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Abstract
This paper deals with a class of time inconsistent stochastic linear quadratic optimal
control problems in Markovian framework. Three notions, i.e., closed-loop equilib-
rium strategies, open-loop equilibrium controls and open-loop equilibrium strategies,
are characterized in uni f ied manners. These results indicate clearer and deeper dis-
tinctions among these notions. For example, in particular time consistent setting, the
open-loop equilibriumcontrols are fully characterized by f irst-order , second-order
necessary optimali t y conditions, and are not optimal in general, while the closed-
loop equilibrium controls naturally reduce into closed-loop optimal controls.

Keywords Linear quadratic optimal control problems · Time inconsistency ·
Equilibrium controls · Riccati equations
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1 Introduction

Through out this paper, (�,F ,P,F) is a complete filtered probability space, on which
one-dimensional standard Brownian motion W (·) is defined. Here F ≡ {Ft }t≥0 is the
natural filtration of W (·) augmented by P-null sets.

1.1 Formulation of Time Inconsistent Optimal Control Problems

For any t ∈ [0, T ), we consider the following stochastic differential equation (SDE):
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⎧
⎪⎨

⎪⎩

dX(s) = [
A(s)X(s) + B(s)u(s) + b(s)

]
ds

+ [
C(s)X(s) + D(s)u(s) + σ(s)

]
dW (s), s ∈ [t, T ],

X(t) = ξ,

(1.1)

and the cost functional defined by

J (t, ξ ; u(·)) = 1

2
Et

{ ∫ T

t

[ 〈 Q(s)X(s), X(s) 〉 +2 〈 S(s)X(s), u(s) 〉
+ 〈 R(s)u(s), u(s) 〉 ]

ds + 〈GX(T ), X(T ) 〉
}
.

(1.2)

Here A, B,C, D, Q, S, R,G are suitable matrix-valued (deterministic) functions,
b, σ are proper stochastic processes, and Et (·) := E[ · |Ft ] stands for conditional
expectation operator. In the above, X(·), valued inRn , is called the state process, u(·),
valued in R

m , is called the control process, and (t, ξ) ∈ D is called the initial pair
where

D :=
{
(t, ξ)

∣
∣ t ∈ [0, T ], ξ is Ft -measurable, E|ξ |2 < ∞

}
.

We denote the set of all control processes by

U [t, T ] ≡
{
u : [t, T ] × � → R

m
∣
∣ u is F-progressively measurable,

E

∫ T

t
|u(s)|2ds < ∞

}
.

Under some mild conditions on the coefficients, for any initial pair (t, ξ) and a
control u(·) ∈ U [t, T ], the state equation (1.1) admits a unique solution X(·) =
X(· ; t, x, u(·)), and the cost functional J (t, ξ ; u(·)) is well-defined. We pose the fol-
lowing stochastic linear quadratic (SLQ) optimal control problem.

Problem (SLQ) For any given (t, ξ), find a ū(·) ∈ U [t, T ] such that

J (t, ξ ; ū(·)) = inf
u(·)∈U [t,T ]

J (t, ξ ; u(·)) �= V (t, ξ). (1.3)

Any ū(·) ∈ U [t, T ] satisfying (1.3) is called an optimal control for the given initial
pair (t, ξ), the corresponding state process X̄(·) is called an optimal state process for
(t, ξ), (X̄(·), ū(·)) is called an optimal pair for (t, ξ), and V (· , ·) is called the value
function of Problem (SLQ).

For above optimal control problem, it is reasonable to keep the state process stable
with respect to possible variation of random factors. To this end, one effective way is
to add the variation of X(·), i.e.

Vart [X ] := Et
[
X(T ) − Et X(T )

]2 = Et |X(T )|2 − [
Et X(T )

]2
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into the cost functional (e.g., [2,3,11–14,21,25], etc).Therefore, it is natural to propose
the following general modified cost functional

J (t, ξ ; u(·)) = 1

2
Et

{ ∫ T

t

[ 〈 Q(s)X(s), X(s) 〉 +2 〈 S(s)X(s), u(s) 〉
+ 〈 Q̃(s)Et [X(s)],Et [X(s)] 〉+2 〈 S̃(s)Et [X(s)],Et [u(s)] 〉
+ 〈 R(s)u(s), u(s) 〉 + 〈 R̃(s)Et [u(s)],Et [u(s)] 〉 ]

ds

+〈GX(T ), X(T ) 〉+ 〈 G̃Et [X(T )],Et [X(T )] 〉
}
.

(1.4)

Here S̃, R̃, G̃, Q̃ are deterministic matrices-valued functions and g is a vector.
In this scenario, the optimal controls become time-inconsistent, i.e., the “optimal”

control based on this moment may not keep optimality in future. We refer to [25] for
some explicit examples.

1.2 Related Literature

The study on time inconsistency by economists actually dates back to Strotz [17] in the
1950s. One possible way to treat time inconsistency is to discuss the pre-committed
controls for which the solutions are verified to be optimal only at the initial time.

In this paper, we shall discuss above optimal control problem from another view-
point. More precisely, we investigate the time inconsistency within a game-theoretic
framework and analyze the time-consistent equilibrium solution (e.g., [10,15]).
Recently, people began to treat the equilibrium controls using the ideas of stochastic
control theories, and developed several different approaches in the existing papers.
These methods range from dynamic programming principles and verification proce-
dures to maximum principles and variational techniques.

• In Björk-Murgoci [1], Björk et al [2], the authors examined a general class of time
inconsistent problems under Markovian framework by equilibrium value func-
tions. In the continuous case, they formally derived the extended HJB equations,
and then rigorously proved the verification theorem by the conclusions of dis-
crete time case, see Theorem 5.2 in [2]. They also present some special cases
including a linear quadratic control problem in which equilibrium solutions are
constructed. This method was also used to treat investment-reinsurance problems
with mean-variance criterion, see e.g., [14,27].

• In Yong [23,25], the author discussed a class of time inconsistent optimal control
problems by multi-person differential games approach, where a new kind of equi-
librium HJB equations/sytems of Riccati equations were introduced. Unlike [1,2],
they started the investigations in continuous time setting, made partition on time
intervals and used tricks of forward-backward stochastic differential equations
(FBSDEs). Further study along this can be found in [19,22], and so on.

• In Ekeland and Lazrak [8,9], they considered some financial problems such as
investment and consumptionmodelwith time-inconsistency feature. They used the
variational ideas to introduce certain feedback/closed-loop equilibrium controls,
and spread out discussions via equilibrium value functions. Compared with the
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general situation in [1,2], the particular form of equilibrium value functions were
proposed according to the given cost functional, while the complex convergence
arguments were avoided.

• Inspired by the ideas of stochastic maximum principles in optimal control theo-
ries, Hu et al. [11] studied a class of time inconsistent SLQ problems inMarkovian
setting, introduced open-loop equilibrium controls and their closed-loop represen-
tations, derived general sufficient conditions through a flow of FBSDEs or systems
of backward ordinary differential equations (ODEs). Just recently, the same authors
continued to discuss the uniqueness of open-loop equilibrium controls in [12].
More related details can also be found in [7,20,21].

1.3 Unified Approach and Contributions

As to Problem (SLQ), in this article we propose a unified method to characterize the
open-loop equilibrium controls, open-loop equilibrium strategies, closed-loop equilib-
rium strategies. We combines the ideas from variational analysis, forward-backward
stochastic differential equations and forward-backward decoupling procedures. In the
following, we provide a brief outline of our approach.

For any (�1,�2, ϕ) ∈ L2(0, T ;Rm×n) × L2(0, T ;Rm×n) × L2
F
(0, T ;Rm), we

start with control processes

u := (�1 + �2)X + ϕ, uε := �1X
ε + �2X + ϕ + v I[t,t+ε]. (1.5)

They can reduce into the required equilibrium controls and perturbed controls in
various settings (see Sect. 4.4).

In view of the definitions for equilibrium controls, we proceed to consider the dif-
ference of the cost functional at u, uε. To do so, given X and Xε, we introduce,
respectively, backward stochastic differential equations (BSDEs) with conditional
expectations. We point out that the one associated with Xε appears for the first time
in the literature. As a result, we obtain two forward-backward systems in which the
terminal parts and generators of backward systems rely respectively on X , Xε.

To tackle the limit part in the definitions of both open-loop and closed-loop equilib-
rium controls (i.e., Definitions 2.1, 2.3 next), we continue to decouple the above two
forward-backward systems. More precisely, we make conjectures on the solutions of
backward systems, formally obtain a class of systems of BSDEs merely depending on
given coefficients, and then verify our arguments rigorously. At last we establish our
characterizations with proper convergence procedures.

At this very moment, it is worth mentioning that the previous proposed approach
demonstrates several new advantages on the treatment of both open-loop equilibrium
controls, closed-loop equilibrium controls/strategies. Unlike [1,2,23,25], our proce-
dures on closed-loop equilibrium strategy in continuous time drop the reliance on
complex convergence arguments from discrete time to continuous case. Comparing
with [11,12], our methodology on open-loop equilibrium controls neither requires any
non-definite assumptions on the involved coefficients, nor directly uses the conclu-
sions of stochastic maximum principles. Moreover, it can be adjusted into the random
coefficients case, see [21].
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Even though both open-loop equilibrium controls and closed-loop equilibrium
controls are widely investigated in the literature, there is no paper discussing their
differences to our best. In this paper, we give a clear picture by the obtained character-
izations. For example, in the classical SLQ setting, open-loop equilibrium controls are
fully characterized by first-order, second-order necessary conditions. In other words,
they are weaker than optimal controls (Remark 3.1). However, in the same situa-
tion, the closed-loop equilibrium controls happen to reduce exactly into closed-loop
optimal controls (Remark 3.3). Eventually, we point out that the characterizations
on open-loop, closed-loop equilibrium strategies, respectively, include two different
second-order equilibrium conditions, which are absent in nearly all the relevant
articles.

1.4 Outline of the Article

The remainder of this article of structured as follows. In Sect. 2, an overview of
assumptions, notation used in the sequel is provided. In Sect. 3, the main conclusions
of this article are gathered and some important remarks are demonstrated. In Sect. 4,
the proofs of the main results in Sect. 3 are given. Section 5 concludes this article.

2 Preliminary Notations

Given H := R
n,Rn×n,Sn×n, etc, 0 ≤ s ≤ t ≤ T , we define some spaces as follows.

L2Ft
(�; H) :=

{
X : � → H ,

∣
∣
∣ X is Ft -measurable, E|X |2 < ∞

}
,

L2
F
(s, t; H) :=

{
X : [s, t] × � → H

∣
∣
∣ X(·) is F-adapted, measurable,

E

∫ t

s
|X(r)|2dr < ∞

}
,

L∞(s, t; H) :=
{
X : [s, t] → H

∣
∣
∣ X is deterministic, measurable, sup

r∈[s,t]
|X(r)| < ∞

}
,

L2
F
(�; L1(s, t; H)) :=

{
X : [s, t] × � → H

∣
∣ X(·) is F-adapted, measurable,

E

[ ∫ t

s
|X(r)|dr

]2
< ∞

}
,

L2
F
(�;C([s, t]; H)) :=

{
X : [s, t] × � → H

∣
∣ X(·) is F-adapted, measurable

continuous E sup
r∈[s,t]

|X(r)|2 < ∞
}
.

We also need the following hypotheses on coefficients of (1.1), (1.4).
(H1) Suppose A, B, C, D, R, R̃, Q, Q̃, S, S̃ ∈ L∞(0, T ; H), G, G̃, g ∈ H ,

b ∈ L2
F
(�; L1(0, T ; H)), σ ∈ L2

F
(0, T ; H).

To begin with, we look at Problem (SLQ) from an open-loop equilibrium control
viewpoint. The following definition is adapted from [11,12].

Definition 2.1 Given X∗(0) = x0 ∈ R
n , a state-control pair

(X∗, u∗) ∈ L2
F
(�;C([0, T ];Rn)) × L2

F
(0, T ;Rm)

123



596 Applied Mathematics & Optimization (2020) 81:591–619

is called an open-loop equilibrium pair if for any t ∈ [0, T ), ε > 0, v ∈ L2
Ft

(�;Rm),

lim
ε→0

J (t, X∗(t); uv,ε(·)) − J
(
t, X∗(t); u∗(·)∣∣[t,T ]

)

ε
≥ 0, (2.1)

where uv,ε = u∗ +v I[t,t+ε]. Here u∗ and X∗ are called open-loop equilibrium control
and open-loop equilibrium state process.

Roughly speaking, the definition shows the dynamic local optimali t y in some
sense. In this paper we will explore deeper properties of such equilibrium controls via
their characterizations.

Due to our particular linear quadratic structure, we also introduce the notion of
open-loop equilibrium strategy, which is independent of initial state x0.

Definition 2.2 (�∗, ϕ∗) ∈ L2(0, T ;Rm×n) × L2
F
(0, T ;Rm) is called an open-loop

equilibrium strategy of Problem (SLQ), if for any X∗(0) = x0 ∈ R
n , u∗ :=

�∗X∗ + ϕ∗, with X∗ being the associated state process, is an open-loop equilibrium
control.

The open-loop equilibrium strategy enable us to capture the explicit feedback repre-
sentation of open-loop equilibrium control. However, it is different from the following
one.

Definition 2.3 (�∗, ϕ∗) ∈ L2(0, T ;Rm×m) × L2
F
(0, T ;Rm) is called a closed-

loop equilibrium strategy, if for any initial state x0 ∈ R
n , t ∈ [0, T ), ε > 0,

v ∈ L2
Ft

(�;Rm),

lim
ε→0

J (t, X∗(t); uε(·)) − J
(
t, X∗(t); u∗(·)∣∣[t,T ]

)

ε
≥ 0, (2.2)

where

u∗ := �∗X + ϕ∗, uε := �∗Xε + v I[t,t+ε] + ϕ∗,

X∗, Xε are the state process on [0, T ] associated with u∗, uε, respectively.

Weemphasize that bothopen-loop equilibriumstrategy andclosed-loop equilibrium
strategy are independent of initial state x0. However, the perturbed control uv,ε in
Definition 2.1 is actually different from uε in Definition 2.3. In this paper, we will
demonstrate further connections between these two kinds of strategies.

In the following, let K be a generic constant which varies in different context and

R := R + R̃, Q := Q + Q̃, G := G + G̃, S = S + S̃. (2.3)
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3 Characterizations of Equilibrium Controls/Strategies

In this part, we state the main results of this article. To begin with, recall the notation
in (1.5), we introduce the following system which is useful next,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dY1 = −
[
Y1(A + B�1 + B�2) + (C + D�1)

�Y1(C + D�1 + D�2)

+ (A + B�1)
�Y1 + [

Q + ��
1 S + ��

1 R(�1 + �2) + S�(�1 + �2)
]]
ds,

dY2 = −
{
Y2(A + B�1 + B�2) + (A + B�1)

�Y2 + [
Q̃ + ��

1 S̃ + ��
1 R̃(�1 + �2)

+ S̃�(�1 + �2)
]}
ds,

dY3 = −
[
(A + B�1)

�Y3 + Y2(Bϕ + b) + (S̃� + ��
1 R̃)ϕ

]
ds + Z3dW (s),

dY4 = −
{
(A + B�1)

�Y4 + (C + D�1)
�Z4 + (C + D�1)

�Y1(Dϕ + σ)

+ Y1(Bϕ + b) + (S� + ��
1 R)ϕ

}
ds + Z4dW (s),

Y1(T ) = G, Y2(T ) = G̃, Y3(T ) = 0, Y4(T ) = 0.

(3.1)

It is easy to check that [18]

Y1, Y2 ∈ C([0, T ];Rn×n), (Y3, Z3), (Y4, Z4)

∈ L2
F
(�;C([0, T ];Rn)) × L2

F
(0, T ;Rn).

We start with the case of open-loop equilibrium controls. Recall (1.5), we choose
�1 ≡ 0, �2 ≡ 0, which indicates that u = ϕ ∈ L2

F
(0, T ;Rm). Moreover, (3.1)

reduces to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP1 = −
[
P1A + A�P1 + C�P1C + Q

]
ds,

dP2 = −
{
P2A + A�P2 + Q̃

}
ds,

dP3 = −
[
A�P3 + P2b + (P2B + S̃�)u

]
ds + L3dW (s),

dP4 = −
{
A�P4 + C�L4 + C�P1σ + P1b + (C�P1D

+ P1B + S�)u
}
ds + L4dW (s),

P1(T ) = G, P2(T ) = G̃, P3(T ) = 0, P4(T ) = 0.

(3.2)

For later clarification, we replace (Y , Z) by (P, L), and omit the reference to the time
variable for simplicity.

Above P1, P2 do not rely on u while P3, P4 do. As to (3.2), it is easy to see

P1, P2 ∈ C([0, T ];Rn×n), (P3,	3), (P4,	4)

∈ L2
F
(�;C([0, T ];Rn)) × L2

F
(0, T ;Rn).

Considering X in (1.1), we define

{
M(s, t) := P1(s)X(s) + P2(s)Et X(s) + Et P3(s) + P4(s), s ∈ [t, T ],
N (s) := P1(s)

(
C(s)X(s) + D(s)u(s) + σ(s)

) + L4(s), s ∈ [0, T ]. (3.3)
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Theorem 3.1 Suppose (H1) holds, P1 satisfies (3.2). Then ū is an open-loop equilib-
rium control for Problem (SLQ) associated with initial state X̄(0) = x0 ∈ R

n if and
only if

(i) the following inequality holds,

R(s) + D(s)�P1(s)D(s) ≥ 0, s ∈ [0, T ], a.e. (3.4)

(ii) given (M̄, N̄ ) in (3.3) associated with ū,

R(s)ū(s) + S (s)X̄(s) + B(s)�M̄(s, s) + D(s)� N̄ (s) = 0, s ∈ [0, T ]. a.e.

(3.5)

Above (3.4), (3.5) are named as f irst-order , second-order equilibrium
conditions of open-loop equilibrium controls for Problem (SLQ).

Remark 3.1 As to Theorem 3.1, let us make the following comments,

(1) Above P1 is indeed the unique solution of classical second-order adjoint equation
in control theories of mean-field SDEs. That is to say, (3.4) coincides with the
corresponding second-order necessary optimali t y condition [4]. To our best
knowledge, (3.4) has not been discussed seriously in [11,12], and other related
papers on open-loop equilibrium controls.

(2) If we denote v̂(·, t) the (time inconsistent) optimal control of Problem (SLQ),
then the first-order adjoint equation [24] is

⎧
⎪⎪⎨

⎪⎪⎩

dŶ (s, t) = −
[
A(s)�Ŷ (s, t) + C(s)� Ẑ(s, t) + Q(s)X̂(s, t) + S(s)�v̂(s, t)

+ Q̃(s)Et X̂(s, t) + S̃(s)�Et v̂(s, t)
]
ds + Ẑ(s, t)dW (s),

Ŷ (T , t) = GX(T , t) + G̃Et X(T , t),

(3.6)

and the first-order necessary optimality condition is

R(s )̂v(s, t) + R̃(s)Et v̂(s, t) + S(s)X̂(s, t) + S̃(s)Et X̂(s, t)
−B(s)�Ŷ (s, t) − D(s)� Ẑ(s, t) = 0, s ∈ [t, T ]. a.e. a.s.

(3.7)

Let us return back to our framework. Given (X̄ , ū) in (1.1), we see that (M̄, N̄ )

satisfies
⎧
⎪⎪⎨

⎪⎪⎩

d M̄(s, t) = −
[
A(s)�M̄(s, t) + C(s)� N̄ (s) + Q(s)X̄(s) + S(s)�ū(s)

+ Q̃(s)Et X̄(s) + S̃(s)�Et ū(s)
]
dr + N̄ (s)dW (s),

M(T , t) = GX(T ) + G̃Et X(T ).

(3.8)

Obviously, above (3.6), (3.7) are in general different from our (3.8), (3.5). But if
there is no time-inconsistency, i.e., R̃ = Q̃ = S̃ = G̃ = 0, then they coincide
with each other.
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(3) If R̃ = S̃ = S = 0, R, Q,G are positive definite matrices, then (3.4) is obvious to
see. In this scenario, a characterization of open-loop equilibrium control, which
is different yet equivalent with (3.5), was given in Theorem 3.5 of [12] without
involving systems (3.2).

(4) We compare our equilibrium controls with optimal controls when R̃ = Q̃ = S̃ =
G̃ = 0.
Recall that the characterization of open-loop optimal controls includes first-order
necessary condition and the following convexity condition [5,6,26]

Et

∫ T

t
u�[

Ru + SX0 + B�Y 0 + D�Z0]dr ≥ 0, ∀u ∈ L2
F
(t, T ;Rm),

(3.9)

where X0 satisfies (1.1) with ξ = 0, (Y 0, Z0) solves (3.8) with G̃ = S̃ = Q̃ = 0
and X ≡ X0.
In contrast, Theorem 3.1 indicates that the open-loop equilibrium controls are
fully characterized by first-order, second-order necessary optimality conditions.
Therefore, when there is no time inconsistency in Problem (SLQ), the exact dif-
ference between open-loop equilibrium controls and open-loop optimal controls
lies in (3.4) and (3.9).

Next we characterize the open-loop equilibrium strategy. Recall (1.5), we choose
�1 ≡ 0, which implies that u = �2X + ϕ. Moreover, (3.1) reduces to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP1=−
[
P1A+A�P1+C�P1C+(P1B+C�P1D+S�)�2+Q

]
ds,

dP2=−
{
P2A+A�P2+ Q̃+(P2B+ S̃�)�2]

}
ds,

dP3=−
[
A�P3+(P2B+ S̃�)ϕ+P2b

]
ds+L3dW (s),

dP4=−
{
A�P4+C�L4+C�P1σ +(C�P1D+P1B+S�)ϕ +P1b

}
ds+L4dW (s),

P1(T ) = G, P2(T ) = G̃, P3(T ) = 0, P4(T ) = 0,

(3.10)

We suppress the time variable for simplicity. We also define processes (M,N ) as
follows,

{
M(s, t) := P1(s)X(s) + P2(s)Et X(s) + EtP3(s) + P4(s), s ≥ t,

N (s) := P1(s)(C(s) + D(s)�2(s))X(s) + P1(s)(D(s)ϕ(s) + σ(s)) + L4(s).
(3.11)

Theorem 3.2 Suppose (H1) holds, P1 satisfies (3.2). Then (�∗, ϕ∗) is a pair of open-
loop equilibrium strategy if and only if

(i) condition (3.4) holds true,
(ii) there exist P∗

i , L∗
j satisfying BSDEs (3.10) with (�2, ϕ) ≡ (�∗, ϕ∗) and

{[
R + D�P∗

1 D
]
�∗ + B�[P∗

1 + P∗
2

] + D�P∗
1C + S = 0, a.s. a.e.

[
R + D�P∗

1 D
]
ϕ∗ + D�[P∗

1σ + L∗
4

] + B�[P∗
3 + P∗

4

] = 0. a.s. a.e.
(3.12)
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Above (3.4), (3.12) are named as f irst-order , second-order equilibrium
conditions of open-loop equilibrium strategy for Problem (SLQ). Different from
(3.5), the conclusion (3.12) focuses on the coefficients and there are no state process
or control variable involved.

Remark 3.2 As to Theorem 3.2, we point out two useful facts.

(1) Given (�∗, ϕ∗), it is easy to check that (M∗,N ∗) solves (3.8)withu∗ := �∗X∗+
ϕ∗. Since u∗ is an open-loop equilibrium control, and one can define (M∗, N∗) as
in (3.3). By the uniqueness of BSDEs, we end up with (M∗,N ∗) ≡ (M∗, N∗).
In other words, the unique solution of (3.8) has two different forms of represen-
tations.

(2) From (3.12), there exists θ ′ ∈ L2(0, T ;Rn×n), ϕ′ ∈ L2
F
(0, T ;Rm) s.t.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�∗ = −[
R + D�P∗

1 D
]†[

B�(P∗
1 + P∗

2 ) + D�P∗
1C + S

]

+
{
I − [

R + D�P∗
1 D

]†[
R + D�P∗

1 D
]}

θ ′,
ϕ∗ = −[

R + D�P∗
1 D

]†[
B�[P∗

4 + P∗
3 ] + D�[P∗

1σ + L∗
4]

]

+
{
I − [

R + D�P∗
1 D

]†[
R + D�P∗

1 D
]}

ϕ′.

(3.13)

Moreover,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

R
(
B�(P∗

1 + P∗
2 ) + D�P∗

1C + S
)

⊂ R
(
R + D�P∗

1 D
)
, a.e.

[
B�[P∗

4 + P∗
3 ] + D�[P∗

1σ + L∗
4]

]
∈ R

(
R + D�P∗

1 D
)
, a.e. a.s.

[
R + D�P∗

1 D
]†[

B�(P∗
1 + P∗

2 ) + D�P∗
1C + S

] ∈ L2(0, T ;Rm×n),
[[
R + D�P∗

1 D
]†[

B�[P∗
4 + P∗

3 ] + D�[P∗
1σ + L∗

4]
] ∈ L2

F
(0, T ;Rm).

(3.14)

In the above, R(A), A† are the range, pseudo-inverse of matrix A, respectively.
As a result, we obtain the explicit forms of (�∗, ϕ∗), as well as some intrinsic
relations among coefficients.

At last, we give the characterizations of closed-loop equilibrium strategies. Recall
(1.5), we choose �2 ≡ 0 which implies that u = �1X + ϕ. Moreover, (3.1) reduces
to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP1 = −
[
P1(A + B�1) + (A + B�1)

�P1 + (C + D�1)
�P1(C + D�1)

+ [
Q + ��

1 S + ��
1 R�1 + S��1

]]
ds,

dP2 = −
{
P2(A + B�1) + (A + B�1)

�P2 + [
Q̃ + ��

1 S̃ + ��
1 R̃�1 + S̃��1

]}
ds,

dP3 = −
[
(A + B�1)

�P3 + P2b + (P2B + S̃� + ��
1 R̃)ϕ

]
ds + L3dW (s),

dP4 = −
{
(A + B�1)

�P4 + (C + D�1)
�L4 + (C + D�1)

�P1(Dϕ + σ)

+P1(Bϕ + b) + (S� + ��
1 R)ϕ

}
ds + L4dW (s),

P1(T ) = G, P2(T ) = G̃, P3(T ) = 0, P4(T ) = 0.

(3.15)
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We also define two processes M , N as follows,

{
M (s, t) := P1(s)X(s) + P2(s)Et X(s) + EtP3(s) + P4(s), s ≥ t,
N (s) := P1(s)(C(s)+D(s)�1(s))X(s)+P1(s)(D(s)ϕ(s)+σ(s))+L4(s).

(3.16)

Theorem 3.3 A pair of (�∗, ϕ∗) ∈ L2(0, T ;Rm×n) × L2
F
(0, T ;Rm) is a closed-loop

equilibrium strategy if and only if there exists P∗
i satisfies (3.15) with (�1, ϕ) ≡

(�∗, ϕ∗) such that

⎧
⎨

⎩

R + D�P∗
1 D ≥ 0,

(R + D�P∗
1 D)�∗ + B�(P∗

1 + P∗
2 ) + D�P∗

1C + S = 0,
(R + D�P∗

1 D)ϕ∗ + B�(P∗
3 + P∗

4 ) + D�P∗
1σ + D�L ∗

4 = 0.
(3.17)

For the closed-loop equilibrium strategy (�∗, ϕ∗), the first inequality in (3.17) is
referred as the second-order equilibrium condition, while the other two conditions
are named as f irst-order equilibrium condition.

Remark 3.3 If G̃ = S̃ = Q̃ = R̃ = 0, above (3.17) reduces to

R + D�P∗
1 D ≥ 0, (R + D�P∗

1 D)�∗ + B�P∗
1 + D�P∗

1C + S = 0,
(R + D�P∗

1 D)ϕ∗ + B�P∗
4 + D�P∗

1σ + D�L ∗
4 = 0,

(3.18)

where (P∗
1 ,P∗

4 ,L ∗
4 ) are described as,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP∗
1 = −

[
P∗

1 (A + B�∗) + (A + B�∗)�P∗
1 + (C + D�∗)�P∗

1 (C + D�∗)

+ [
Q + [�∗]�S + [�∗]�R�∗ + S��∗]]

ds,

dP∗
4 = −

{
(A + B�∗)�P∗

4 + (C + D�∗)�L ∗
4 + (C + D�∗)�P∗

1 (Dϕ∗ + σ)

+P∗
1 (Bϕ∗ + b) + (S� + [�∗]�R)ϕ∗}

ds + L ∗
4 dW (s),

P∗
1 (T ) = G, P4(T ) = 0.

(3.19)

According to [17,18], (3.18) is equivalent to the optimality of strategy pair (�∗, ϕ∗).
Therefore, we find the following two useful aspects.

(1) Our defined closed-loop equilibrium controls/strategies are natural extension of
closed-loop optimal controls/strategies.

(2) From the optimality viewpoint, closed-loop equilibrium controls/strategies are
essentially different and stronger than open-loop equilibrium controls/strategies.

To conclude this section, we clarify the relations among above three characteriza-
tions in the following three manners.

Firstly, we make comparisons among (3.2), (3.10), (3.15). On the one hand, they
are basically the same in the sense that all of them are particular cases of system (3.1).
On the other hand, they also differ from each other in the following three ways. In
the first place, the solutions of the first two equations in (3.2), (3.15) are symmetric,
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while the analogue of (3.10) are non-symmetric [25]. In the second place, the first
two equations in (3.2) merely depends on given coefficients, while the counterparts in
(3.10) and (3.15) are determined by�1 or�2. In the third place, the last two equations
in (3.2) rely on control process u, while the analogue equations in (3.10) and (3.15)
are determined by ϕ.

Secondly, wemake the following comments on the second-order equilibrium condi-
tions. For both open-loop equilibrium controls and open-loop equilibrium strategies,
we use R + D�P1D ≥ 0, where P1 satisfies the second-order adjoint equation
in LQ optimal control problems of mean-field SDEs. This condition was missing in
[11,12,20,21]. As to closed-loop equilibrium strategies, we introduceR+D�P∗

1 D ≥
0 where P∗

1 satisfies one backward ordinary differential equation that contains Ric-
cati equation as special case. Notice that this condition has not been discussed in
[1,2,23,25].

Thirdly, let us give three examples.
First we consider the relations between open-loop equilibrium controls and open-

loop equilibrium strategies. Given open-loop equilibrium strategy (�∗, ϕ∗), for any
initial state x0 ∈ R

n , Problem (SLQ) admits an open-loop equilibrium control
u∗ := �∗X∗ + ϕ∗. Conversely, the conclusion is not true, even when there is no time
consistency feature in Problem (SLQ). To see it, we look at the following example.

Example 3.1 Suppose m = n = 1, function B is continuous, B−1 exists and is
bounded, and

D = 0, R = R̃ = 0, Q = Q̃ = 0, S̃ = S = 0, G̃ = 0, G > 0, b = σ = 0.

By introducing

{
d�(t) = A(t)�(t)dt + C(t)�(t)dW (t), t ∈ [0, T ],
�(0) = 1,

we can represent X(·) by

X(t) = �(t)x0 + �(t)
∫ t

0
B(s)u(s)�−1(s)ds, t ∈ [0, T ].

Since G > 0, for any x0 ∈ R, we see that ū is an optimal control as along as the
corresponding X̄(T ) = 0. To this end, we set

ū(·) := −�(·)B−1(·)
T

x0 ∈ L2
F
(0, T ;R).

Moreover, ū is also an open-loop equilibrium control satisfying (3.4), (3.5).
Next we claim that the open-loop equilibrium strategy does not exists. Actually, if

there exists (�∗, ϕ∗), it then follows from (3.12) that BP∗
1 ≡ 0. a.s. a.e. On the other

hand,P∗
1 (T ) = G > 0, by the continuity ofP∗

1 and B, as well as the existence of B−1,
there exists T1 < T such that for any t ∈ [T1, T ], B(t)P∗

1 (t) �= 0. A contradiction
arises.
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Now let us turn to the connections between open-loop equilibrium strategies and
closed-loop equilibrium strategy. The following example shows that open-loop equi-
librium strategy equals to closed-loop equilibrium strategy.

Example 3.2 Suppose m = n = 1, G > 0, Q(·) ≥ 0,

C = 0, B = D = 1, S = S̃ = 0, R̃ = R = 0,
Q(·) + Q̃(·) = 0, G + G̃ = 0, b = σ = 0.

(3.20)

From Theorem 3.2, we have P∗
1�∗ + P∗

1 + P∗
2 = 0 where

⎧
⎪⎪⎨

⎪⎪⎩

dP∗
1 (s)=−

[
(2A(s) + �∗(s))P∗

1 (s) +Q(s)
]
ds, s ∈ [0, T ],

dP∗
2 (s)=−

{
(2A(s) +�∗(s))P∗

2 (s) + Q̃(s)
}
ds, s ∈ [0, T ],

P∗
1 (T ) = G, P∗

2 (T ) = G̃.

(3.21)

It is easy to see that (P∗
1 ,P∗

2 ) := (P,−P) satisfies (3.21) with � ≡ 0, where

{
dP(s)=−

[
2A(s)P(s) +Q(s)

]
ds, s ∈ [0, T ],

P1(T ) = G.
(3.22)

Suppose there is another �′ and (P ′
1,P ′

2) ∈ C([0, T ];R2) such that (3.21) is
satisfied and

P ′
1�

′ + P̂ ′ = 0, P̂ ′ := P ′
1 + P ′

2.

Notice that

{
dP̂ ′(s) =−(2A(s) + �′(s))P̂ ′(s)ds, s ∈ [0, T ],
P̂ ′(T ) = 0.

(3.23)

By uniqueness, P̂ ′ ≡ 0. By (3.20), 1
P ′
1
exists and is bounded. Hence �′ = 0.

Due to b = σ = 0, it is easy to check there exists a unique ϕ∗ ≡ 0. Moreover,
condition (3.4) holds.

To sum up, Problem (SLQ) admits a unique pair of open-loop equilibrium strategy
(�∗, ϕ∗) ≡ (0, 0) under condition (3.20).

Nowwe look at the closed-loop equilibrium strategies (�∗, φ∗). Herewe change the
notation for later comparisons. FromTheorem 3.3, one hasP∗

1�∗+(P∗
1 +P∗

2 ) = 0,
where

⎧
⎪⎪⎨

⎪⎪⎩

dP∗
1 (s) = −

[
2P∗

1 (s)(A(s) + �∗(s)) + |�∗(s)|2P∗
1 (s) + Q(s)

]
ds,

dP∗
2 (s) = −

{
2P∗

2 (s)(A(s) + �∗(s)) + Q̃(s)
}
ds,

P∗
1 (T ) = G, P∗

2 (T ) = G̃.

(3.24)
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For P in (3.22), we see that (P∗
1 ,P∗

2 ) ≡ (P,−P) satisfies (3.24) with �∗ ≡ 0.
Moreover, P∗

1 ≥ 0. Suppose there is another �′ and (P ′
1,P

′
2) such that (3.24) is

satisfied and

P ′
1�

′ + P̂ ′ = 0, P̂ ′ := P ′
1 + P ′

2.

Notice that

{
dP̂ ′(s) =−

[
(2A(s) + �′(s))P̂ ′(s) + |�′(s)|2P ′

1(s)
]
ds, s ∈ [0, T ],

P̂ ′(T ) = 0.
(3.25)

By (3.20), 1
P ′

1
exists and is bounded. Hence�′ = − P̂ ′

P ′
1
and (3.25) can be rewritten

as,

⎧
⎨

⎩

dP̂ ′(s) =−
[
2A(s)P̂ ′(s) − (1 + 1

P ′
1
)P̂ ′(s)

]
ds,

P̂ ′(T ) = 0.
(3.26)

By uniqueness, P̂ ′ ≡ 0, which yields �′ = 0.
Due to b = σ = 0, it is easy to check there exists a unique φ∗ ≡ 0.
To sum up, Problem (SLQ) admits a unique pair of closed-loop equilibrium strategy

(�∗, φ∗) ≡ (0, 0) under condition (3.20), which is the same as open-loop equilibrium
strategy.

The following example shows that open-loop equilibrium strategy are also distinc-
tive from closed-loop equilibrium strategy in some cases.

Example 3.3 Suppose m = n = 1,

C = 0, B = D = 1, S = S̃ = 0, R̃ = R = 0,
Q(·) = Q̃(·) = 0, G ≥ G̃ > 0, b = σ = 0.

(3.27)

As to open-loop equilibrium strategy (�∗, ϕ∗), from Theorem 3.2, P∗
1�∗ + P∗

1 +
P∗
2 = 0, where (P∗

1 ,P∗
2 ) satisfies (3.21) with Q = Q̃ = 0. As to closed-loop equi-

librium strategies (�∗, φ∗), from Theorem 3.3, one has P∗
1�∗ + (P∗

1 + P∗
2 ) = 0,

where (P∗
1 ,P∗

2 ) satisfies (3.24) with Q = Q̃ = 0. We illustrate out point by three
steps.

Step 1 Under (3.27), we look at the solvability of system (3.21).
Consider an ODE of

⎧
⎨

⎩
dP(s) = −(2A(s) − 1 − G̃

G
)P(s)ds, s ∈ [0, T ],

P(T ) = 1.

It is easy to see that (P∗
1 (·),P∗

2 (·)) ≡ (GP(·), G̃ P(·)) is a solution of (3.27).
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Step 2 Under (3.27), we claim that system (3.24) is solvable withP∗
1 > P∗

2 .
By a simplification, it is suffice to consider the regularity of the following
system

⎧
⎪⎪⎨

⎪⎪⎩

P1(t) = G exp
[ ∫ T

t

[
2A(s) − 1 + |P2(s)|2

|P1(s)|2
]
ds

]
, t ∈ [0, T ],

P2(t) = G̃ exp
[ ∫ T

t
2
{
A(s) − 1 − P2(s)

P1(s)

}
ds

]
, t ∈ [0, T ].

(3.28)

For later usefulness, we make the following conventions,

⎧
⎪⎪⎨

⎪⎪⎩

‖p‖[τ1,τ2] := sup
t∈[τ1,τ2]

|p(t)|, τ1, τ2 ∈ [0, T ],
L1 := G̃e−2T (‖A‖[0,T ]+2), L2 := Ge2T (‖A‖[0,T ]+2), K1 := L2e

2(‖A‖[0,T ]+1)T ,

CL1,L2 ([0, T ];R2) := {
(x1, x2)∈C([0, T ];R2), L1 ≤ xi (·)≤L2, x1(·)≥x2(·)

}
.

For i = 1, 2, we choose (p(i)
1 , p(i)

2 ) ∈ CL1,L2([0, T ];R2), and define

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

P(i)
2 (t) := G̃ exp

[ ∫ T

t
2
{
A(s) − 1 − p(i)

2 (s)

p(i)
1 (s)

}
ds

]
, t ∈ [0, T ],

P(i)
1 (t) := G exp

[ ∫ T

t

[
2A(s) − 1 + |p(i)

2 (s)|2
|p(i)

1 (s)|2
]
ds

]
, t ∈ [0, T ].

Under (3.27), it is easy to see that (P(i)
1 , P(i)

2 ) ∈ CL1,L2([0, T ];R2). We
denote by

k̂1(s) := k(1)
1 (s) − k(2)

1 (s), k̂2(s) := k(1)
2 (s) − k(2)

2 (s), s ∈ [0, T ], k := P, p.

After some calculation, one has

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∣
∣P̂2(t)

∣
∣ ≤ 4K1e

2 L2
L1

(T−t) L2(‖ p̂1‖[T−t,T ] + ‖ p̂2‖[T−t,T ])
L2
1

(T − t),

∣
∣P̂1(t)

∣
∣ ≤ 2K1e

2
L22
L21

(T−t) L2
2(‖ p̂1‖[T−t,T ] + ‖ p̂2‖[T−t,T ])

L3
1

(T − t).

We can choose T1 such that for δ := T − T1,

2K1
L2

L2
1

[
2e

2 L2
L1

T + e
2
L22
L21

T L2

L1

]
δ = 1

2
.

By contraction, one has the existence and uniqueness of (P1, P2) satisfying
(3.28) on [T1, T ].
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Now let us look at the case of [T1 − δ, T1], where
⎧
⎪⎪⎨

⎪⎪⎩

P2(t) = P2(T1) exp
[ ∫ T1

t
2
{
A(s) − 1 − P2(s)

P1(s)

}
ds

]
, t ∈ [0, T1],

P1(t) = P1(T1) exp
[ ∫ T1

t

[
2A(s) − 1 + |P2(s)|2

|P1(s)|2
]
ds

]
, t ∈ [0, T1].

Given (p(i)
1 , p(i)

2 ) ∈ CL1,L2([0, T1];R2), we see that (P(i)
1 , P(i)

2 ) ∈
CL1,L2([0, T1];R2), and

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∣
∣P̂2(t)

∣
∣ ≤ 4K1e

2 L2
L1

(T1−t) L2(‖ p̂1‖[T1−t,T1] + ‖ p̂2‖[T1−t,T1])
L21

(T1 − t), t ∈ [0, T1],

∣
∣P̂1(t)

∣
∣ ≤ 2K1e

2
L22
L21

(T1−t) L22(‖ p̂1‖ + ‖ p̂2‖)
L31

(T1 − t), t ∈ [0, T1].

By the choice of δ, we obtain the solvability in [T − 2δ, T1]. By induction,
one has the conclusion in [0, T ].

Step 3 We claim that �∗ �= �∗.
To prove this result, we first recall that P̂∗ := P∗

1 + P∗
2 , P̂

∗ := P∗
1 + P∗

2
satisfy

⎧
⎪⎨

⎪⎩

dP̂∗(s)=−[
(2A(s) + �∗(s))P̂∗(s)

]
ds, s ∈ [0, T ],

dP̂∗(s) = −
[
(2A(s) + �∗(s))P̂∗(s)

]
ds, s ∈ [0, T ],

P̂∗(T ) = (G̃ + G), P̂∗(T ) = G̃ + G.

(3.29)

If �∗ ≡ �∗, then by the uniqueness, P̂∗ ≡ P̂∗. According to above two
steps, 1

P∗
1
, 1
P∗

1
exist. Therefore, due to the definitions of �∗, �∗, one has

P∗
1 ≡ P∗

1 which implies that

�∗P∗
1 = �∗P∗

1 = 2P∗
1�∗ + |�∗|2P∗

1 .

Hence �∗P∗
1 (�∗ + 1) = 0, which leads to �∗ = −1 or �∗ = 0. This

indicates that P̂∗ ≡ 0 orP∗
2 ≡ 0.

Since P̂∗(T ) = G + G̃ > 0, by the continuity of P̂∗ and the fact of

�∗ = −P̂∗
P∗

1
, we see that �∗ ≡ 0 does not hold.

Similarly, since G̃ �= 0, by the continuity of P∗
2 , we see that P

∗
2 ≡ 0 does

not hold as well. We finish Step 3 by contradiction.

4 Proofs of theMain Results

In this section, we prove Theorems 3.1–3.3.
For (�1,�2, ϕ) ∈ L2(0, T ;Rm×m) × L2(0, T ;Rm×m) × L2

F
(0, T ;Rm), we con-

sider
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⎧
⎨

⎩

dX = [
AX + B(�1 + �2)X + Bϕ + b

]
ds

+ [
CX + D(�1 + �2)X + Dϕ + σ

]
dW (s), s ∈ [0, T ],

X(0) = x0.
(4.1)

For t ∈ [0, T ), ε > 0, v ∈ L2
Ft

(�;Rm), let Xε solve the following perturbed
system:

⎧
⎪⎨

⎪⎩

dXε = [
(A + B�1)X

ε + B�2X + Bv I[t,t+ε] + Bϕ + b
]
ds

+ [
(C + D�1)X

ε + D�2X + Dv I[t,t+ε] + Dϕ + σ
]
dW (s),

Xε(0) = x0,

(4.2)

with s ∈ [0, T ]. Hence we see that Xε
0 := Xε − X satisfies

⎧
⎨

⎩

dXε
0 = [

(A + B�1)X
ε
0 + Bv I[t,t+ε]

]
ds

+ [
(C + D�1)X

ε
0 + Dv I[t,t+ε]

]
dW (s),

Xε
0(0) = 0.

(4.3)

By Proposition 2.1 in [18], we have the following estimate of Xε
0

Et sup
r∈[t,t+ε]

|Xε
0(r)|2 ≤ K ε, a.s., t ∈ [0, T ).

We also define

u := (�1 + �2)X + ϕ, uε := �1X
ε + �2X + ϕ + v I[t,t+ε]. (4.4)

Lemma 4.1 Suppose (H1) holds, (�1,�2, ϕ) are given as above, u, uε are defined in
(4.4). Then we have

J (t, x, uε(·)) − J (t, x, u(·))
= J1(t, x) + J2(t, x) + Et

∫ t+ε

t
〈(S � + ��

1 R)v, Xε
0 〉 ds, (4.5)

where R, S are defined in (2.3),

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J1(t) := Et

∫ T

t

[ 〈 F1, Xε
0 〉 +〈 F2, v I[t,t+ε) 〉 ]

ds + Et 〈GX(T ) + G̃Et X(T ), Xε
0(T ) 〉,

J2(t) := 1

2
Et

∫ T

t
〈 Fε

1 , Xε
0 〉 ds + 1

2
Et 〈GXε

0(T ) + G̃Et X
ε
0(T ), Xε

0(T ) 〉,
F1 := [

Q + ��
1 S + ��

1 R(�1 + �2) + S�(�1 + �2)
]
X + (S� + ��

1 R)ϕ

+ [
Q̃ + ��

1 S̃ + ��
1 R̃(�1 + �2) + S̃�(�1 + �2)

]
Et X + (S̃� + ��

1 R̃)Etϕ,

F2 := 1

2
Rv + [

S + R(�1 + �2)
]
X + Rϕ + [

S̃ + R̃(�1 + �2)
]
Et X + R̃Etϕ,

Fε
1 := [

Q + S��1 + ��
1 S + ��

1 R�1
]
Xε
0 + [

Q̃ + S̃��1 + ��
1 S̃ + ��

1 R̃�1
]
Et X

ε
0.

Proof By above definitions of X , Xε and Xε
0, we deal with the terms in the cost

functional one by one. First let us treat the term associated with Q,
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〈 QXε, Xε 〉− 〈 QX , X 〉 = 2 〈 QX , Xε
0 〉+ 〈 QXε

0, X
ε
0 〉 .

Then we look at the one with S. From the definitions of u and uε, we have

〈 SXε, uε 〉− 〈 SX , u 〉 = 〈 S��1X
ε
0, X

ε
0 〉+ 〈 Xε

0, S
�[

(�1 + �2)X + v I[t,t+ε] + ϕ
] 〉

+ 〈 Xε
0,�

�
1 SX 〉+ 〈 SX , v I[t,t+ε] 〉 .

We also have

〈 Ruε, uε 〉− 〈 Ru, u 〉
= 〈��

1 R�1X
ε
0, X

ε
0 〉+2 〈 Rv I[t,t+ε],�1X

ε
0 〉+ 〈 Rv, v I[t,t+ε] 〉

+ 2 〈 R�1X
ε
0, (�1 + �2)X + ϕ 〉+2 〈 Rv I[t,t+ε], (�1 + �2)X + ϕ 〉 .

Similarly one can obtain the terms involving Q̃, S̃, R̃ as,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈 Q̃Et X
ε,Et X

ε 〉 − 〈 Q̃Et X ,Et X 〉 = 2 〈 Q̃Et X ,Et X
ε
0 〉+ 〈 Q̃Et X

ε
0,Et X

ε
0 〉,

〈 S̃Et X
ε,Et u

ε 〉 − 〈 S̃Et X ,Et u 〉
=

〈
S̃��1Et X

ε
0,Et X

ε
0 〉 + 〈Et X

ε
0, S̃

�[
(�1 + �2)Et X + v I[t,t+ε] + Etϕ

]〉

+〈Et X
ε
0, �

�
1 S̃Et X 〉 + 〈 S̃Et X , v I[t,t+ε] 〉,

〈 R̃Et u
ε,Et u

ε 〉 − 〈 R̃Et u,Et u 〉
=

〈
��
1 R̃�1Et X

ε
0,Et X

ε
0 〉+2 〈 R̃v I[t,t+ε], �1Et X

ε
0 〉 + 〈 R̃v, v I[t,t+ε]

〉

+2 〈 R̃�1Et X
ε
0, (�1 + �2)Et X + Etϕ 〉 +2 〈 R̃v I[t,t+ε], (�1 + �2)Et X + Etϕ 〉 .

At last we have the follows results on the terms associated with G and G̃,

⎧
⎪⎪⎨

⎪⎪⎩

〈GXε(T ), Xε(T ) 〉− 〈GX(T ), X(T ) 〉
= 2 〈GX(T ), Xε

0(T ) 〉+ 〈GXε
0(T ), Xε

0(T ) 〉,
〈 G̃Et X

ε(T ),Et X
ε(T ) 〉− 〈 G̃Et X(T ),Et X(T ) 〉

= 2 〈 G̃Et X(T ),Et X
ε
0(T ) 〉+ 〈 G̃Et X

ε
0(T ),Et X

ε
0(T ) 〉 .

To sum up, we deduce above (4.5). ��
Next we carry out further study on J1(t) and J2(t) by making some equivalent

transformations. In fact, from the definitions of equilibrium controls it is unavoidable
to take certain convergence arguments. Fortunately, in above we derive the important
and useful structure of Et

∫ t+ε

t 〈 F2(r), v 〉 dr . Consequently, we will derive similar
expressions for other terms in J1(t), J2(t). This is the starting point for our later
investigations.

4.1 A NewDecoupling Result

Inspired by the decoupling techniques in the literature (e.g., [11,24], etc), we present
one conclusion which serves our purpose of this paper. It is interesting in its own right
and may be potentially useful for (among others) various problems.
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Given t ∈ [0, T ], we consider
⎧
⎪⎨

⎪⎩

dX = [
A1X + A2

]
dr + [

B1X + B2
]
dW (r), r ∈ [t, T ],

dY = −
[
C1Y + C2Z + C3X + C4Et X + C5 + EtC6

]
dr + ZdW (r),

X(0) = x, Y (T , t) = D1X(T ) + D2Et X(T ) + D3.

(4.6)

(H1) For H := R
m, R

n, R
n×n , etc, suppose

A1, B1, Ci ∈ L2(0, T ; H), A2, C5 ∈ L2(�; L1(0, T ; H)),

B2 ∈ L2
F
(0, T ; H), D1, D2, D3, x ∈ H .

For t ∈ [0, T ] and s ∈ [t, T ], suppose that

Y (s, t) = P1(s)X(s) + P2(s)Et X(s) + Et P3(s) + P4(s), (4.7)

where P1, P2 are deterministic, P3, P4 are stochastic processes satisfying

{
dPi (s) = �i (s)ds, i = 1, 2, P1(T ) = D1, P2(T ) = D2,

dPj (s) = � j (s)ds + L j (s)dW (s), j = 3, 4, P3(T ) = 0, P4(T ) = D3.

Here �i are to be determined. It is easy to see

dEt X = [
A1Et X + Et A2

]
dr .

Using Itô’s formula, we derive that

⎧
⎨

⎩

d
[
P1X

] =
[
�1X + P1(A1X + A2)

]
ds + P1

(
B1X + B2

)
dW (s),

d
[
P2Et X

] =
{
�2Et X + P2

[
A1Et X + Et A2

]}
ds.

As a result, we have

dY =
{[

�1 + P1A1
]
X + (�2 + P2A1)Et X

+Et
[
�3 + P2A2

] + �4 + P1A2

}
ds +

[
P1B1X + P1B2 + L4

]
dW (s).

Consequently, it is necessary to have

Z = P1B1X + P1B2 + L4. (4.8)

In this case, from (4.7), (4.8), we see that

{
Et Y = (P1 + P2)Et X + Et

[
P3 + P4

]
,

Et Z = P1B1Et X + Et
[
P1B2 + L4

]
.
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On the other hand,

−
[
C1Y + C2Z + C3X + C4Et X + C5 + EtC6

]

= −C1

{
P1X + P2Et X + Et P3 + P4

}
− C2

[
P1B1X + P1B2 + L4

]

−C3X − C4Et X − C5 − EtC6.

At this moment, we can choose �i (·) in the following ways,

⎧
⎪⎪⎨

⎪⎪⎩

0 = �1 + P1A1 + C1P1 + C2P1B1 + C3,

0 = �2 + P2A1 + C1P2 + C4,

0 = �4 + P1A2 + C1P4 + C2
[
P1B2 + L4

] + C5,

0 = �3 + P2A2 + C1P3 + C6.

Nextwemake above arguments rigorous.Given thenotations in (2.3), for s ∈ [0, T ],
we consider the following systems of equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP1 = −
[
P1A1 + C1P1 + C3P1B1 + C3

]
ds,

dP2 = −
{
P2A1 + C1P2 + C4

}
ds,

dP3 = −
[
C1P3 + P2A2 + C6

]
ds + L3dW (s),

dP4 = −
{
C1P4 + C2L4 + C2P1B2 + P1A2 + C5

}
ds + L4dW (s),

P1(T ) = D1, P2(T ) = D2, P3(T ) = 0, P4(T ) = D3.

(4.9)

From Proposition 2.1 in [18], under (H1) we see the following regularities,

P1, P2 ∈ C([0, T ];Rn×n), (P3, L3), (P4, L4)

∈ L2
F
(�;C([0, T ];Rn)) × L2

F
(0, T ;Rn).

At this moment, for s ∈ [0, T ], and t ∈ [0, s], we define a pair of processes
M := P1X + P2Et X + Et P3 + P4, N := P1B1X + P1B2 + L4. (4.10)

By the results of Pi , we can conclude that

(Md , N ) ∈ L2
F
(�;C([0, T ];Rn)) × L2

F
(0, T ;Rn)

where Md(s) ≡ M(s, s) with s ∈ [0, T ]. We present the following result.

Lemma 4.2 Given (�, ϕ) ∈ L2(0, T ;Rm×n) × L2
F
(0, T ;Rm), suppose (X ,Y , Z) is

the unique solution of (4.6) and (M, N ) is defined in (4.10). Then for any t ∈ [0, T ],

P

{
ω ∈ �; Y (s, t) = M(s, t), ∀s ∈ [t, T ]

}
= 1,

P

{
ω ∈ �; Z(s, t) = N (s)

}
= 1, s ∈ [t, T ]. a.e.
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Proof Given (4.10), it is easy to see that

Et M = (P1 + P2)Et X + Et [P3 + P4], Et N = P1B1Et X + P1Et B2 + Et L4.

Using Itô’s formula, we know that

⎧
⎨

⎩

d
[
P1X

] =
[

− (C1P1 + C2P1B1 + C3)X + P1A2

]
ds + P1

(
B1X + B2

)
dW (s),

d
[
P2Et X

] =
{

−
[
C1P2 + C4

]
Et X + P2Et A2

}
ds.

Consequently, after some calculations one has

dM = −
[
C1M + C2N + C3X + C4Et X + C5 + EtC6

]
dr + NdW (r).

Considering Pi (T ) in (4.9), we see that for any t ∈ [0, T ], (M, N ) ∈
L2
F
(�;C([t, T ];Rn)) × L2

F
(0, T ;Rn) satisfies the backward equation in (4.6). The

conclusion is followed by the uniqueness of BSDEs. ��

4.2 A New Expression of J1

In this part, we deal with J1(t) in Lemma 4.1. For convenience, we rewrite the equation
of Xε

0 := Xε − X as

{
dXε

0 = [
Aθ X

ε
0 + Bv I[t,t+ε]

]
ds + [

Cθ X
ε
0 + Dv I[t,t+ε]

]
dW (s),

Xε
0(0) = 0,

(4.11)

where s ∈ [0, T ], and

Aθ := A + B�1, Cθ := C + D�1.

We introduce

{
dY = −

[
A�

θ Y + C�
θ Z + F1

]
dr + ZdW (r), r ∈ [t, T ],

Y (T , t) = GX(T ) + G̃Et X(T ),
(4.12)

where X satisfies (4.1), F1 is in Lemma 4.1. From Proposition 2.1 in [18], (4.12) is
solvable with
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(Y , Z) ∈ L2
F
(�;C([t, T ];Rn)) × L2

F
(t, T ;Rn), t ∈ [0, T ).

By Itô’s formula on [t, T ], we have

d 〈 Y , Xε
0 〉 = − 〈 A�

θ Y + C�
θ Z + F1, X

ε
0 〉 dr + 〈 Z , Xε

0 〉 dW (r)
+〈 Y , Aθ X

ε
0 + Bv I[t,t+ε] 〉 dr + 〈 Y ,Cθ X

ε
0 + Dv I[t,t+ε] 〉 dW (r)

+〈 Z ,Cθ X
ε
0 + Dv I[t,t+ε] 〉 dr .

From (4.12) we then arrive at

Et 〈GX(T ) + G̃Et X(T ) + g, Xε
0(T ) 〉 +Et

∫ T
t 〈 F1, Xε

0 〉 dr
= Et

∫ t+ε

t
〈 B�Y + D�Z , v 〉 dr . (4.13)

Inspired by Lemma 4.2, we introduce

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP1 = −
[
P1(A + B�1 + B�2) + (C + D�1)

�P1(C + D�1 + D�2)

+ (A + B�1)
�P1 + [

Q + ��
1 S + ��

1 R(�1 + �2) + S�(�1 + �2)
]]
ds,

dP2 = −
{
P2(A + B�1 + B�2) + (A + B�1)

�P2 + [
Q̃ + ��

1 S̃

+��
1 R̃(�1 + �2) + S̃�(�1 + �2)

]}
ds,

dP3 = −
[
(A + B�1)

�P3 + P2(Bϕ + b) + (S̃� + ��
1 R̃)ϕ

]
ds + L3dW (s),

dP4 = −
{
(A + B�1)

�P4 + (C + D�1)
�L4 + (C + D�1)

�P1(Dϕ + σ)

+P1(Bϕ + b) + (S� + ��
1 R)ϕ

}
ds + L4dW (s),

P1(T ) = G, P2(T ) = G̃, P3(T ) = 0, P4(T ) = 0.

(4.14)

Moreover, the following equalities hold on [t, T ],

Y = P1X + P2Et X + EtP3 + P4,

Z = P1(C + D�1 + D�2)X + P1(Dϕ + σ) + L4.

Consequently,

B�Y + D�Z = [
B�P1 + D�P1(C + D�1 + D�2)

]
X + B�P2Et X

+B�
EtP3 + B�P4 + D�P1(Dϕ + σ) + D�L4.

This shows that

Et

∫ t+ε

t
〈 B�Y + D�Z , v 〉 dr

= Et

∫ t+ε

t

〈[
B�(P1 + P2) + D�P1(C + D�1 + D�2)

]
X

+ B�(P3 + P4) + D�P1(Dϕ + σ) + D�L4, v
〉
dr .
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By the definition of J1(t) and above (4.13), we see that

J1(t) = Et

∫ t+ε

t

〈[
S + R(�1 + �2) + [

B�(P1 + P2) + D�P1(C + D�1 + D�2)
]]
X

+1

2
Rv + Rϕ + B�(P3 + P4) + D�P1(Dϕ + σ) + D�L4, v

〉
dr .

(4.15)

Lemma 4.3 Suppose (H1) holds, X solves (4.1) associatedwith (�1,�2, ϕ), and J1(t)
is defined in Lemma 4.1. Then (4.15) is true, where Pi satisfies (4.14).

4.3 A New Expression of J2

In the following, we turn to treating J2. To this end, we introduce

{
dY ε

0 = −
[
A�

θ Y
ε
0 + C�

θ Z ε
0 + Fε

1

]
dr + Z ε

0dW (r), r ∈ [t, T ],
Y ε
0 (T , t) = GXε

0(T ) + G̃Et X
ε
0(T ),

where Fε
1 is defined in Lemma 4.1. From Proposition 2.1 in [18], we see that

(Y ε
0 , Z ε

0) ∈ L2
F
(�;C([t, T ];Rn)) × L2

F
(t, T ;Rn), t ∈ [0, T ).

Recall Xε
0 in (4.11), we obtain the following by Itô’s formula,

d 〈 Y ε
0 , Xε

0 〉 = − 〈 A�
θ Y

ε
0 + C�

θ Z ε
0 + Fε

1 , Xε
0 〉 dr + 〈 Z ε

0, X
ε
0 〉 dW (r)

+〈 Y ε
0 , Aθ X

ε
0 + Bv I[t,t+ε] 〉 dr + 〈 Y ε

0 ,Cθ X
ε
0 + Dv I[t,t+ε] 〉 dW (r)

+〈 Z ε
0,Cθ X

ε
0 + Dv I[t,t+ε] 〉 dr .

As a result, we then have

Et 〈GXε
0(T ) + G̃Et X

ε
0(T ), Xε

0(T ) 〉 +Et

∫ T

t
〈 Fε

1 , Xε
0 〉 dr

= Et

∫ t+ε

t
〈 B�Y ε

0 + D�Z ε
0, v 〉 dr .

(4.16)

By the decoupling tricks in Lemma 4.2, we introduce

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP̄1 = −
[
P̄1(A + B�1) + (A + B�1)

�P̄1 + (C + D�1)
�P̄1(C + D�1)

+ [
Q + S��1 + ��

1 S + ��
1 R�1

]]
ds,

dP̄2 = −
{
P̄2(A + B�1) + (A + B�1)

�P̄2 + [
Q̃ + S̃��1 + ��

1 S̃ + ��
1 R̃�1

]}
ds,

dP̄3 = −
[
(A + B�1)

�P̄3 + P̄2Bv I[t,t+ε]
]
ds + L̄3dW (s),

dP̄4 = −
{
(A + B�1)

�P̄4 + [
(C + D�1)

�P̄1D + P̄1B
]
v I[t,t+ε]

+ (C + D�1)
�L̄4

}
ds + L̄4dW (s),

P̄1(T ) = G, P̄2(T ) = G̃, P̄3(T ) = 0, P̄4(T ) = 0.
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Moreover, from Lemma 4.2, the following holds on [t, T ],

Y ε
0 = P̄1X

ε
0 + P̄2Et X

ε
0 + Et P̄3 + P̄4,

Z ε
0 = P̄1(C + D�1)X

ε
0 + P̄1Dv I[t,t+ε] + L̄4.

At this moment, we take a closer look at (P̄3, L̄3), (P̄4, L̄4). By the uniqueness of
BSDEs in Proposition 2.1 of [18], we have the following equalities

P̄3(s) = P̃3(s)v, L̄3(s) = 0, P̄4(s) = P̃4(s)v, L̄4(s) = 0, s ∈ [t, T ],

where
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dP̃3 = −
[
(A + B�1)

�P̃3 + P̄2BI[t,t+ε]
]
ds, s ∈ [t, T ],

dP̃4 = −
{
(A + B�1)

�P̃4 + [
(C + D�1)

�P̄1D + P̄1B
]
I[t,t+ε]

}
ds, s ∈ [t, T ],

P̃3(T ) = P̃4(T ) = 0.

Consequently, on [t, T ] we conclude that

B�Y ε
0 + D�Z ε

0 = [
B�P̄1 + D�P̄1(C + D�1)

]
Xε
0 + B�P̄2Et X

ε
0

+B�
Et P̃3 + B�P̃4 + D�P̄1Dv I[t,t+ε].

As a result,

Et

∫ t+ε

t
〈 B�Y ε

0 + D�Z ε
0, v 〉 dr

= Et

∫ t+ε

t
〈 B�[P̄1+P̄2+D�P̄1(C+D�1)

]
Xε
0+B�[P̃3+P̃4]+D�P̄1Dv, v 〉 dr .

By the estimate of Xε
0, for almost t ∈ [0, T ),

Et

∫ t+ε

t

〈
B�[P̄1 + P̄2 + D�P̄1(C + D�1)

]
Xε
0, v

〉
dr = o(ε).

From the equations of (P̃3, P̃4),

sup
t∈[t,t+ε]

[|P̃3(t)|2 + |P̃4(t)|2
] = o(ε).

To sum up, by the definition of J2 and (4.16), for almost t ∈ [0, T ) we deduce that

J2(t) = ε

2
〈 D(t)�P̄1(t)D(t)v, v 〉+o(ε). (4.17)

Lemma 4.4 Suppose (H1) holds, Xε
0 is in (4.11) associated with (�1,�2, ϕ), and

J2(t) is defined in Lemma 4.1. Then (4.17) is true.
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4.4 Proofs of theMain Results

We are in the position to give the proofs of the main results in Sect. 3.
To begin with, we give the proof of Theorem 3.1.

Proof In Lemmas 4.1, 4.3, and 4.4, we take �1 ≡ �2 ≡ 0. Hence for the notations in
(4.4), u ≡ ϕ and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

J1(t) = Et

∫ t+ε

t

〈[
S + [

B�(P1 + P2) + D�P1C
]]
X + 1

2
Rv

+Ru + B�(P3 + P4) + D�P1(Du + σ) + D�L4, v

〉

dr ,

J2(t) = ε

2
〈 D(t)�P1(t)D(t)v, v 〉+o(ε),

where Pi , i = 1, 2, (Pj , L j ), j = 3, 4, satisfies (3.2). Moreover, for any t ∈ [0, T ),

by the estimate of Xε
0,

Et

∫ t+ε

t
〈S (s)�v, Xε

0(s) 〉 ds = o(ε).

We set out to define X̄ the state process associated with ū, uv,ε := ū + v I[t,t+ε],
and for any t ∈ [0, T )

⎧
⎪⎪⎨

⎪⎪⎩

D0(t) := lim
ε→0

1

2ε

∫ t+ε

t

[
R(s) + D(s)�P1(s)D(s)

]
ds,

H0(t) := lim
ε→0

1

ε
Et

∫ t+ε

t

[
S (s)X̄(s) + R(s)ū(s) + B(s)�M̄(s, s) + D(s)� N̄ (s)

]
ds
(4.18)

with (M̄, N̄ ) in (3.3) corresponding to ū. To sum up, u ≡ ū = ϕ̄ is an equilibrium
control associated with x0 if and only if for any t ∈ [0, T ), v ∈ L2

Ft
(�;Rm),

0 ≤ lim
ε→0

J (t, X̄(t); uv,ε(·)) − J
(
t, X̄(t); ū(·))

ε
= 〈D0(t)v, v 〉+ 〈H0(t), v 〉 .

Given t ∈ [0, T ), this holds if and only if both H0(t) = 0 and D0(t) ≥ 0. Since
both R and P1 are bounded and deterministic, we thus know that

0 ≤ R(t) + D(t)�P1(t)D(t), t ∈ [0, T ]. a.e.

IfH0(t) = 0, then by Lemma 3.4 in [12], above (3.5) holds. Conversely, if (3.5) is
true, we immediately obtain H0(t) = 0. ��

Next we present the proof of Theorem 3.2.
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Proof In Lemmas 4.1, 4.3, and 4.4, we take �1 ≡ 0. Hence for the notations in (4.4),
we have u ≡ �2X + ϕ and

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

J1(t) = Et

∫ t+ε

t

〈[
S + R�2 + [

B�(P1 + P2) + D�P1(C + D�2)
]]
X + 1

2
Rv

+Rϕ + B�(P3 + P4) + D�P1(Dϕ + σ) + D�L4, v
〉
dr ,

J2(t) = ε

2
〈 D(t)�P1(t)D(t)v, v 〉 +o(ε),

where Pi , i = 1, 2, (P j ,L j ), j = 3, 4, satisfies (3.10). Moreover, by the estimate of
Xε
0,

Et

∫ t+ε

t
〈S (s)�v, Xε

0(s) 〉 ds = o(ε), t ∈ [0, T ).

For open-loop equilibriumstrategypair (�∗, ϕ∗) and associated equilibriumcontrol
u∗, we define X∗ the corresponding state process as,

{
dX∗ = [

(A + B�∗)X∗ + Bϕ∗ + b
]
ds + [

(C + D�∗)X∗ + Dϕ∗ + σ
]
dW (s),

X∗(0) = x0,

and perturbed control uv,ε := �∗X∗ + ϕ∗ + v I[t,t+ε]. Moreover, for (M∗,N ∗) in
(3.11) corresponding to u∗, let

H1(t) := lim
ε→0

1

ε
Et

∫ t+ε

t

[
S (s)X∗(s) + R(s)u∗(s) + B�M∗(s, s) + D�N ∗(s)

]
ds.

To sum up, u∗ = �∗X∗ + ϕ∗ is an equilibrium control associated with x0 ∈ R
n if

and only if for any t ∈ [0, T ], v ∈ L2
Ft

(�;Rm),

0 ≤ 〈D0(t)v, v 〉+ 〈H1(t), v 〉, (4.19)

where D0 is in (4.18). Given t ∈ [0, T ), this holds if and only if both H1(t) = 0 and
D0(t) ≥ 0. Since both R and P1 are bounded and deterministic,

0 ≤ R(t) + D(t)�P1(t)D(t), t ∈ [0, T ]. a.e.

�⇒ IfH1(t) = 0, then by Lemma 3.4 in [12], for almost s ∈ [0, T ], we have

0 = S X∗ + Ru∗ + B�M∗ + D�N ∗

=
[
S + R�∗ + [

B�(P∗
1 + P∗

2 ) + D�P∗
1 (C + D�∗)

]]
X∗

+Rϕ∗ + B�(P∗
3 + P∗

4 ) + D�P∗
1 (Dϕ∗ + σ) + D�L∗

4.

(4.20)
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Notice that (4.20) holds for any x0 ∈ R
n . We choose x0 = 0, and denote the state

process by X∗
0 . As a result,

[[
R + D�P∗

1 D
]
�∗ + B�[P∗

1 + P∗
2

] + D�P∗
1C + S

]
(X∗ − X∗

0) = 0.

At thismoment, given I ∈ R
n×n the unitmatrix,we consider the following equation

{
dX = (A + B�∗)X ds + (C + D�∗)X dW (s), s ∈ [0, T ],
X (0) = I ,

(4.21)

the solvability of which is easy to see. Moreover, X −1 also exists. By the standard
theory of SDEs,

P
{
ω ∈ �; X (t, ω)x = X∗(t, ω) − X∗

0(t, ω), ∀t ∈ [0, T ]} = 1.

Using the existence of X −1, it is easy to see above (3.12).
⇐� In this case, it is easy to see (4.20) with u∗ := �∗X∗ + ϕ∗. Consequently, the

conclusion is followed by (4.19), (3.4) and the fact of H1(t) = 0. ��

At last, we show the proof of Theorem 3.3.

Proof In Lemmas 4.1, 4.3, and 4.4, we take �2 ≡ 0. Hence for the notations in (4.4),
u ≡ �1X + ϕ and

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

J1(t) = Et

∫ t+ε

t

〈[
S + R�1 + [

B�(P1 + P2) + D�P1(C + D�1)
]]
X + 1

2
Rv

+Rϕ + B�(P3 + P4) + D�P1(Dϕ + σ) + D�L4, v
〉
dr ,

J2(t) = ε

2
〈 D(t)�P1(t)D(t)v, v 〉 +o(ε),

where Pi , i = 1, 2, (P j ,L j ), j = 3, 4, satisfies (3.15). Moreover, in view of the
estimate of Xε

0, it is straightforward to see

Et

∫ t+ε

t
〈(S (s)� + �1(s)

�R(s))v, Xε
0(s) 〉 ds = o(ε), t ∈ [0, T ).

For closed-loop equilibrium strategy pair (�∗, ϕ∗) in the sense of Definition 2.3 and
associated equilibrium control u∗ := �∗X∗ + ϕ∗, we define X∗ the corresponding
state process as,

{
dX∗ = [

(A + B�∗)X∗ + Bϕ∗ + b
]
ds + [

(C + D�∗)X∗ + Dϕ∗ + σ
]
dW (s),

X∗(0) = x0,
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and perturbed control variable uv,ε := �∗Xv,ε + ϕ∗ + v I[t,t+ε]. In addition, for
(M ∗,N ∗) in (3.16) corresponding to u∗, we denote by
⎧
⎪⎪⎨

⎪⎪⎩

H2(t) := lim
ε→0

1

ε
Et

∫ t+ε

t

[
S (s)X∗(s) + R(s)u∗(s) + B�M ∗(s, s) + D�N ∗(s)

]
ds,

D1(t) := lim
ε→0

1

2ε

∫ t+ε

t

[
R(s) + D(s)�P∗

1 (s)D(s)
]
ds.

To sum up, u∗ = �∗X∗ + ϕ∗ is a closed-loop equilibrium control associated with
x0 ∈ R

n if and only if for any t ∈ [0, T ], v ∈ L2
Ft

(�;Rm),

0 ≤ 〈D1(t)v, v 〉+ 〈H2(t), v 〉 . (4.22)

Given t ∈ [0, T ), this holds if and only if both H2(t) = 0 and D1(t) ≥ 0.
�⇒ Given equilibrium strategy pair (�∗, ϕ∗), we conclude that P∗

1 is bounded
and deterministic. Recall the requirement on R, it is clear that

0 ≤ R(t) + D(t)�P∗
1 (t)D(t), t ∈ [0, T ]. a.e. (4.23)

IfH2(t) = 0, then by Lemma 3.4 in [12], for almost s ∈ [0, T ], we have

0 = S X∗ + Ru∗ + B�M ∗ + D�N ∗

=
[
S + R�∗ + [

B�(P∗
1 + P∗

2 ) + D�P∗
1 (C + D�∗)

]]
X∗

+Rϕ∗ + B�(P∗
3 + P∗

4 ) + D�P∗
1 (Dϕ∗ + σ) + D�L ∗

4 .

(4.24)

Notice that (4.24) holds for any x0 ∈ R
n . We choose x0 = 0, and denote the state

process by X∗
0 . As a result,

[[
R + D�P∗

1 D
]
�∗ + B�[

P∗
1 + P∗

2

] + D�P∗
1C + S

]
(X∗ − X∗

0) = 0.

As in Theorem 3.2, we introduce X satisfying (4.21), and therefore obtain (3.17)
by following the same spirit of that in Theorem 3.2.

⇐� In this case, it is easy to see (4.20) with u∗ := �∗X∗ + ϕ∗. Consequently, the
conclusion is followed by (4.22), (4.23) and the fact of H1(t) = 0. ��

5 Concluding Remarks

In the Markovian setting, a unified approach by variational technique is devel-
oped to build the characterizations for three notions, i.e., closed-loop equilibrium
controls/strategies, open-loop equilibrium controls, as well as the closed-loop repre-
sentations of open-loop equilibrium controls. The intrinsic differences among different
equilibrium controls are also revealed clearly and deeply. Related studies with ran-
dom coefficients or in mean-field setting are under consideration. We hope to do some
relevant research in future.
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