = (εi j (u)), εi j (u) = 1

2
(ui, j + u j,i ) in 	.

Equation (34) is the equation of equilibrium, where f 0 denotes the density of the
body forces, (35) is the displacement homogeneous boundary condition which means
that the body is fixed on 
1, and (36) is the traction boundary condition with surface
tractions of density f 2 + Bp acting on 
2, where p is the control parameter. Finally,
conditions (37) and (38) given on the contact surface 
3, represent the contact and
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the friction law, respectively. Here g denotes the thickness of the elastic layer which
depends on p, Fb is the friction bound and ∂ jν represents theClarke subdifferential of a
given function jν . A detailed description of these conditions together with mechanical
interpretations can be found in [14].We restrict ourselves to a comment that the friction
law (38) is a variant of the Coulomb law of dry friction in which the friction bound Fb
depends on the normal displacement uν and (37) is themultivalued normal compliance
contact condition with unilateral constraints of Signorini type. More details on static
contact models with elastic materials can be found in [13,16,20].

In order to study the variational formulation of Problem 23, we use the spaces V
and H defined by

V = { v ∈ H1(	;Rd) | v = 0 on 
1 }, H = L2(	;Sd).

Here and below we denote by v the trace on the boundary of an element v ∈
H1(	;Rd). On the space V we consider the inner product and the corresponding
norm given by

(u, v)V = (ε(u), ε(v))H, ‖v‖V = ‖ε(v)‖H for all u, v ∈ V .

Recall (see e.g. [13]) that, since meas(
1) > 0, it follows that V is a Hilbert space.
Moreover, by the Sobolev trace theorem, we have

‖v‖L2(
;Rd ) ≤ ‖γ ‖‖v‖V for all v ∈ V , (39)

where ‖γ ‖ is the norm of the trace operator γ : V → L2(
;Rd). The space H is a
Hilbert space endowed with the inner product

(σ , τ )H =
∫

	

σi j (x)τi j (x) dx,

and the associated norm ‖ · ‖H.
Our hypotheses on Problem 23 read as follows.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A : 	 × S
d → S

d is such that
(a) A(·, ε) is measurable on 	 for all ε ∈ S

d .

(b) there exists LA > 0 such that
‖A(x, ε1) − A(x, ε2)‖ ≤ LA‖ε1 − ε2‖

for all ε1, ε2 ∈ S
d , a.e. x ∈ 	.

(c) there exists mA > 0 such that
(A(x, ε1) − A(x, ε2)) · (ε1 − ε2) ≥ αA‖ε1 − ε2‖2

for all ε1, ε2 ∈ S
d , a.e. x ∈ 	.

(d) A(x, 0) = 0 for a.e. x ∈ 	.

(40)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fb : 
3 × R → R is such that
(a) Fb(·, r) is measurable on 
3 for all r ∈ R.

(b) there exists LFb > 0 such that
|Fb(x, r1) − Fb(x, r2)| ≤ LFb |r1 − r2|

for allr1, r2 ∈ R, a.e. x ∈ 
3.

(c) Fb(x, r) = 0 for all r ≤ 0, Fb(x, r) ≥ 0 for all r ≥ 0
for a.e. x ∈ 
3.

(41)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

jν : 
3 × R → R is such that
(a) jν(·, r) is measurable on 
3 for all r ∈ R

and there exists e ∈ L2(
3) such that jν(·, e(·)) ∈ L1(
3).

(b) jν(x, ·) is locally Lipschitz on R for a.e. x ∈ 
3.

(c) there exist c0, c1 ≥ 0 such that
|∂ jν(x, r)| ≤ c0 + c1|r |
for all r ∈ R, a.e. x ∈ 
3.

(d) there exists α jν ≥ 0 such that
j0ν (x, r1; r2 − r1) + j0ν (x, r2; r1 − r2) ≤ α jν |r1 − r2|2

for all r1, r2 ∈ R, a.e. x ∈ 
3.

(42)

Finally, we assume that

f 0 ∈ L2(	;Rd), f 2 ∈ L2(
2;Rd), g ∈ C(
3 × P;R+),

B ∈ L(Q; L2(
2;Rd)). (43)

We introduce the set of admissible displacement fields U (p) defined by

U (p) = { v ∈ V | vν ≤ g(p) on 
3 }, p ∈ P.

Moreover, we define an element f ∈ V ∗ by

〈 f , v〉V = 〈 f 0, v〉L2(	;Rd ) + 〈 f 2, v〉L2(
2;Rd ) (44)

and an operator B1 ∈ L(Q; V ∗) by

〈B1q, v〉V = 〈Bq, v〉L2(
2;Rd ) (45)

for all v ∈ V .
Using (33)–(38) and (44)–(45), by a standard argument (see Sect. 7 in [13]), we

derive the following variational formulation of Problem 23.

Problem 24 Given p ∈ P, q ∈ Q, find u ∈ U (p) such that

〈A(ε(u)), ε(v) − ε(u)〉H
+

∫


3

Fb(uν)(‖vτ‖ − ‖uτ‖) d
 +
∫


3

j0ν (uν; vν − uν) d
 ≥ 〈 f + B1q, v − u〉V

for all v ∈ U (p).
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The following result concerns the well posedness of Problem 24.

Theorem 25 Assume that (40)–(43) hold and the following smallness condition is
satisfied

(LFb + α jν )‖γ ‖2 < αA. (46)

Then

(i) for all p ∈ P , Problem 24 has a unique solution u = u(p, q) ∈ U (p).
(ii) pn → p in P, qn → q in Q ⇒ u(pn, qn) → u(p, q) in X as n → ∞.

Proof We will apply Theorems 10 and 14 in the following functional framework:
X = V , K (p) = U (p) and

A : V → V ∗, 〈Au, v〉 = 〈A(ε(u)), ε(v)〉H for u, v ∈ V ,

ϕ : V × V → R, ϕ(u, v) =
∫


3

Fb(uν)‖vτ‖ d
 for u, v ∈ V ,

j : V → R, j(v) =
∫


3

jν(vν) d
 for v ∈ V

for all p ∈ P .
We will check that the set K (p), the operator A, functions ϕ and j satisfy all the

hypotheses of Theorems 9 and 14.
It is clear that the set K (p) = U (p) is a nonempty closed and convex subset of V

for every p ∈ P and K (p) = c(p)K , where c(p) = g(p) and

K = { v ∈ V | vν ≤ 1 on 
3 }.

Then (16) holds.
From the proof of Theorem 32 in [14], it follows that (2)–(5) are satisfied. The

existence and uniqueness of solution to Problem 24 follows from Theorem 32 in [14].
Next, we establish (17). From (41) and (39), for u, v1, v2 ∈ V we obtain

ϕ(u, v1) − ϕ(u, v2) =
∫


3

Fb(uν)(‖v1τ‖ − ‖v2τ‖) d


≤ LFb‖u‖L2(
3;Rd )(‖v1 − v2‖L2(
3;Rd ))

≤ LFb‖γ ‖2‖u‖V ‖v1 − v2‖V .

This implies condition (17) with cϕ(‖u‖V ) = LFb‖γ ‖2‖u‖V .
The proof of the theorem is complete. ��
Consider now the following inverse problem for the contact problem (33)–(38). Let

Pad ⊂ P andQad ⊂ Q be the admissible subsets of parameters and F : P×Q×V →
R be a cost functional. We look for a pair (p∗, q∗) ∈ Pad × Qad to the following
minimization problem
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F(p∗, q∗, u(p∗, q∗)) = min
p∈Pad ,q∈Qad

F(p, q, u(p, q)), (47)

where u = u(p, q) ∈ U (p) denotes the unique solution of Problem 24 corresponding
to (p, q). As a corollary from Theorems 20 and 25, we deduce the following result.

Theorem 26 Assume that (23), (40)–(43) and (46) hold and the cost functional F : P×
V → R is l.s.c. on Pad × V . Then the problem (47) has at least one solution.

We conclude with the following two examples of the cost functionals which satisfy
hypothesis of Theorem 26.

Example 27 Let F : P × Q × V → R be of the form

F1(p, q, u) =
∫

	

L1(x, u(x)) dx + h(p) + k(q).

Assume the following hypotheses.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

L1 : 	 × R
d → R is such that

(a) L1(·, ξ) is measurable on 	 for all ξ ∈ R
d ,

(b) L1(x, ·) is l.s.c. on R
d for a.e. x ∈ 	,

(c) L1(x, ξ) ≥ −a1(x) + b‖ξ‖ for all ξ ∈ R
d , a.e. x ∈ 	

with a1 ∈ L1(	), b ∈ R

and h : Pad → R is l.s.c. on Pad , k : Qad → R is l.s.c. on Qad . Then F is l.s.c. on
Pad × Qad × V .

Example 28 Let F : P × V → R be of the form

F2(p, q, u) =
∫




L2(x, γ u(x)) d
 + h(p) + k(q)

Assume the following hypotheses.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

L2 : 
 × R
d → R is such that

(a) L2(·, ξ) is measurable on 
 for all ξ ∈ R
d ,

(b) L2(x, ·) is l.s.c. on R
d for a.e. x ∈ 
,

(c) L2(x, ξ) ≥ −a2(x) + b‖ξ‖ for all ξ ∈ R
d , a.e. x ∈ 


with a2 ∈ L1(
), b ∈ R

and h : Pad → R is l.s.c. on Pad , k : Qad → R is l.s.c. on Qad . Then F is l.s.c. on
Pad × V .
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