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Abstract We consider a piecewise deterministic Markov decision process, where the
expected exponential utility of total (nonnegative) cost is to be minimized. The cost
rate, transition rate and post-jump distributions are under control. The state space is
Borel, and the transition and cost rates are locally integrable along the drift. Under
natural conditions,we establish the optimality equation, justify the value iteration algo-
rithm, and show the existence of a deterministic stationary optimal policy. Applied
to special cases, the obtained results already significantly improve some existing
results in the literature on finite horizon and infinite horizon discounted risk-sensitive
continuous-time Markov decision processes.
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1 Introduction

Since the pioneering work [16], risk-sensitive discrete-time Markov decision pro-
cesses (DTMDPs) have been studied intensively. Having restricted our attention to
total undiscounted or discounted problems, let us mention e.g., [4,6,7,11,12,17,18],
most of which deal with the exponential utility, as well as in the present paper. As an
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application, an open problem in insurance was recently solved in [1] in the framework
of risk-sensitive DTMDP. There are notable differences between risk-sensitive and
risk-neutral DTMDPs. For instance, in a finite model, i.e., when the state and action
spaces are both finite, there is always a deterministic stationary optimal policy in a dis-
counted risk-neutral DTMDP, but not always in a discounted risk-sensitive DTMDP,
see [17].

One of the first works on risk-sensitive continuous-timeMarkov decision processes
(CTMDPs) is [21], where only verification theorems were presented. Recently, there
have been reviving interests in this topic; see e.g., [8,14,20,24,25,27]. A finite horizon
total undiscounted risk-sensitive CTMDP was considered in [14,21,24], whose argu-
ments were summarized as follows. Firstly, the optimality equation is shown to admit
a solution out of a small enough class. Secondly, by using the Feynman–Kac formula,
this solution is shown to be the value function, and any Markov policy providing the
minimizer in the optimality equation is optimal. The proofs of [14,24] reveal that the
main technicalities lie in the first step, for which, the state space was assumed to be
denumerable. This assumption is important for the diagonalization argument used in
[24], which is an extension of [14] from bounded transition rate to possibly unbounded
transition rate, whose growth is bounded by a Lyapunov function. The latter require-
ment and the boundedness of the cost rate then validate the Feynman–Kac formula
applied in the second step. Wei [24] mentioned that it was unclear how to extend his
argument to an unbounded cost rate, see Sect. 7 therein. Following a similar argument
as described above, a discounted risk-sensitive CTMDP was also considered in [14],
although now the first step becomes, to quote the authors’ words (see p. 658 therein),
“surprisingly far more involved”, for which the state space was further assumed to be
finite, see Remark 3.6 therein. It is a corollary of the present paper that we significantly
weaken the restrictive conditions in [14,24], see Sect. 3 below.

The present paper is concernedwith a risk-sensitive piecewise deterministicMarkov
decision process (PDMDP), where the expected exponential utility of the total cost
is to be minimized. The state space is a general Borel space, the transition and the
nonnegative cost rates only need be locally integrable along the drift. A PDMDP is
an extension of a CTMDP: now between two consecutive jumps, the process evolves
according to deterministic Markov process. For simplicity and to keep the conditions
as weak as possible, we do not consider the control on the drift. In spite that there
has been a vast literature on PDMDPs; see the well known monographs [9,10] and
the references therein, to the best of our knowledge, risk-sensitive PDMDPs have not
been systematically studied before.

Our main contributions are the following. We establish the optimality equation
satisfied by the value function, justify the value iteration algorithm and show the
existence of a deterministic stationary optimal policy. As an application and corollary,
finite horizon and infinite horizon discounted risk-sensitive CTMDPs are reformulated
as total undiscounted risk-sensitive PDMDPs, and are thus treated in a unified way
and under much weaker conditions than in [14,24]. This is possible because we follow
a different argument. Namely, we directly show that the value function satisfies the
optimality equation, by reducing the total undiscounted risk-sensitive PDMDP to a
risk-sensitive DTMDP. This method, without referring to the Feynman–Kac formula,
was originally developed by Yushkevich [26] for risk-neutral CTMDPs. Later, it was
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employed in [2,3,9,10,13,23] for studies of risk-neutral PDMDPs, and in [27] for
risk-sensitive CTMDPs. In [8], restricted to stationary policies, the discounted risk-
sensitive CTMDP with bounded transition rates was reduced to a DTMDP problem,
using the uniformization technique. The induced DTMDP is less standard (with a
random cost), and was not further investigated there.

The rest of the paper is organized as follows. In Sect. 2 we describe the concerned
optimal control problem. In Sect. 3 we present themain results, the proofs of which are
postponed to Sect. 4. We finish the paper with a conclusion in Sect. 5. Some relevant
facts were collected in the Appendix for ease of reference.

2 Model Description and Problem Statement

2.1 Notations and Conventions

In what follows, B(X) is the Borel σ -algebra of the topological space X, I stands for
the indicator function, and δ{x}(·) is the Dirac measure concentrated on the singleton
{x}, assumed to be measurable. A measure is σ -additive and [0,∞]-valued. Below,
unless stated otherwise, the term of measurability is always understood in the Borel
sense. Throughout this paper, we adopt the conventions of

0

0
:= 0, 0 · ∞ := 0,

1

0
:= +∞, ∞ − ∞ := ∞. (1)

If a mapping f defined on X , and {Xi } is a partition of X , then when f is piecewise
defined as f (x) = gi (x) for all x ∈ Xi , the notation f (x) = ∑

i I {x ∈ Xi }gi (x) is
used, even if f is not real-valued.

Let S be a nonempty Borel state space, A be a nonempty Borel action space, and q
stand for a signed kernel q(dy|x, a) on B(S) given (x, a) ∈ S × A such that

q̃(�S|x, a) := q(�S\{x}|x, a) ≥ 0 (2)

for all �S ∈ B(S). Throughout this article we assume that q(·|x, a) is conservative
and stable, i.e.,

q(S|x, a) = 0, q̄x = sup
a∈A

qx (a) < ∞, (3)

where qx (a) := −q({x}|x, a). The signed kernel q is often called the transition
rate. Between two consecutive jumps, the state of the process evolves according to a
measurable mapping φ from S × [0,∞) to S, see (5) below. It is assumed that for
each x ∈ S

φ(x, t + s) = φ(φ(x, t), s), ∀ s, t ≥ 0; φ(x, 0) = x, (4)

and t → φ(x, t) is continuous.
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Finally let the cost rate c be a [0,∞)-valued measurable function on S × A. For
simplicity, we do not consider the case of different admissible action spaces at different
states.

Condition 2.1 (a) For each bounded measurable function f on S and each x ∈ S,∫
S f (y)q̃(dy|x, a) is continuous in a ∈ A.

(b) For each x ∈ S, the (nonnegative) function c(x, a) is lower semicontinuous in
a ∈ A.

(c) The action space A is a compact Borel space.

Condition 2.2 For each x ∈ S,
∫ t
0 qφ(x,s)ds < ∞, and

∫ t
0 supa∈A c(φ(x, s), a)ds <

∞, for each t ∈ [0,∞).

The integrals in the above condition are well defined: the integrands are universally
measurable in s ∈ [0,∞); see Chaper 7 of [5].

Let us take the sample space � by adjoining to the countable product space S ×
((0,∞) × S)∞ the sequences of the form (x0, θ1, . . . , θn, xn,∞, x∞,∞, x∞, . . . ),

where x0, x1, . . . , xn belong to S, θ1, . . . , θn belong to (0,∞), and x∞ /∈ S is the
isolated point. We equip � with its Borel σ -algebra F .

Let t0(ω) := 0 =: θ0, and for each n ≥ 0, and each element ω :=
(x0, θ1, x1, θ2, . . . ) ∈ �, let

tn(ω) := tn−1(ω) + θn,

and

t∞(ω) := lim
n→∞ tn(ω).

Obviously, (tn(ω)) are measurable mappings on (�,F). In what follows, we often
omit the argument ω ∈ � from the presentation for simplicity. Also, we regard xn and
θn+1 as the coordinate variables, and note that the pairs {tn, xn} form a marked point
process with the internal history {Ft }t≥0, i.e., the filtration generated by {tn, xn}; see
Chapter 4 of [19] for greater details. The marked point process {tn, xn} defines the
stochastic process {ξt , t ≥ 0} on (�,F) of interest by

ξt =
∑

n≥0

I {tn ≤ t < tn+1}φ(xn, t − tn) + I {t∞ ≤ t}x∞, t ≥ 0, (5)

where we accept 0 · x := 0 and 1 · x := x for each x ∈ S∞, and below we denote
S∞ := S

⋃{x∞}.
A (history-dependent) policy π is given by a sequence (πn) such that, for each

n = 0, 1, 2, . . . , πn(da|x0, θ1, . . . , xn, s) is a stochastic kernel on A, and for each
ω = (x0, θ1, x1, θ2, . . . ) ∈ �, t > 0,
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π(da|ω, t) = I {t ≥ t∞}δa∞(da)

+
∞∑

n=0

I {tn < t ≤ tn+1}πn(da|x0, θ1, . . . , θn, xn, t − tn), (6)

where a∞ /∈ A is some isolated point. A policy π is called Markov if, with slight
abuse of notations, π(da|ω, s) = πM (da|ξs−, s) for some stochastic kernel πM . A
Markov policy is further called deterministic if the stochastic kernels πM (da|x, s) =
δ{ f M (x,s)}(da) for some measurable mapping f M from S × (0,∞) to A. A policy is
called deterministic stationary if for each n = 0, 1, . . . , πn(da|x0, θ1, . . . , θn, xn, t −
tn) = δ{ f (φ(xn ,t−tn))}(da) for some measurable mapping f from S to A. We shall
identify such a deterministic stationary policy by the underlying measurable mapping
f .
The class of all policies is denoted by �. Under a fixed policy π = (πn), for

each initial distribution γ on (S,B(S)), by using the Ionescu-Tulcea theorem, one
can build a probability measure Pπ

γ on (�,F) such that Pπ
γ (x0 ∈ �) = γ (�) for

each � ∈ B(S), and the conditional distribution of (θn+1, xn+1) with the condition on
x0, θ1, x1, . . . , θn, xn is given on {ω : xn(ω) ∈ S} by

Pπ
γ (θn+1 ∈ �1, xn+1 ∈ �2|x0, θ1, x1, . . . , θn, xn)
=

∫

�1

e− ∫ t
0

∫
A qφ(xn ,s)(a)πn(da|x0,θ1,...,θn ,xn ,s)ds

×
∫

A
q̃(�2|φ(xn, t), a)πn(da|x0, θ1, . . . , θn, xn, t)dt,

∀ �1 ∈ B((0,∞)), �2 ∈ B(S); Pπ
γ (θn+1

= ∞, xn+1 = x∞|x0, θ1, x1, . . . , θn, xn)
= e− ∫ ∞

0

∫
A qφ(xn ,s)(a)πn(da|x0,θ1,...,θn ,xn ,s)ds, (7)

and given on {ω : xn(ω) = x∞} by
Pπ

γ (θn+1 = ∞, xn+1 = x∞|x0, θ1, x1, . . . , θn, xn) = 1.

Below, when γ is a Dirac measure concentrated at x ∈ S, we use the denotation Pπ
x .

Expectations with respect to Pπ
γ and Pπ

x are denoted as Eπ
γ and Eπ

x , respectively.
Roughly speaking, the uncontrolled version of the process evolves as follows: given
the current state, the process evolves deterministically according to the mapping φ, up
to the next jump, taking place after a random time whose distribution is (nonstation-
ary) exponential, and the dynamics continue in the similar manner. A detailed book
treatment with many examples of this and more general type of processes, allowing
deterministic jumps, can be found in [10].

For each x ∈ S, and policy π = (πn),

Eπ
x

[
e
∫ ∞
0

∫
A c(ξt ,a)π(da|ω,t)dt

]
= Eπ

x

[

e
∑∞

n=0
∫ θn+1
0

∫
A c(φ(xn ,s),a)πn(da|x0,θ1,...,xn ,s)ds

]

=: V (x, π)
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defines the concerned performance measure of the policy π ∈ � given the initial state
x ∈ S. Here and below, we put c(x∞, a) := 0 for each a ∈ A, and φ(x∞, t) = x∞
for each t ∈ [0,∞). We are interested in the following optimal control problem for
each x ∈ S :

Minimize over π ∈ �: V (x, π). (8)

A policy π∗ is called optimal if V (x, π∗) = infπ∈� V (x, π) =: V ∗(x) for each
x ∈ S.

The objective of this paper is to show, under the imposed conditions, the existence of
a deterministic stationary optimal policy, and to establish the corresponding optimality
equation satisfied by the value function V ∗, together with its value iteration. Evidently,
V ∗(x) ≥ 1 for each x ∈ S. Under the next condition, it will be seen that for each
x ∈ S, V ∗(φ(x, s)) is absolutely continuous in s.

Condition 2.3 For each x ∈ S, V ∗(x) < ∞.

The above condition is mainly assumed for notational convenience. In fact, the main
optimality results (such as the existence of a deterministic stationary optimal policy)
obtained in this paper can be established without assuming Condition 2.3, at the cost
of some additional notations. In a nutshell, one has to consider the sets Ŝ := {x ∈
S : V ∗(x) < ∞} and S\Ŝ separately, and note that if x ∈ Ŝ, then φ(x, t) ∈ Ŝ for
each t ∈ [0,∞). The reasoning presented under Condition 2.3 can be followed in an
obvious manner. We formulate the corresponding optimality results in Remarks 3.1
and 3.2 below.

3 Main Statements

We first present the main optimality results concerning problem (8) for the PDMDP
model. Their proofs are postponed to the next section.

Theorem 3.1 Suppose Conditions 2.1, 2.2 and 2.3 are satisfied. Then the following
assertions hold.

(a) The value function V ∗ for problem (8) is the minimal [1,∞)-valued solution to
the following optimality equation:

− (V (φ(x, t)) − V (x))

=
∫ t

0
inf
a∈A

{∫

S
V (y)q̃(dy|φ(x, τ ), a) − (qφ(x,τ )(a)

− c(φ(x, τ ), a))V (φ(x, τ ))} dτ, t ∈ [0,∞), x ∈ S.

In particular, V ∗(φ(x, t)) is absolutely continuous in t for each x ∈ S.

(b) There exists a deterministic stationary optimal policy f , which can be taken as
any measurable mapping from S to A such that
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inf
a∈A

{∫

S
V ∗(y)q̃(dy|x, a) − (qx (a) − c(x, a))V ∗(x))

}

=
∫

S
V ∗(y)q̃(dy|x, f (x)) − (qx ( f (x)) − c(x, f (x)))V ∗(x)), ∀ x ∈ S.

Remark 3.1 By inspecting its proof, one can see the following version of Theorem 3.1
holds without assuming Condition 2.3. Suppose Conditions 2.1 and 2.2 are satisfied.
Then the following assertions hold.

(a) The value function V ∗ for problem (8) is the minimal [1,∞]-valued solution to
the following optimality equation:

− (V (φ(x, t)) − V (x))

=
∫ t

0
inf
a∈A

{∫

S
V (y)q̃(dy|φ(x, τ ), a) − (qφ(x,τ )(a)

− c(φ(x, τ ), a))V (φ(x, τ ))

}

dτ, t ∈ [0,∞), x ∈ Ŝ;

V (x) < ∞, x ∈ Ŝ; V (x) = ∞, x ∈ S\Ŝ.

In particular, V ∗(φ(x, t)) is absolutely continuous in t for each x ∈ Ŝ.

(b) There exists a deterministic stationary optimal policy f , which can be taken as
any measurable mapping from S to A such that

inf
a∈A

{∫

S
V ∗(y)q̃(dy|x, a) − (qx (a) − c(x, a))V ∗(x))

}

=
∫

S
V ∗(y)q̃(dy|x, f (x)) − (qx ( f (x)) − c(x, f (x)))V ∗(x)), ∀ x ∈ Ŝ.

Next, we present the value iteration algorithm for the value function V ∗.

Theorem 3.2 Suppose Conditions 2.1, 2.2 and 2.3 are satisfied. Let V (0)(x) := 1 for
each x ∈ S. For each n ≥ 0, let V (n+1) be the minimal [1,∞)-valued measurable
solution to

− (V (n+1)(φ(x, t)) − V (n+1)(x))

=
∫ t

0
inf
a∈A

{ ∫

S
V (n)(y)q̃(dy|φ(x, τ ), a) − (qφ(x,τ )(a)

− c(φ(x, τ ), a))V (n+1)(φ(x, τ ))

}

dτ, t ∈ [0,∞), x ∈ S, (9)

such that V (n+1)(φ(x, t)) is absolutely continuous in t for each x ∈ S. (For eachn ≥ 0,
such a solution always exists.) Furthermore, {V (n)} is a monontone nondecreasing
sequence of measurable functions on S such that for each x ∈ S, V (n)(x) ↑ V ∗(x) as
n ↑ ∞.
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Remark 3.2 Similar to Remark 3.1, we have the following version of Theorem
3.2 without assuming Condition 2.3. Suppose Conditions 2.1, 2.2 are satisfied. Let
V (0)(x) := 1 for each x ∈ Ŝ and V (0)(x) = ∞ if x ∈ S\Ŝ. For each n ≥ 0, let V (n+1)

be the minimal [1,∞]-valued measurable solution to

− (V (n+1)(φ(x, t)) − V (n+1)(x))

=
∫ t

0
inf
a∈A

{∫

S
V (n)(y)q̃(dy|φ(x, τ ), a) − (qφ(x,τ )(a)

− c(φ(x, τ ), a))V (n+1)(φ(x, τ ))

}

dτ, t ∈ [0,∞), x ∈ Ŝ,

V (n+1)(x) < ∞, x ∈ Ŝ, V (n+1)(x) = ∞, x ∈ S\Ŝ.

Here V (n+1)(φ(x, t)) is absolutely continuous in t for each x ∈ Ŝ. (For each n ≥ 0,
such a solution always exists.) Furthermore, {V (n)} is a monontone nondecreasing
sequence of measurable functions on S such that for each x ∈ S, V (n)(x) ↑ V ∗(x) as
n ↑ ∞.

We can apply our theorems to a special case of a CTMDP. That is, φ(x, t) ≡ x
for each x ∈ S. The following α-discounted risk-sensitive CTMDP problem was
considered in [14]:

Minimize over π ∈ �: Eπ
x

[
e
∫ ∞
0 e−αt

∫
A c(ξt ,a)π(da|ω,t)dt

]
, x ∈ S. (10)

Here α > 0 is a fixed constant. In fact, Ghosh and Saha [14] were restricted
to Markov policies, bounded transition and cost rates, i.e., supx∈S qx < ∞, and
supx∈S,a∈A c(x, a) < ∞, and a finite state space S. These restrictions, e.g., the finite-
ness of S, were needed for their investigations, see e.g., [14, Remark 3.6]. Under
the compactness-continuity condition (Condition 2.1), it was shown in [14] that there
exists an optimal Markov policy for the discounted risk-sensitive CTMDP, and estab-
lished the optimality equation. By using the theorems presented earlier in this section,
we can obtain these optimality results for problem (10) in a much more general setup:
the state space S is Borel, there is no boundedness requirement on the transition rate
with respect to the state x ∈ S, and the optimality is over the class of history-dependent
policies. Furthermore, we let the CTMDP model be nonhomogeneous, i.e., the transi-
tion rate q(dy|t, x, a) now is a signed kernel onB(S) from (t, x, a) ∈ [0,∞)× S× A,
satisfying the corresponding version of (3); the notations q̃ is kept as before, see (2),
with the extra argument t in addition to x . Similarly, the nonnegative cost rate c is
allowed to be a measurable function on [0,∞) × S × A.

Corollary 1 Consider the α-discounted risk-sensitive (nonhomogeneous) CTMDP
problem (10) with c(ξt , a) being replaced by c(t, ξt , a). Suppose

sup
t∈[0,∞)

{q(t,x)} < ∞, ∀ x ∈ S, sup
t∈[0,∞),x∈S,a∈A

c(t, x, a) < ∞,

123



Appl Math Optim (2020) 81:685–710 693

and the corresponding version of Condition 2.1, where x is replaced by (t, x), is
satisfied by the nonhomogeneous CTMDP model. Then the following assertions hold.

(a) There exists some [1,∞)-valued measurable solution on [0,∞) × S to

− (V (t, x) − V (0, x))

=
∫ t

0
inf
a∈A

{∫

S
V (u, y)q̃(dy|u, x, a) + (e−αuc(u, x, a)

− q(u,x)(a))V (u, x)
}
du, x ∈ S, t ∈ [0,∞),

so that V (t, x) is absolutely continuous in t for each x ∈ S.

(b) Let L be the minimal [1,∞)-valued measurable solution on [0,∞) × S to the
above equation. Then the value function say L∗ to the α-discounted risk-sensitive
CTMDP problem (10) (with c(ξt , a) being replaced by c(t, ξt , a)) is given by
L∗(x) = L(0, x) for each x ∈ S.

(c) There exists an optimal deterministic Markov policy f for the α-discounted risk-
sensitive CTMDP problem (10) (with c(ξt , a) being replaced by c(t, ξt , a)). One
can take f as any measurable mapping from [0,∞) × S to A such that

inf
a∈A

{∫

S
L(u, y)q̃(dy|u, x, a) + (e−αuc(u, x, a) − q(u,x)(a))L(u, x)

}

=
∫

S
L(u, y)q̃(dy|u, x, f (u, x)) + (e−αuc(u, x, f (u, x))

− q(u,x)( f (u, x)))L(u, x)

for each u ∈ [0,∞) and x ∈ S.

Proof We prove this by reformulating the nonhomogeneous version of the α-
discounted risk-sensitive (nonhomogeneous) CTMDP problem (10) in the form of
problem (8) for a PDMDP, which we introduce as follows. We use the notation “hat”
to distinguish this model from the original (nonhomogeneous) CTMDP model.

• The state space is Ŝ = [0,∞) × S.

• The action space is the same as in the CTMDP: Â = A.

• the transition rate q̂(ds × dy|(t, x), a) is defined by

q̂(ds × dy|(t, x), a) := ˜̂q(ds × dy|(t, x), a) − I {(t, x) ∈ ds × dy}q(t,x)(a),

where

˜̂q(ds × dy|(t, x), a) := I {t ∈ ds}q̃(dy|t, x, a),

for each (t, x) ∈ Ŝ and a ∈ Â.

• The drift is given by φ̂((t, x), s) := (t + s, x) for each x ∈ S and t, s ≥ 0. Clearly
it satisfies the corresponding version of (4).
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• The cost rate is given by

ĉ((t, x), a) := e−αt c(t, x, a), ∀ t ∈ [0,∞), x ∈ S, a ∈ A.

Now the marked point process {t̂n, x̂n} and controlled process ξ̂t in this PDMDP
model is connected to those in the original (nonhomogeneous) CTMDPmodel, namely
(tn, xn) and ξt , via t̂n = tn and x̂n = (tn, xn), and ξ̂t = (t, ξt ). For example, under
a fixed strategy π̂ and initial distribution γ̂ in this PDMDP model, the version of the
first equation in (7) now reads on {ω : xn(ω) ∈ S}

P̂ π̂
γ̂

(θ̂n+1 ∈ �1, x̂n+1 ∈ �2 × �3|x̂0, θ̂1, x̂1, . . . , θ̂n, x̂n)
=

∫

�1

e− ∫ t
0

∫
A q(tn+s,xn )(a)π̂n(da|x̂0,θ̂1,...,θ̂n ,x̂n ,s)ds

×
∫

A
I {t + tn ∈ �2}q̃(�3|t + tn, xn, a)π̂n(da|x̂0, θ̂1, . . . , θ̂n, x̂n, t)dt,

∀ �1 ∈ B((0,∞)), �2 ∈ B([0,∞)), �3 ∈ B(S).

Clearly, Conditions 2.1, 2.2 and 2.3 are satisfied by this PDMDP model. It remains
to apply Theorem 3.1. ��

The condition in the previous corollary is much weaker than in [14], and can be
further weakened; one only needs the reformulated PDMDP to satisfy Conditions
2.1, 2.2 and 2.3. Moreover, the boundedness of the cost rate c was assumed in the
previous corollary only to ensure Condition 2.3 to be satisfied. It can be relaxed if one
formulates the previous corollary using the statements in Remarks 3.1 and 3.2.

One can also consider the risk-sensitive nonhomogeneous CTMDP problem on the
finite horizon [0, T ] with T > 0 being a fixed constant:

Minimize over π ∈ �: Eπ
x

[
e
∫ T
0 e−αt

∫
A c(t,ξt ,a)π(da|ω,t)dt+g(ξT )

]
, x ∈ S,

where g is a [0,∞)-valued measurable function; g(x) represents the terminal cost
incurred when ξT = x ∈ S. Let us put g(x∞) := 0. Here α is a fixed nonnegative
finite constant. A simpler version of this problem was considered in [24] with α = 0
and a bounded cost rate, where additional restrictions were put on the growth of the
transition rate. We can reformulate this problem into the PDMDP problem (8) just as
in the above. The only difference is that now we put q(t,x)(a) ≡ 0 for each x ∈ S and
t ≥ T, and introduce the following cost rate for each x ∈ S, t ≥ 0 and a ∈ A :

ĉ((t, x), a) =
{
e−αt c(t, x, a), if t ≤ T ;
e−(t−T )g(x) if t > T .

4 Proof of the Main Statements

For the rest of this paper, it is convenient to introduce the following notations. Let
P(A) be the space of probability measures on B(A), endowed with the standard weak
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topology. For each μ ∈ P(A),

qx (μ) :=
∫

A
qx (a)μ(da), q̃(dy|x, μ) :=

∫

A
q̃(dy|x, a)μ(da), c(x, μ)

:=
∫

A
c(x, a)μ(da).

Let R denote the set of (Borel) measurable mappings ρt (da) from t ∈ (0,∞) →
P(A). Here, we do not distinguish two measurable mappings in t ∈ (0,∞), which
coincide almost everywhere with respect to the Lebesgue measure. Let us equip R
with the Young topology, which is the weakest topology with respect to which the
function ρ ∈ R → ∫ ∞

0

∫
A f (t, a)ρt (da)dt is continuous for each strongly integrable

Carathéodory function f on (0,∞) × A . Here a real-valued measurable function f
on (0,∞) × A is called a strongly integrable Carathéodory function if for each fixed
t ∈ (0,∞), f (t, a) is continuous in a ∈ A, and for each fixed a ∈ A, supa∈A | f (t, a)|
is integrable in t , i.e.,

∫ ∞
0 supa∈A | f (t, a)|dt < ∞. It is known that if A is a compact

Borel space, then so isR; see Chapter 4 of [10].

Lemma 4.1 Suppose Conditions 2.1 and 2.2 are satisfied. Then the following asser-
tions hold.

(a) The value function V ∗ is the minimal [1,∞]-valued measurable solution to

V ∗(x)

= inf
ρ∈R

{∫ ∞

0
e− ∫ τ

0 (qφ(x,s)(ρs )−c(φ(x,s),ρs ))ds
(∫

S
V ∗(y)q̃(dy|φ(x, τ ), ρτ )

)

dτ

+ e− ∫ ∞
0 qφ(x,s)(ρs )dse

∫ ∞
0 c(φ(x,s),ρs )ds

}
, ∀ x ∈ S.

(b) The mapping

ρ ∈ R → W (x, ρ)

:=
∫ ∞

0
e− ∫ τ

0 (qφ(x,s)(ρs )−c(φ(x,s),ρs ))ds
(∫

S
V ∗(y)q̃(dy|φ(x, τ ), ρτ )

)

dτ

+ e− ∫ ∞
0 qφ(x,s)(ρs)dse

∫ ∞
0 c(φ(x,s),ρs )ds

is lower semicontinuous for each x ∈ S.

Proof One can legitimately consider the following DTMDP (discrete-time Markov
decision process): according to [9, Lemma 2.29], all the involved mappings are mea-
surable.

• The state space is X := ((0,∞) × S)
⋃{(∞, x∞)}. Whenever the topology is

concerned, (∞, x∞) is regarded as an isolated point in X.

• The action space is A := R.
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• The transition kernel p on B(X) from X×A, c.f. (7), is given for each ρ ∈ A by

p(�1 × �2|(θ, x), ρ) :=
∫

�2

e− ∫ t
0 qφ(x,s)(ρs )ds q̃(�1|φ(x, t), ρt )dt,

∀ �1 ∈ B(S), �2 ∈ B((0,∞)), x ∈ S, θ ∈ (0,∞),

p({(∞, x∞)}|(θ, x), ρ) := e− ∫ ∞
0 qφ(x,s)(ρs )ds, ∀ x ∈ S, θ ∈ (0,∞);

p({(∞, x∞)}|(∞, x∞), ρ) := 1.

• The cost function l is a [0,∞]-valued measurable function on X × A × X given
by

l((θ, x), ρ, (τ, y))

:=
∫ ∞

0
I {s < τ }c(φ(x, s), ρs)ds, ∀ ((θ, x), ρ, (τ, y)) ∈ X × A × X.

The relevant facts and statements for the DTMDP are included in the Appendix.
One can show that under Conditions 2.1 and 2.2, for each (θ, x) ∈ X, a ∈ A →∫

X f (z)p(dz|(θ, x), a) is continuous for each bounded measurable function f on X;
for each (θ, x) ∈ X and (τ, y) ∈ X, a ∈ A → l((θ, x), ρ, (τ, y)) is lower semicontin-
uous, and A is a compact Borel space. Hence, Condition A.1 for the DTMDP model
{X,A, p, l} is satisfied.

The controlled process in the above DTMDP model {X,A, p, l} is denoted by
{Yn, n = 0, 1, . . . }, where Yn = (�n, Xn), and the controlling process is denoted by
{An, n = 0, 1, . . . }. For n ≥ 1, �n and Xn correspond to the nth sojourn time and
the post-jump state in the PDMDP, �0 is fictitious, and X0 is the initial state in the
PDMDP. Let � be the class of all strategies for the DTMDP model {X,A, p, l}, and
�0

DM be the class of deterministic Markov strategies in the form σ = (ϕn) where
ϕ0((θ, x)) does not depend on θ ∈ (0,∞) for each x ∈ S. We preserve the term of
policy for the PDMDP and the term of strategy for the DTMDP.

According to Proposition A.1, the function

(θ, x) ∈ X → V∗((θ, x)) := inf
σ∈�

Eσ
(θ,x)

[
e
∑∞

n=0 l(Yn ,An ,Yn+1)
]

is the minimal [1,∞]-valued measurable solution to the optimality equation

V∗((θ, x))

= inf
ρ∈R

{ ∫ ∞

0
e− ∫ τ

0 (qφ(x,s)(ρs )−c(φ(x,s),ρs ))ds
(∫

S
V∗((τ, y))q̃(dy|φ(x, τ ), ρτ )

)

dτ

+ e− ∫ ∞
0 qφ(x,s)(ρs )dse

∫ ∞
0 c(φ(x,s),ρs )ds

}

for each x ∈ S and θ ∈ (0,∞); this is just (20). Furthermore, by Proposition A.1,
there exists a deterministic stationary strategy σ ∗ for the DTMDP such that σ ∗((θ, x))
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attains the above infimum for each x ∈ S and θ ∈ (0,∞), and any such strategy σ ∗
verifies

Eσ ∗
(θ,x)

[
e
∑∞

n=0 l(Yn ,An ,Yn+1)
]

= inf
σ∈�

Eσ
(θ,x)

[
e
∑∞

n=0 l(Yn ,An ,Yn+1)
]
, ∀ (θ, x) ∈ X.

Let θ̂ ∈ (0,∞) be arbitrarily fixed. The function V∗((θ, x)) being measurable in
(θ, x) ∈ X, it follows that x ∈ S → V∗((θ̂ , x)) is measurable. The strategy σ ∗ and
the constant θ̂ induce a deterministic Markov strategy σ ∗∗ = (ϕn) ∈ �0

DM , where
ϕ0((θ, x)) =: σ ∗((θ̂ , x)) for each θ ∈ (0,∞), x ∈ S, and ϕn((θ, x)) := σ((θ, x)) for
each n ≥ 1, θ ∈ (0,∞), x ∈ S. (The control on the isolated point (0, x∞) is irrelevant
and we do not specify the definition of the strategy on that point.) This strategy can
be identified with a policy π∗ in the PDMDP, c.f. (6). On the other hand, each policy
π = (πn) can be identified with a deterministic strategy in this DTMDP. Thus,

V ∗(x) ≥ V∗((θ̂ , x)) = Eσ ∗
(θ̂ ,x)

[
e
∑∞

n=0 l(Yn ,An ,Yn+1)
]

= Eσ ∗∗
(θ̂ ,x)

[
e
∑∞

n=0 l(Yn ,An ,Yn+1)
]

= V (x, π∗) ≥ V ∗(x)

for each x ∈ S. Consequently, the policy π∗ is optimal, V ∗(x) = V∗((θ, x)) for each
x ∈ S and θ ∈ (0,∞); recall that θ̂ was arbitrarily fixed. The statement of this lemma
now follows. ��

The policyπ∗ in the proof of the previous lemma is actually optimal for problem (8).
However, it is not necessarily a deterministic nor stationary policy. Also the reduction
of the risk-sensitive PDMDP problem (8) to a risk-sensitive problem for the DTMDP
model {X,A, p, l} as seen in the proof of the above theorem will be used without
special reference in what follows.

Lemma 4.2 Suppose Conditions 2.1, 2.2 and 2.3 are satisfied. For each x ∈ S and
ρ ∈ R,

t ∈ [0,∞) →
∫ t

0
e− ∫ τ

0 (qφ(x,s)(ρs )−c(φ(x,s),ρs ))ds
∫

S
V ∗(y)q̃(dy|φ(x, τ ), ρτ )dτ

+ e− ∫ t
0 (qφ(x,s)(ρs )−c(φ(x,s),ρs ))dsV ∗(φ(x, t))

is monotone nondecreasing in t ∈ [0,∞).

Proof Let 0 ≤ t1 < t2 < ∞ be arbitrarily fixed. We need show

∫ t2

0
e− ∫ τ

0 (qφ(x,s)(ρs )−c(φ(x,s),ρs ))ds
∫

S
V ∗(y)q̃(dy|φ(x, τ ), ρτ )dτ

+ e− ∫ t2
0 (qφ(x,s)(ρs )−c(φ(x,s),ρs ))dsV ∗(φ(x, t2))

≥
∫ t1

0
e− ∫ τ

0 (qφ(x,s)(ρs )−c(φ(x,s),ρs ))ds
∫

S
V ∗(y)q̃(dy|φ(x, τ ), ρτ )dτ

+ e− ∫ t1
0 (qφ(x,s)(ρs)−c(φ(x,s),ρs ))dsV ∗(φ(x, t1)). (11)
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It is without loss of generality to assume

∫ t2

0
e− ∫ τ

0 (qφ(x,s)(ρs )−c(φ(x,s),ρs ))ds
∫

S
V ∗(y)q̃(dy|φ(x, τ ), ρτ )dτ < ∞.

Then all the four terms in (11) are nonnegative and finite, and (11) is equivalent to

∫ t2

0
e− ∫ τ

0 (qφ(x,s)(ρs )−c(φ(x,s),ρs ))ds
∫

S
V ∗(y)q̃(dy|φ(x, τ ), ρτ )dτ

+ e− ∫ t2
0 (qφ(x,s)(ρs )−c(φ(x,s),ρs ))dsV ∗(φ(x, t2))

−
∫ t1

0
e− ∫ τ

0 (qφ(x,s)(ρs )−c(φ(x,s),ρs ))ds
∫

S
V ∗(y)q̃(dy|φ(x, τ ), ρτ )dτ

− e− ∫ t1
0 (qφ(x,s)(ρs )−c(φ(x,s),ρs ))dsV ∗(φ(x, t1))

=
∫ t2

t1
e− ∫ τ

0 (qφ(x,s)(ρs )−c(φ(x,s),ρs ))ds
∫

S
V ∗(y)q̃(dy|φ(x, τ ), ρτ )dτ

+ e− ∫ t1
0 (qφ(x,s)(ρs )−c(φ(x,s),ρs ))ds

(
e− ∫ t2

t1
(qφ(x,s)(ρs )−c(φ(x,s),ρs ))dsV ∗(φ(x, t2))

− V ∗(φ(x, t1))
)

=
{∫ t2−t1

0
e− ∫ τ

0 (qφ(x,s+t1)(ρs+t1 )−c(φ(x,s+t1),ρs+t1 ))ds

×
∫

S
V ∗(y)q̃(dy|φ(x, t1 + τ), ρt1+τ )dτ

+ e− ∫ t2
t1

(qφ(x,s)(ρs )−c(φ(x,s),ρs ))dsV ∗(φ(x, t2)) − V ∗(φ(x, t1))

}

× e− ∫ t1
0 (qφ(x,s)(ρs )−c(φ(x,s),ρs ))ds

≥ 0, (12)

which is verified as follows. Let δ > 0 be arbitrarily fixed. By Lemma 4.1, there exists
some ν̂ ∈ R such that

V ∗(φ(x, t2)) + δ

≥
∫ ∞

0

∫

S
V ∗(y)q̃(dy|φ(x, t2 + τ), ν̂τ )e

− ∫ τ
0 (qφ(x,t2+s)(ν̂s )−c(φ(x,t2+s),ν̂s ))dsdτ

+ e− ∫ ∞
0 qφ(x,t2+s)(ν̂s )dse

∫ ∞
0 c(φ(x,t2+s),ν̂s )ds .

(Recall φ(x, t2 + t) = φ(φ(x, t2), t) for each t ≥ 0.) Consider ν̃ ∈ R defined by

ν̃s =
{

ρt1+s, if s ≤ t2 − t1;
ν̂s−(t2−t1) if s > t2 − t1.
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Then routine calculations lead to

V ∗(φ(x, t1))

≤
∫ t2−t1

0
e−

∫ τ
0 (qφ(x,t1+s )(ν̃s )−c(φ(x,t1+s),ν̃s ))ds

×
(∫

S
V ∗(y)q̃(dy|φ(x, t1 + τ), ν̃τ )

)

dτ

+
∫ ∞
t2−t1

e−
∫ τ
0 (qφ(x,t1+s )(ν̃s )−c(φ(x,t1+s),ν̃s ))ds

(∫

S
V ∗(y)q̃(dy|φ(x, t1 + τ), ν̃τ )

)

dτ

+ e−
∫ t2−t1
0 (qφ(x,t1+s)(ν̃s )−c(φ(x,t1+s),ν̃s ))dse

− ∫ ∞
t2−t1

qφ(x,t1+s)(ν̃s )dse
∫ ∞
t2−t1

c(φ(x,t1+s),ν̃s )ds

=
∫ t2−t1

0
e−

∫ τ
0 (qφ(x,t1+s)(ρs+t1 )−c(φ(x,t1+s),ρs+t1 ))ds

×
∫

S
V ∗(y)q̃(dy|φ(x, t1 + τ), ρt1+τ )dτ

+ e−
∫ t2−t1
0 (qφ(x,t1+s)(ρs+t1 )−c(φ(x,t1+s),ρs+t1 ))ds

×
{ ∫ ∞

0
e−

∫ τ
0 (qφ(x,t2+s)(ν̂s )−c(φ(x,t2+s),ν̂s ))ds

∫

S
V ∗(y)q̃(dy|φ(x, t2 + τ), ν̂τ )dτ

+ e−
∫ ∞
0 qφ(x,t2+s)(ν̂s )dse

∫ ∞
0 c(φ(x,t2+s),ν̂s )ds

}

≤
∫ t2−t1

0
e−

∫ τ
0 (qφ(x,t1+s)(ρs+t1 )−c(φ(x,t1+s),ρs+t1 ))ds

×
∫

S
V ∗(y)q̃(dy|φ(x, t1 + τ), ρt1+τ )dτ

+ e−
∫ t2−t1
0 (qφ(x,t1+s)(ρs+t1 )−c(φ(x,t1+s),ρs+t1 ))ds

(V ∗(φ(x, t2)) + δ).

Since δ > 0 was arbitrarily fixed, now it follows that the term in the parenthesis in
(12) is nonnegative, and thus inequality (12) is verified. ��
Lemma 4.3 Suppose Conditions 2.1, 2.2 and 2.3 are satisfied. For each x ∈ S, there
is some ρ∗ ∈ R such that

V ∗(x) = inf
ρ∈R

{∫ t

0
e− ∫ s

0 (qφ(x,v)(ρv)−c(φ(x,v),ρv))dv

∫

S
V ∗(y)q̃(dy|φ(x, s), ρs)ds

+ e− ∫ t
0 (qφ(x,s)(ρs )−c(φ(x,s),ρs ))dsV ∗(φ(x, t))

}

=
∫ t

0
e− ∫ s

0 (qφ(x,v)(ρ
∗
v )−c(φ(x,v),ρ∗

v ))dv

∫

S
V ∗(y)q̃(dy|φ(x, s), ρ∗

s )ds

+ e− ∫ t
0 (qφ(x,s)(ρ

∗
s )−c(φ(x,s),ρ∗

s ))dsV ∗(φ(x, t)), ∀ t ≥ 0. (13)

Proof Let x ∈ S be fixed, and let ρ∗ ∈ R be such that V ∗(x) = W (x, ρ∗), see Lemma
4.1. Suppose t ∈ [0,∞) is arbitrarily fixed. Consider ρ̃ ∈ R defined by ρ̃s = ρ∗

t+s
for each s > 0. Then
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V ∗(x) =
∫ t

0
e−

∫ s
0 (qφ(x,v)(ρ

∗
v )−c(φ(x,v),ρ∗

v ))dv

∫

S
V ∗(y)q̃(dy|φ(x, s), ρ∗

s )ds

+ e−
∫ t
0 (qφ(x,s)(ρ

∗
s )−c(φ(x,s),ρ∗

s ))ds

×
{∫ ∞

0
e−

∫ τ
0 (qφ(x,t+s)(ρ̃s )−c(φ(x,s+t),ρ̃s ))ds

∫

S
V ∗(y)q̃(dy|φ(x, τ + t), ρ̃τ )dτ

+ e−
∫ ∞
0 qφ(x,t+s)(ρ̃s)dse−

∫ ∞
0 c(φ(x,t+s),ρ̃s )ds

}

≥
∫ t

0
e−

∫ s
0 (qφ(x,v)(ρ

∗
v )−c(φ(x,v),ρ∗

v ))dv

∫

S
V ∗(y)q̃(dy|φ(x, s), ρ∗

s )ds

+ e−
∫ t
0 (qφ(x,s)(ρ

∗
s )−c(φ(x,s),ρ∗

s ))dsV ∗(φ(x, t));

recall (4). On the other hand, by Lemma 4.2,

V ∗(x) ≤ inf
ρ∈R

{ ∫ t

0
e− ∫ s

0 (qφ(x,v)(ρv)−c(φ(x,v),ρv))dv

∫

S
V ∗(y)q̃(dy|φ(x, s), ρs)ds

+ e− ∫ t
0 (qφ(x,s)(ρs )−c(φ(x,s),ρs ))dsV ∗(φ(x, t))

}

.

The statement of this lemma is thus proved. ��
Lemma 4.4 Suppose Conditions 2.1, 2.2 and 2.3 are satisfied. Then for each x ∈ S,

t ∈ [0,∞) → V ∗(φ(x, t)) is absolutely continuous.

Proof This immediately follows from Lemma 4.3. ��
Proof of Theorem 3.1 (a) Under Conditions 2.1, 2.2 and 2.3, by Lemma 4.4, for each
x ∈ S, let t ∈ [0,∞) → U∗(x, t) be an integrable real-valued function such that
U∗(x, t) coincides with the derivative of t ∈ [0,∞) → V (φ(x, t)) almost every-
where. Let x ∈ S and t ∈ [0,∞) be fixed, and let ρ∗ ∈ R be from Lemma 4.3.

By Lemmas 4.3 and 4.4,

∫ τ

0
e− ∫ s

0 (qφ(x,v)(ρ
∗
v )−c(φ(x,v),ρ∗

v ))dv

∫

S
V ∗(y)q̃(dy|φ(x, s), ρ∗

s )ds

and

e− ∫ τ
0 (qφ(x,s)(ρ

∗
s )−c(φ(x,s),ρ∗

s ))dsV ∗(φ(x, τ ))

are absolutely continuous in τ and are finite for each τ ∈ [0,∞). Since φ(x, 0) = x ,
see (4),

e− ∫ t
0 (qφ(x,s)(ρ

∗
s )−c(φ(x,s),ρ∗

s ))dsV ∗(φ(x, t)) − V ∗(x)

=
∫ t

0
e− ∫ τ

0 (qφ(x,s)(ρ
∗
s )−c(φ(x,s),ρ∗

s ))ds {
U∗(x, τ ) − (qφ(x,τ )(ρ

∗
τ )

− c(φ(x, τ ), ρ∗
τ ))V ∗(φ(x, τ ))

}
dτ.
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Now by Lemma 4.3,

0 =
∫ t

0
e− ∫ s

0 (qφ(x,v)(ρ
∗
v )−c(φ(x,v),ρ∗

v ))dv

∫

S
V ∗(y)q̃(dy|φ(x, s), ρ∗

s )ds

+ e− ∫ t
0 (qφ(x,s)(ρ

∗
s )−c(φ(x,s),ρ∗

s ))dsV ∗(φ(x, t)) − V ∗(x)

=
∫ t

0
e− ∫ τ

0 (qφ(x,v)(ρ
∗
v )−c(φ(x,v),ρ∗

v ))dv

{ ∫

S
V ∗(y)q̃(dy|φ(x, τ ), ρ∗

τ ) +U∗(x, τ )

− (qφ(x,τ )(ρ
∗
τ ) − c(φ(x, τ ), ρ∗

τ ))V ∗(φ(x, τ ))

}

dτ

≥
∫ t

0
e− ∫ τ

0 (qφ(x,v)(ρ
∗
v )−c(φ(x,v),ρ∗

v ))dv

{

U∗(x, τ )

+ inf
a∈A

{∫

S
V ∗(y)q̃(dy|φ(x, τ ), a) − (qφ(x,τ )(a)

− c(φ(x, τ ), a))V ∗(φ(x, τ ))

}}

dτ

=
∫ t

0
e− ∫ τ

0 (qφ(x,v)(ρ
∗
v )−c(φ(x,v),ρ∗

v ))dv

{

U∗(x, τ )

+
∫

S
V ∗(y)q̃(dy|φ(x, τ ), f (φ(x, τ )))

− (qφ(x,τ )( f (φ(x, τ ))) − c(φ(x, τ ), f (φ(x, τ ))))V ∗(φ(x, τ ))

}

dτ, (14)

where f is a measurable mapping from S to A such that

inf
a∈A

{∫

S
V ∗(y)q̃(dy|x, a) − (qx (a) − c(x, a))V ∗(x)

}

=
∫

S
V ∗(y)q̃(dy|x, f (x)) − (qx (ϕ(x)) − c(x, f (x)))V ∗(x)

for each x ∈ S; the existence of such a mapping is according to a well known mea-
surable selection theorem, c.f. Proposition D.5 of [15].

Note that e− ∫ τ
0 (qφ(x,v)(ρv)−c(φ(x,v),ρv))dv is bounded and separated from zero in τ ∈

[0, t] for each ρ ∈ R; recall Condition 2.2. So

∫ t

0
e− ∫ τ

0 (qφ(x,v)(ρ
∗
v )−c(φ(x,v),ρ∗

v ))dv

{

U∗(x, τ )

− (qφ(x,τ )( f (φ(x, τ ))) − c(φ(x, τ ), f (φ(x, τ ))))V ∗(φ(x, τ ))

}

dτ
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is finite. If

∫ t

0

∫

S
V ∗(y)q̃(dy|φ(x, τ ), f (φ(x, τ )))dτ = ∞,

then

∫ t

0
e− ∫ τ

0 (qφ(x,v)(ρ
∗
v )−c(φ(x,v),ρ∗

v ))dv

{

U∗(x, τ ) +
∫

S
V ∗(y)q̃(dy|φ(x, τ ), f (φ(x, τ )))

− (qφ(x,τ )( f (φ(x, τ ))) − c(φ(x, τ ), f (φ(x, τ ))))V ∗(φ(x, τ ))

}

dτ = ∞,

which is against (14). Therefore,

∫ t

0

∫

S
V ∗(y)q̃(dy|φ(x, τ ), f (φ(x, τ )))dτ < ∞.

Then

∫ v

0
e− ∫ τ

0 (qφ(x,s)( f (φ(x,s)))−c(φ(x,s), f (φ(x,s))))ds

×
∫

S
V ∗(y)q̃(dy|φ(x, τ ), f (φ(x, τ )))dτ

+ e− ∫ v
0 (qφ(x,s)( f (φ(x,s)))−c(φ(x,s), f (φ(x,s))))dsV ∗(φ(x, v))

is absolutely continuous on [0, t]. After legitimately differentiating the above expres-
sion with respect to v, and applying Lemma 4.2, we see

U∗(x, v) +
∫

S
V ∗(y)q̃(dy|φ(x, v), f (φ(x, v)))

− (qφ(x,v)( f (φ(x, v))) − c(φ(x, v), f (φ(x, v))))V ∗(φ(x, v)) ≥ 0

for almost all v ∈ [0, t]. This and (14) imply

U∗(x, τ ) + inf
a∈A

{ ∫

S
V ∗(y)q̃(dy|φ(x, τ ), a) − (qφ(x,τ )(a)

− c(φ(x, τ ), a))V ∗(φ(x, τ ))

}

= 0

almost everywhere in τ ∈ [0, t].Remember, t ∈ [0,∞)was arbitrarily fixed. The first
part of (a) is thus verified, and we postpone the justification of the second part of (a)
after the proof of part (b).

(b) We use the same notation as in the above. Note that
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lim
t→∞

{
e− ∫ t

0 (qφ(x,s)( f (φ(x,s)))−c(φ(x,s), f (φ(x,s))))ds
}

≥ e− ∫ ∞
0 qφ(x,s)( f (φ(x,s)))dse

∫ ∞
0 c(φ(x,s), f (φ(x,s))))ds . (15)

Indeed, if either
∫ ∞
0 qφ(x,s)( f (φ(x, s)))ds or

∫ ∞
0 c(φ(x, s), f (φ(x, s))))ds is finite,

then in the above inequality, the equality takes place; and if both
∫ ∞
0 qφ(x,s)

( f (φ(x, s)))ds and
∫ ∞
0 c(φ(x, s), f (φ(x, s))))ds are infinite, then the right hand

side of the inequality is zero according to (1).
In the proof of part (a), it was observed that

∫ t

0
e− ∫ s

0 (qφ(x,v)( f (φ(x,v)))−c(φ(x,v), f (φ(x,v))))dv

∫

S
V ∗(y)q̃(dy|φ(x, s), f (φ(x, s)))ds

and

e− ∫ t
0 (qφ(x,s)( f (φ(x,s)))−c(φ(x,s), f (φ(x,s))))dsV ∗(φ(x, t))

are absolutely continuous in t and are thus finite for each t ∈ [0,∞). As in the proof
of part (a), similar calculations to those in (14) imply that for each t ∈ [0,∞),

∫ t

0
e− ∫ s

0 (qφ(x,v)( f (φ(x,v)))−c(φ(x,v), f (φ(x,v))))dv

∫

S
V ∗(y)q̃(dy|φ(x, s), f (φ(x, s)))ds

+ e− ∫ t
0 (qφ(x,s)( f (φ(x,s)))−c(φ(x,s), f (φ(x,s))))dsV ∗(φ(x, t)) − V ∗(x)

=
∫ t

0
e− ∫ τ

0 (qφ(x,v)( f (φ(x,v)))−c(φ(x,v), f (φ(x,v))))dv

{

U∗(x, τ )

+
∫

S
V ∗(y)q̃(dy|φ(x, τ ), f (φ(x, τ )))

− (qφ(x,τ )( f (φ(x, τ ))) − c(φ(x, τ ), f (φ(x, τ ))))V ∗(φ(x, τ ))

}

dτ = 0,

where the last equality is by what was established in part (a). Therefore, for each
t ∈ [0,∞),

V ∗(x) −
∫ t

0
e− ∫ s

0 (qφ(x,v)( f (φ(x,v)))−c(φ(x,v), f (φ(x,v))))dv

×
∫

S
V ∗(y)q̃(dy|φ(x, s), f (φ(x, s)))ds

= e− ∫ t
0 (qφ(x,s)( f (φ(x,s)))−c(φ(x,s), f (φ(x,s))))dsV ∗(φ(x, t))

≥ e− ∫ t
0 (qφ(x,s)( f (φ(x,s)))−c(φ(x,s), f (φ(x,s))))ds,
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where the inequality holds because V ∗(x) ≥ 1 for each x ∈ S. Taking limt→∞ on the
both sides of the previous equality yields:

V ∗(x) −
∫ ∞

0
e− ∫ s

0 (qφ(x,v)( f (φ(x,v)))−c(φ(x,v), f (φ(x,v))))dv

×
∫

S
V ∗(y)q̃(dy|φ(x, s), f (φ(x, s)))ds

≥ e− ∫ ∞
0 qφ(x,s)( f (φ(x,s)))dse

∫ ∞
0 c(φ(x,s), f (φ(x,s))))ds

with the inequality following from (15). Hence

V ∗(x) ≥
∫ ∞

0
e− ∫ s

0 (qφ(x,v)( f (φ(x,v)))−c(φ(x,v), f (φ(x,v))))dv

×
∫

S
V ∗(y)q̃(dy|φ(x, s), f (φ(x, s)))ds

+e− ∫ ∞
0 qφ(x,s)( f (φ(x,s)))dse

∫ ∞
0 c(φ(x,s), f (φ(x,s))))ds = W (x, f̃ x ) ≥ V ∗(x).

Here it is clear that s ∈ [0,∞) → f (φ(x, s)) can be identified as an element of R,
denoted as f̃ x . In fact, f̃ xs = δ{ f (φ(x,s))} for each s ∈ [0,∞), whereas x ∈ S → f̃ x ∈
R is measurable. This measurable mapping x ∈ S → f̃ x ∈ R defines a deterministic
stationary optimal strategy for the risk-sensitive DTMDP problem (20) by Proposition
A.1. It is clear that the measurable mapping x ∈ S → f (x) ∈ A defines an optimal
deterministic stationary policy for the PDMDP problem (8).

Finally, we show the remaining part of (a). Let H∗ be a measurable [1,∞)-valued
function on S such that

− (H∗(φ(x, t)) − H∗(x))

=
∫ t

0
inf
a∈A

{ ∫

S
H∗(y)q̃(dy|φ(x, τ ), a) − (qφ(x,τ )(a)

− c(φ(x, τ ), a))H∗(φ(x, τ ))

}

dτ, t ∈ [0,∞), x ∈ S.

There exists a measurable mapping h from S to A such that

inf
a∈A

{∫

S
H∗(y)q̃(dy|x, a) − (qx (a) − c(x, a))H∗(x)

}

=
∫

S
H∗(y)q̃(dy|x, h(x)) − (qx (h(x)) − c(x, h(x)))H∗(x), ∀ x ∈ S;

c.f., Proposition D.5 of [15]. It follows that
∫ s
0

∫
S H

∗(y)q̃(dy|φ(x, τ ), h(φ(x, τ )))dτ

is absolutely continuous in s ∈ [0, t] for each t ≥ 0. As in the proof of part (b),

∫ t

0
e− ∫ s

0 (qφ(x,v)(h(φ(x,v)))−c(φ(x,v),h(φ(x,v))))dv

∫

S
H∗(y)q̃(dy|φ(x, s), h(φ(x, s)))ds
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+ e− ∫ t
0 (qφ(x,s)(h(φ(x,s)))−c(φ(x,s),h(φ(x,s))))ds H∗(φ(x, t))

− H∗(x) = 0, ∀ t ∈ [0,∞),

and by passing to the lower limit as t → ∞,

H∗(x) ≥
∫ ∞

0
e− ∫ s

0 (qφ(x,v)(h(φ(x,v)))−c(φ(x,v),h(φ(x,v))))dv

×
∫

S
H∗(y)q̃(dy|φ(x, s), h(φ(x, s)))ds

+ e− ∫ ∞
0 qφ(x,s)(h(φ(x,s)))dse

∫ ∞
0 c(φ(x,s),h(φ(x,s))))ds

≥ inf
ρ∈R

{∫ ∞

0
e− ∫ τ

0 (qφ(x,s)(ρs )−c(φ(x,s),ρs ))ds
(∫

S
H∗(y)q̃(dy|φ(x, τ ), ρτ )

)

dτ

+ e− ∫ ∞
0 qφ(x,s)(ρs)dse

∫ ∞
0 c(φ(x,s),ρs )ds

}

, ∀ x ∈ S. (16)

It remains to refer to Proposition A.1 for that H∗(x) ≥ V ∗(x) for each x ∈ S. ��

Proof of Theorem 3.2 Let V ∗
0 (x) := 1 for each x ∈ S. For each n ≥ 0, one can

legitimately define

V ∗
n+1(x)

= inf
ρ∈R

{∫ ∞

0
e− ∫ τ

0 (qφ(x,s)(ρs )−c(φ(x,s),ρs ))ds
(∫

S
V ∗
n (y)q̃(dy|φ(x, τ ), ρτ )

)

dτ

+ e− ∫ ∞
0 qφ(x,s)(ρs )dse

∫ ∞
0 c(φ(x,s),ρs )ds

}

, ∀ x ∈ S. (17)

Recall that the DTMDP model {X,A, p, l} satisfies Condition A.1, as noted in the
proof of Lemma 4.1. Then by Proposition A.1, {V ∗

n } is a monotone nondecreasing
sequence of [1,∞)-valued measurable functions on S such that V ∗

n (x) ↑ V ∗(x) as
n ↑ ∞, for each x ∈ S.

Let n ≥ 0 be fixed. As in Lemma 4.3, for each x ∈ S, there is some ρ∗ ∈ R such
that

V ∗
n+1(x) = inf

ρ∈R

{∫ t

0
e− ∫ s

0 (qφ(x,v)(ρv)−c(φ(x,v),ρv))dv

∫

S
V ∗
n (y)q̃(dy|φ(x, s), ρs)ds

+ e− ∫ t
0 (qφ(x,s)(ρs )−c(φ(x,s),ρs ))dsV ∗

n+1(φ(x, t))

}

=
∫ t

0
e− ∫ s

0 (qφ(x,v)(ρ
∗
v )−c(φ(x,v),ρ∗

v ))dv

∫

S
V ∗
n (y)q̃(dy|φ(x, s), ρ∗

s )ds

+ e− ∫ t
0 (qφ(x,s)(ρ

∗
s )−c(φ(x,s),ρ∗

s ))dsV ∗
n+1(φ(x, t)), ∀ t ≥ 0.
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Also the relevant version of Lemma 4.2 holds: for each x ∈ S and ρ ∈ R,

t ∈ [0,∞) →
∫ t

0
e− ∫ τ

0 (qφ(x,s)(ρs )−c(φ(x,s),ρs ))ds
∫

S
V ∗
n (y)q̃(dy|φ(x, τ ), ρτ )dτ

+ e− ∫ t
0 (qφ(x,s)(ρs )−c(φ(x,s),ρs ))dsV ∗

n+1(φ(x, t))

is monotone nondecreasing in t ∈ [0,∞). Clearly, V ∗
n+1(φ(x, t)) is absolutely con-

tinuous in t ∈ [0,∞) for each x ∈ S.
Corresponding to (14), we now have

0 =
∫ t

0
e− ∫ s

0 (qφ(x,v)(ρ
∗
v )−c(φ(x,v),ρ∗

v ))dv

∫

S
V ∗
n (y)q̃(dy|φ(x, s), ρ∗

s )ds

+ e− ∫ t
0 (qφ(x,s)(ρ

∗
s )−c(φ(x,s),ρ∗

s ))dsV ∗
n+1(φ(x, t)) − V ∗

n+1(x)

=
∫ t

0
e− ∫ τ

0 (qφ(x,v)(ρ
∗
v )−c(φ(x,v),ρ∗

v ))dv

{ ∫

S
V ∗
n (y)q̃(dy|φ(x, τ ), ρ∗

τ ) +U∗
n+1(x, τ )

− (qφ(x,τ )(ρ
∗
τ ) − c(φ(x, τ ), ρ∗

τ ))V ∗
n+1(φ(x, τ ))

}

dτ

≥
∫ t

0
e− ∫ τ

0 (qφ(x,v)(ρ
∗
v )−c(φ(x,v),ρ∗

v ))dv

{

U∗
n+1(x, τ )

+ inf
a∈A

{∫

S
V ∗
n (y)q̃(dy|φ(x, τ ), a) − (qφ(x,τ )(a)

− c(φ(x, τ ), a))V ∗
n+1(φ(x, τ ))

}}

dτ

=
∫ t

0
e− ∫ τ

0 (qφ(x,v)(ρ
∗
v )−c(φ(x,v),ρ∗

v ))dv

{

U∗
n+1(x, τ )

+
∫

S
V ∗
n (y)q̃(dy|φ(x, τ ), f (φ(x, τ )))

− (qφ(x,τ )( f (φ(x, τ ))) − c(φ(x, τ ), f (φ(x, τ )))V ∗
n+1(φ(x, τ ))

}

dτ,

where τ ∈ [0, t] → U∗
n+1(x, τ ) is integrable and coincides with

∂V ∗
n+1(φ(x,t))

∂t almost
everywhere, and f is some measurable mapping from S to A, whose existence is
guaranteed by [15, Proposition D.5]. Continued from the above relation, the reasoning
in the proof of the first assertion in part (a) of Theorem 3.1 can be followed: eventually
we see

U∗
n+1(x, τ ) + inf

a∈A

{ ∫

S
V ∗
n (y)q̃(dy|φ(x, τ ), a) − (qφ(x,τ )(a)

− c(φ(x, τ ), a))V ∗
n+1(φ(x, τ ))

}

= 0
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almost everywhere in τ ∈ [0, t], i.e., the equation

− (V (φ(x, t)) − V (x))

=
∫ t

0
inf
a∈A

{ ∫

S
V ∗
n (y)q̃(dy|φ(x, τ ), a) − (qφ(x,τ )(a)

− c(φ(x, τ ), a))V (φ(x, τ ))

}

dτ, t ∈ [0,∞), x ∈ S, (18)

is satisfied by V = V ∗
n+1.

Recall that V ∗
0 = V (0). Suppose the recursive definition in (9) is valid up to step

n, and V ∗
n (x) = V (n)(x) for each x ∈ S. Consider an arbitrarily fixed [1,∞)-valued

measurable solution V to (18), and let f ∗ be a measurable mapping from S to A such
that

inf
a∈A

{∫

S
V ∗
n (y)q̃(dy|x, a) − (qx (a) − c(x, a))V (x)

}

=
∫

S
V ∗
n (y)q̃(dy|x, f ∗(x)) − (qx ( f

∗(x)) − c(x, f ∗(x)))V (x), ∀ x ∈ S.

One can follow the reasoning in the last part of the proof of Theorem 3.1, and see,
c.f. (16),

V (x) ≥
∫ ∞

0
e− ∫ s

0 (qφ(x,v)( f ∗(φ(x,v)))−c(φ(x,v), f ∗(φ(x,v))))dv

×
∫

S
V ∗
n (y)q̃(dy|φ(x, s), f ∗(φ(x, s)))ds

+ e− ∫ ∞
0 qφ(x,s)( f ∗(φ(x,s)))dse

∫ ∞
0 c(φ(x,s), f ∗(φ(x,s))))ds

≥ inf
ρ∈R

{ ∫ ∞

0
e− ∫ τ

0 (qφ(x,s)(ρs)−c(φ(x,s),ρs ))ds
(∫

S
V ∗
n (y)q̃(dy|φ(x, τ ), ρτ )

)

dτ

+ e− ∫ ∞
0 qφ(x,s)(ρs )dse

∫ ∞
0 c(φ(x,s),ρs )ds

}

= V ∗
n+1(x), ∀ x ∈ S,

where the last equality is by (17). Thus, V ∗
n+1 is theminimal [1,∞)-valuedmeasurable

solution to (18), and coincides with V (n+1). Therefore, by induction V ∗
n = V (n) for

each n ≥ 0. It follows now that V (n)(x) ↑ V ∗(x) as n ↑ ∞ for each x ∈ S. ��

5 Conclusion

In this paper, we considered total undiscounted risk-sensitive PDMDP in Borel state
and action spaceswith a nonnegative cost rate. The transition and cost rates are assumed
to be locally integrable along the drift. Under quite natural conditions, we showed that
the value function is a solution to the optimality equation, justified the value iteration
algorithm, and showed the existence of deterministic stationary optimal policy. As a
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corollary, the obtained results were applied to improving significantly known results
for finite horizon undiscounted and infinite horizon discounted risk-sensitive CTMDP
in the literature.

Acknowledgements We thank the referees for their remarks, which improved the presentation of this
paper. This work is partially supported by a grant from the Royal Society (IE160503).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

For ease of reference, we present the relevant notations and facts about the risk-
sensitive problem for a DTMDP. The proofs of the presented statements can be found
in [18] or [27]. Standard description of a DTMDP can be found in e.g., [15,22].

Consider a discrete-time Markov decision process with the following primitives:

• X is a nonempty Borel state space.
• A is a nonempty Borel action space.
• p(dy|x, a) is a stochastic kernel on B(X) given (x, a) ∈ X × A.
• l a [0,∞]-valued measurable cost function on X × A × X.

Let � be the space of strategies, and �DM be the space of all deterministic strategies
for the DTMDP. Let the controlled and controlling processes be denoted by {Yn, n =
0, 1, . . . ,∞} and {An, n = 0, 1, . . . ,∞}, respectively. The strategic measure of a
strategy σ given the initial state x ∈ X is denoted by Pσ

x . The expectation taken with
respect to Pσ

x is denoted by Eσ
x .

Consider the optimal control problem

Minimize over σ : Eσ
x

[
e
∑∞

n=0 l(Yn ,An ,Yn+1)
]

=: V(x, σ ), x ∈ X. (19)

It is also referred to as the risk-sensitive DTMDP problem. We denote the value
function of problem (19) by V∗. Then a strategy σ ∗ is called optimal for problem (19)
if V(x, σ ∗) = V∗(x) for each x ∈ X.

Condition A.1 (a) The function l(x, a, y) is lower semicontinuous in a ∈ A for each
x, y ∈ X.

(b) For eachboundedmeasurable function f onXandeach x ∈ X,
∫
X f (y)p(dy|x, a)

is continuous in a ∈ A.

(c) The space A is a compact Borel space.

Proposition A.1 Suppose Condition A.1 is satisfied.

(a) The value function V∗ is the minimal [1,∞]-valued measurable solution to

V(x) = inf
a∈A

{∫

X
p(dy|x, a)el(x,a,y)V(y)

}

, x ∈ X. (20)
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(b) Let U be a [1,∞]-valued lower semianalytic function on X. If

U(x) ≥ inf
a∈A

{∫

X
p(dy|x, a)el(x,a,y)U(y)

}

, ∀ x ∈ X,

then U(x) ≥ V∗(x) for each x ∈ X. In particular, if the function U satisfying the
above relation is [1,∞)-valued, then so is the value function V∗.

(c) Let ϕ be a deterministic stationary strategy for the DTMDP model {X,A, p, l}.
If

V∗(x) =
∫

X
p(dy|x, ϕ(x))el(x,ϕ(x),y)V∗(y), ∀ x ∈ X, (21)

then V∗(x) = V(x, ϕ) for each x ∈ X.

(d) Let V(0)(x) := 1 for each x ∈ X, and for each n = 1, 2, . . . ,

V(n)(x) := inf
a∈A

{∫

X
p(dy|x, a)el(x,a,y)V(n−1)(y)

}

, ∀ x ∈ X.

Then (V(n)(x)) increases to V∗(x) for each x ∈ X, where V∗ is the value function
for problem (19). Furthermore, there exists a deterministic stationary strategy ϕ

satisfying (21), and so in particular, there exists a deterministic stationary optimal
strategy for the risk-sensitive DTMDP problem (19).
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