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Abstract
This paper is concerned with the wellposedness of global solution and existence of
global attractor to the nonlinear Timoshenko system subject to continuous variable
time delay in the angular rotation of the beam filament. The waves are assumed to
propagate under the same speed in the transversal and angular direction. A single
mechanical damping is implemented to counter the destabilizing effect from the time
delay term. By imposing appropriate assumptions on the damping term and sub-linear
time delay term, we prove the existence of absorbing set and establish the quasi-
stability of the gradient system generated from the solution to the system of equation.
The quasi-stability property in turn implies the existence of finite dimensional global
and exponential attractors that contain the unstable manifold formed from the set of
equilibria.

Keywords Timoshenko system · Variable delay · Quasi-stability · Unstable
manifold · Exponential attractor

Mathematics Subject Classification 35B40 · 35B41 · 35Q30 · 76D03 · 76D05

B Jing Zhang
jizhang@vsu.edu

Xin-Guang Yang
yangxinguang@hotmail.com

Yongjin Lu
ylu@vsu.edu

1 Department of Mathematics and Information Science, Henan Normal University,
Xinxiang 453007, People’s Republic of China

2 Department of Mathematics and Economics, Virginia State University, Petersburg, VA 23806, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00245-018-9539-0&domain=pdf


298 Applied Mathematics & Optimization (2021) 83:297–326

1 Introduction

The vibrations of a beam or thin plate coinciding with an interval on the x-axis and
plates could be described by the following system of partial differential equations:

{
ρAϕt t = Sx ,

ρ Iψt t = Mx − S,
(1.1)

where ϕ = ϕ(x, t) is the transversal displacement of beam, ψ = ψ(x, t) denotes the
rotation angle for beam filament, M is the bending moment, S is the shear stress, ρ,
A and I denote the mass density, the area and the inertial moment of the transversal
section respectively.

The bending moment M and shear stress S in (1.1) could be further determined by
the constitutive laws in the theory of mathematical elasticity given as

{
M = E Iψx ,

S = k A(ϕx + ψ),
(1.2)

here E I represents the flexural rigidity of the beam, k is a shear coefficient.
Substituting (1.2) into (1.1) yields the following classical Timoshenko system (first

introduced by Timoshenko in [46]):

{
ρ1ϕt t − (k(ϕx + ψ))x = 0,

ρ2ψt t − (bψx )x + k(ϕx + ψ) = 0,
(1.3)

where ρ1 = ρ, ρ2 = ρ I
A , k, b = E I

A > 0 are positive constants.
Due to the physical property of material for beam or plate, the deformation might

not be instantaneous, thus is subject to a delay effect. In fact, there are abundant
examples in physical, chemical, biological, thermal, and economic phenomena where
time delay affect the behavior of a dynamical system see for example, Datko et al. [11],
Fridman [17], Nicaise and Pignotti [36]. To stabilize a hyperbolic system involving
input delay terms, additional control terms will be necessary. In many cases, it was
shown that delay is a source of instability and even an arbitrarily small delay may
destabilize a system that is uniformly asymptotically stable in the absence of delay
unless additional conditions or control terms are applied.

In this paper we consider the nonlinear Timoshenko system subject to variable time
delay and internal feedback:

⎧⎪⎨
⎪⎩

ρ1ϕt t (x, t) − k(ϕx + ψ)x (x, t) = h(x)

ρ2ψt t (x, t) − bψxx (x, t) + k(ϕx + ψ)(x, t) + μ1ψt (x, t) + μ2ψt (x, t − τ(t))

+ f (ψ(x, t)) = g(x)
(1.4)
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where (x, t) ∈ (0, 1) × [0,∞) and it is endowed with the following initial data

{
ϕ(x, 0) = ϕ0, ϕt (x, 0) = ϕ1, ψ(x, 0) = ψ0,

ψt (x, 0) = ψ1, ψt (x, t − τ(t)) = f0(x, t − τ(t)), (x, t) ∈ (0, 1) × (0, τ )

(1.5)
and the Dirichlet boundary condition

ϕ(0, t) = ϕ(1, t) = ψ(0, t) = ψ(1, t) = 0, ∀ t > 0, (1.6)

here μ1ψt (x, t) with μ1 > 0 is the frictional damping, h, g and the nonlinear term
f (ψ) are the source terms and μ2ψt (x, t − τ(t)) with μ2 > 0 is the time delay to the
system.

One of the main problems of analyzing the long time behavior of the nonlinear
Timoshenko system is to find minimum dissipation to ensure a uniform exponential
decay of energy, which is important to obtain the existence of absorbing set for semi-
group from the theory of dynamical systems.We review some uniform stability results
of Timoshenko system with different dissipative mechanics:

(a) For the dissipative Timoshenko system with only one locally distributed feedback
(one damping added) and homogeneous boundary value conditions, one of the first
results was obtained by Soufyane [43], who proved that the Timoshenko system
decays exponentially if and only it the wave propagates at the same speed (speed
equal condition), i.e.,

ρ1

ρ2
= k

b
, (1.7)

which means the velocities of wave propagations play an important role. Almeida
Júnior et al. [2] considered the Timoshenko system with one damping on the
transverse displacement, the solution semigroup decays exponentially if and only
if (1.7) holds. For more uniform stability results for Timoshenko system and its
extended models, we refer to [3,12,15,16,20,27,31,34,45]. For nonlinear Timo-
shenko system, the decay results can be found in Grasselli et al. [18], Mũnoz
Rivera and Racke [32,33], Messaoudi and Mustafa [29,35], Messaoudi et al. [30].

(b) The speed equal condition (1.7) could be removed if stronger damping mechanism
is imposed on the Timoshenko system. For example, in [24], Kim and Renardy
placed two boundary feedback controls to the Timonshenko beam system and
established exponential stability for the energy functional by themultiplier method
without the speed equal condition (1.7). For more results of exponential decay
without speed equal condition but two damping on transverse displacement and
rotation angle added to the system, one could consult [38,42].

(c) For the Timoshenko system coupled with other equations, such as second sound, a
few other necessary and sufficient conditions for exponential stability are needed.
One can see Almeida Júnior et al. [1], Apalara [5], Santos et al. [40] for more
details.

(d) If the coefficients inTimoshenko systemare not constant, i.e., non-uniformmodels,
to obtain exponential decay with only one damping, one needs to assume similar
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conditions as (1.7), such as
ρ1(x)

k(x)
= ρ2(x)

b(x)
, (1.8)

one can refer to [4,35,44].
(e) The memory or history terms added to Timoshenko system provide dissipation

similar to mechanical damping to the system. The distributed or continuous delays
on the other hand could not provide any dissipation. Thus, with presence of delay
terms, to obtain exponential decay, damping is necessary. The exponential decay
results in this direction that depend on the damping and speed equal condition,
could be found in [5–8,13,14,19,21–23,25,39,41,47] and literatures therein.

Although there are fruitful works on the Timoshenko system as reviewed above,
many literatures pay attentions to well-posedness and decay. There are less results on
for example the existence of attractors of theTimoshenko system, one of themain goals
of thework presented in this article. One relatedwork could be found in Feng andYang
[13]. One of the main features of our work that differ from the previously available
results is that we consider a variable continuous delay (sub-linear operator). Inspired
by Marín-Rubio and Real [28], this article is concerned with the finite dimensionality
and structure of attractors for the nonlinear Timoshenko system with variable delay.
Due to the destabilizing effect of the delay term, the strength of the delay term has to
be weaker than that of the damping. The main features and difficulties of the proof
are:

(1) Transforming system (1.4) into equivalent form to overcome the difficulty arising
from variable delay: The transformation is motivated by [11,13,14,36] and [43].
However, since the delay is dependent on time, the equivalent system has variable
coefficients. This difficulty is circumvented by imposing boundedness and sub-
linear growth conditions (2.1) on the delay function as in [28], and we use the
upper and lower boundedness of variable delay to deal with it.

(2) The existence of global attractor to a dynamical system depends on establishing
the invariance, attracting property and compactness of semigroup. The invariance
property is satisfied if the underlying semigroup is strongly continuous. Thus, we
focus on proving the other two properties attracting and compactness:
item[(2-I)] Attracting: The attracting property is obtained from the existence of
a bounded absorbing set, the proof of which hinges on applying semigroup and
multiplier methods and establishing a series of estimates on the source term f (ψ)

and the delay term ψt (x, t − τ(t));
item[(2-II)]Compactness:Usingquasi-stabilitymethodbyLasiecka andChueshov
[9] or [10], (see the theory in Sect. 3.1), we prove the asymptotic smoothness of
the semigroup generated by the global solution. This in turn implies the existence
of finite dimensional global and exponential attractors composed of unstable man-
ifold of equilibrium. The key step and most difficult point to the proof lies in
verifying quasi-stability.

(3) If the variable delay becomes a constant, the system (1.4) reduces to the Timo-
shenkoproblemwith constant delay as in [14]. Thismeans our result is an extension
of Feng and Yang’s results.
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(4) To obtain the estimates of the energy function defined in (3.5), we construct a
Lyapunov functional which is equivalent to the energy function. With the help of
this Lyapunov functional we are able to obtain the absorbing set for the energy.
The Lyapunov functional is obtained by energy estimate, which can be controlled
by using multiplier method (i.e., perturbed energy functional).

The rest of this article is arranged as follows: In Sect. 2, we present some prelimi-
naries and the main results: well-posedness of global solution and existence of global
attractor to (1.4). The proof of main results can be found in Sect. 3.

2 Main Results: Finite Fractal Dimensional Global and Exponential
Attractors

2.1 Equivalent Initial and Boundary Value Problem

Weassume that the delay function (sub-linear operator) τ(t) in (1.4) is aC1 continuous
function which satisfies

τ(0) = τ0, 0 ≤ τ(t) ≤ τm, 0 < τ ′(t) ≤ 1, (2.1)

where τ0 ≥ 0, τm > 0.
A new dependent variable for the delay feedback term (See Datko et al. [11]) can

be written as:
z(x, η, t) = ψt (x, t − ητ), η ∈ [0, 1], t > 0. (2.2)

and we have

τ zt (x, η, t) + (1 − ητ ′)zη(x, η, t) = 0 in (0, 1) × (0, 1) × (0,+∞). (2.3)

Using this transformation, the system (1.4) is converted to its equivalent form

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ1ϕt t (x, t) − k(ϕx + ψ)x (x, t) = h(x),

ρ2ψt t (x, t) − bψxx (x, t) + k(ϕx + ψ)(x, t) + μ1ψt (x, t) + μ2z(x, 1, t)

+ f (ψ(x, t)) = g(x),

τ zt (x, η, t) + (1 − ητ ′)zη(x, η, t) = 0
(2.4)

with (x, η, t) ∈ (0, 1) × (0, 1) × (0,+∞).
The new equivalent system (2.4) is equipped with the initial condition

{
ϕ(x, 0) = ϕ0, ϕt (x, 0) = ϕ1, ψ(x, 0) = ψ0, ψt (x, 0) = ψ1, x ∈ (0, 1),

z(x, η, 0) = f0(x,−ητ0), (x, η) ∈ (0, 1) × (0, 1)
(2.5)
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and boundary condition

{
ϕ(0, t) = ϕ(1, t) = ψ(0, t) = ψ(1, t) = 0, t > 0,

z(x, 0, t) = φt (x, t), t > 0.
(2.6)

2.2 Well-Posedness

For the equivalent system (2.4)–(2.6), we give the following assumptions:

(H.1)
ρ1

ρ2
= k

b
, which implies that both waves on the system have equal propagation

speed.
(H.2) 0 < μ2 < μ1 which is necessary to derive the energy estimates. Since some

literatures shown that the system (2.4)–(2.6) (when f (ψ) = 0 and delay term
is reduced) is exponentially stable only if μ2 < μ1, here we can not avoid this
assumption.

(H.3) The nonlinear function f (ψ) satisfies f (0) = 0 and

| f (ψ1) − f (ψ2)| ≤ k0(|ψ1|θ + |ψ2|θ )|ψ1 − ψ2| (2.7)

with θ > 0 and k0 > 0, ψ1, ψ2 ∈ L∞(0, 1) .

Based on the equivalent equation, we introduce u = ϕt and v = ψt , and set
U = (ϕ, u, ψ, v, z)T , hence the operator A and F can be defined as

AU =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u
k

ρ1
(ϕxx + ψx )

v
b

ρ2
ψxx − k

ρ2
(ϕx + ψ) − μ1

ρ2
v − μ2

ρ2
z(·, 1)

−1 − ητ ′

τ
zη

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, F =

⎛
⎜⎜⎜⎜⎝

0
h
0

− 1
ρ2

f (ψ) + g
0

⎞
⎟⎟⎟⎟⎠

(2.8)
with domain

D(A) = {(ϕ, u, ψ, v, z)T ∈ H : v(x, t) = z(x, 0, t) for x ∈ (0, 1)}, (2.9)

where

H =
(
H2(0, 1) ∩ H1

0 (0, 1)
)

× H1(0, 1) ×
(
H2(0, 1) ∩ H1

0 (0, 1)
)

× H1(0, 1)

×L2(0, 1; H1
0 (0, 1)). (2.10)
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Under the above definitions, the new system (2.4) can be written into the following
abstract form ⎧⎨

⎩
dU (t)

dt
= AU + F, t > 0,

U (0) = U0 = (ϕ0, ϕ1, ψ0, ψ1, f (·,−ητ0))
T .

(2.11)

The energy space is defined as

H := H1
0 (0, 1) × L2(0, 1) × H1

0 (0, 1) × L2(0, 1) × L2((0, 1) × (0, 1)). (2.12)

The inner product of energy spaceH is defined as

〈U , Ū 〉H =
∫ 1

0

[
ρ1uū + ρ2vv̄ + k(ϕx + ψ)(ϕ̄x + ψ̄) + bψx ψ̄x

]
dx

+ ξ

∫ 1

0

∫ 1

0
z(x, η)z̄(x, η)dηdx (2.13)

for U = (ϕ, u, ψ, v, z)T , Ū = (ϕ̄, ū, ψ̄, v̄, z̄)T .
Moreover, by assumption (H.2), we further assume for any t > 0, τ(t) satisfies

τ ′ ≤ 2(μ1 − μ2)

2μ1 − μ2
, (2.14)

then there is a constant ξ > 0, such that

τμ2

1 − τ ′ ≤ ξ ≤ 2τ
(
μ1 − μ2

2

)
. (2.15)

By the classical semigroup theory (see [26,37]), we obtain the following existence and
uniqueness results of global solution, i.e., Hadamard well-posedness.

Theorem 2.1 Assume that the hypothesis (H.1)–(H.3) hold, and (2.15) is true, then
for system (2.4). We have the following existence and uniqueness results:

1. (Existence and uniqueness of solution) Given U0 ∈ H, the abstract equivalent
equation (2.11) possesses a unique mild solution which generates a strongly con-
tinuous semigroup S(t) in the energy space H. The global mild solution can be
represented by

U (t) = S(t)U0 = eAt (ϕ0, ϕ1, ψ0, ψ1, f0(·,−ητ0))
T . (2.16)

2. (Continuous dependence on initial data) If U1 and U2 are two mild solutions of
problem (2.11), then there exists a constant C0 = C(U1(0),U2(0)), such that for
any T > 0,

‖U1(t) −U2(t)‖H ≤ eC0T ‖U1(0) −U2(0)‖H, for any 0 ≤ t ≤ T , (2.17)
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i.e., the solution is continuously dependent on the initial data and U (t) ∈
C(0, T ;H).

3. (Regularity) If U0 ∈ D(A), the above mild solution can be improved to a strong
solution.

Proof We apply Lumer–Philips Theorem, which yields Theorem 2.1.
Dissipativity of operator A: Given U = (ϕ, u, ψ, v, z)T from D(A), we have

〈AU ,U 〉H =
∫ 1

0
k(ϕxx + ψx )u + (bψxx − k(ϕx + ψ) − μ1v − μ2z(·, 1)) v

+ k(ux + v)(ϕx + ψ) + bvxψx dx + ξ

∫ 1

0

∫ 1

0
−1 − ητ ′

τ
zηz dη dx

= −μ1

∫ 1

0
v2 dx − μ2

∫ 1

0
z(x, 1, t)v dx + ξ

2τ

∫ 1

0
z2(x, 0, t) dx

− ξ(1 − τ ′)
2τ

∫ 1

0
z2(x, 1, t) dx − ξτ ′

2τ

∫ 1

0

∫ 1

0
z2(x, η, t) dη dx

= −
(

μ1 − ξ

2τ

)∫ 1

0
v2 dx − ξ(1 − τ ′)

2τ

∫ 1

0
z2(x, 1, t) dx

− μ2

∫ 1

0
z(x, 1, t)v dx − ξτ ′

2τ

∫ 1

0

∫ 1

0
z2(x, η, t) dη dx (2.18)

By (2.15), we have

μ2
2 ≤ 4

ξ(1 − τ ′)
2τ

(
μ1 − ξ

2τ

)
⇒ μ2 ≤ 2

√
ξ(1 − τ ′)

2τ

(
μ1 − ξ

2τ

)
(2.19)

Thus,

−
(

μ1 − ξ

2τ

)∫ 1

0
v2 dx − ξ(1 − τ ′)

2τ

∫ 1

0
z2(x, 1, t) dx − μ2

∫ 1

0
z(x, 1, t)v dx ≤ 0

(2.20)
Therefore,

〈AU ,U 〉H ≤ −ξτ ′

2τ

∫ 1

0

∫ 1

0
z2(x, η, t) dη dx < 0 (2.21)

The dissipativity of A is proved.
Maximality of I − A: we want to show that I − A is surjective on D(A) → H.

Given ( f1, f2, f3, f4, f5)T ∈ H, we seek a U = (ϕ, u, ψ, v, z) ∈ D(A) satisfying

(
I − A

)
⎛
⎜⎜⎜⎜⎝

ϕ

u
ψ

v

z

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

f1
f2
f3
f4
f5

⎞
⎟⎟⎟⎟⎠ (2.22)
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That is

ϕ − u = f1 (2.23)

u − k

ρ1

(
ϕxx + ψx

) = f2 (2.24)

ψ − v = f3 (2.25)

v − 1

ρ2
(bψxx − k(ϕx + ψ) − μ1v − μ2z(·, 1)) = f4 (2.26)

z + 1 − ητ ′

τ
zη = f5 (2.27)

z(·, 0) = v(·) (2.28)

By standard ODE theory, we solve (2.27)–(2.28) and obtain that

z(x, η) = f5(x) + [
v(x) − f5(x)

]
(1 − τ ′η)

τ
τ ′ = ψ(x)(1 − τ ′η)

τ
τ ′

−[
f3(x) + f5(x)

]
(1 − τ ′η)

τ
τ ′ + f5(x) (2.29)

By (2.29), we know
z(x, 1) = f5(x) (2.30)

By (2.23) and (2.25), we get u = ϕ − f1 and v = ψ − f3. Plugging these into
(2.24) and (2.26), together with (2.30) yields

ρ1ϕ − k(ϕxx + ψx ) = ρ1( f1 + f2) (2.31)

ρ2ψ − bψxx + k(ϕx + ψ) + μ1ψ = ρ2( f3 + f4) + μ1 f3 + μ2 f5 (2.32)

Problem (2.31) can be reformulated as

∫ 1

0
ρ1ϕw1 − k(ϕx + ψ)xw1 dx =

∫ 1

0
ρ1( f1 + f2)w1 dx w1 ∈ H1

0 (0, 1) (2.33)

Problem (2.32) can be reformulated as

∫ 1

0
ρ2ψw2 − bψxxw2 + k(ϕx + ψ)w2 + μ1ψw2 dx

=
∫ 1

0
ρ2( f3 + f4)w2 + μ1 f3w2 + μ2 f5w2 dx w2 ∈ H1

0 (0, 1) (2.34)

Choosing the test functions w1 = ϕ and w2 = ψ and summing up the left side of
(2.33) and (2.34) gives

∫ 1

0
ρ1ϕϕ − k(ϕx + ψ)xϕ dx +

∫ 1

0
ρ2ψψ − bψxxψ + k(ϕx + ψ)ψ + μ1ψψ dx
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=
∫ 1

0
ρ1ϕ

2 + k(ϕx + ψ)2 + ρ2ψ
2 + bψ2

x + μ1ψ
2 dx (2.35)

So the sum of the left side of (2.33) and (2.34) is coercive for (ϕ, ψ) on H1
0 (0, 1) ×

H1
0 (0, 1). In addition system (2.31)–(2.32) is linear. Thus there exists a solution (ϕ, ψ)

on H1
0 (0, 1) × H1

0 (0, 1) for system (2.31)–(2.32). Next using (2.23) and (2.25), we
are able to solve for u and v. Therefore, we have found (ϕ, u, ψ, v, z) ∈ D(A) which
solve system (2.23)–(2.27). The maximality of I − A is proved.

Thus, by Lummer–Phillips Theorem, We have proved that A generates a strongly
continuous semigroup S(t) in the energy space H. Thus item (1) in Theorem 2.1
holds. The continuous dependence of the solution on initial data can also be obtained.
Using the existence theory of global solution for the Cauchy problem for abstract
evolutionary equation in [26], we can get item (3) the regularity result Theorem 2.1.

��

2.3 Finite Dimensional Dynamic Systems: Global and Exponential Attractors

After establishing the Hadamard well-posedness, using the idea of quasi-stability in
Lasiecka and Chueshov [9] or [10], we could establish the existence of the finite
dimensional global and exponential attractors.

Theorem 2.2 Assume (H.1)–(H.3). If g, h ∈ L2(0, 1), for any initial condition U0 ∈
H, then

(1) The dynamical system (S(t),H) generated by the abstract system (2.11) has a
compact finite dimensional global attractor A inH.

(2) The global attractor A inH has the structure:

A = M+(N ) (2.36)

where N = {y ∈ H, S(t)y = y} for all t > 0 is the set of stationary points and
M+(N ) is the unstable manifold from the set emanating from the set N .

(3) Moreover, the gradient system has a generalized exponential attractorAexp ⊂ H

with finite fractal dimension inH.

Proof These results are established in Sect. 3 via deriving existence of the absorbing
set and verifying quasi-stability for the semigroup. ��

3 Proof of Main Result

3.1 Preliminaries: The Preliminary Theory of Quasi-Stability and Attractors

The existence of a global attractor requires three sufficient properties: continuity prop-
erty (continuous-semigroup), dissipative property (absorbing set) and compactness
property (asymptotic compactness). In this section, we will first briefly review the
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basic definitions and theory of global attractor and then review the quasi-stability the-
ory as shown in Lasiecka and Chueshov [9,10]. More details could be found in the
original papers [9,10].

• Some Definitions:

We shall give some preliminary definitions.

Definition 3.1 (a) (Dissipation) A set B0 ⊂ X is called an absorbing set for the semi-
group S(t) (t ≥ 0) if for any bounded set B ⊂ X there exists a time t1 = t1(B) > 0
such that for all t > t1, S(t)B ⊆ B0.

(b) (Asymptotic smoothness) The semigroup S(t) (t ≥ 0) is said to be asymptotically
smooth in X if for any closed bounded subset B ⊂ X satisfying S(t)B ⊂ B, there
exists a nonempty compact set K = K (B) ⊂ X such thatdist(S(t)B, K (B)) → 0
as t → ∞.

(c) (Asymptotic compactness) A dynamical system (X , S(t)) is asymptotically com-
pact if for any bounded set B ⊂ X , and sequence {xk} ⊂ B, the sequence {S(tk)xk}
has convergent subsequence as tk → ∞.

Definition 3.2 A compact setA ⊂ X is called a global attractor of the semigroup S(t)
if

(i) A is strictly invariant with respect to S(t), i.e., for all t ≥ 0, S(t)A = A
(ii) A attracts any bounded set B ⊂ X : for any ε > 0 there exists a time t1 =

t1(ε, B) > 0 such that for all t ≥ t1(ε, B), S(t)B ⊆ Oε(A), where Oε(A) is an
ε-neighborhood of A in X .

Definition 3.3 Given a compact set M in a metric space X , the fractal dimension of
M is defined by

dimX
f M = lim sup

ε→0

ln N (M, ε)

ln(1/ε)
,

where N (M, ε) is the minimal number of closed balls with radius ε > 0 which cover
M .

• Quasi-Stability and Global Attractors:

Definition 3.4 (X , S(t)) is called a gradient system if it admits a strict Lyapunov
function, i.e., a functional � : X → R is a strict Lyapunov function for the system
(X , S(t)) if

(i) the map t → �(S(t)z) is non-increasing for any z ∈ X ;
(ii) if �(S(t)z) = �(z) for all t , then z is a stationary point of S(t).

Definition 3.5 The continuous semigroup generated by a dynamic system (or gradient
system) possesses a global attractor A if

(1) there exists an absorbing set for semigroup,
(2) the semigroup (or gradient system) is asymptotically smooth or compact.
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The asymptotic smoothness and compactness of semigroup are difficult to verify,
so some other criteria, such as condition-(C) method, contractive function technique,
quasi-stability, are used instead. In this article, we apply the quasi-stability theory,
which we briefly review below.

Definition 3.6 The unstable manifold M+(N ) is defined as the family of y ∈ X such
that there exists a full trajectory u(t) satisfying

u(0) = y, and lim
t→−∞ distX (u(t),N ) = 0, (3.1)

here N is the set of equilibrium for S(t).

Theorem 3.1 (See Chueshov and Lasiecka [10]) Assume that the gradient system
(S(t), X) with corresponding Lyapunov functional � is asymptotically compact.
Moreover, assume that

(I) �(S(t)z) → ∞ if and only if ‖z‖X → ∞,
(II) the set of equilibrium N is bounded.

Then, the gradient system (S(t), X) possesses a compact global attractor A ⊂ X
which has the structure A = M+(N ).

Definition 3.7 (See Chueshov and Lasiecka [9,10]) The dynamical system (S(t), X)

is quasi-stable on a set B ⊂ X if there exists a compact semi-norm nY on Y , the
subspace of X and nonnegative scalar functions a(t) and c(t), locally bounded on
[0,∞) and b(t) ∈ L1(R+) with lim

t→∞ b(t) = 0, such that for U1, U2 ∈ B

‖S(t)U1 − S(t)U2‖2X ≤ a(t)‖U1 −U2‖2X , (3.2)

‖S(t)U1 − S(t)U2‖2X ≤ b(t)‖U1−U2‖2X +c(t) sup
0<s<t

[
nY (y1(s)−y2(s))

]2
. (3.3)

Inequality (3.3) is usually called stabilizability inequality.

Theorem 3.2 (See Chueshov and Lasiecka [9,10]) Based on the quasi-stability prop-
erty of gradient system, we have

(a) Let (X , S(t)) be a dynamical systemand suppose that the system is quasi-stable on
every bounded positively invariant set B ⊂ X. Then (X , S(t)) is asymptotically
compact.

(b) Suppose that the dynamical system has a global attractorA and it is quasi-stable.
Then, the global attractor A has finite fractal dimension.

• Fractal Dimensional Exponential Attractors:

Quasi-stability also implies the existence of finite fractal dimensional exponential
attractors.
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Theorem 3.3 (See Chueshov and Lasiecka [9,10]) Assume (X , S(t)) is a dissipative
dynamical system satisfying quasi-stable property on some bounded absorbing set B,
and there exists an external space X̃ with X ⊂ X̃ , such that for every T > 0,

‖S(t1)y − S(t2)y‖X̃ ≤ CBT |t1 − t2|η, t1, t2 ∈ [0, T ], y ∈ B, (3.4)

where CBT and η ∈ (0, 1] are positive constants. Then this system has a generalized
finite fractal dimensional exponential attractor Aexp in X̃ .

3.2 Dissipation: Lyapunov Functional and Existence of Absorbing Set

In this section, we shall use multiplier method to establish the existence of absorbing
set for our semigroup.

Step 1: The estimate of energy functional E(t).
We define the energy functional for system (2.4)–(2.6) as

E(t) =1

2

∫ 1

0

[
ρ1ϕ

2
t + ρ2ψ

2
t + k(ϕx + ψ)2 + bψ2

x

]
dx

+ ξ

2

∫ 1

0

∫ 1

0
z2(x, η, t) dη dx +

∫ 1

0
f̂ (ψ(t)) dx −

∫ 1

0
(hϕ + gψ) dx,

(3.5)

where ξ satisfies (2.15). Moreover, we define f̂ (ψ(t)) =
∫ ψ(t)

0
f (z) dz throughout

the remaining of the paper.

Lemma 3.4 The energy functional satisfies the following estimate

E(t) ≥CE

(∫ 1

0
ϕ2
t dx +

∫ 1

0
ψ2
t dx +

∫ 1

0
|ϕx + ψ |2 dx +

∫ 1

0
ψ2
x dx

+
∫ 1

0
f̂ (ψ(t)) dx

)
+ ξ

2

∫ 1

0

∫ 1

0
z2(x, η, t) dη dx − Ch,g

(‖h‖22 + ‖g‖22
)
.

(3.6)

Proof See, e.g., Feng and Yang [14]. ��

Lemma 3.5 The derivative of the energy functional satisfies the following estimate

E ′(t) ≤ −C
∫ 1

0
ψ2
t (x, t) dx − C

∫ 1

0
z2(x, 1, t) dx − C

∫ 1

0

∫ 1

0
z2(x, η, t) dη dx .

(3.7)
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Proof

dE(t)

dt
=
∫ 1

0
[ρ1ϕt tϕt + ρ2ψt tψt + k(ϕx + ψ)(ϕxt + ψt ) + bψxψxt ] dx

+ ξ

∫ 1

0

∫ 1

0
z(x, η, t)zt (x, η, t) dη dx +

∫ 1

0
f (ψ(t))ψ ′(t) dx

−
∫ 1

0
(hϕt + gψt ) dx . (3.8)

Since ρ1ϕt t = k(ϕx +ψ)x + h, ρ2ψt t = bψxx − k(ϕx +ψ)−μ1ψt −μ2z(x, 1, t)−
f (ψ(t)) + g, thus it follows

∫ 1

0
[ρ1ϕt tϕt + ρ2ψt tψt ] dx

=
∫ 1

0
[k(ϕx + ψ)x + h]ϕt + [bψxx − k(ϕx + ψ) − μ1ψt − μ2zt (x, 1, t)

− f (ψ(t)) + g]ψt dx

=
∫ 1

0
−k(ϕx + ψ)ϕxt − bψxψxt − k(ϕx + ψ)ψt − μ1ψ

2
t − μ2z(x, 1, t)ψt dx

+
∫ 1

0
hϕt + gψt dx −

∫
f (ψ(t))ψt dx

=
∫ 1

0
−k(ϕx + ψ)(ϕxt + ψt ) − bψxψxt dx +

∫ 1

0
hϕt + gψt dx

−
∫

f (ψ(t))ψt dx − μ1

∫ 1

0
ψ2
t dx − μ2

∫ 1

0
z(x, 1, t)ψt dx . (3.9)

Moreover,

∫ 1

0

∫ 1

0
z(x, η, t)zt (x, η, t) dη dx

= −
∫ 1

0

∫ 1

0

1 − ητ ′

τ
z(x, η, t)zη(x, η, t) dη dx

= − 1

2τ

∫ 1

0
z2(x, 1, t) − z2(x, 0, t) dx + τ ′

2τ

∫ 1

0

∫ 1

0
η

∂

∂η
z2(x, η, t)dη dx

= − 1

2τ

∫ 1

0
z2(x, 1, t) − z2(x, 0, t) dx + τ ′

2τ

∫ 1

0
z2(x, 1, t) dx

− τ ′

2τ

∫ 1

0

∫ 1

0
z2(x, η, t)dη dx
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= 1

2τ

∫ 1

0
z2(x, 0, t) dx − 1 − τ ′

2τ

∫ 1

0
z2(x, 1, t) dx

− τ ′

2τ

∫ 1

0

∫ 1

0
z2(x, η, t)dη dx . (3.10)

Plugging the above results into (3.8), we get

dE(t)

dt
= −μ1

∫ 1

0
ψ2
t dx − μ2

∫ 1

0
z(x, 1, t)ψt dx + ξ

2τ

∫ 1

0
z2(x, 0, t) dx

−ξ(1 − τ ′)
2τ

∫ 1

0
z2(x, 1, t) dx − ξτ ′

2τ

∫ 1

0

∫ 1

0
z2(x, η, t)dη dx

≤
(

−μ1 + μ2

2
+ ξ

2τ

)∫ 1

0
ψ2
t dx +

(
−ξ(1 − τ ′)

2τ
+ μ2

2

)∫ 1

0
z2(x, 1, t) dx

−ξτ ′

2τ

∫ 1

0

∫ 1

0
z2(x, η, t)dη dx . (3.11)

Using the condition (2.15), we can derive (3.7). ��
Step 2: Estimating the perturbed energy functional L

The perturbed energy functional is defined as

L = ME(t)+1

8
I1(t)+N I2(t)+J (t)+ε

k

∫ 1

0
ρ1qϕtϕx dx+ρ2b

4ε

∫ 1

0
qψtψx dx+I3(t),

(3.12)
where

I1(t) = −
∫ 1

0
ρ1ϕϕt + ρ2ψψt dx − μ1

2

∫ 1

0
ψ2 dx, (3.13)

I2(t) =
∫ 1

0
(ρ2ψtψ + ρ1ϕt ψ̂) dx + μ1

2

∫ 1

0
ψ2 dx, (3.14)

J (t) = ρ2

∫ 1

0
ψt (ϕx + ψ) dx + ρ2

∫ 1

0
ψxϕt dx, (3.15)

I3(t) =
∫ 1

0

∫ 1

0
e−2τηz2(x, η, t) dη dx . (3.16)

Lemma 3.6 Let (ϕ, ϕt , ψ,ψt , z) be the solution to system (2.4)–(2.6), then the auxil-
iary functional I1 satisfies the following estimate: for any ε > 0

d

dt
I1(t) ≤ −

∫ 1

0
(ρ1ϕ

2
t + ρ2ψ

2
t ) dx + (k + 2λ1ε)

∫ 1

0
(ϕx + ψ)2 dx

+
(
b + μ2ε + 3ε + 1

ε

)∫ 1

0
ψ2
x dx + μ2

4λ1ε

∫ 1

0
z2(x, 1, t) dx + 1

4λ21ε

∫ 1

0
h2 dx + 1

4λ1ε

∫ 1

0
g2 dx

+ ε

4λ1
‖ψ‖θ+1

θ+1, (3.17)

where λ1 > 0 is the first eigenvalue of −� in H1
0 (0, 1).
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Proof Differentiating I1, using Green’s first identity together with the zero boundary
condition for ϕ and ψ , we derive that

d I1
dt

= −
∫ 1

0
ρ1ϕt tϕ +ρ2ψt tψ dx −

∫ 1

0
ρ1ϕ

2
t +ρ2ψ

2
t dx −μ1

∫ 1

0
ψψt dx . (3.18)

By virtue of (2.4), we have

d I1
dt

= −
∫ 1

0
[k(ϕx + ψ)x + h]ϕ + [bψxx − k(ϕx + ψ) − μ1ψt − μ2z(x, 1, t)

− f (ψ) + g]ψ dx −
∫ 1

0
ρ1ϕ

2
t + ρ2ψ

2
t dx − μ1

∫ 1

0
ψψt dx

= −
∫ 1

0
ρ1ϕ

2
t + ρ2ψ

2
t dx +

∫ 1

0
k(ϕx + ψ)2 + bψ2

x dx +
∫ 1

0
μ2z(x, 1, t)ψ dx

+
∫ 1

0
f (ψ)ψ dx −

∫ 1

0
hϕ + gψ dx . (3.19)

By Poincare’s and Young’s inequality, we have for any ε > 0∫ 1

0
|z(x, 1, t)ψ | dx ≤ ελ1

∫ 1

0
ψ2 dx + 1

4ελ1

∫ 1

0
z2(x, 1, t) dx

≤ ε

∫
ψ2
x dx + 1

4ελ1

∫ 1

0
z2(x, 1, t) dx, (3.20)

∫ 1

0
| f (ψ)ψ | dx ≤

∫ 1

0
|ψ |θ |ψ ||ψ | dx

≤ ε

4λ1

∫ 1

0
ψθ+1 dx + λ1

ε

∫ 1

0
ψ2 dx

≤ ε

4λ1
‖ψ‖θ+1

θ+1 + 1

ε

∫ 1

0
ψ2
x dx, (3.21)

∫ 1

0
|(hϕ + gψ)| dx ≤ λ21ε

∫ 1

0
ϕ2 dx + 1

4ελ21

∫ 1

0
h2 dx + λ1ε

∫ 1

0
ψ2 dx

+ 1

4ελ1

∫ 1

0
g2 dx

≤ λ1ε

∫ 1

0
ϕ2
x dx + 1

4ελ21

∫ 1

0
h2 dx + ε

∫ 1

0
ψ2
x dx

+ 1

4ελ1

∫ 1

0
g2 dx . (3.22)

Also noting that ∫ 1

0
ϕ2
x dx ≤ 2

∫ 1

0
(ϕx + ψ)2 dx + 2

∫ 1

0
ψ2 dx (3.23)

and combining with the above estimates, we get (3.17). ��
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Lemma 3.7 Let ψ̂ be the solution of the following boundary value problem

ψ̂xx = −ψx , ψ̂(0, t) = ψ̂(1, t) = 0, (3.24)

then the auxiliary functional I2(t) satisfies the following estimates for any α1 > 0 and
α2 > 0:

d I2(t)

dt
≤ (

(μ2 + 3)α1 − b
) ∫ 1

0
ψ2
x dx + (ρ2 + ρ1α2)

∫ 1

0
ψ2
t dx + ρ1

4λ1α2

∫ 1

0
ϕ2
t dx

+ μ2

4λ1α1

∫ 1

0
z2(x, 1, t) dx + 1

4λ1α1

∫ 1

0
(g2 + h2) dx + 1

4λ1α1
‖ψ‖θ+1

θ+1.

(3.25)

Proof Integrating by parts, using Green’s first identity and zero boundary condition
for ϕ and ψ , we derive that

d I2(t)

dt
=
∫ 1

0
(ρ2ψt tψ + ρ2ψ

2
t + ρ1ϕt t ψ̂ + ρ1ϕt ψ̂t ) dx + μ1

∫ 1

0
ψψt dx

= − b
∫ 1

0
ψ2
x dx − k

∫ 1

0
ψ2 dx + k

∫ 1

0
ψ̂2
x dx − μ2

∫ 1

0
z(x, 1, t)ψ dx

−
∫ 1

0
f (ψ)ψ dx + ρ2

∫ 1

0
ψ2
t dx + ρ1

∫ 1

0
ϕt ψ̂t dx +

∫ 1

0
gψ + hψ̂ dx .

(3.26)

From (3.24), we know that

∫ 1

0
ψ̂2
x dx ≤

∫ 1

0
ψ2 dx ≤

∫ 1

0
ψ2
x dx . (3.27)

Applying Young’s inequality and Poincere’s inequality, for positive constants α1, α2,

∫ 1

0
|z(x, 1, t)ψ | dx ≤ λ1α1

∫ 1

0
ψ2 dx + 1

4λ1α1

∫ 1

0
z2(x, 1, t) dx

≤ α1

∫ 1

0
ψ2
x dx + 1

4λ1α1

∫ 1

0
z2(x, 1, t) dx . (3.28)

Similarly, we have

∫ 1

0
|ϕt ψ̂t | dx ≤ α2

∫ 1

0
ψ2
t dx + 1

4λ1α2

∫ 1

0
ϕ2
t dx, (3.29)

∫ 1

0
|gψ | dx ≤ α1

∫ 1

0
ψ2
x dx + 1

4λ1α1

∫ 1

0
g2 dx, (3.30)
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∫ 1

0
|hψ̂ | dx ≤ α1

∫ 1

0
ψ̂2
x dx + 1

4λ1α1

∫ 1

0
h2 dx

≤ α1

∫ 1

0
ψ2
x dx + 1

4λ1α1

∫ 1

0
h2 dx, (3.31)

∫ 1

0
| f (ψ)ψ | dx ≤ α1

∫ 1

0
ψ2
x + 1

4λ1α1
‖ψ‖θ+1

θ+1. (3.32)

Incorporating (3.27)–(3.31) into (3.26), we obtain (3.25). ��

The functional J (t) satisfies the following lemma:

Lemma 3.8 J (t) satisfies the following estimates:

d J (t)

dt
≤ b[ψxϕx ]x=1

x=0 − k

2

∫ 1

0
(ϕx + ψ)2 dx +

((
1 + ρ2

ρ1

)
ε + k

8λ1

) ∫ 1

0
ψ2
x dx

+
(
ρ2 + 2μ2

1

k

) ∫ 1

0
ψ2
t dx + 2μ2

2

k

∫ 1

0
z2(x, 1, t) dx

+ 2

k

∫ 1

0
g2 dx + ρ2

4ρ1ε

∫ 1

0
h2 dx + 4

k
‖ψ‖θ+1

θ+1. (3.33)

Proof Integrating by parts, using Green’s first identity and zero boundary condition
for ϕ and ψ , we have

d

dt
J (t) = ρ2

∫ 1

0
ψt t (ϕx + ψ) dx + ρ2

∫ 1

0
ψt (ϕxt + ψt ) dx + ρ2

∫ 1

0
ψxtϕt dx

+ρ2

∫ 1

0
ψxϕt t dx . (3.34)

Recalling that
ρ1

ρ2
= k

b
, we have

d J (t)

dt
= b [ψxϕx ]

x=1
x=0 + ρ2

∫ 1

0
ψ2
t dx − k

∫ 1

0
(ϕx + ψ)2 dx − μ1

∫ 1

0
ψt (ϕx + ψ) dx

− μ2

∫ 1

0
(ϕx + ψ)z(x, 1, t) dx −

∫ 1

0
ϕx f (ψ) dx −

∫ 1

0
f (ψ)ψ dx

+
∫ 1

0
g(ϕx + ψ) dx + ρ2

ρ1

∫ 1

0
hψx dx . (3.35)
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By Young’s inequality and Poincare’s inequality, we have

∫ 1

0
|ϕx f (ψ)| dx ≤

∫ 1

0
|ϕx ||ψ |θ |ψ | dx ≤ k

16

∫ 1

0
ϕ2
x dx + 4

k
‖ψ‖θ+1

θ+1

≤ k

8

∫ 1

0
(ϕx + ψ)2 dx + k

8

∫ 1

0
ψ2 dx + 4

k
‖ψ‖θ+1

θ+1

≤ k

8

∫ 1

0
(ϕx + ψ)2 dx + k

8λ1

∫ 1

0
ψ2
x dx + 4

k
‖ψ‖θ+1

θ+1 (3.36)

and

∫ 1

0
|ψt (ϕx + ψ)| dx ≤ k

8μ1

∫ 1

0
(ϕx + ψ)2 dx + 2μ1

k

∫ 1

0
ψ2
t dx, (3.37)

∫ 1

0
|(ϕx + ψ)z(x, 1, t)| dx ≤ k

8μ2

∫ 1

0
(ϕx + ψ)2 dx + 2μ2

k

∫ 1

0
z2(x, 1, t) dx, (3.38)

∫ 1

0
|g(ϕx + ψ)| dx ≤ k

8

∫ 1

0
(ϕx + ψ)2 dx + 2

k

∫ 1

0
g2 dx, (3.39)

∫ 1

0
|hψx | dx ≤ ε

∫ 1

0
ψ2
x dx + 1

4ε

∫ 1

0
h2 dx . (3.40)

Incorporate (3.36)–(3.40) and (3.21) into (3.34), we will obtain estimate (3.33) in
Lemma 3.8. ��

We now need to deal with the boundary term b [ψxϕx ]
x=1
x=0. Setting

q(x) = −4x + 2, x ∈ (0, 1), (3.41)

then |q(x)| ≤ 2. Hence, the following lemma is obtained.

Lemma 3.9 b [ψxϕx ]
x=1
x=0 satisfies the following estimates

b[ψxϕx ]x=1
x=0 ≤ − ρ1ε

k

d

dt

∫ 1

0
qϕtϕx dx − bρ2

4ε

d

dt

∫ 1

0
qψtψx dx

+
(
k2ε

4
+ 8ε

)∫ 1

0
(ϕx + ψ)2 dx

+
(

ε

(
8

λ1
+ 1

)
+ b2

2ε
+ b2

ε3

)∫ 1

0
ψ2
x dx + 2ρ1ε

k

∫ 1

0
ϕ2
t dx

+
(

ρ2b

2ε
+ μ2

1

4

)∫ 1

0
ψ2
t dx + μ2

2

2

∫ 1

0
z2(x, 1, t) dx + ε

k2

∫ 1

0
h2 dx + 1

4

∫ 1

0
g2 dx .

(3.42)

Proof Firstly, it is obvious to obtain the following estimate:

b [ψxϕx ]
x=1
x=0 ≤ ε[ϕ2

x (1) + ϕ2
x (0)] + b2

4ε
[ψ2

x (1) + ψ2
x (0)]. (3.43)
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Next we consider

d

dt

∫ 1

0
bρ2qψtψx dx =

∫ 1

0
bρ2qψt tψx dx +

∫ 1

0
bρ2qψtψxt dx, (3.44)

where

∫ 1

0
bρ2qψt tψx dx

=
∫ 1

0
b2qψxψxx dx − bk

∫ 1

0
qψx (ϕx + ψ) dx

− bμ1

∫ 1

0
qψxψt dx − bμ2

∫ 1

0
qψx z(x, 1, t) dx

− b
∫ 1

0
qψx f (ψ) dx + b

∫ 1

0
qψx g dx

≤ − b2[ψ2
x (1) + ψ2

x (0)] + 2b2
∫ 1

0
ψ2
x dx + ε2k2

∫ 1

0
(ϕx + ψ)2 dx + b2

ε2

∫ 1

0
ψ2
x dx

+ 3b2

ε

∫ 1

0
ψx dx + εμ2

1

∫ 1

0
ψ2
t dx + εμ2

2

∫ 1

0
z(x, 1, t)2 dx + ε

∫ 1

0
g2 dx . (3.45)

Furthermore, because ψ(0, t) = ψ(1, t) ≡ 0, we have∫ 1

0
bρ2qψtψxt dx = 1

2
bρ2q(x)ψ2

t (x)|x=1
x=0 + 2bρ2

∫ 1

0
ψ2
t dx = 2bρ2

∫ 1

0
ψ2
t dx .

(3.46)

Thus,

d

dt

∫ 1

0
bρ2qψtψx dx

≤ − b2[ψ2
x (0) + ψ2

x (1)] + 2b2
∫ 1

0
ψ2
x dx + 2ρ2b

∫ 1

0
ψ2
t dx + 4b2

ε

∫ 1

0
ψ2
x dx

+ εk2
∫ 1

0
(ϕx + ψ)2 dx + μ2

1ε

∫ 1

0
ψ2
t dx+μ2

2ε

∫ 1

0
z(x, 1, t)2 dx+ε

∫ 1

0
g2 dx .

(3.47)

Similarly, we have

d

dt

∫ 1

0
ρ1qϕtϕx dx =

∫ 1

0
ρ1qϕt tϕx dx +

∫ 1

0
ρ1qϕtϕxt dx

=
∫ 1

0
kqϕxϕxx dx +

∫ 1

0
kqψxϕx dx +

∫ 1

0
qhϕx dx

+
∫ 1

0
ρ1qϕtϕxt dx
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≤ − k[ϕ2
x (0) + ϕ2

x (1)] + 4k
∫ 1

0
ϕ2
x dx + k

∫ 1

0
ψ2
x dx

+ 2ρ1

∫ 1

0
ϕ2
t dx + 1

k

∫ 1

0
h2 dx

≤ − k[ϕ2
x (0) + ϕ2

x (1)] + 8k
∫ 1

0
(ϕx + ψ)2 dx + k

(
8

λ1
+ 1

)∫ 1

0
ψ2
x dx

+ 2ρ1

∫ 1

0
ψ2
t dx + 1

k

∫ 1

0
h2 dx . (3.48)

Combining (3.47) and (3.48), we obtain

ε[ϕ2
x (0) + ϕ2

x (1)] + b2

4ε
[ψ2

x (0) + ψ2
x (1)]

≤ − ρ1ε

k

d

dt

∫ 1

0
qϕtϕx dx + 8ε

∫ 1

0
(ϕx + ψ)2 dx + ε

(
8

λ1
+ 1

)∫ 1

0
ψ2
x dx

+ 2ρ1ε

k

∫ 1

0
ϕ2
t dx + ε

k2

∫ 1

0
h2 dx − bρ2

4ε

d

dt

∫ 1

0
qψtψx dx + b2

2ε

∫ 1

0
ψ2
x dx + ρ2b

2ε

∫ 1

0
ψ2
t dx + b2

ε3

∫ 1

0
ψ2
x dx

+ k2ε

4

∫ 1

0
(ϕx + ψ)2 dx + μ2

1

4

∫ 1

0
ψ2
t dx + μ2

2

4

∫ 1

0
z2(x, 1, t) dx + 1

4

∫ 1

0
g2 dx, (3.49)

plugging (3.49) into (3.43), we obtain the estimate (3.42). ��

Lemma 3.10 The functional I3 satisfies the following estimate:

d

dt
I3(t) ≤ −2I3 − cτ

τ

∫ 1

0
z2(x, 1, t) dx + 1

τ

∫ 1

0
ψ2
t dx . (3.50)

Proof Differentiating I3, and then using integration by parts, we have

d I3
dt

= d

dt

∫ 1

0

∫ 1

0
e−2τηz2(x, η, t) dη dx

=
∫ 1

0

∫ 1

0
(−2τ ′η)e−2τηz2(x, η, t) dη dx +

∫ 1

0

∫ 1

0
e−2τη2zzt dη dx

=
∫ 1

0

∫ 1

0
(−2τ ′η)e−2τηz2(x, η, t) dη dx +

∫ 1

0

∫ 1

0

ητ ′ − 1

τ
e−2τη2zzη dη dx

= −2τ ′
∫ 1

0

∫ 1

0
ηe−2τηz2 dη dx + τ ′

τ

∫ 1

0

∫ 1

0
ηe−2τη dz2 dx

− 1

τ

∫ 1

0

∫ 1

0
e−2ητ dz2 dx, (3.51)

τ ′
τ

∫ 1

0

∫ 1

0
ηe−2τη dz2 dx = τ ′

τ

∫ 1

0

∫ 1

0
ηe−2τηz2

∣∣∣η=1

η=0
dx

− τ ′
τ

∫ 1

0

∫ 1

0
(1 − 2τη)e−2τηz2 dη dx, (3.52)

123



318 Applied Mathematics & Optimization (2021) 83:297–326

1

τ

∫ 1

0

∫ 1

0
e−2τη dz2 dx = 1

τ

(∫ 1

0
e−2τηz2

∣∣∣η=1

η=0
dx −

∫ 1

0

∫ 1

0
(−2τ)e−2τηz2 dη dx

)
.

(3.53)

The above three equations yield

d I3
dt

= d

dt

∫ 1

0

∫ 1

0
e−2τηz2(x, η, t) dη dx

=
∫ 1

0

∫ 1

0
−2τ ′ηe−2τηz2 dη dx + τ ′

τ

∫ 1

0
e−2τ z2(x, 1, t) dx

− τ ′

τ

∫ 1

0

∫ 1

0
e−2τηz2 dη dx +

∫ 1

0

∫ 1

0
2τ ′ηe−2τηz2 dη dx − 1

τ

∫ 1

0
e−2τ z2(x, 1, t) − ψ2

t (x, t) dx

− 2
∫ 1

0

∫ 1

0
e−2τηz2 dη dx = τ ′ − 1

τ

∫ 1

0
e−2τ z2(x, 1, t) dx

−
(

τ ′

τ
+ 2

)∫ 1

0

∫ 1

0
e−2τηz2 dη dx + 1

τ

∫ 1

0
ψ2
t (x, t) dx, (3.54)

which implies that (3.50) holds. ��

Step 3: Using the perturbed energy functional L to control E(t).
By some delicate estimates, we could establish the following lemma.

Lemma 3.11 For M large enough, there exists two positive constants γ1 and γ2,
depending on M, N, and ε such that for any t ≥ 0,

γ1E(t) − C1(‖h‖2 + ‖g‖2) ≤ L(t) ≤ γ2E(t) + C1(‖h‖2 + ‖g‖2). (3.55)

Proof Integrating by parts, we have

∣∣∣L(t) − ME(t)
∣∣∣ ≤ 1

8

∣∣∣ ∫ 1

0
ρ1ϕϕt + ρ2ψψt dx + μ1

2

∫ 1

0
ψ2 dx

∣∣∣
+ N

∣∣∣ ∫ 1

0
(ρ2ψtψ + ρ1ϕt ψ̂) dx + μ1

2

∫ 1

0
ψ2 dx

∣∣∣
+
∣∣∣ρ2

∫ 1

0
ψt (ϕx + ψ) dx + ρ2

∫ 1

0
ψxϕt dx

∣∣∣ + ε

k

∣∣∣ ∫ 1

0
ρ1qϕtϕx dx

∣∣∣
+ ρ2b

4ε

∣∣∣ ∫ 1

0
qψtψx dx

∣∣∣ + ∣∣∣ ∫ 1

0

∫ 1

0
z2(x, η, t) dη dx

∣∣∣. (3.56)

Noting that

∫ 1

0
ϕ2 dx ≤

∫ 1

0
ϕ2
x dx ≤ 2

∫ 1

0
(ϕx + ψ)2 dx + 2

∫ 1

0
ψ2
x dx,

∫ 1

0
ψ2 dx ≤

∫ 1

0
ψ2
x dx,

(3.57)
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we have

|L(t) − ME(t)| ≤ β1

∫ 1

0
ϕ2
t dx + β2

∫ 1

0
ψ2
t dx

+ β3

∫ 1

0
(ϕx + ψ)2 dx + β4

∫ 1

0
ψ2
x dx

+
∫ 1

0

∫ 1

0
z2(x, η, t) dη dx, (3.58)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1 = 1

16
ρ1 + 1

2
ρ1N + 1

2
ρ2 + ε

k
,

β2 = 1

16
ρ2 + 1

2
ρ2N + 1

2
ρ2 + ρ2b

4ε
,

β3 = 1

8
ρ1 + 1

2
ρ2 + 2ε

k
,

β4 = ( 1

16
+ N

2

)
ρ2 + ( 1

16
+ N

2

)
μ1 + 1

2
ρ1N + ρ2

2
+ ρ2b

4ε
.

(3.59)

On the other hand, by Lemma 3.4, we have

E(t) ≥min{CE , ξ}
(∫ 1

0
ϕ2
t dx +

∫ 1

0
ψ2
t dx +

∫ 1

0
(ϕx + ψ)2 dx

+
∫ 1

0
ψ2
x dx +

∫ 1

0

∫ 1

0
z2(x, η, t)dη dx +

∫ 1

0
f̂ (ψ) dx

)
− Ch,g(‖h‖2 + ‖g‖2). (3.60)

Thus, combining (3.58) with (3.60), gives that there exists γ1 and γ2,

γ1E(t) − C1(‖h‖2 + ‖g‖2) ≤ L(t) ≤ γ2E(t) + C1(‖h‖2 + ‖g‖2), (3.61)

This finishes the proof of Lemma 3.11. ��
Step 4: Proof of dissipation-Existence of absorbing set.

By Lemmas 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, and 3.11, we have the following estimates:

d

dt
L(t) ≤

[
−MC − ρ2

8
+ N (ρ2 + ρ1α2) +

(
ρ2 + 2μ2

1

k

)
+

(
ρ2b

2ε
+ μ2

1

4

)
+ 1

τ

)]

×
∫ 1

0
ψ2
t dx

+
[
−MC + μ2

32λ1ε
+ Nμ2

4λ1α1
+ 2μ2

2

k
+ μ2

2

2
− cτ

τ

]∫ 1

0
z2(x, 1, t) dx
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+
[
−MC − e−2

] ∫ 1

0

∫ 1

0
z2(x, η, t) dη dx

+
[
−ρ1

8
+ Nρ1

4λ1α2
+ 2ρ1ε

k

] ∫ 1

0
ϕ2
t dx

+
[
−3k

8
+ λ2ε

4
+ k2ε

4
+ 8ε

] ∫ 1

0
(ϕx + ψ)2 dx

+
[
b + μ2ε + 3ε + 1

ε

8λ1
+ N ((μ2 + 2)α1 + ε − b) +

((
1 + ρ2

ρ1

)
ε + k

8λ1

)

+
(
ε
( 8

λ1
+ 1

)
+ b2

2ε
+ b2

ε3

)] ∫ 1

0
ψ2
x dx

+
( 1

32λ21ε
+ N

4λ1α1
+ ρ2

4ρ1ε
+ ε

k2

) ∫ 1

0
h2 dx

+
( 1

32λ1ε
+ N

4λ1α1
+ 2

k
+ 1

4

) ∫ 1

0
g2 dx

+
( ε

32λ1
+ N

4λ1α1
+ 4

k

)
‖ψ‖θ+1

θ+1. (3.62)

Let the positive constant ε <
k

32
small enough such that

− 3k

8
+ λ1ε

4
+ k2ε

4
+ 8ε < 0. (3.63)

Setting α1 <
b

2(μ2 + 3)
and letting N large enough, it follows

b + μ2ε + 3ε + 1
ε

8λ1
+N

(
(μ2+3)α1−b

)+(
1 + ρ2

ρ1

)
ε+ k

8λ1
+ε

(
8

λ1
+ 1

)
+ b2

2ε
+ b2

ε3
< 0.

(3.64)
Combining with ε < k

32 , setting α2 large enough such that

− ρ1

8
+ Nρ1

4λ1α2
+ 2ρ1ε

k
< 0. (3.65)

Lastly, choosing M large enough, there exists a δ, such that

d

dt
L(t) ≤ − δ

∫ 1

0

(
ϕ2
t + ψ2

t + (ϕx + ψ)2 + z2(x, 1, t) + ψ2
x

)
dx

− δ

∫ 1

0

∫ 1

0
z2(x, η, t) dη dx + C2‖g‖2 + C3‖h‖2 + C4‖ψ‖θ+1

θ+1. (3.66)
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Then by Lemma 3.4, there exists a σ > 0 such that

d

dt
L(t) ≤ −σ E(t) + C2‖g‖2 + C3‖h‖2 + C4‖ψ‖θ+1

θ+1. (3.67)

Combining with Lemma 3.11, we have

d

dt
L(t) ≤ − σ

γ2
L(t) + D2‖g‖2 + D3‖h‖2 + D4‖ψ‖θ+1

θ+1. (3.68)

Therefore, it yields

L(t) ≤ L(0)e
− σ

γ2
t + E2‖g‖2 + E3‖h‖2 + E4‖ψ‖θ+1

θ+1. (3.69)

By (3.55) in Lemma 3.11, we have

E(t) ≤ 1

γ1
(γ2E(0) + C1‖g‖2 + C1‖h‖2)e− σ

γ2
t + F2‖g‖2 + F3‖h‖2 + F4‖ψ‖θ+1

θ+1.

(3.70)
That is,

‖(ϕ, ϕt , ψ,ψt , z)‖2H ≤ C0e
− σ

γ2
t + C ′

2‖g‖2 + C ′
3‖h‖2 + C ′

4‖ψ‖θ+1
θ+1, (3.71)

which implies there exists an absorbing ball B(0, R) with radius

R = 1 +
√
C ′
2‖g‖2 + C ′

3‖h‖2 + C ′
4‖ψ‖θ+1

θ+1 (3.72)

for the dynamical system (S(t),H).

3.3 Asymptotic Compactness of Gradient System: Quasi-Stability

Inspired by the idea of Chueshov and Lasiecka [9,10], we only need to verify
quasi-stability for the gradient system, which implies asymptotic smoothness for our
semigroup.

Theorem 3.12 Assume (H.1)–(H.3) and h, g are in L2(0, 1), then there exists functions
b(t) and c(t), such that the semigroup defined in (2.16) satisfies the following quasi-
stability condition for initial conditions Ui

0 = (ϕi
0, ϕ

i
1, ψ

i
0, ψ

i
1, f i0 ) ∈ B(0, R) defined

in (3.72):

‖S(t)U 1
0 − S(t)U 2

0 ‖2H ≤ b(t)‖U 1
0 −U 2

0 ‖2H + c(t) sup
0<s<t

[
‖ψ1(s) − ψ2(s)‖θ+1

θ+1

]2
,

(3.73)
where ψi (t) = S(t)ψ i

0, b(t) and c(t) satisfy the conditions in Definition 3.7.
Moreover, the dynamical system (S(t),H) is quasi-stable on the absorbing set

defined in (3.72).
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Proof For any initial condition (ϕi
0, ϕ

i
1, ψ

i
0, ψ

i
1, f i0 ) ∈ B, let (ϕi , ϕi

t , ψ
i , ψ i

t , z
i ) be

the corresponding solutions with respect to the initial condition (ϕi
0, ϕ

i
1, ψ

i
0, ψ

i
1, f i ),

i = 1, 2. Letting

W (t) := (�, �t , �,�t ,Z)T = (ϕ1 − ϕ2, (ϕ1 − ϕ2)t , ψ
1 − ψ2, (ψ1 − ψ2)t , z

1 − z2)

= S(t)U1
0 − S(t)U2

0 = U1(t) −U2(t), (3.74)

then W (t) satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ1�t t (x, t) − k(�x + �)x (x, t) = 0,

ρ2�t t (x, t) − b�xx (x, t) + k(�x + �)(x, t),

+μ1�t (x, t) + μ2Z(x, 1, t) + f (ψ1(t)) − f (ψ2(t)) = 0,

τZ(x, η, t) + (1 − ητ ′)Zη(x, η, t) = 0

(3.75)

with initial and boundary conditions

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�(x, 0) = ϕ1
0 − ϕ2

0 , �t (x, 0) = ϕ1
1 − ϕ2

1 ,

�(x, 0) = ψ1
0 − ψ2

0 , �t (x, 0) = ψ1
1 − ψ2

1 ,

Z(x, 1, 0) = f 10 (x,−ητ) − f 20 (x,−ητ),

�(0, t) = �(1, t) = �(0, t) = �(1, t) = 0,

Z(x, 0, t) = �t (x, t).

(3.76)

Then we can define

F(t) = ‖U 1(t) −U 2(t)‖2H
=
∫ 1

0
(ρ1�

2
t + ρ2�

2
t + k(�x + �)2 + b�2

x ) dx + ξ

∫ 1

0

∫
Z2(x, η, t) dη dx .

(3.77)

There exists a constant c > 0, such that

d

dt
F(t) = −2μ1

∫ 1

0
�2

t dx − 2μ2

∫ 1

0
�tZ(x, 1, t) dx −

∫ 1

0

[
f (ψ1) − f (ψ2)

]
�t dx

≤ −c
∫ 1

0
�2

t + Z2(x, 1, t) dx −
∫ 1

0

[
f (ψ1) − f (ψ2)

]
�t dx

≤ −c
∫ 1

0
�2

t + Z2(x, 1, t) dx + CB

(
‖�(t)‖θ+1

θ+1

)2
, (3.78)
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The last term could be estimated by

∫ 1

0
|( f (ψ1) − f (ψ2))�t | dx ≤

∫ 1

0
(|ψ1|θ + |ψ2|θ )|�||�t | dx (3.79)

≤ (‖ψ1‖θ
θ+1 + ‖ψ2‖θ

θ+1)‖�‖θ+1‖�t‖ (3.80)

≤ ε‖�t‖2 + CB

(
‖�‖θ+1

θ+1

)2
. (3.81)

Now define the following functionals:

A1(t) = −
∫ 1

0
ρ1��t + ρ2��t dx − μ1

2

∫ 1

0
�2 dx, (3.82)

A2(t) =
∫ 1

0
(ρ2�t� + ρ1�t�̂) dx + μ1

2

∫ 1

0
�2 dx, (3.83)

A3(t) = ρ2

∫ 1

0
�t (�x + �) dx + ρ2

∫ 1

0
�x�t dx, (3.84)

A4(t) =
∫ 1

0

∫ 1

0
e−2τρZ(x, η, t) dη dx, (3.85)

F(t) := MF(t) + 1

8
A1(t) + N A2(t) + A3(t) + ε

k

∫ 1

0
ρ1q�t�x dx

+ρ2b

4ε

∫ 1

0
a�t�x dx + A4(t). (3.86)

Using the similar procedure as in Lemma 3.11, we could show that there exist γ1 > 0,
γ2 > 0, such that

γ1F(t) ≤ F(t) ≤ γ2F(t). (3.87)

Then using the similar technique as in the proof of Theorem 2.2, we obtain that there
exists a σ > 0 such that

d

dt
F(t) ≤ −σ F(t) + CB

(
‖�(t)‖θ+1

θ+1

)2 ≤ − σ

γ2
F(t) + CB

(
‖�(t)‖θ+1

θ+1

)2
. (3.88)

By Gronwall’s inequality, we have

F(t) ≤ F(0)e
− σ

γ2
t + C ′

B

∫ t

0
e
− σ

γ2
(t−s)

(
‖�‖θ+1

θ+1

)2
ds

≤ e
− σ

γ2
t‖U 1

0 −U 2
0 ‖2 + C ′

B

∫ t

0
e
− σ

γ2
(t−s)

ds sup
0<s<t

[
‖ψ1(s) − ψ2(s)‖θ+1

θ+1

]2
.

(3.89)

Setting b(t) = e
− σ

γ2
t
and c(t) = C ′

B

∫ t
0 e

− σ
γ2

(t−s)
ds. Then b(t) ∈ L1(R+) with

lim
t→∞ b(t) = 0 and c(t) is locally bounded for t ∈ [0,∞). Hence b(t) and c(t) satisfy

Definition 3.7, which means Theorem 3.12 is proved. ��

123



324 Applied Mathematics & Optimization (2021) 83:297–326

3.4 Proof of Main Result: Theorem 2.2

From Sect. 3.2, the dynamical system (S(t),H) possesses an absorbing set B(0, R)

with R defined in (3.72). By Theorem 3.12, if the initial conditions U 1
0 and U 2

0 are
from the absorbing ball B(0, R), then the trajectories S(t)U 1

0 and S(t)U 2
0 satisfies

the quasi-stability inequality (3.73). Moreover, by Theorem 2.1, S(t) is a strongly
continuous semigroup on the energy space H, thus

‖S(t)U 1
0 − S(t)U 2

0 ‖H ≤ eC0t‖U 1
0 −U 2

0 ‖H. (3.90)

Therefore by Definition 3.7, the dynamical system (S(t),H) is quasi-stable on the
absorbing set B(0, R). Then by Theorem 3.1 in Sect. 3.1, the global attractor B(0, R)

has a finite fractal dimension. In addition, the existence of finite dimensional expo-
nential attractor also can be obtained. This means Theorem 2.2 is established.

4 Conclusion and Further Research

In this paper, we establish thewell-posedness of global solution and existence of global
attractor for a 1D Timoshenko system subject to a single mechanical damping and a
continuous variable sub-linear time delay in the angular direction of beam filament’s
movement. The result depends on an interplay between the strength of the damping
and the time delay and suitable physical assumptions, such as speed equal condition
in the transversal and angular directions. A natural question to investigate next is the
convergence of corresponding attractors as delay disappears. In this context, most of
the results obtained in the literature has focused on constant delay. We would like
to investigate a similar question for the 1D Timoshenko system subject to a variable
delay, i.e. the upper semi-continuity of attractors as the variable delay approaches zero
in the future.
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