
Applied Mathematics & Optimization (2021) 83:51–82
https://doi.org/10.1007/s00245-018-9510-0

Numerical Methods for Finite-State Mean-Field Games
Satisfying a Monotonicity Condition

Diogo A. Gomes1,2 · João Saúde3

Published online: 1 August 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Here, we develop numerical methods for finite-state mean-field games (MFGs) that
satisfy a monotonicity condition. MFGs are determined by a system of differential
equations with initial and terminal boundary conditions. These non-standard condi-
tions make the numerical approximation of MFGs difficult. Using the monotonicity
condition, we build a flow that is a contraction and whose fixed points solve both
for stationary and time-dependent MFGs. We illustrate our methods with a MFG that
models the paradigm-shift problem.
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1 Introduction

The mean-field game (MFG) framework [24,25,27,28] models systems with many
rational players (see the surveys [18] and [19]). In finite-state MFGs, players switch
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between a finite number of states (see [16] for discrete-time and [7,14,17,22], and
[23] for continuous-time problems). Finite-state MFGs have applications in socio-
economic problems, for example, in paradigm-shift and consumer choice models
[8,20,21] or in corruption models [26]. They also arise in the approximation of
continuous-state MFGs [1,3,6]. The MFG framework is a major paradigm change
in the analysis of N -agent games. MFGs are an alternative approach to particle or
agent-based models, which frequently are intractable from the analytical and numer-
ical point of view and often provide no insight on the qualitative properties of the
models. Finite-state MFGs are amenable to analytical tools and flexible enough to
address a wide range of applications and to provide quantitative and qualitative infor-
mation. However, in many cases of interest, they have no simple closed-form solution.
Hence, the development of numerical methods is critical to applications of MFGs.

Finite-state MFGs comprise systems of ordinary differential equations with initial-
terminal boundary conditions. Because of these conditions, the numerical computation
of solutions is challenging. Often, MFGs satisfy a monotonicity condition that was
first used in [27] and [28] to study the uniqueness of solutions. Besides the uniqueness
of solutions, monotonicity implies the long-time convergence of MFGs (see [14] and
[17] for finite-state models and [10] and [11] for continuous-state models). More-
over, monotonicity conditions were used in [15] to prove the existence of solutions
to MFGs and in [6] to construct numerical methods for stationary MFGs. Here, we
consider MFGs that satisfy a monotonicity condition and develop a numerical method
to compute their solutions. For stationary problems, our method is a modification of
the one in [6]. Our main advance here is how we handle initial-terminal boundary
conditions, to which the methods from [6] cannot be applied directly.

We consider MFGs in which each player can be at a state in Id = {1, . . . , d},
d ∈ N, d > 1, the players’ state space. Let Sd = {θ ∈ (R+

0 )d : ∑d
i=1 θ i = 1} be

the probability simplex in Id . For a time horizon, T > 0, the macroscopic description
of the game is determined by a path θ : [0, T ] → Sd that gives the probability
distribution of the players in Id . All players seek to minimize an identical cost. Each
coordinate, ui (t), of the value function, u : [0, T ] → R

d , is the minimum cost for a
typical player at state i ∈ Id at time 0 ≤ t ≤ T . Finally, at the initial time, the players
are distributed according to the probability vector θ0 ∈ Sd and, at the terminal time,
are charged a cost uT ∈ R

d that depends on their state.
In the framework presented in [16], finite-state MFGs have a Hamiltonian, h :

R
d × Sd × Id → R, and a switching rate, α∗

i : Rd × Sd × Id → R
+
0 , given by

α∗
j = ∂h(�i z, θ, i)

∂z j
, (1)

where �i : Rd → R
d is the difference operator

(�i u) j = u j − ui .

We suppose that h and α∗ satisfy the assumptions discussed in Sect. 2. Given the
Hamiltonian and the switching rate, we assemble the following system of differential
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equations: {
uit = −h(�i u, θ, i)

θ it = ∑
j θ

jα∗
i (� j u, θ, j),

(2)

which, together with initial-terminal data

θ(0) = θ̄0 and u(T ) = ūT , (3)

with θ̄0 ∈ Sd and ūT ∈ R
d , determines the MFG.

Solving (2) under the non-standard boundary condition (3) is a fundamental issue
in time-dependent MFGs. There are several ways to address this issue, although prior
approaches are not completely satisfactory. First, we can solve (2) using initial con-
ditions θ(0) = θ̄0 and u(0) = u0 and then solve for u0 such that u(T ) = ūT .
However, this requires solving (2)multiple times, which is computationally expensive.
A more fundamental difficulty arises in the numerical approximation of continuous-
state MFGs by finite-state MFGs. There, the Hamilton–Jacobi equation is a backward
parabolic equation whose initial-value problem is ill-posed. Thus, a possible way to
solve (2) is to use a Newton-like iteration. This idea was developed in [1,5] and used
to solve a finite-difference scheme for a continuous-state MFG. However, Newton’s
method involves inverting large matrices, whereas it is convenient to have algorithms
that do not require matrix inversions. A second approach is to use a fixed-point itera-
tion as in [12,13]. Unfortunately, this iteration is not guaranteed to converge. A third
approach (see [20,21]) is to solve the master equation, which is a partial differential
equation whose characteristics are given by (2). To approximate the master equation,
we can use a finite-difference method constructed by solving an N -player problem.
Unfortunately, even for a modest number of states, this approach is computationally
expensive.

Our approach to the numerical solution of (2) relies on the monotonicity of the
operator, A : Rd × R

d → R
d × R

d , given by

A

[
θ

u

]

=
[

h(�i u, θ, i)
− ∑

j θ
jα∗

i (� j u, θ, j)

]

. (4)

More precisely, we assume that A is monotone (see Assumption 2) in the sense that

(

A

[
θ

u

]

− A

[
θ̃

ũ

]

,

[
θ

u

]

−
[

θ̃

ũ

])

≥ 0

for all θ, θ̃ ∈ Sd and u, ũ ∈ R
d . Building upon the ideas in [6] for stationary problems

(also see the approaches for stationary problems in [4,9,29,30]), we introduce the flow

[
θs
us

]

= −A

[
θ

u

]

. (5)
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Up to the normalization of θ , the foregoing flow is a contraction provided that θ ∈ Sd .
Moreover, its fixed points solve

A

[
θ

u

]

= 0.

In Sect. 3, we construct a discrete version of (5) that preserves probabilities; that is, it
preserves both the total mass of θ and its non-negativity.

The time-dependent case is substantiallymore delicate. Ourmethod to approximate
its solutions is our main contribution. The operator associated with the time-dependent
problem, A : H1(0, T ;Rd × R

d) → L2(0, T ;Sd × R
d), is

A

[
θ

u

]

=
[ −ut + h(�i u, θ, i)

θt − ∑
j θ

jα∗
i (� j u, θ, j)

]

. (6)

Under the initial-terminal condition in (3), A is a monotone operator. Thus, the flow

[
θs
us

]

= −A

[
θ

u

]

(7)

for (θ, u) ∈ L2(0, T ;Rd × R
d) is formally a contraction. Unfortunately, even if this

flow is well defined, the preceding system neither preserves probabilities nor such
boundary conditions (3). Thus, in Sect. 4, we modify (7) in a way that it becomes a
contraction in H1 and preserves the boundary conditions. Finally, we discretize this
modified flow and build a numerical algorithm to approximate solutions of (2)-(3).
Unlike Newton-based methods, our algorithm does not need the inversion of large
matrices and scales linearly with the number of states. This is particularly relevant
for finite-state MFGs that arise from the discretization of continuous-state MFGs. We
illustrate our results in a paradigm-shift problem introduced in [8] and studied from a
numerical perspective in [21].

We conclude this introduction with a brief outline of the paper. In the following
section, we discuss the framework, main assumptions, and the paradigm-shift example
that illustrates our methods. Next, we address stationary solutions. Subsequently, in
Sect. 4,we discuss themain contribution of this paper by addressing the initial-terminal
value problem. There, we outline the projection method, explain its discretization, and
present numerical results. The paper ends with a brief concluding section.

2 Framework andmain assumptions

Following [17], we present the standard finite-state MFG framework and describe our
main assumptions. Then, we discuss a paradigm-shift problem from [8] that we use
to illustrate our methods.
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2.1 Standard Setting for Finite-State MFGs

Finite-state MFGs model systems with many identical players who act rationally and
non-cooperatively. These players switch between states in Id in seeking to minimize a
cost. Here, the macroscopic state of the game is a probability vector θ ∈ Sd that gives
the players’ distribution in Id . A typical player controls the switching rate, α j (i), from
its state, i ∈ Id , to a new state, j ∈ Id . Given the players’ distribution, θ(r), at time
r , each player chooses a non-anticipating control, α, that minimizes the cost

ui (t;α) = Eα
it=i

[∫ T

t
c(ir , θ(r), α(r))dr + uiT (θ(T ))

]

. (8)

In the preceding expression, c : Id ×Sd ×(R+
0 )d → R is a running cost,� ∈ R

d is the
terminal cost, and is is aMarkov process in Id with switching rate α. TheHamiltonian,
h, is the generalized Legendre transform of c(i, θ, ·):

h(�i z, θ, i) = min
μ∈(R+

0 )d
{c(i, θ, μ) + μ · �i z}.

The first equation in (2) determines the value function, u, for (8). The optimal
switching rate from state i to state j �= i is given by α∗

j (�i u, θ, i), where

α∗
j (z, θ, i) = argminμ∈(R+

0 )d {c(i, θ, μ) + μ · �i z}. (9)

Moreover, at points of differentiability of h, we have (1). The rationality of the players
implies that each of them chooses the optimal switching rate, α∗. Hence, θ evolves
according to the second equation in (2).

2.2 Main Assumptions

Because we work with the Hamiltonian, h, rather than the running cost, c, it is con-
venient to state our assumptions in terms of the former. For the relation between
assumptions on h and c, see [17].

We begin by stating a mild assumption that ensures the existence of solutions for
(2).

Assumption 1 The Hamiltonian h(z, θ, i) is locally Lipschitz in (z, θ) and differen-
tiable in z. The map z �→ h(z, θ, i) is concave for each (θ, i). The function α∗(z, θ, i)
given by (1) is locally Lipschitz.

Under Assumption 1, there exists a solution to (2)–(3) (see [17]). This solution
may not be unique as the examples in [20] and [21] show. Monotonicity conditions
are commonly used in MFGs to prove the uniqueness of solutions. For finite-state
MFGs, the appropriatemonotonicity condition is stated in the nextAssumption.Before
proceeding, we define ‖v‖� = infλ∈R ‖v + λ1‖.
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Assumption 2 There exists γ > 0 such that the Hamiltonian, h, satisfies the following
monotonicity property:

θ · (h(z, θ̃ ) − h(z, θ)) + θ̃ · (h(z̃, θ) − h(z̃, θ̃ )) ≤ −γ ‖θ − θ̃‖2.

Moreover, for each M > 0, there exist constants, γi , such that on the set ‖w‖, ‖z‖� ≤
M, h satisfies the following concavity property:

h(z, θ, i) − h(w, θ, i) − α∗(w, θ, i) · �i (z − w) ≤ −γi‖�i (z − w)‖2.

Under the preceding assumptions, (2)–(3) has a unique solution (see [17]). Here,
the previous condition is essential to the convergence of our numerical methods, for
both stationary problems in Sect. 3 and for the general time-dependent case in Sect.
4.

Remark 1 As shown in [17], Assumption 2 implies the inequality

d∑

i=1

(ui − ũi )

⎛

⎝
∑

j

θ jα∗(� j u, θ, j) −
∑

j

θ̃ jα∗(� j ũ, θ̃ , j)

⎞

⎠

+
d∑

i=1

(θ i − θ̃ i )
(
−h(�i u, θ, i) + k + h(�i ũ, θ̃ , i) − k̃

)

≤ −γ ‖(θ − θ̃ )‖2 −
d∑

i=1

γi (θ
i + θ̃ i )‖(�i u − �i ũ)‖2

for any u, ũ ∈ R
d , θ, θ̃ ∈ Sd , and k, k̃ ∈ R.

2.3 Solutions andWeak Solutions

Because the operator, A, in (6) is monotone, we have a natural concept of weak solu-
tions for (2)–(3). These weak solutions were considered for continuous-state MFGs in
[6] and [15]. We say that (u, θ) ∈ L2((0, T ),Rd)× L2((0, T ),Sd) is a weak solution
of (2)–(3) if for all (ũ, θ̃ ) ∈ H1((0, T ),Rd)×H1((0, T ),Sd) satisfying (3), we have

〈

A

[
θ̃

ũ

]

,

[
θ̃ − θ

ũ − u

]〉

≥ 0.

Any solution of (2)–(3) is a weak solution, and any sufficiently regular weak solution
with θ > 0 is a solution.

Now, we turn our attention to the stationary problem. We recall (see [17]) that a
stationary solution of (2) is a triplet, (θ̄ , ū, k̄) ∈ Sd × R

d × R, satisfying

{
h(�i ū, θ̄ , i) = k̄
∑

j θ̄
jα∗

i (� j ū, θ̄ , j) = 0
(10)
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for i = 1, . . . , d. As discussed in [17], the existence of solutions to (10) holds under
an additional contractivity assumption. In general, as for continuous-state MFGs,
solutions for (10) may not exist. Thus, we need to consider weak solutions. For a
finite-state MFG, a weak solution of (10) is a triplet, (ū, θ̄ , k̄) ∈ R

d × Sd × R, that
satisfies {

h(�i ū, θ̄ , i) ≥ k̄
∑

j θ̄
jα∗

i (� j ū, θ̄ , j) = 0
(11)

for i = 1, . . . , d, with equality in the first equation for all indices, i, such that θ̄ i > 0.

2.4 Potential MFGs

In a potential MFG, the Hamiltonian takes the form

h(∇i u, θ, i) = h̃(∇i u, i) + f (θ, i),

where h̃ : Rd × Id → R, f : Rd × Id → R and f is the gradient of a convex function,
F : Rd → R; that is, f (θ, ·) = ∇θ F(θ). We define H : Rd × R

d → R as

H(u, θ) =
d∑

i=1

θ i h̃(∇i u, i) + F(θ). (12)

Then, (2) can be written in Hamiltonian form as

{
ut = −Dθ H(u, θ)

θt = DuH(u, θ).

In particular, H is conserved as follows:

d

dt
H(u, θ) = 0.

In Sect. 4.6, we use this last property as an additional test for our numerical method.

2.5 A Case Study: The Paradigm-Shift Problem

A paradigm shift is a change in a fundamental assumption within a scientific the-
ory. Scientists can simultaneous work in the context of multiple competing theories
or problems. Their choice of theoretical grounding is made to maximize recognition
(citations, awards, or prizes) and scientific activity (conferences or collaborations, for
example). The paradigm-shift problem was formulated as a two-state MFG in [8].
Subsequently, it was studied numerically in [21] and [20] using an N -player approxi-
mation andPDEmethods.Here,we present the stationary and time-dependent versions
of this problem. Later, we use these versions to validate our numerical methods.
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We consider the running cost, c : Id × Sd × (R+
0 )2 → R, given by

c(i, θ, μ) = f (i, θ) + c0(i, μ), where c0(i, μ) = 1

2

2∑

j �=i

μ2
j .

The functions f = f (i, θ) are productivity functions with constant elasticity of sub-
stitution, given by

⎧
⎨

⎩

f (1, θ) = (
a1(θ1)r + (1 − a1)(θ2)r

) 1
r

f (2, θ) = (
a2(θ1)r + (1 − a2)(θ2)r

) 1
r

for r ≥ 0 and 0 ≤ a1, a2 ≤ 1. The Hamiltonian is

{
h(u, θ, 1) = f (1, θ) − 1

2

(
(u1 − u2)+

)2
,

h(u, θ, 2) = f (2, θ) − 1
2

(
(u2 − u1)+

)2
,

and the optimal switching rates are

α∗
2(u, θ, 1) = (u1 − u2)+, α∗

1(u, θ, 1) = −(u1 − u2)+,

α∗
1(u, θ, 2) = (u2 − u1)+, α∗

2(u, θ, 2) = −(u2 − u1)+.

For illustration, we examine the case where a1 = 1, a2 = 0, and r = 1 in the
productivity functions above. In this case, f = ∇θ F(θ) with

F(θ) = (θ1)2 + (θ2)2

2
.

Moreover, the game is potential with

H(u, θ) = −1

2

(
(u1 − u2)+

)2
θ1 − 1

2

(
(u2 − u1)+

)2
θ2 + F(θ).

Furthermore, (θ̄ , ū, k) is a stationary solution if it solves

{
θ1 − 1

2 ((u
1 − u2)+)2 = k

θ2 − 1
2 ((u

2 − u1)+)2 = k,
(13)

and {
−θ1(u1 − u2)+ + θ2(u2 − u1)+ = 0

θ1(u1 − u2)+ − θ2(u2 − u1)+ = 0.
(14)

Since θ1 + θ2 = 1, and using the symmetry of (13)–(14), we conclude that

(θ̄ , ū, k) =
((

1

2
,
1

2

)

, (p, p),
1

2

)

, p ∈ R. (15)
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The time-dependent paradigm-shift problem is determined by

{
u1t = −θ1 + 1

2 ((u
1 − u2)+)2

u2t = −θ2 + 1
2 ((u

2 − u1)+)2,
(16)

and {
θ1t = −θ1(u1 − u2)+ + θ2(u2 − u1)+

θ2t = θ1(u1 − u2)+ − θ2(u2 − u1)+,
(17)

together with initial-terminal conditions

θ i (0) = θ0, and ui (T ) = uiT

for i = 1, 2, θ0 ∈ S2, and uT ∈ R
2.

3 Stationary Problems

To approximate the solutions of (10), we introduce a flow closely related to (5).
This flow is the analog for finite-state problems of the one considered in [6]. The
monotonicity in Assumption 2 gives the contraction property. Then, we construct a
numerical algorithm using a Euler step combined with a projection step to ensure that
θ remains a probability. Finally, we test our algorithm in the paradigm-shift model.

3.1 Monotone Approximation

To preserve the mass of θ , we introduce the following modification of (5):

{
uis = ∑

j θ
jα∗

i (� j u, θ, j)

θ is = −h(�i u, θ, i) + k(s),
(18)

where k : R+
0 → R is such that

∑d
i=1 θ i (s) = 1 for every s ≥ 0. For this condition to

hold, we need
∑d

i=1 θ is = 0. Therefore,

k(s) = 1

d

d∑

i=1

h(�i u, θ, i). (19)
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Proposition 1 Suppose that Assumptions 1–2 hold. Let (u, θ) and (ũ, θ̃ ) solve (18)–
(19). Assume that

∑
i θ

i (0) = ∑
i θ̃

i (0) = 1 and that θ(s), θ̃ (s) ≥ 0. Then,

d

ds

(
‖(u − ũ)‖2 + ‖θ − θ̃‖2

)

≤ −γ ‖(θ − θ̃ )(s)‖2 −
d∑

i=1

γi (θ
i + θ̃ i )(s)‖(�i u − �i ũ)(s)‖2.

Proof We begin with the identity

1

2

d

ds

d∑

i=1

[
(ui − ũi )2 + (θ i − θ̃ i )2

]

=
d∑

i=1

(ui − ũi )(ui − ũi )s + (θ i − θ̃ i )(θ i − θ̃ i )s .

Using (18) in the previous equality, we obtain

1

2

d

ds

d∑

i=1

[
(ui − ũi )2 + (θ i − θ̃ i )2

]

=
d∑

i=1

(ui − ũi )

⎛

⎝
∑

j

θ jα∗(� j u, θ, j) −
∑

j

θ̃ jα∗(� j ũ, θ̃ , j)

⎞

⎠

+
d∑

i=1

(θ i − θ̃ i )
(
−h(�i u, θ, i) + k + h(�i ũ, θ̃ , i) − k̃

)

≤ −γ ‖(θ − θ̃ )(s)‖2 −
d∑

i=1

γi (θ
i + θ̃ i )(s)‖(�i u − �i ũ)(s)‖2,

by Remark 1. ��

3.2 Numerical Algorithm

Let A be given by (4). Due to the monotonicity, for small μ, the Euler map,

Eμ

[
θ

u

]

=
[

θ

u

]

− μA

[
θ

u

]

,

is a contraction, provided that θ is nonnegative; that is, the case when θ is a probability
vector. However, Eμ may not keep θ non-negative and, in general, Eμ also does not
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preserve the mass. Thus, we introduce the following projection operator on Sd ×R
d :

P

[
θ

u

]

=
[


(θ)

u

]

,

where 
(θ)i = (θ i + ξ)+ and ξ is such that

∑

i


(θ)i = 1.

Clearly, P is a contraction because it is a projection on a convex set. Finally, to
approximate weak solutions of (10), that is solutions (11), we consider the iterative
map [

θn+1
un+1

]

= PEμ

[
θn
un

]

. (20)

We have the following result:

Proposition 2 Let (θ̄ , ū, k̄) solve (11). Then, (θ̄ , ū) is a fixed point for (20). Moreover,
for any fixed point of (20), there exists k̄ such that (θ̄ , ū, k̄) solves (11).

Finally, if μ is small enough and (11) has a weak solution, (θ̄ , ū, k̄), with θ̄ > 0,
then the iterates in (20) are bounded and converge to (θ̄ , ū). Moreover, the solution is
unique.

Proof Clearly, a solution of (11) is a fixed point for (20). Conversely, let (θ̄ , ū) be a
fixed point for (20). Then,

ūi = ūi + μ
∑

j

θ̄ jα∗
i (� j ū, θ̄ , j).

Hence,

∑

j

θ̄ jα∗
i (� j ū, θ̄ , j) = 0.

Additionally, we have

θ̄ i =
(
θ̄ i − μh(�i ū, θ̄ , i) + ξ

)+

for some ξ . Thus, for k̄ = ξ
μ
,

h(�i ū, θ̄ , i) ≥ k̄,

with equality when θ̄ i > 0.
If μ is small enough, Eμ is a contraction because A is a monotone Lipschitz

map. Thus, if there is a solution of (11), the iterates in (20) are bounded. Then, the
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convergence follows from the monotonicity of Eμ and the strict contraction given by
θ̄ > 0. ��
Remark 2 Concerning the convergence rate and the choice of the parameter μ in the
preceding theorem, we observe the following. The operator A is locally Lipschitz.
Thus, given bound on the initial conditions, we can assume the Lipschitz constant to
be a number, L > 0. By selecting

0 < μ <
2

L
,

we get that Eμ is a contraction and we may assume that the initial bound on data is
preserved (for example, by looking at the norm of the difference between the iterates
and a given stationary solution). If there is a strictly positive stationary solution, the
convergence is exponential because, for u and ũ with mean 0, we have

γ ‖(θ − θ̃ )(s)‖2 +
d∑

i=1

γi (θ
i + θ̃ i )(s)‖(�i u − �i ũ)(s)‖2

≥ C
d∑

i=1

[
(ui − ũi )2 + (θ i − θ̃ i )2

]
.

The constant, however, depends on the lower bounds on the stationary solution and
thus, we do not have a direct estimate on the rate of convergence.

3.3 Numerical Examples

To illustrate our algorithm, we consider the paradigm-shift problem. The monotone
flow in (18) is {

u1s = −θ1(u1 − u2)+ + θ2(u2 − u1)+

u2s = θ1(u1 − u2)+ − θ2(u2 − u1)+,
(21)

and {
θ1s = −θ1 + 1

2 ((u
1 − u2)+)2 + k(s)

θ2s = −θ2 + 1
2 ((u

2 − u1)+)2 + k(s).
(22)

According to (19),

k(s) = 1

2

(

θ1 − 1

2
((u1 − u2)+)2 + θ2 − 1

2
((u2 − u1)+)2

)

.

Now, we present the numerical results for this model using the iterative method in
(20). We set s ∈ [0, 8] and discretize this interval into N = 300 subintervals. First,
we consider the following initial conditions:

u10 = 4, u20 = 2 and θ10 = 0.8, θ20 = 0.2.
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Fig. 1 Evolution of θ and u with the monotone flow, for s ∈ [0, 8]. The quantities corresponding to the state
1 and 2 are depicted in blue and orange, respectively. a Convergence of θ i . b Convergence of ui (Color
figure online)
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Fig. 2 Evolution of k and contraction of the norm, ‖(θ, u) − (θ̄ , ū)‖. a Evolution of k. b Contraction of the
norm

The convergence towards the stationary solution is illustrated in Fig. 1a, b for θ and
u. The behavior of k is shown in Fig. 2a. In Fig. 2b, we illustrate the contraction of
the norm

∥
∥
∥
∥

[
θ(s)
u(s)

]

−
[

θ̄

ū

]∥
∥
∥
∥ ,

where (θ̄ , ū) is the stationary solution in (15). Next, we consider the case in which the
iterates of Eμ do not preserve positivity. In Fig. 3, we compare the evolution of θ by
iterating Eμ, without the projection and using (20). In the first case, θ may not remain
positive, although, in this example, convergence holds. In Fig. 3, we plot the evolution
through (20) of θ towards the analytical solution θ1 = θ2 = 0.5. As expected from its
construction, θ is always non-negative and a probability. The contraction of the norm
is similar to the previous case, see Fig. 4.
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Fig. 3 Comparison between the iterates of Eμ and PEμ for θ10 = 0.8, θ20 = 0.2, u10 = 5, and u20 = 2. The
quantities corresponding to the state 1 and 2 are depicted in blue and orange, respectively. a Non positivity
of the distribution using Eμ. b Convergence using (20) while preserving the positivity of θ (Color figure
online)

Fig. 4 Evolution of the norm,
‖(θ, u) − (θ̄ , ū)‖, using the
projection method
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4 Initial-Terminal Value Problems

The initial-terminal conditions in (3) are the key difficulty in the design of numerical
methods for the time-dependent MFG, (2). Here, we extend the strategy from the
previous section to handle initial-terminal conditions. We start with an arbitrary pair
of functions, (u(t, 0), θ(t, 0)), that satisfies (3) and build a family (u(t, s), θ(t, s)),
s ≥ 0, that converges to a solution of (2)–(3) as s → ∞, while preserving the boundary
conditions for all s ≥ 0.

4.1 Representation of Functionals in H1

We begin by discussing the representation of linear functionals in H1. Consider the
Hilbert space, H1

T = {φ ∈ H1([0, T ],Rd) : φ(T ) = 0}. For θ, u ∈ H1([0, T ],Rd),
we consider the variational problem

min
φ∈H1

T

∫ T

0

⎡

⎣1

2
(|φ|2 + |φ̇|2) + φ ·

⎛

⎝θt −
∑

j

θ jα∗(� j u, θ, j)

⎞

⎠

⎤

⎦ dt . (23)
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A minimizer, φ ∈ H1
T , of the preceding functional represents the linear functional

η �→ −
∫ T

0
η ·

⎛

⎝θt −
∑

j

θ jα∗(� j u, θ, j)

⎞

⎠ dt

for η ∈ H1
T , as an inner product in H1

T ; that is,

∫ T

0

(
η · φ + η̇ · φ̇)

dt = −
∫ T

0
η ·

⎛

⎝θt −
∑

j

θ jα∗(� j u, θ, j)

⎞

⎠ dt

for φ, η ∈ H1
T . The last identity is simply the weak form of the Euler–Lagrange

equation for (23),
− φ̈ + φ = −θt +

∑

j

θ jα∗(� j u, θ, j), (24)

whose boundary conditions are φ(T ) = 0 and φ̇(0) = 0. For θ, u ∈ H1([0, T ],Rd),
we define

�(θ, u, t) = φ(t). (25)

Next, let H1
I = {ψ ∈ H1([0, T ],Rd) : ψ(0) = 0}. For θ, u ∈ H1([0, T ],Rd), we

consider the variational problem

min
ψ∈H1

I

∫ T

0

[
1

2
(|ψ |2 + |ψ̇ |2) + ψ · (ut + h(�i u, θ, i))

]

dt . (26)

The Euler–Lagrange equation for the preceding problem is

− ψ̈ + ψ = −ut − h(�i u, θ, i), (27)

with the boundary conditions ψ(0) = 0 and ψ̇(T ) = 0. Moreover, if ψ ∈ H1
I

minimizes the functional in (26), we have

∫ T

0

(
η · ψ + η̇ · ψ̇

)
dt =

∫ T

0
η · (−ut − h(�i u, θ, i)) dt

for η,ψ ∈ H1
I . For θ, u ∈ H1([0, T ],Rd), we define

�(θ, u, t) = ψ(t). (28)
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4.2 Monotone Deformation Flow

Next, we introduce the monotone deformation flow,

{
uis(t, s) = �i (θ(·, s), u(·, s), t)
θ is (t, s) = � i (θ(·, s), u(·, s), t), (29)

where � and � are given in (25) and (28). As we show in the next proposition, for
smooth enough solutions, the previous flow is a contraction in H1. Moreover, if (θ, u)

solve (2)–(3), we have

�(θ, u, t) = �(θ, u, t) = 0.

Hence, solutions of (2)–(3) are fixed points for (29).
Before stating the contraction property, we recall that the H1-norm of a pair of

functions is given by

‖(v, η)‖2H1 =
∫ T

0

(
|v|2 + |v̇|2 + |η|2 + |η̇|2

)
dt

for v, η : [0, T ] → R
d .

Proposition 3 Let (u, θ) and (ũ, θ̃ ) be C2 solutions of (29). Suppose that θ, θ̃ ≥ 0.
Then,

d

ds
‖(u, θ) − (ũ, θ̃ )‖2H1 ≤ 0,

with strict inequality if (u, θ) �= (ũ, θ̃ ).

Proof We have

1

2

d

ds

∫ T

0

[
(u − ũ)2 + (u − ũ)2t + (θ − θ̃ )2 + (θ − θ̃ )2t

]
dt

=
∫ T

0

[
(u − ũ)(u − ũ)s + (u − ũ)t (u − ũ)ts

]
dt

+
∫ T

0

[
(θ − θ̃ )(θ − θ̃ )s + (θ − θ̃ )t (θ − θ̃ )ts

]
dt .
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Using (29), the term in the right-hand side of the previous equality becomes

∫ T

0

[
(u − ũ)(φ − φ̃) + (u − ũ)t (φ − φ̃)t

]
dt

+
∫ T

0

[
(θ − θ̃ )(ψ − ψ̃) + (θ − θ̃ )t (ψ − ψ̃)t

]
dt

=
∫ T

0
(u − ũ)(φ − φ̃)dt +

[
(u − ũ)(φ − φ̃)t

]∣
∣
∣
T

0

−
∫ T

0
(u − ũ)(φ − φ̃)t t dt

+
∫ T

0
(θ − θ̃ )(ψ − ψ̃)dt +

[
(θ − θ̃ )(ψ − ψ̃)t

]∣
∣
∣
T

0

−
∫ T

0
(θ − θ̃ )(ψ − ψ̃)t t dt,

where we used integration by parts in the last equality. Because u(T ) = ũ(T ), θ(0) =
θ̃ (0), φt (0) = φ̃t (0), ψt (T ) = ψ̃t (T ), and using (24) and (27), we obtain

1

2

d

ds

∫ T

0
(u − ũ)2 + (u − ũ)2t + (θ − θ̃ )2 + (θ − θ̃ )2t

=
∫ T

0
(u − ũ)

(∑
θ jα∗(� j u, θ, j) −

∑
θ̃α∗(� j ũ, θ̃ , j)

)

−
∫ T

0
(θ − θ̃ )

(
h(�i u, θ, i) − h(�i ũ, θ̃ , i)

)

≤
∫ T

0
−γ ‖(θ − θ̃ )(t)‖2 −

d∑

i=1

γi (θ
i + θ̃ i )(t)‖(�i u − �i ũ)(t)‖2dt, (30)

due to Remark 1. ��

4.3 Monotone Discretization

To build our numerical method, we begin by discretizing (29). We look for a time-
discretization of

A

[
θ

u

]

=
[−θt + f (u, θ)

−ut − h(u, θ)

]

that preserves monotonicity, where f (u, θ) = ∑
j θ̃

jα∗(� j ũ, θ̃ , j).
With Hamilton–Jacobi equations, implicit schemes have good stability properties.

Because the Hamilton–Jacobi equation in (29) is a terminal value problem, we dis-
cretize it using an explicit forward-in-time scheme (hence, implicit backward-in-time
scheme). Then, to keep the adjoint structure of A at the discrete level, we are then
required to choose an implicit discretization forward in time for the first component of
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A. Usually, implicit schemes have the disadvantage of requiring the numerical solu-
tion of non-linear equations at each time step. Here, we discretize the operator, A,

globally, and we never need to solve implicit equations.
More concretely, we split [0, T ] into N intervals of length δt = T

N . The vectors
θn ∈ Sd and un ∈ R

d , 0 ≤ n ≤ N approximate θ and u at time nT
N . We set

MN = (Sd × R
d)N+1 and define

AN
[

θ

u

]

n
=

⎡

⎣− θ in+1−θ in
δt + f (uin+1, θ

i
n+1) + kn

− uin+1−uin
δt − h(uin, θ

i
n)

⎤

⎦ , (31)

where

kn(s) = − 1

d

d∑

i=1

(

−δθ in

δt
+ f (uin+1, θ

i
n+1)

)

and δθ in = θ in+1 − θ in . Next, we show that AN is a monotone operator in the convex
subset of vectors in M that satisfy the initial-terminal conditions in (3). We denote
by 〈·, ·〉, the duality pairing in (Sd × R

d)N+1. More precisely, for (θ, u), (θ̃ , ũ) ∈
(Sd × R

d)N+1

〈[
θ

u

]

,

[
θ̃

ũ

]〉

=
N∑

k=0

θk · θ̃k + uk · ũk .

Proposition 4 AN is monotone in the convex subsetMN of all (θ, u) ∈ (Sd ×R
d)N+1

such that θ0 = θ̄0 and uN = ūT . Moreover, we have the inequality

〈

AN
[

θ

u

]

− AN
[

θ̃

ũ

]

,

[
θ

u

]

−
[

θ̃

ũ

]〉

≤
N−1∑

n=1

(

−γ ‖(θ − θ̃ )(t)‖2 −
d∑

i=1

γi (θ
i + θ̃ i )(t)‖(�i u − �i ũ)(t)‖2

)

.

Proof We begin by computing

〈

AN
[

θ

u

]

− AN
[

θ̃

ũ

]

,

[
θ

u

]

−
[

θ̃

ũ

]〉

=
N−1∑

n=0

[

(θn − θ̃n)

(

−un+1 − un
δt

− h(un, θn) + ũn+1 − ũn
δt

+ h(ũn, θ̃n)

)

+ (un+1 − ũn+1)
(

− θn+1 − θn

δt
+ f (un+1, θn+1) + kn

+ θ̃n+1 − θ̃n

δt
− f (ũn+1, θ̃n+1) − k̃n

)]

.
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With the sums developed and the indices relabeled, the preceding expression becomes

N−1∑

n=1

[

(θn − θ̃n)

(

−un+1 − un
δt

− h(un, θn) + ũn+1 − ũn
δt

+ h(ũn, θ̃n)

)

+ (θ0 − θ̃0)

(

−u1 − u0
δt

− h(u0, θ0) + ũ1 − ũ0
δt

+ h(ũ0, θ0)

) ]

+
N−1∑

n=1

[

(un − ũn)

(

−θn − θn−1

δt
+ f (un, θn) + θ̃n − θ̃n−1

δt
− f (ũn, θ̃n)

)

+ (uN − ũN )

(

−θN − θN−1

δt
+ f (uN , θN ) + θ̃N − θ̃N−1

δt
− f (ũN , θ̃N )

) ]

.

The second and last lines above are zero since θ0 = θ̃0 = θ̄0 and uN = ũN = ūT .
Using Remark 1, we obtain

〈

A

[
θ

u

]

− A

[
θ̃

ũ

]

,

[
θ

u

]

−
[

θ̃

ũ

]〉

≤
N−1∑

n=1

(

−γ ‖(θ − θ̃ )(t)‖2 −
d∑

i=1

γi (θ
i + θ̃ i )(t)‖(�i u − �i ũ)(t)‖2

)

−
N−1∑

n=1

(θn − θ̃n)

(
un+1 − ũn+1

δt
− un − ũn

δt

)

−
N−1∑

n=1

(un − ũn)

(
θn − θ̃n

δt
− θn−1 − θ̃n−1

δt

)

.

We now show that the last two lines add to zero. Let an = θn − θ̃n and bn = un − ũn .
Accordingly, we have

− 1

δt

N−1∑

n=1

an(bn+1 − bn) − 1

δt

N−1∑

n=1

bn(an − an−1)

= − 1

δt
(bNaN − b1a1) + 1

δt

N−1∑

n=1

bn+1(an+1 − an) − 1

δt

N−2∑

n=0

bn+1(an+1 − an)

= 1

δt
(b1a0 − bNaN−1) = 0,

where we summed the first term by parts and relabeled the index, n, in the last term
of the first line. The last equality follows from the assumption in the statements,
a0 = θ0 − θ̃0 = 0 and bN = uN − ũN = 0. ��
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Using the techniques in [6], we prove the convergence of the solutions of the
discretized problem as δt → 0. As usual, we discretize the time interval, [0, T ], into
N + 1 equispaced points.

Proposition 5 Let (θN , uN ) ∈ MN be a solution of

AN
[

θN

uN

]

n
=

[
0
0

]

satisfying the initial-terminal conditions in (3). Suppose that uN is uniformly bounded.
Consider the step functions ūN and θ̄N taking the values ūNi

n ∈ R and θ̄Ni
n ∈ S in

[ (n−1)T
N , nT

N ], with 0 ≤ n ≤ N, for i ∈ Id , respectively. Then, extracting a subsequence
if necessary, ūNi⇀ūi and θ̄Ni⇀θ i weakly-* in L∞ for i ∈ Id . Furthermore, (ū, θ̄ )

is a weak solution of (2).

Proof Because uN is bounded by hypothesis and θN is bounded since it is a prob-
ability measure, the weak-* convergence in L∞ is immediate. Hence, there exist
ūi ∈ L∞([0, T ]) and θ i ∈ L∞([0, T ]) as claimed.

Let ũi , θ̃ i ∈ C∞([0, T ]), with θ̃ i ≥ 0 for all i ∈ Id , and
∑

i∈Id θ̃ i = 1. Sup-

pose further that ũi , θ̃ i satisfy the boundary conditions in (3). Let ũN
n = ũ

( n
N T

)
,

θ̃N
n = θ̃

( n
N T

)
be the vectors whose components are ũNi

n and θ̃Ni
n , respectively. By

the monotonicity of AN , we have

0 ≤
〈

AN
[

θ̃N

ũN

]

,

[
θ̃N

ũN

]

−
[

θN

uN

]〉

= O

(
1

N

)

+
〈

A

[
θ̃

ũ

]

,

[
θ̃

ũ

]

−
[

θ̄N

ūN

]〉

,

and taking the limit N → ∞ gives the result. ��

4.4 Monotone Discretization for the H1 Projections

Next, we discuss the representation of linear functionals for the discrete problem. For
that, proceeding as in Sect. 4.1, we compute the optimality conditions of the discretized
versions of (23) and (26).

Fix (u, θ) ∈ MN and consider the following discrete analog to (23):

min
φ∈H̃1

T

δt
N∑

n=1

1

2

(

φ2
n +

(
δφn−1

δt

)2
)

+ φn

(
δθn−1

δt
− f (un, θn)

)

,

where δgn = gn+1 − gn , and H̃1
T = {φ = (φ0, . . . , φN ) ∈ (Rd)(N+1) : φN = 0}. The

corresponding optimality conditions (the discrete Euler–Lagrange equation) is

− δ(δφn−1)

(δt)2
+ φn = −δθn−1

δt
+ f (un, θn), (32)
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for n = 1, . . . , N − 1, coupled with the boundary conditions φN = 0 and φ1 = φ0.
Aminimizer of the problemabove represents the followingdiscrete linear functional

η �→ −
N∑

n=1

ηn ·
(

δφn−1

δt
− f (un, θn)

)

δt

as an inner product in H̃1
T

N∑

n=1

(

ηn · φnδt + 1

δt
δηn−1 · δφn−1

)

= −
N∑

n=1

ηn ·
(

δφn−1

δt
− f (un, θn)

)

δt .

For (θn, un) ∈ MN , we define

�(θn, un) = φn . (33)

We now examine a second discrete variational problem corresponding to (26). For
(u, θ) ∈ MN , we consider

min
ψ∈H̃1

I

δt
N−1∑

n=0

1

2

(

ψ2
n +

(
δψn

δt

)2
)

+ ψn

(
δun
δt

+ h(un, θn)

)

,

where H̃1
I = {ψ = (ψ0, . . . , ψN ) ∈ (Rd)(N+1) : ψ0 = 0}.

The discrete Euler–Lagrange equation is

− δ(δψn−1)

(δt)2
+ ψn = −δun

δt
− h(un, θn) (34)

for n = 1, . . . , N − 1, together with the conditions ψ0 = 0 and ψN = ψN−1.
From the Euler–Lagrange equation, we obtain the following representation formula

in the Hilbert space {ψ ∈ H1
n ({0, . . . , N }) : ψ0 = 0}:

N−1∑

n=0

(η · ψ + δη · δψ) δt =
N∑

0

η ·
(

−δun
δt

− h(un, θn)

)

δt .

Finally, we define
�(θn, un) = ψn, (35)

for (u, θ) ∈ MN .

Proposition 6 Let�and� be given by (33)and (35). Consider the followingoperator:

QA

[
θ

u

]

=
[

�

�

]

. (36)
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LetMθ̄0,ūT
N be the set of all (θ, u) ∈ MN that satisfy the initial condition θ0 = θ̄0 and

the terminal condition uN = ūT . Then, QA is monotone with respect to the discrete
H1
N inner product corresponding to the norm

‖(η, ν)‖2
H1
N

=
N−1∑

n=0

|ηn|2 + |δηn|2 + |νn|2 + |δνn|2. (37)

Proof Let (u, θ) ∈ Mθ̄0,ūT
N and (ũ, θ̃ ) ∈ Mθ̄0,ūT

N . Let φ, φ̃ and ψ, ψ̃ be given by (33)
and (35). We begin by computing

〈

QA

[
θ

u

]

− QA

[
θ̃

ũ

]

,

[
θ

u

]

−
[

θ̃

ũ

]〉

H1
N

=
N−1∑

n=0

[

(θn − θ̃n)(ψn − ψ̃n) + δ(θn − θ̃n)

δt

δ(ψn − ψ̃n)

δt

+ (un − ũn)(φn − φ̃n) + δ(un − ũn)

δt

δ(φn − φ̃n)

δt

]

=
N−1∑

n=0

(θn − θ̃n)(ψn − ψ̃n) + (un − ũn)(φn − φ̃n)

+ 1

δt

N−1∑

n=0

(
θn+1 − θn

δt
− θ̃n+1 − θ̃n

δt

)

(δψn − δψ̃n)

+ 1

δt

N−1∑

n=0

(
un+1 − un

δt
− ũn+1 − ũn

δt

)

(δφn − δφ̃n). (38)

Reorganizing, we see that the previous two lines are equal to

1

(δt)2

N−1∑

n=0

[ [
(θn+1 − θ̃n+1) − (θn − θ̃n)

]
(δψn − δψ̃n)

+ [
(un+1 − ũn+1) − (un − ũn)

]
(δφn − δφ̃n)

]

. (39)

Using the notation

an = θn − θ̃n, bn = δψn − δψ̃n, cn = un − ũn, and dn = δφn − δφ̃n,
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we write (39) multiplied by (δt)2 as

N−1∑

n=0

bnδan + dnδcn = bN−1δaN−1 + dN−1δcN−1 +
N−2∑

n=0

bnδan + dnδcn

= bN−1δaN−1 + dN−1δcN−1

+ aN−1bN−1 − a0b0 −
N−2∑

n=0

an+1δbn

+ cN−1dN−1 − c0d0 −
N−2∑

n=0

cn+1δdn, (40)

where we used summation by parts in the last equality. Because ψN = ψN−1, we
have bN−1 = 0. Moreover, since θ0 = θ̃0, we have a0 = 0, and φ1 = φ0 implies that
d0 = 0. Thus, we further have

dN−1δcN−1 = dN−1 (uN − ũN − (uN−1 − ũN−1))

= −dN−1(uN−1 − ũN−1)

= −cN−1dN−1,

where we used the terminal condition uN = ũN . According to these identities, (40)
becomes

N−1∑

n=0

bnδan + dnδcn = −
N−2∑

n=0

an+1δbn + cn+1δdn .

Therefore, (39) can be written as

−
N−2∑

n=0

θn+1 − θ̃n+1

(δt)2

(
δ2ψn − δ2ψ̃n

)
−

N−2∑

n=0

un+1 − ũn+1

(δt)2

(
δ2φn − δ2φ̃n

)
. (41)

Shifting the index n + 1 into n in (41), we obtain

−
N−1∑

n=1

θn − θ̃n

(δt)2

(
δ2ψn−1 − δ2ψ̃n−1

)
−

N−1∑

n=1

un − ũn
(δt)2

(
δ2φn−1 − δ2φ̃n−1

)
.

Using the Euler–Lagrange equations (32) and (34) in the preceding expression yields

−
N−1∑

n=1

(θn − θ̃n)

(

ψn + un+1 − un
δt

+ h(un, θn) − ψ̃n − ũn+1 − ũn
δt

− h(ũn, θ̃n)

)

−
N−1∑

n=1

(un − ũn)

(

φn + θn − θn−1

δt
− f (un, θn) − φ̃n − θ̃n − θ̃n−1

δt
+ f (ũn, θ̃n)

)

.
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Finally, plugging the previous result into (38), we obtain

−
N−1∑

=1

(θn − θ̃n)

(
un+1 − ũn+1

δt
− un − ũn

δt
+ h(un, θn) − h(ũn, θ̃n)

)

−
N−1∑

n=1

(un − ũn)

(
θn − θ̃n

δt
− θn−1 − θ̃n−1

δt
− f (un, θn) + f (ũn, θ̃n)

)

≤
N−1∑

n=1

−γ ‖(θn − θ̃n)‖2 −
d∑

i=1

γi (θ
i
n + θ̃ in)‖(�i un − �i ũn)‖2

by using Remark 1 and arguing as at the end of Sect. 4.3. ��

4.5 Projection Algorithm

As shown in Sect. 3, the monotone flow may not keep θ positive. Thus, to preserve
probabilities and prevent θ from taking negative values, we define a projection operator
through the following optimization problem. Given (η,w) ∈ MN , we solve

{
minλin

∑d
i=1(η

i
n − λin)

2

∑d
i=1 λin = 1, λin ≥ 0

(42)

for n ∈ {0, . . . , N }. Then, we set

P

[
η

w

]

n
=

[
λn
wn

]

for 0 ≤ n ≤ N . We note that if ηn is a probability, then λn = ηn . Moreover, P is a
contraction.

Now, we introduce the following iterative scheme:

wk+1 = P [wk − υQA[wk]] , (43)

where wk = (θk, uk), QA is defined in (36), and υ > 0 is the step size.

Proposition 7 For small enough υ, the map (43) is a contraction. Moreover, if there
exists a solution (θ̃ , ũ) of

⎧
⎨

⎩

− θ̃ in+1−θ̃ in
δt + f (ũin+1, θ̃

i
n+1) = 0

− ũin+1−ũin
δt − h(ũin, θ̃

i
n) = 0

(44)
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satisfying the initial-terminal conditions θ̃0 = θ̄0 and ũN = ūT , the iterates of (43)
satisfy

N−1∑

n=1

γ ‖(θn,k − θ̃n,k)‖2 +
d∑

i=1

γi (θ
i
n,k + θ̃ in,k)‖(�i un,k − �i ũn,k)‖2 → 0,

as k → ∞.

Proof The operator Eυ is a contraction because QA is a monotone Lipschitz map (see
Proposition 6). The convergence in the statement follows from the series

∞∑

k=1

N−1∑

n=1

γ ‖(θn,k − θ̃n,k)‖2 +
d∑

i=1

γi (θ
i
n,k + θ̃ in,k)‖(�i un,k − �i ũn,k)‖2,

being convergent. ��
Proposition 8 Let (θ̄ , ū) ∈ MN solve

AN
[

θ

u

]

=
[
0
0

]

,

with uN = ūT and θ0 = θ̄0. Then, (θ̄ , ū) is a fixed point of (43).
Conversely, let (θ̃ , ũ) ∈ MN be a fixed point of (43) with θ̃ > 0. Then, there exists

a solution to (44), (θ̄ , ū), with θ̄ = θ̃ and ū given by

δūin
δt

= −h(�i ũ, θ, i) (45)

with ūN = ūT .

Proof The first claim of the proposition follows immediately from the definition of
QA. To prove the second part, let (θ̃ , ũ) ∈ MN be a fixed point of (43). For all
n ∈ {0, . . . , N } and i ∈ Id , we have

ũin = ũin + υφn(ũn, θ̃n).

Therefore, φn(ũn, θ̃n) = 0. Hence, from (32), we conclude that

−δθ̃n−1

δt
+ f (ũn, θ̃n) = 0.

Furthermore, for θ̃ in = λin , where λin solves (42), we have

θ̃ in = P
[
θ̃ in − υψn(ũn, θ̃n)

]

=
(
θ̃ in − υψn(ũn, θ̃n) + υκn

)+
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for some κn ≥ 0. If θ̃ in > 0, ψn(ũn, θ̃n) = κn . Otherwise, ψn(ũn, θ̃n) ≥ κn .
If θ̃ in > 0, using the fact that ψ solves (34), we gather

δũin
δt

− 1

d − 1

∑

j �=i

δũ j
n

δt
= 1

d − 1

∑

j �=i

h(� j ũn, θ, j) − h(�i ũn, θ, i).

Now, we define ū as in the statement of the proposition. A simple computation gives

δūin
δt

− δū j
n

δt
= δũin

δt
− δũ j

n

δt
.

Hence, � j ūn = � j ũn . Consequently,

δūin
δt

= −h(�i ū, θ, i).

Thus, (θ̄ , ū) solves (2). ��
Remark 3 The convergence of solutions of (44) to weak solutions of (2) follows from
the Minty’s method and the monotonicity of the operator A as shown in Proposition
5.

4.6 Numerical Examples

Finally, we present numerical simulations for the time-dependent paradigm-shift prob-
lem. As explained before, we discretize the time variable, t ∈ [0, T ], into N intervals
of length δt = T

N . We then have N equations for each state. Because d = 2, this
system consists of 4N evolving equations according to (43).

To compute approximate solutions to (16)–(17), we use the projection algorithm,
(43), with N = 400. We first consider a case in which the analytical solution can
be computed explicitly. We choose θ1 = θ2 = 1

2 . Thus, from (16), it follows that
u1 = u2 are affine functions of t with u1t = u2t − 1

2 . Our results are depicted in Figs.
5, 6, and 7. In Fig. 5, for t ∈ [0, T ], T = 8, we plot the initial guess (s = 0) for
θ and u, and the analytical solution. In Fig. 6, we see the evolution of the density
of players and the value functions for s ∈ [0, 20]. The final results, s = 20, are
shown in Fig. 7. Finally, in Fig. 8, we show the evolution of the H1 norm of the
difference between the analytical, (ũ, θ̃ ), and computed, (u, θ), solutions. The norm
‖(ũ, θ̃ ) − (u, θ)‖2

H1([0,T ])(s) is computed as

N−1∑

j=0

2∑

i=1

δt
(
|ũij − uij |2 + | ˙̃uij − u̇ij |2 + |θ̃ ij − θ ij |2 + |˙̃θ ij − θ̇ ij |2

)
(s)

for s ≥ 0, where vij = vi (t j , s) and δt is the size of the time-discretization step.
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Fig. 5 The blue lines correspond to the initial values (s = 0) for state 1, (θ1, u1): the orange lines correspond
to the initial values for state 2, (θ2, u2); the green lines correspond to the analytical solution θ1 = θ2 and
u1 = u2 for t ∈ [0, 8]. a Initial condition θ(·, 0) versus exact solution. b Initial condition u(·, 0) versus
exact solution (Color figure online)

Fig. 6 Evolution, along parameter s ∈ [0, 20], of the density of distribution of players, θ(·, s), and the
difference of the value functions for both sates, (u1−u2)(·, s).aDistribution of players θ1(t, s).bDifference
(u1 − u2)(t, s)
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Fig. 7 Final value of u(·, s) and θ(·, s) for s = 20. Note that the quantities for both states superpose. a
Final distribution θ(·, 20). b Final value function u(·, 20)
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Fig. 8 Evolution, with the parameter s, of the H1-norm of the difference between the computed solution
(u, θ)(·, s) and the analytical solution for the unconstrained probability case

Theparadigm-shift problem is a potentialMFGwith theHamiltonian corresponding
to

h̃(�i u, i) = −1

2
((ui − u j )+)2, and F(θ) = θ21 + θ22

2

in (12). Thus, as a final test to our numerical method, we investigate the evolution of
the Hamiltonian. In this case, as expected, the Hamiltonian converges to a constant
(see Fig. 9).

In the preceding example, while iterating (43), θ remains away from 0. In the next
example, we consider a problem in which, without the projection P in (43), positivity
is not preserved. We set N = 400 and choose initial conditions as in Fig. 10. In Fig.
11, we show the evolution by (43) for s ∈ [0, 20]. In Fig. 12, we see the final result for
s = 20. Finally, in Fig. 13, we show the evolution of the H1 norm of the difference
‖(ũ, θ̃ ) − (u, θ)‖2

H1([0,T ])(s) for s ∈ [0, 20].
In Fig. 14, we plot the evolution of the Hamiltonian determined using the projection

method. Again, we obtain the numerical conservation of the Hamiltonian.

5 Conclusions

As the examples in the preceding sections illustrate, we have developed an effective
method for the numerical approximation of monotonic finite-stateMFGs. As observed
previously, [1–3,5], monotonicity properties are essential for the construction of effec-
tive numericalmethods to solveMFGs andwere used explicitly in [6]. Here, in contrast
with earlier approaches, we do not use a Newton-type iteration as in [1,3] nor do we
require the solution of the master equation as in [20,21]. While for d = 2, the master
equation can be handled numerically as in the preceding references, this approach
becomes numerically prohibitive when there is a large number of states. The master
equation determines the value functionU (θ, i, t), where θ ∈ Sd . A direct approach to
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Fig. 9 Evolution of the Hamiltonian for s ∈ [0, 20]
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Fig. 10 The blue lines correspond to the initial values (s = 0) for state 1, (θ1, u1); the orange lines
correspond to the initial values for state 2, (θ2, u2). a Initial condition θ(·, s = 0). b Initial condition
u(·, s = 0) (Color figure online)

themaster equation requires a grid inSd , or equivalently in a subset ofRd−1. However,
when d is moderately large, a direct approach requires the storage of an extremely
large number of points. With our approach, we only need 2d values for each time step.
The key contribution of this work is the projection method that makes addressing the
initial-terminal value problem possible. This was an open problem since the introduc-
tion of monotonicity-based methods in [6]. Our methods can be applied to discretizing
continuous-state MFGs, and we foresee additional extensions. The first one concerns
the planning problem considered in [2]. A second extension regards boundary value
problems, which are natural in many applications of MFGs. Finally, our methods may
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Fig. 11 Evolution of u(·, s) and θ(·, s), for s ∈ [0, 20]. The quantities for state 1 and 2 are depicted in blue
and orange, respectively. a Distribution of players θ1. b Value functions u1 and u2 (Color figure online)
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Fig. 12 Final value of u(·, s) and distribution θ(·, s), at s = 20. The quantities for state 1 are depicted in
blue and for state 2 in orange. a Distribution of players θ(·, 20). b Value functions u(·, 20) (Color figure
online)

0 5 10 15 20
s0

5

10

15

20

25

30

35
H1 - norm

Fig. 13 Evolution, with respect to the parameter s, of the H1-norm of the difference of the solution
(u, θ)(·, s) and the solution obtained at s = 20: ‖(u, θ)(·, s) − (u, θ)(·, 20)‖H1
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Fig. 14 Evolution of the Hamiltonian with the s-dynamics that preserves the probability and the positivity
of the distribution of players

be improved by using higher-order integrators in time, provided that monotonicity is
preserved. These matters will be the subject of future research.
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