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Abstract This paper presents the main principles of a stochastic nonlinear model pre-
dictive control (NMPC) novel approach for imperfectly observed discrete time systems
described by time varying nonlinear non-Gaussian state space models with unknown
parameters. A convergent particle estimator of the conditional expectation of a chosen
cost function on a given receding control horizon is built, leading to an almost sure
(a.s.) epi-convergent estimator of the NMPC cost-to-go criterion. The estimator of
the expected cost function relies upon simulations and on a recently developed non-
parametric convergent particle estimator of a multi-step ahead conditional probability
density function (pdf) of the state variables. The theory of stochastic epi-convergence
is applied to the estimated cost-to-go criterion to prove the almost sure convergence of
the optimal solutions of the approximated NMPC problem to their true counterparts,
when both simulation and particle numbers grow to infinity.
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1 Introduction

Model predictive control (MPC), an open-loop approach in which a receding control
horizon is considered to determine an optimal constrained control input ut at each time
step t , is now a well established control synthesis method for deterministic dynamical
systems described by linear models with quadratic cost functions, in particular in
several industrial fields [8]. Extensions tomore realistic situations, such as nonlinearity
of the systems and general constraint settings, have given rise to a considerable amount
of works in the last twenty years (an almost exhaustive survey of recent developments
and future promise in MPC has recently been proposed [36]): for example, to take a
better account of significant nonlinearities in many real life systems and to improve
control quality, several extensions have progressively led to a set of approaches known
as nonlinear model predictive control (NMPC), which tried to overcome more or
less the loss of convexity of the related constrained optimization problems, often
by successive linearizations [34]. Even if they allowed some progress in the control
efficiency, these approaches are still faced to other control difficulties such that those
linked to random effects and/or uncertainties rising from system noise and imperfect
state information (undirect measurements). In the last few years they have induced
the development of robust approaches (see [31,41,42]) or stochastic approaches (see
[30] and the recent survey of [37] ) and still scarcely for the unobserved state case,
the introduction of state estimation steps into the control procedure (see particularly
[10,58] and [26]). However this last situation had already been considered in the
context of operations research and stochastic optimal control, in particular in the case
of finite state, observation and control spaces, for partially observed Markov decision
processes (countable POMDP [3]) for which finite and infinite horizon problems can
be solved by so-called value iteration algorithms [33]. Continuous-state POMDPs are
most often approximated as finite POMDP by discretization [23], which may result
however in discrete-state POMDPs of huge dimensions and hard to solve numerically.
Other approximating approaches have also been proposed to address continuous-state
POMDP problems (see for example [50] and [60] for variants of particle-filtering-
based approximations).

As a matter of fact, stochastic uncertainty, added to imperfect state information
for discrete-time systems in which the state variables Xt to be controlled are not
directly accessible but only output variables Yt instead, set up a critical challenge for
NMPC: at each time step t the control to be applied with respect to the given receding
horizon has to be determined by the constrained minimization of an expected cost-
to-go function dependent on the possible induced future values of the state variables
on the receding horizon. These anticipated possible values are ideally summarized by
their anticipated probability distributions conditional on past observations and past
control values but also conditional on possible future control values over the receding
horizon. This has led to ideal open-loop feedback controllers, which perform at least
as well as optimal open-loop policies (see [4,57]). However apart from the linear-
quadratic-Gaussian (LQG) special case, this theoretical approach raises two important
critical issues: the determination of the anticipated conditional state distributions and
the successive expected cost-to-go estimations andminimizations. This partitioning of
the imperfect state information stochastic NMPC problem is the starting point of the
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development of some tentative suboptimalNMPCcontrollers but the relevant literature
is still extremely limited andmore practically than theoretically oriented: severalworks
rely on approximation of the conditional state distribution through Gaussian mixtures
and approximate filtering (for example [56], in the case of a finite set of control inputs
and time varying state and observation system models). Under perfect knowledge of
the system noise distributions, some particle based approaches use particle collections
(see [16]) to replace the conditional probability distributions of the state variables by
particle filters (see [15,22]), in order to estimate the cost-to-go expectations when
needed during the successive minimizations (see [46], and more recently [48] which
combines the so-calledMPC Scenario approach and a particle approach). Other works
use particle filters for state estimation followed by a subsequent MPC optimization
(see [1,6]) or by another particle based procedure as sequential Monte Carlo (SMC) in
the prediction/optimization step of the control determination (see [29,49]). However
the issue of the consistency of all these particle based estimations remains open.
Moreover, when parameter estimation has to be done in parallel with the control of
the system, particle depletion phenomena may occur, due to the introduction of the
unknown parameters as state extension, which impair the control quality [21]. Last
but not least, the crucial issue of the stochastic stability of the resulting closed-loop
system, as desirable as it may be for insuring reaching feasible states, has not yet
received a comprehensive response even in its weakest form (existence of invariant
measure, positive recurrence, etc) even for stochastic NMPC under complete state
information (see the acute recent analysis of [11]) and a fortiori neither in the case of
imperfect state information just mentioned and still less when the noise distribution is
also unknown.

This paper is devoted to the presentation of the main principles of a stochastic
NMPC novel approach for systems described by time varying nonlinear state space
and observationmodels, with unknown parameters and unknown but simulable system
random effects. This approach is based on the use of particle convergent estimators
of the multi-step ahead conditional probability density functions (pdf) of the state
variables to be controlled [52]. These convergent pdf predictors rely themselves on
a new generation of so-called convolution or nonparametric particle filters, free of
any particle depletion risk (see [9,44,45]). This particle approach, combined with a
simulation-based estimationof the expected cost-to-go function, allows constructionof
epi-convergent estimators of the successive cost-to-go expectations when the number
of simulations and the number of particles used grow to infinity. According to the
epi-convergence theory (see [2,54,55,59]) the epi-convergence property of these cost
expectation estimators, ensures itself the almost sure convergence of the corresponding
optimal controls estimators to their true counterparts under regular conditions.

The paper is organised as follows. The nonlinear modelling context to be consid-
ered and its assumption set are described in Sect. 2. The setting of the relevant NMPC
problem is done in Sect. 3. The almost sure convergence of the particle estimators
of the expected costs and of their minimizers to their true respective counterparts is
established in Sect. 4. In Sect. 5 a simulated case study of NMPC control in predictive
microbiology is presented that shows the efficiency of the proposed approach. Then,
the construction principles of the nonparametric estimator of themulti-step ahead con-
ditional pdf of the state, which is used in the particle generations during the predictive
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control process, are presented in Appendix 1. They are preceded by a contrasting and
brief recall about Monte Carlo particle filters. Finally, Appendix 2 is devoted to the
proof of a technical lemma.

2 The Modelling Context

The dynamic systems of interest are supposed to obey general state space models of
the form:

⎧
⎨

⎩

Xt+1 = ft+1(Xt , θ, ut , εt+1) (state equation)

Yt+1 ∼ Gt+1(.|Xt+1 = xt+1, θ) (observation equation)
(1)

in which Xt ∈ IRd is the vector of the unobserved state variables, ut ∈ U ⊂ IRq

the vector of control variables, Yt ∈ IRs the vector of the observed output variables.
θ ∈ � ⊂ IR p is a vector of p known or unknown fixed parameters. εt is a vector of
random variables (possibly noises). For all t ∈ IN+, ft is a known Borel measurable
function, Gt is an absolutely continuous probability distribution function with respect
to the Lebesgue measure with pdf pYt (y|xt , θ). The probability distribution function
of the state Xt at t = 0 and the transition distribution functions PX

t+1(x |xt , ut ) for
t ≥ 0 are also supposed to be absolutely continuous w.r.t. the Lebesgue measure. The
probability distribution function Gt and that of εt are not necessarily known but are
supposed to be at least simulable. As a particular case of model (1) the output variable
model can be given by a regression equation Yt+1 = ht+1(Xt+1, θ, ηt+1) in which
ht is a known Borel measurable function where ηt is a vector of random variables
(possibly noises) supposed to be at least simulable.

2.1 Primary Notations

Let

• pX0 (.) : the probability density of the state variable vector X at time t = 0, supposed
to be known or simulable.

• pθ
0(.) : a given prior density for θ ∈ � when unknown, non zero for θ∗ the true

values of the parameters.
• Lεt : the probability distribution function of εt , at least simulable whatever t .
• x1:t :=(x1, . . . , xt ), some realizations of the successive state vectorsX1, . . . , Xt .
• y1:t := (y1, . . . , yt ), observed values of the output variables up to time t and
u0:t := (u0, . . . , ut ), controls applied until time t.

• ct (x, u) : IRd × IRq −→ IR+, the cost function at time t (t ∈ IN+) for the
predictive control problem to be considered, supposed to be continuous in both x
and u.

• pXt+k(x |y1: j , u0:t+k−1), 1 ≤ j ≤ t, k ≥ 0 : the pdf of the state variables X at time
t + k, conditional on the past values y1: j and u0:t+k−1, supposed to be continuous
with respect to u0:t+k−1, and with corresponding probability distribution function
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denoted PX
t+k(x |y1: j , u0:t+k−1).

The previous probabilistic assumptions ensure the existence of the conditional pdf
pXt+k(x |y1: j , u0:t+k−1). Indeed, with obvious notations:

pXt+k(x |y1: j , u0:t+k−1) = ∫
pX (x1:t+k |y1: j , u0:t+k−1)dx1 . . . dxt+k−1.

By theBayes’ rule, pX (x1:t+k |y1: j , u0:t+k−1)= pY (y1: j |x1: j )pX (x1:t+k |u0:t+k−1)

pY (y1: j |u0: j − 1)

with pY (y1: j |u0: j−1) = ∫
pY (y1: j |x1: j )pX (x1: j |u0: j−1)dx1 . . . dx j ,

pY (y1: j |x1: j ) = �1≤�≤ j p
Y (y�|x�) and

pX (x1:t+k |u0:t+k−1) = ∫
pX0 (x0)�1≤�≤t+k pX (x�|x�−1, u�−1)dx0, or simply

�1≤�≤t+k pX (x�|x�−1, u�−1) if x0 is known.

The computation of pXt+k(x |y1: j , u0:t+k−1) is intractable in the general case. This
pdf is at the core of the predictive control process and will be consistently estimated
following a nonparametric particle approach described in Appendix 1.

2.2 Assumptions

• A1: U ⊂ IRq , the set of admissible controls, is supposed to be compact.
• A2: ∀x, ∀ j : 0 < j ≤ t ,

E
[
ct+1(Xt+1, ut )|y1: j , u0:t

]
=

∫

ct+1(x, ut )p
X
t+1

(
x |y1: j , u0:t

)
dx < ∞.

Remark 1 As mentionned in the introduction, the closed-loop stability issue in a gen-
eral stochastic NMPC procedure has not yet received a definitive treatment (if any)
and must be examined on a case-by-case basis (i.e. according to each system model
setting). This is all the more true as imperfect state information and unknown random
effects (noise distributions) superadd new complexities, as in the situation considered
in the present paper. Therefore the particle nonparametricNMPCapproach to be devel-
oped in the following and the results therefrom, do not deal with this issue. However
for a given system model, the stability of the closed-loop system this approach leads
to, can in any case be investigated through more or less severe sufficient conditions
on the system model and the control settings, as the following one (from [18]):

• A3: sup
t∈IN+

sup
u∈U

ELεt

[∥
∥ ft (x, θ, u, εt )

∥
∥a

]
≤ α

∥
∥x

∥
∥a + β

with a > 1, 0 ≤ α < 1, 0 ≤ β < ∞.

which implies that the system (1) is stabilized by any admissible control strategy
(and in particular an optimal one): there exists a constant κ such that, whatever
the initial state probability distribution and whatever the admissible strategy con-
sidered, it holds:
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lim sup
T→∞

1

T + 1

T∑

t=0

‖Xt‖2 ≤ κ a.s.

Moreover, for all ξ > 0, there exists a compact � such that:

lim inf
T→∞

1

T + 1

T∑

t=0

11[Xt∈�] ≥ 1 − ξ a.s. (from [18]).

This sufficient condition will be considered in the proposed case study (Sect. 5).

3 The Predictive Control Problem

Let us consider the system at time j ≥ 1, time instant until which the controls
{u0, u1, . . . , u j−1} have been applied and the observations {y1, y2, . . . , y j } have been
recorded.

Let us denote

• v j :t := v j , v j+1, . . . , vt , unknown future controls to be applied until a future
time t , t ≥ j .

• Y j+1:t+1 := Y j+1,Y j+2, . . . ,Yt ,Yt+1, the corresponding future observations.

For a given receding horizon length H , let

• v = v j : j+H−1.

• Define the expected cost-to-go

JH (v) :=

E

⎧
⎨

⎩

j+H−1∑

t= j

E
[
ct+1(Xt+1, vt )

∣
∣
∣y1: j ,Y j+1:t+1, u0: j−1, v j :t

]
⎫
⎬

⎭

=
j+H−1∑

t= j

E
[
ct+1(Xt+1, vt )

∣
∣
∣y1: j , u0: j−1, v j :t

]
. (2)

Suppose that all expectations in (2) can be evaluated. As time goes on, a classic sliding
horizon control procedure (see [3,8]) would proceed as the following:

(1) Find v∗ = v∗
j , . . . , v

∗
j+H−1 = arginfv j ,...,v j+H−1

JH (v),

with vk ∈ U , k = j, . . . , j + H − 1
(2) Apply control v∗

j to the system
(3) Get the new observation y j+1
(4) Let j = j + 1
(5) Go back to step 1.

Given u0, . . . , u j−1 and the observations y1, . . . , y j , the exact computation of
JH (v) is generally neither feasible nor is its exact minimization with respect to v.
However, based on particle simulation approaches and the theory of epi-convergence,
convergent estimators of JH (.) and of its minimizers v∗, can be obtained as shown in
the next section.
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Remark 2 As regards the unknown system model parameters θ :
Their convergent filtering estimation can be performed simultaneously with the

filtering of the state variables by the convolution filter procedure to be used in the
control operation, after a classic state extension of model (1) (see Appendix 1).

Remark 3 Particular case: tracking control
Let {x∗

t } be a given reference trajectory for the system dynamics. Let us suppose
that the system obeys the following particular form of state equation in model (1):

Xt+1 = ft+1(Xt , θ, ut ) + εt+1. (3)

with E(εt+1) = 0(d×1) and Var(εt+1) = t+1(d×d)
.

An appropriate simple cost function is then given by the quadratic discrepancy

ct+1(xt+1, ut ) = ‖xt+1 − x∗
t+1‖2. (4)

Let ψt+1 = ft+1(Xt , θ, ut ) − x∗
t+1.

Then, ‖Xt+1 − x∗
t+1‖2 = ‖εt+1‖2 + ‖ψt+1‖2 + 2ψT

t+1εt+1,

and

JH (v) =
j+H−1∑

t= j

E
[
‖Xt+1 − x∗

t+1‖2|y1: j , u0: j−1, v j :t
]

=
j+H−1∑

t= j

E
[
‖εt+1‖2|y1: j , u0: j−1, v j :t

]
+

j+H−1∑

t= j

E
[
‖ψt+1‖2|y1: j , u0: j−1, v j :t

]

+ 2
j+H−1∑

t= j

E
[
ψT
t+1εt+1|y1: j , u0: j−1, v j :t

]

=
j+H−1∑

t= j

T r
[
t+1

]
+

j+H−1∑

t= j

E
[
‖ ft+1(Xt , θ, vt ) − x∗

t+1‖2|y1: j , u0: j−1, v j :t
]
.

(5)

Applying Jensen’s inequality, it follows

JH (v)≥
j+H−1∑

t= j

T r
[
t+1

]
+

j+H−1∑

t= j

∥
∥
∥E

[
ft+1(Xt , θ, vt )|y1: j , u0: j−1, v j :t

]
− x∗

t+1

∥
∥
∥
2

=
j+H−1∑

t= j

T r
[
t+1

]
+

j+H−1∑

t= j

∥
∥
∥E

[
Xt+1|y1: j , u0: j−1, v j :t

]
− x∗

t+1

∥
∥
∥
2
. (6)

(5) gives the decomposition of JH corresponding to the quadratic cost (4) and shows
the pure expected quadratic error reduction performed by the minimization of this
cost expectation. Moreover (6) shows the link between the criterion JH with quadratic
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cost and another relevant criterion of the predictive least squares type, which is also
reduced by the minimization of JH .

In all the sequel the cost function ct (x, u) will be considered in its general form.

4 Convergent Estimators of the Expected Cost-to-Go Function and Its
Minimizers, to Their True Counterparts

In this central section, an estimator of the expected cost-to-go JH (v) is proposed
(Sect. 4.2), built from a particle estimator of the conditional predictive pdf of the
state variables (Sect. 4.1). This expected cost-to-go estimator, JmH (v), is then shown
to converge pointwise almost surely as m grows to infinity whatever v, to its true
counterpart JH (v) (Sect. 4.3). From that, the JmH (.) function is shown to converge
according to a so-called epi-convergent mode to JH (.) with m (Sect. 4.4), which in
the present case ensures the almost sure convergence of the JmH (.) minimizers into
the set of minimizers of JH (.), and that of the corresponding minima to their true
counterparts.

The first step of this construction is then the introduction of a convergent estimator
with sufficiently good properties, of any multistep ahead conditional predictive pdf
pXt+k(x |y1: j , u0:t+k−1) of the state vector Xt , ∀ j > 0, ∀t ≥ j, ∀k ≥ 0.

4.1 A Convergent Particle Estimator of the Conditional Predictive pdf of the
State Variables

A convergent n-particle estimator of the multi-step ahead conditional pdf of the state
vector has recently been proposed (see [52,53]), such that under reasonable conditions:
∀ j > 0, ∀t ≥ j, ∀k ≥ 0,

• lim
n→∞

∥
∥
∥pn,X

t+k (x |y1: j , u0:t+k−1) − pXt+k(x |y1: j , u0:t+k−1)

∥
∥
∥
L1

= 0 a.s. (7)

• ∀x, lim
n→∞ pn,X

t+k (x |y1: j , u0:t+k−1) = pXt+k(x |y1: j , u0:t+k−1) a.s. (8)

in which pn,X
t+k (x |y1: j , u0:t+k−1) is an n-particle estimator of the true (t + k − j)-

step ahead conditional pdf pXt+k(x |y1: j , u0:t+k−1) of the state (see Appendix 1), with

corresponding probability distribution function denoted Pn,X
t+k (x |y1: j , u0:t+k−1).

As said previously, the possible unknown parameters θ can be treated as are the
state variables X , with equivalent results for their conditional pdf estimation, by classic
state extension (Appendix 1).

4.2 A Particle Estimator of the Expected Cost-to-Go Function JH (.)

For t ≥ j , let:

• Q(x): an absolutely continuous probability distribution functionwith densityq(x),
which dominates the distribution PX

t+1(x |y1: j , u0: j−1, v j :t ) and also the distribu-

tion Pn,X
t+1 (x |y1: j , u0: j−1, v j :t ) for n sufficiently large. This last assumption is all
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the more plausible as n tends to infinity because of (7) and (8). The pdf q(x) will
be used to perform changes of probability measures of theoretical interest to make
easier subsequent convergence proofs in Sect. 4.4 (see also [20]).

• X := X j+1: j+H .

• X := x j+1: j+H , a realization of X.

• σt+1(x, v j :t ) := ct+1(x, vt )
pXt+1

(
x |y1: j , u0: j−1, v j :t

)

q(x)
.

• S(X, v) := ∑ j+H−1
t= j σt+1(Xt+1, v j :t ).

• Eq [.], the expectation operator with respect to q(x).

• JH (v) :=
j+H−1∑

t= j

EpXt+1

[
ct+1(Xt+1, vt )

∣
∣
∣y1: j , u0, j−1, v j :t

]

=
j+H−1∑

t= j

Eq

[
σt+1(Xt+1, v j :t )

]
= EqH

[
S(X, v)

]
.

The number n of particles used in the estimation of the state conditional pdf’s of
interest will be taken as some chosen growing function of m, the number of draws
in a simulation procedure defined just below: n = n(m). With this single growth
constraint, the choice of the function n(.) is immaterial to all the convergence results
to follow.

Then let :

• σm
t+1(x, v j :t ) := ct+1(x, vt )

pn(m),X
t+1

(
x |y1: j , u0: j−1, v j :t

)

q(x)
.

• Sm(X, v) :=
j+H−1∑

t= j

σm
t+1(Xt+1, v j :t ).

• σ̄m
t+1 := 1

m

m∑

i=1

σm
t+1(X

i
t+1, v j :t ), wi thXi

t+1 ∼ q(x), i = 1, . . . ,m.

• Xi := Xi
j+1, . . . , X

i
j+H (with X i := xij+1, ..., x

i
j+H a realization of Xi ).

• JmH (v) :=
∑ j+H−1

t= j
σ̄m
t+1 = 1

m

∑m

i=1

∑ j+H−1

t= j
σm
t+1(X

i
t+1, v j :t )

= 1

m

∑m

i=1
Sm(Xi , v).

Let us note that given v, the approximated cost-to-go expectation JmH (v) is a
random variable which depends on the set of mH drawings Xi

t+1, i = 1, . . . ,m,

t = j, . . . , j + H − 1 according to the pdf q(x), and on the j + H sets of n(m)

particles generated from t = 0, to get the predictive conditional pdf estimates
pn(m),X
t+1 (x |y1: j , u0: j−1, v j :t ), t = j, . . . , j + H − 1 (see Appendix 1).
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4.3 Almost Sure Convergence of the Expected Cost-to-Go Estimator

Theorem 4.1 Under the assumptions of Sect. 2,

∀v ∈ UH ⊂ IRH×q , JmH (v)
m→∞−→ JH (v) a.s. (9)

Proof For j ≤ t ≤ j + H − 1, for fixed v,
Let us denote for brevity’s sake without any ambiguity: σx,t+1 := σt+1(x, v j :t ),

σm
x,t+1 := σm

t+1(x, v j :t ), σi,t+1 := σt+1(Xi
t+1, v j :t ) and σm

i,t+1 := σm
t+1(X

i
t+1, v j :t ).

From (8), {σm
x,t+1} is a sequence ofmeasurable functionswhich converges pointwise

a.s. to σx,t+1 with m for all x , then also Q-almost-everywhere a.s. As Q is a finite
measure, one has by Egoroff’s theorem:

∀δ > 0, ∃Eδ ⊂ IRd withQ(Eδ) < δ, such thatσm
x,t+1 converges toσx,t+1 uniformly

a.s. withm on IRd\Eδ (the complementary of Eδ in IRd ). Note that given δ there exists
an indefinite number of such subsets Eδ .
Then ∀δ > 0, sup

x∈IRd\Eδ

| σm
x,t+1 − σx,t+1 | m→∞−→ 0,

and gm(δ) = infEδ supx∈IRd\Eδ
| σm

x,t+1 − σx,t+1 | m→∞−→ 0.

Now let 0 < L1 < L2 < ∞ and � =]0, L2]. We have

sup
L1≤δ≤L2

gm(δ) = inf
EL1

sup
x∈IRd\EL1

| σm
x,t+1 − σx,t+1 | m→∞−→ 0.

(i) gm(δ) converges uniformly a.s. to 0 as m grows to ∞ on [L1, L2] whatever
L1 > 0, with L1 < L2.

(ii) {0} is adherent to �.

(iii) gm(δ) =
inf
Eδ

sup
x∈IRd\Eδ

|σm
x,t+1 − σx,t+1 | δ→0−→ �m = lim

δ→0
inf
Eδ

sup
x∈IRd\Eδ

|σm
x,t+1 − σx,t+1 |

≤ sup
x∈IRd

|σm
x,t+1 − σx,t+1 | < ∞.

Then by the Moore–Osgood’s theorem on exchanging limits:

lim
m→∞ lim

δ→0
gm(δ) = lim

δ→0
lim

m→∞ gm(δ) = 0 a.s. (10)

and

lim
m→∞

∣
∣
∣
∣
∣

1

m

m∑

i=1

(σm
i,t+1 − σi,t+1)

∣
∣
∣
∣
∣

≤

lim
m→∞ max

i=1,...,m
|(σm

i,t+1 − σi,t+1)| ≤ lim
m→∞ lim

δ→0
gm(δ) = 0 (11)
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⇒ 1

m

m∑

i=1

σm
i,t+1

m→∞� 1

m

m∑

i=1

σi,t+1
m→∞−→ Eq [σt+1(Xt+1, v j :t )] a.s.

(by the strong law of large numbers)

= EpXt+1

[
ct+1(Xt+1, vt )

∣
∣
∣y1: j , u0, j−1, v j :t

]
.

Finally,

JmH (v) =
j+H−1∑

t= j

1

m

m∑

i=1

σm
t+1(X

i
t+1, v j :t )

m→∞−→
j+H−1∑

t= j

EpXt+1

[
ct+1(Xt+1, vt )

∣
∣
∣y1: j , u0, j−1, v j :t

]

= JH (v) a.s.

��

4.4 Almost Sure epi-Convergence Results

Simple pointwise convergence of a sequence of deterministic or random functions
{Fm(.)} to a limit function F(.) does not necessarily involve the convergence of the
corresponding sequence of minima to a minimum of the limit function F(.). The
so-called epi-convergence (see [2,54,55])—which is essentially a one-sided locally
uniform convergence combined with a weak pointwise convergence on the other side
(see [19])—is then useful to establish this result. The sequence of functions {Fm(.)} is
said to epi-converge to the function F(.) if and only if the sequence of corresponding
epi-graphs converges to the epi-graph of F(.). Actually, if {Fm(.)} epi-converges
to F(.) and vm minimizes Fm(.), then any cluster point of the sequence {vm} is a
minimizer of F(.) (see [19]).Moreover the corresponding optimal values also converge
(see [12]).

Now, v := v j : j+H−1 ∈ UH ⊂ IRH×q which is a separable metric space. Then, let

• Bc := {B1, B2, . . .}, a countable basis of open sets of UH for the topology of UH

induced by the usual topology of IRH×q .
• N (v): the set of open neighborhoods of the point v.
• Nc(v) := Bc

⋂N (v), the set of neighborhoods in the countable basis.
• vk ∈ Bk ∈ Bc, such that

JH (vk) ≤ inf
w∈Bk

JH (w) + 1

k
, ∀k ∈ IN+. (12)

• UH
c := {v1, v2, . . . , vk, . . .}.
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According to the usual standard approach (see [12]) the epi-convergence of JmH to
JH as m grows to infinity will be established if it can be shown that the epi-limits
superior and inferior of {JmH } are both equal to JH a.s., or equivalently: ∀v ∈ UH ,

JH (v) ≥ sup
B∈Nc(v)

lim sup
m→∞

inf
w∈B JmH (w) (epi-limit superior) (13)

and

JH (v) ≤ sup
B∈Nc(v)

lim inf
m→∞ inf

w∈B JmH (w) (epi-limit inferior) (14)

Theorem 4.2 JmH (.) epi-converges to JH (.) almost surely as m grows to ∞.

The following lemmas will be needed.

Lemma 4.3 JH (.) is lower semi-continuous at v, ∀v ∈ UH .

Proof if v� �→∞−→ v, then

JH (v) = EqH

[
S(X, v)

]
= EqH

[ j+H−1∑

t= j

σt+1(Xt+1, v j :t )
]

= EqH

[
lim inf

�

j+H−1∑

t= j

σt+1(Xt+1, v
�
j :t )

]
(by continuity of pt+1)

≤ lim inf
�

EqH

[ j+H−1∑

t= j

σt+1(Xt+1, v
�
j :t )

]
(by Fatou’s lemma)

= lim inf
�

JH (v�).

��

Lemma 4.4
∀(X , v), Sm(X , v)

m→∞−→ S(X , v) a.s. (15)

Proof from (8) pn(m),X
t+1 (x |y1: j , u0: j−1, v j :t )

m→∞−→ pXt+1(x |y1: j , u0: j−1, v j :t ) a.s.
(see Appendix 1).

Lemma 4.5 Sm(X , .) epi-converges almost surely to S(X , .) for all X as m grows to
infinity.

Proof See Appendix 2.
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Lemma 4.6 ∀B ∈ Bc,

1

m

m∑

i=1

inf
v∈B

j+H−1∑

t= j

σm
t+1(X

i
t+1, v j :t )

m→∞−→ EqH

[
inf
v∈B

j+H−1∑

t= j

σt+1(Xt+1, v j :t )
]

a.s.

(16)

or more compactly
1

m

m∑

i=1

inf
v∈B Sm(Xi , v)

m→∞−→ EqH

[
inf
v∈B S(X, v)

]
a.s.

Proof Let Z(X ) = inf
v∈B S(X , v) and Zm(X ) = inf

v∈B Sm(X , v). As a consequence of

Lemma 4.5, {Zm(X )} is a sequence of functions which converges pointwise (a.s.) and
then also QH -almost-everywhere (a.s.) to Z(X ) with m, ∀X ∈ IRH×d . Moreover the
functions {Zm(X )} are measurable (as are the functions {Sm(X , v)} for all v) due
to the property of the inf operation. The rationale of the proof of Theorem 4.1 can
then be reused with Z(X ), Zm(X ), X and Xi in place of σx,t+1, σm

x,t+1, x and Xi
t+1

respectively.
With the same notations and applications of Egoroff’s and Moore–Osgood’s theo-

rems as previously, we have:

lim
m→∞

∣
∣
∣
1

m

m∑

i=1

(Zm(Xi ) − Z(Xi ))

∣
∣
∣ ≤ lim

m→∞
1

m

m∑

i=1

∣
∣
∣Zm(Xi ) − Z(Xi )

∣
∣
∣

≤ lim
m→∞ max

i=1,...,m

∣
∣
∣(Zm(Xi ) − Z(Xi ))

∣
∣
∣

≤ lim
m→∞ lim

δ→0
inf
Eδ

sup
X∈IRHd\Eδ

∣
∣
∣Zm(X ) − Z(X )

∣
∣
∣

= lim
δ→0

lim
m→∞ inf

Eδ

sup
X∈IRHd\Eδ

∣
∣
∣Zm(X ) − Z(X )

∣
∣
∣ = 0

⇒ 1

m

m∑

i=1

Zm(Xi )
m→∞∼ 1

m

m∑

i=1

Z(Xi )
m→∞−→ EqH

[
Z(X)

]
, i.e.

1

m

m∑

i=1

inf
v∈B Sm(Xi , v)

m→∞−→ EqH

[
inf
v∈B S(X, v)

]
, or

1

m

m∑

i=1

inf
v∈B

j+H−1∑

t= j

σm
t+1(X

i
t+1, v j :t )

m→∞−→ EqH

[
inf
v∈B

j+H−1∑

t= j

σt+1(Xt+1, v j :t )
]

a.s.

��
The rest of the paragraph is inspired by Theorem 1 of Chen et al. [12].

Let us show first that (13) is satisfied:
∀B ∈ Bc and ∀v ∈ B, we have by (9)

JH (v) = lim
m→∞ JmH (v) ≥ lim sup

m→∞
inf
w∈B JmH (w), a.s. (17)
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then
inf

w∈B ⋂UH
c

JH (w) ≥ lim sup
m→∞

inf
w∈B JmH (w), (18)

and ∀v ∈ B

sup
B∈Nc(v)

inf
w∈B ⋂UH

c

JH (w) ≥ sup
B∈Nc(v)

lim sup
m→∞

inf
w∈B JmH (w). (19)

Given B ∈ Bc, any ball S with center at v ∈ B and sufficiently small radius, is
such that S ⊂ B, since B is open. Moreover there exists B ′ in the basis Bc such that
v ∈ B ′ ⊂ S and then B ⊃ B ′. Starting from v ∈ B ′ a new ball S′ centered at v and
with sufficiently small radius to being countained in B ′, can be found, and there is a
B ′′ ∈ Bc such that v ∈ B ′′ ⊂ S′ and then B ′ ⊃ B ′′. This process can be iterated. It is
then possible to choose a subsequence {kl} such that Bkl ⊃ Bkl+1 , with

⋂
l Bkl = {v}.

Then by the lower semicontinuity of JH (.)

sup
B∈Nc(v)

inf
w∈B JH (w) = lim

l→∞ inf
w∈Bkl

JH (w) = JH (v), (20)

and by (12)

inf
w∈Bkl

JH (w) ≤ inf
w∈Bkl

⋂UH
c

JH (w) ≤ JH (vkl ) ≤ inf
w∈Bkl

JH (w) + 1

kl
. (21)

The inequality (13) is implied by (20), (21) and (19). ��

Let us show now that (14) is also satisfied:

∀B ∈ Bc, let w ∈ B, with w := w j : j+H−1.
Let us note first that the continuity of σm

t+1(x, w j :t ) for all t , j ≤ t ≤ j+H−1,

assures that inf
w∈B

j+H−1∑

t= j

σm
t+1(x, w j :t ) is measurable.

We have

sup
B∈Nc(v)

lim inf
m→∞ inf

w∈B JmH (w)

≥ sup
B∈Nc(v)

lim inf
m→∞

1

m

m∑

i=1

inf
w∈B

j+H−1∑

t= j

σm
t+1(X

i
t+1, w j :t ) (22)

= sup
B∈Nc(v)

EqH

[
inf
w∈B

j+H−1∑

t= j

σt+1(Xt+1, w j :t )
]

(23)

= lim
l→∞EqH

[
inf

w∈Bkl

j+H−1∑

t= j

σt+1(Xt+1, w j :t )
]

(24)
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= EqH

[
lim
l→∞ inf

w∈Bkl

j+H−1∑

t= j

σt+1(Xt+1, w j :t )
]

(25)

≥ EqH

[ j+H−1∑

t= j

σt+1(Xt+1, v j :t )
]

= JH (v). (26)

in which (22) is true by subadditivity of the infimum, (23) is the immediate conse-
quence of (16), (24) is due to the decrease of the embedded sequence (Bkl ), (25) is a
direct application of the dominated convergence theorem and (26) is due to the lower
semicontinuity of the operand in the expectation. ��

The epi-convergence of JmH (.) to JH (.) as m grows to infinity is then established.

Now let {vm} be a sequence of ε-minimizers of {JmH (.)}, i.e.

JmH (vm) ≤ inf
v∈UH

JmH (v) + εm in which εm > 0 and εm
m→∞−→ 0. (27)

According to Theorem 1.10 of Attouch [2] every converging subsequence {vmk }
of {vm} must converge to one of the minimizers {v∗,i , i = 1, . . . , r} of JH (.) i.e.

{vmk } k→∞−→ v∗ a.s., implies that JH (v∗) = min
v∈UH

JH (v). Moreover according to [2]

the optimal values also converge : Jmk
H (vmk )

k→∞−→ JH (v∗) a.s.

Theorem 4.7 The sequence {vm} of ε-minimizers of {JmH (.)} defined by (27) converges
with probability one into the set of the minimizers of JH (.). Moreover the sequence
{JmH (vm)} converges itself with probability one into the set of the corresponding min-
ima of JH (.).

Proof (i) Since the random sequence {vm} is bounded by definition, it is tight. Hence
by Prokhorov’s theorem every subsequence {vmk } has a sub-subsequence {vmkl }
whose related probability distribution functions converge weakly to the proba-
bility distribution function of a random variable V . Moreover according to the
Skorokhod’s representation theorem, there exists random variables {Wl} and W ,
respectively distributed as {vmkl } and V , such that {Wl} converges towardW almost
surely. Then {vmkl } converges a.s. into Supp(W ) ≡ Supp(V ) as does {Wl} itself,
and according to Th. 1.10 of Attouch [2], the corresponding limit points are mini-
mizers of JH (.). Then the Prokhorov’s theorem ensures that Supp(V ) ≡ Supp(W )

can only be a subset of the set of minimizers {v∗,i , i = 1, . . . , r} of JH (.).
(ii) Now suppose that the random sequence {vm} does not converge with probability

one into the set {v∗,i , i = 1, . . . , r}. Then, there exist r open sets {Oi , i =
1, . . . , r} ⊂ UH , each one containing one of the {v∗,i }, and a subsequence {vmk }
of {vm} such that for all k ∈ IN , P(vmk /∈ Oi , i = 1, . . . , r) > 0 and for any
of its embedded sub-subsequence {vmkl }, P(vmkl /∈ Oi , i = 1, . . . , r) > 0. By
Prokhorov’s theorem every such subsequence {vmk } has still a sub-subsequence
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{vmkl } converging in distribution to a random variable V . But the Skorokhod
sequence {Wl} distributed as {vmkl } is then also such that∀l ∈ IN P(Wl /∈ Oi , i =
1, . . . , r) > 0 and {Wl} cannot converge a.s. into the set {v∗,i , i = 1, . . . , r},
which contradicts (i). Hence the result for the sequence {vm}. Moreover, due to
the convergence of the corresponding optimal values themselves according to
Attouch’s theorem, the proof is complete. ��

5 Application: A Simulated Case Study in Predictive Microbiology

5.1 The State-Space Model Considered

5.1.1 The State Equation

One of themost efficient tools in the field of food safety is the stochastic modelling of a
(pathogenic) bacterial population decreasing in a given culturemedium . Indeed, under
particular conditions of environmental factors such as temperature, pH, water activity,
and after a lactic acid shock, a decreasing of the bacteria number can be observed (the
so-called growth inactivation). This decreasing can be very slow if the temperature is
kept constant (see the curve number 1 in Fig. 1), but can go faster if the temperature
is increased, due to the enhanced efficiency of the lactic acid effect on the bacteria
morbidness. A goal of the microbiologists is then to control the temperature evolution
for obtaining a particular (a priori chosen) growth inactivation profile, which will be
called hereafter the target decreasing trajectory.

For some bacterial species (Listeria, Salmonella,. . .) efficient mathematical models
are available for describing growth inactivation. For the bacterial dynamics simulation
and its subsequent predictive control in our case study, themodel proposed by Coroller
et al. [14] will be considered under its approximate discrete time autoregressive form,
with a multiplicative lognormal noise (as usually considered by microbiologists for
counts variability) :

Xt+1 =
[

Xt − δXt

(
λ

Dt

)

×
(

t

Dt

)λ−1
]

× εt+1, (28)

with

• t : time variable, with t ∈ [0, tmax], tmax being a priori selected by the microbiol-
ogist (here tmax = 600 hours).

• Xt : the bacteria number perml of culture broth at time t , which cannot be observed
directly (from which, the associated filtering problem).
The initial number of bacteria x0 is chosen as x0 = 107 for the simulation and is
considered as known in this simulated control processing. However it could also
be considered as an additional unknown parameter to be estimated by filtering
from a given initial prior density pX0 (.) at time t = 0.

• λ : an unknown shape parameter thatmust be estimated byfiltering, simultaneously
with the control procedure. According to λ the graph of the bacterial dynamics
without noise is convex (λ < 1), straight (λ = 1) or concave (λ > 1).
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• Dt : a function of the temperature, Tt (◦C). Dt is the so-called decimal reduction,
defined in [14], by

log10 Dt = Ds −
[(

2
(
T c − T opt

)

(Z)2

)

× (
Tt − T s)

]

if Tt ≤ T c (29)

and

log10 Dt = Ds +
((

T c − T opt
) (
2T s − T c − T opt

)

(Z)2

)

−
(
Tt − T opt

Z

)2

(30)

if Tt > T c,

where Ds, T c, T opt , T s, Z are in general badly known parameters, the values of
which depend on the bacterial species. For the data simulation in the present case
(Listeria) these parameters and the shape parameter λ, are fixed to (see [14]):

λ = 2, Ds = 2.5, T c = 20, T opt = 10, T s = 12, Z = 22. (31)

All these six parameters, will have to be estimated by the filtering process, in
parallel with the system control processing: in our case study the unknown θ of
model (1) corresponds then to the vector {λ, Ds, T c, T opt , T s, Z}.

Remark 4

• The temperature, Tt , is the ut control variable to be used: 0 ≤ Tt ≤ 40 ◦C.
• δ is the model time step (here always fixed at the value of 1 hour).
• εt+1 is a noise, taken as a lognormal random variable such that et+1 = ln εt+1 is a
Gaussian variable N (0, ρ2

t ), with ρt = 1
2CV log10 xt , CV being an approximate

surrogate coefficient of variation supposed to be constant according microbio-
logical considerations and known during the control process (realistic values 0.01,
0.025, 0.05, 0.10, 0.20 were considered for the different simulations done). Note
that this quantity could also be considered as a parameter to be estimated by
filtering during the control process.

• The noninteger values provided for the state variable Xt by model (28) as approx-
imations of integer bacteria counts, are quite acceptable with respect to these very
high population sizes.

Remark 5 With this setting it can be checked that the stabilisability sufficient condition
A3 is satisfied by model (28) if whatever t , the applied computed temperature Tt (the
control) is such that:

i f 1 ≤ xt ≤ C : δλtλ−1

1 − 1/xt
≤ Dλ

t (32)

i f xt > C : δλtλ−1

1 − 1/xt
≤ Dλ

t ≤ δλtλ−1

1 − C/xt
(33)

with C = exp
(
(ln 10)

√
β
)
, for a given β > 0 and a = 2 in A3.
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5.1.2 The Observation Equation

In the simulated case study considered here, the observed variable Yt at time t is the
number of cells (bacteria) supposed to have been detected by flow cytometry counting
[32] in the last of a series of diluted samples in successive test tubes, from the original
culture broth at time t . The few minutes requested by this counting process can be
considered as negligible with respect to the slow dynamics of the growth inactivation.
The probability distribution function Gt (.|Xt = xt , θ) of Yt in model (1), is here
the result of the interaction of several independent random phenomena: the spatial
sampling in the primary test tube at time t , a given number of successive samplings
in several tubes of increasing dilution (with Poisson or aggregative assumptions for
the bacteria spatial probability distributions), the successive volume sampling errors
and dilution errors (assumed to be Gaussian) and finally, the lognormal error counts
attributed to the flow cytometer device itself. See [40] for full details about this sophis-
ticated sampling-dilution-numbering procedure. The probability distribution function
Gt cannot be analytically characterised but can be easily simulated, which is the only
requirement for the proposed particle predictive control procedure to be used, accord-
ing to the particle generation algorithm considered (Appendix 1). Here, the dimension
of the Yt variable, s, corresponds to the number of repetitions of the previous bacteria
sampling-dilution-counting procedure achieved at every time, t .

5.2 Settings and Results of the Predictive Control

In the present case study the goal of the successive minimizations of the approximated
cost function expectation, JmH (.) defined in Sect. 4.2, is to obtain a controlled state
trajectory being the closest as possible to a given deterministic target trajectory {x∗

t },
all along the selected time range, [0, tmax]. The cost function considered is then taken
as the quadratic discrepancy (4). The computation of JmH when requested by the mini-
mization algorithm, is done by using a N (0, 1) probability density as intrumental pdf
q(x), and Gaussian kernels for the particle pdf estimator pn(m),X

t+1 (x |y1: j , u0, j−1, v j :t )
of the pdf pXt+1(x |y1: j , u0, j−1, v j :t ) (see Appendix 1).

Let δv∗ be the time during which a same computed optimal control v∗ is applied (the
tested values for δv∗ were 1, 2, 5, 7, 10, 15, 50 hours). Note that theminimizationsmust
be performed every δv∗ , that means for example with δv∗ = δ = 1 and a time range of
[0, tmax = 600h], that the minimization procedure should be performed 600×γ times
(with γ a given number of independent runs from different initial values for limiting
the risk to be trapped into a local minimum), i.e. 6000 times if γ = 10. Moreover,
the dimension of the optimization space is H , with realistic values from 1 to 10.

Two minimization algorithms were compared: a global stochastic procedure based
on [51] and a deterministic procedure based on the well-known Nelder and Mead
simplex algorithm from the SAS/IML library [47]. The stochastic procedure, lead-
ing presently to too costly computer time—more than two weeks when (m, n) =
(100, 1000) and δv∗ = 1 to 5—was abandoned. Only the simplex procedure was car-
ried out, with still long but affordable computing times for these exploratory trials,
typically several days with a Pentium IV computer, depending on the simulation con-

123



Appl Math Optim (2019) 80:165–194 183

ditions (much less however than the 600 hour duration of the virtual microbiological
experiment): as previously said, our objective in these tests was not to find the fastest
minimization procedure but rather to provide illustrations of the relevance of the JmH (.)

approximated cost function expectation under different simulation conditions. Note
however that thiswhole simulation/minimization procedure could be parallelized,with
significant time saving beneficial effect.

Several successive optional settings of the predictive control / minimization proce-
dure were tested:

• For the horizon, H : values from 1 to 10, by step of 1.
• For (m, n) (computation of σ̄m

t+1): (20, 100), (50, 500), (100, 1000).• For δv∗ : 1, 2, 5, 7, 10, 15, 50.
• For s (number of bacteria counting repetitions carried out at each time t): 1, 2, 3.
• For the filtering process itself, the initial prior distribution of the six unknown
parameters, pθ

0(.), was taken as a uniform distribution over the following intervals
(chosen according to microbiological considerations):

1.62 ≤ λ ≤ 2.42, 2.03 ≤ Ds ≤ 3.03, 16.20 ≤ T c ≤ 24.20,

8.10 ≤ T opt ≤ 12.10, 9.72 ≤ T s ≤ 14.52, 17.82 ≤ Z ≤ 26.62. (34)

By combining these settings, several simulated predictive control processings were
performed for a given decreasing deterministic bi-lobbed target trajectory x∗(t) (curve
3 in Fig. 1). The results of the most illustrative nine of them are reported in the
following three tables (all with δv∗ = 2, s = 2 and each noise surrogate coefficient of

Fig. 1 Evolution of the predictive optimal control process under the setting m = 100, n = 1000 and
H = 10
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Table 1 Evolution of the SSQ with respect to the (m, n, H) setting

Italic values indicates the final sum of squares (SSQ)

variation CV taken fixed as 0.025). Without surprise the best predictive control was
obtained for m = 100, n = 1000, H = 10 and is displayed in Fig. 1.
Results:

• Table 1 presents the evolution with respect to different combinations of m, n, H ,
of the discrepancy sum of squares between the target trajectory and the estimate
of the expected controlled trajectory, after a logarithmic transformation, SSQ =
600∑

t=0

[
log10 x

∗
t − log10 xt

]2
where log10 xt = 1

n

∑n
i=1 log10 x̄

i
t (see Appendix 1 for

the particles {x̄ it } generation). The most significant result is the major effect of the
chosen horizon H on the decreasing of the SSQ, with respect to the values of
m and n for sufficiently big values (from 50 and 500 upwards respectively).This
behaviour reveals the good predictability of this nonparametric predictive control
approach.

• Tables 2 and 3 display the final filtering estimates of each of the six parameters and
the lower and upper bounds of their respective particle-estimated 95% confidence
intervals (see [45] for technical details). These estimates are to be compared with
the true parameter values (31) and with the initial prior parameter intervals (34)
respectively. Beside the good quality of these estimates in spite of the relatively
moderate m and n values used, another noticeable result is again the effect of the
horizon H , the growing of which seems to be more sensible upon the ranges of
the parameter confidence intervals than upon the parameter estimates themselves,
with again a global improvement with increasing H , for m and n sufficiently big.

• Figure 1 displays four curves related to the control processing with the setting
(m = 100, n = 1000, H = 10), in log10 units for the state variable Xt (bacteria
number, left vertical axis) and in degree Celsius units for the control variable Tt
(applied temperature, right vertical axis):

◦ Curve 1 is that of a simulation without control of the noisy state variable Xt

(bacteria number per ml of culture broth (28)) under a fixed temperature (Tt =
2 ◦C).
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Table 2 Evolution of the estimates of the parameters λ, Ds , T c and that of their 95% confidence bounds
with respect to the (m, n, H) setting

Italic values indicate the estimates of the six unknown model parameters

◦Curve 2 is that of the computed optimal control v∗
t (temperature T ∗

t )with δv∗ = 2.
With some algebra one can easily check that all v∗

t satisfy (32, 33) for β >

(log10 x0)
2 and then, that the sufficient stabilisability condition A3 is satisfied.

◦ Curve 3 is that of the bi-lobbed target trajectory x∗
t .

◦ Curve 4 is that of the evolution of the expected optimally controlled state trajec-
tory Xt .

One can notice the good predictive control anticipation of the change of curvature of
the bi-lobbed reference trajectory under this horizon setting, leading to a satisfactory
computed discrepancy (SSQ = 1.15).

The performance of this simulated predictive control processing and that of other
non reported trials, could be improved by increasing the number m of simulations in
the approximation of the cost-to-go function expectation and then the number n of
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Table 3 Evolution of the estimates of the parameters T opt , T s , Z and that of their 95% confidence bounds
with respect to the (m, n, H) setting

Italic values indicate the estimates of the six unknown model parameters

particles used for the filtering step, at the price of a still heavier computing time. But as
said previously this last drawback could be drastically reduced by the parallelization
of the computer code, as often done for particle procedures like this one. Moreover
with reasonable values for m and n as in the present settings, the proposed predictive
control procedure seems already able to correctly anticipate the dynamic variations
of the target trajectory and provides rather good control of the state space system
considered, as shown by Fig. 1.

6 Conclusion

Solving stochastic NMPC problems on continuous state spaces, for imperfectly
observed systems described by nonlinear non-Gaussian discrete-time state spacemod-
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els, is still a theoretical and a practical challenge. This paper addresses both aspects of
this ambitious objective: first, the estimation of the multi-step ahead conditional pdf
of the system state variables and the estimation of the subsequent cost-to-go expec-
tation; secondly, the minimization of this expected cost estimate, providing optimal
controls to be applied at each time step. Based on the use of a recently developed
nonparametric particle estimator of the multi-step-ahead conditional pdf of the state
variables and on the theory of epi-convergence, a simulation-based epi-convergent esti-
mator of the expected cost-to-go over the receding horizon is proposed. Therefrom,
every sequence of approximated minimizers of the corresponding expected cost-to-go
estimates, converges with probability one into the set of the minimizers of the true
expected cost-to-go at each time step. Idem for the convergence of the sequence of the
corresponding minima to their true counterparts.

Acknowledgements The authors would like to thank a referee for his constructive comments and the
associate editor for his suggestions of improved connexions with other filtering approaches.

Appendix 1

Given (y1: j , u0: j−1, v j :t ), the construction and the convergence of the cost expectation
estimator JmH (v) = 1

m

∑m
i=1

∑ j+H−1
t= j σm

t+1(X
i
t+1, v j :t ) to its true counterpart JH (v) as

seen in Sects. 4.3 and 4.4, rely on pn(m),X
t+1 (x |y1: j , u0: j−1, v j :t ), a convergent estimator

of the true (t +1− j)-step ahead state conditional pdf pXt+1(x |y1: j , u0: j−1, v j :t ). This
estimator will now be proposed. To alleviate notations, the control variables will be
suppressed from model (1) without any loss of generality for this estimator rationale,
and the general problem of building a convergent estimator pn,X

t+k (x |y1:t ) of the k-
step ahead pdf pXt+k(x |y1:t ) will now be considered. This estimator has been recently
developed (see [52]), inspired from [44,45] who proposed nonparametric convergent
estimators of the pdf pXt (x |y1,t , u0,t−1) by convolution particle filtering.

A Brief Recall About Particle Filters et alia

Let us first recall briefly that to estimate the state conditional pdf of a discrete-time
state space dynamical system, the filtering procedures rely on iterative series of couples
of prediction step based on the state dynamics, and correction step taking the novel
observation into account. Based on this scheme the so-called particle filters generate
swarms of n state variable realizations (particles) approximately distributed accord-
ing to this posterior pdf. Among the earliest and most famous ones are the sampling
and importance-resampling (SIR) filter [22] or interacting particle (IPF) filter [16],
with good asymptotic behaviour with n (weak convergence to the optimal filter), but
with occasional particle concentration occurrences in case of small dynamical noise.
To remedy this particle degeneracy and insure their diversity with time, some reg-
ularizations of the particle system distribution have been proposed by introducing a
regularization step before or after the correction step [27,38]: a kernel method is used
to change the particle discrete empirical distribution into an absolutely continuous
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distribution in the resampling step. Both such pre- and post-regularization particle fil-
ters (RPF filters) have been proved to converge to the optimal filter in the weak sense.
However all such particle filters require the analytical availability of the pdf of the
observation variables (up to a normalized constant), a condition rarely met in practical
situations. Other particle filtering methods have then been developed to get rid of this
constraint. Thus, approximate Bayesian computation (ABC) approaches [35] free of
this requirement, have then been applied to filtering. Based also on propagation and
correction particle steps, these ABC approaches are characterized by the introduction
of a so-called tolerance level ε in the particle weighting of the correction phase, the
selection of which conditions the asymptotic behaviour of the filter with n [28]. By
considering this tolerance level not either as a fixed value but as a time-varying band-
width parameter function of n, a kernel-based particle weighting has been recently
introduced [7], allowing L2-convergence of these modified ABC filters.

However, it is the almost sure convergence property of the conditional pdf estimator
of the state which is needed in the present work (see Sects. 4.3, 4.4). The generalized
convolution particle filter/predictor to be presented in the next paragraph offers this
valuable convergence property, still allowing non-analytical availability of the obser-
vation variable pdf. Moreover in this nonparametric approach, convolution kernels
are used not as simple regularization tools as in the RPF filters, but to build nonpara-
metric almost sure convergent estimators of the state variable pdf, conditional on the
observation variables.

Let us close this short recall on particle filtering by mentioning that the filter-
ing of continuous-time state space dynamical systems has also taken advantage of
Monte Carlo approaches. For example, for the filtering of systems with state variable
evolution governed by stochastic differential equations with non-explicitable process
transition semi-group, some original approaches have been proposed, adapted to dif-
ferent schemes of discrete-time observations: approximate filters of state function
expectations have been developed via simulations of Euler approximations of the
stochastic equations, with control of the discrepancy errors [17].

Convolution Particle Filering

In the following, the construction principles of the nonparametric particle pdf fil-
ter/predictor advocated for the estimation of the conditional pdf of interest in the
present work (see Sect. 4.1), are summed up.

With respect to model (1), supposed free of any control variable as said previously,
the state vector at time t + k can be written

Xt+k = ft+k(Xt+k−1, θ, εt+k) = ft+k

(
ft+k−1(Xt+k−2, θ, εt+k−1), θ, εt+k

)

. . . := Ft+k(Xt−1, θ, εt , εt+1, . . . , εt+k−1, εt+k). (35)

Let ν1t ∼ Lεt+1 , ν2t ∼ Lεt+2 , . . . , νkt ∼ Lεt+k .

Let Zt := Ft+k(Xt−1, θ, εt , ν
1
t , . . . , ν

k
t ). (36)

123



Appl Math Optim (2019) 80:165–194 189

Estimating the conditional pdf pZt (z|y1:t ) of Zt is then equivalent to estimating the
pdf of interest pXt+k(x |y1:t ) of Xt .

Let us introduce Zt as a new state variable into the state equations of model (1),
and let us also introduce as extended state equations the parameter invariance equality
θt = θt−1 (with initial prior pθ

0 ), to take account of the parameter unknowledge.Model
(1) is unchanged by these additions but it writes now, without control:

⎧
⎪⎪⎨

⎪⎪⎩

Xt = ft (Xt−1, θt−1, εt )

Zt = Ft+k(Xt−1, θt−1, εt , ν
1
t , . . . , ν

k
t )

θt = θt−1
Yt ∼ Gt (.|xt , θt )

(37)

The estimation of the joint conditional pdf pX,Z ,θ
t (x, z, θ |y1:t ) of (Xt , Zt , θt ) and

its marginals pXt (x |y1:t ), pZt (z|y1:t ), pθ
t (θ |y1:t ), is a filtering problem. A convergent

nonparametric particle filtering approach, free of any particle depletion drawback, has
been recently proposed to solve filtering problems of this kind under the mild assump-
tions of Sect. 2 (see [25,43–45]). This approach can provide convergent estimators of
all the conditional pdf of interest and in particular of the pdf pZt (z|y1:t ) (see [52,53]).
It relies on the recursive generation of n particles (xit , z

i
t , θ

i
t , y

i
t ), i = 1, . . . , n, at

each time step t .
In the following we shall focus only on the pdf pZt (z|y1:t ). The extension to

pXt (x |y1:t ) and to pθ
t (θ |y1:t ) is straightforward.

Algorithm:

• Step t = 0: For i = 1, . . . , n, generate x̄ i0 ∼ px0 , θ̄ i0 ∼ pθ
0 , t = t + 1.

• Step t > 0: For i = 1, . . . , n
– if t = 1: generate εi1 ∼ Lε1 , ν

1,i
1 ∼ Lε2 , . . . , ν

k,i
1 ∼ Lε1+k ,

xi1 = f1(x̄ i0, θ̄
i
0, ε

i
1), z

i
1 = F1+k(x̄ i0, θ̄

i
0, ε

i
1, ν

1,i
1 , . . . , ν

k,i
1 ), θ i1 = θ̄ i0,

generate yi1 ∼ G1(.|xi1, θ i1).
– if t > 1, generate: (x̄ it−1, z̄

i
t−1, θ̄

i
t−1) ∼ pn,X,Z ,θ

t−1 (x, z, θ |y1:t−1),

εit ∼ Lεt , ν
1,i
t ∼ Lεt+1 , ν

2,i
t ∼ Lεt+2 , . . . , ν

k,i
t ∼ Lεt+k ,

xit = ft (x̄ it−1, θ̄
i
t−1, ε

i
t ), z

i
t = Ft+k(x̄ it−1, θ̄

i
t−1, ε

i
t , ν

1,i
t , . . . , ν

k,i
t ),

θ it = θ̄ it−1, generate yit ∼ Gt (.|xit , θ it ),
with

pn,X,Z ,θ
t (x, z, θ |y1:t ) :=

∑n
i=1 K

Y
δn

(yit − yt ) × K X
δn

(xit − x) × K Z
δn

(zit − z) × K θ
δn

(θ it − θ)
∑n

i=1 K
Y
δn

(yit − yt )
, (38)

pn,Z
t (z|y1:t ) :=

∑n
i=1 K

Y
δn

(yit − yt ) × K Z
δn

(zit − z)
∑n

i=1 K
Y
δn

(yit − yt )
, (39)

ẑnt := 1

n

n∑

i=1

z̄it , (40)
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t = t + 1, go back to Step t .

in which

• KY
δn

(v) := 1
δsn
K Y

(
v
δn

)
, v ∈ IRs , where KY (.) is a basic Parzen-Rosenblatt kernel

function (see [24,39]) of dimension s : KY (.) is bounded, positive, symmetric,

with lim‖v‖→∞ ‖v ‖s K Y (v) = 0,
∫

KY (v)dλ(v) = 1 where λ is the Lebesgue

measure, and δn is the kernel windowwidth parameter to be adequately chosen (see
[52]). Example: the simple Gaussian Kernel KY (v) = (1/

√
2π)s exp(−‖v ‖2 /2).

• K Z
δn

(.), K X
δn

(.) and K θ
δn

(.) : kernels defined in a similar way for the variables Z , X
and the parameter θ , of dimension d, d and p respectively andwith the same kernel
window width parameter δn as that of KY

δn
(.) (this assumption could be relaxed).

Remark 6 In practice the generation of the {x̄ it , z̄it , θ̄ it , i = 1, . . . , n} according to (38)
is done very easily by a multinomial resampling step of the particles {xit , zit , θ it , i =
1, . . . , n}, followed by a regularization step according to the simulable distributions
of the respective state noises (see [5,13]).

Theorem 7.1 For any t > 1, if the pdf pYt (y|y1:t−1) is continuous and strictly positive
at yt , if there exists M > 0 such that pYt (y|xt , θt ) ≤ M, and if Var[Xt , Zt , θt |y1:t ]
exists and is bounded, then

⎧
⎪⎨

⎪⎩

limn→∞ nδ
s+2d+p
n
log n = ∞

δsn = O(n−α/2),

0 < α < 1

⇒ limn→∞
∥
∥pn,Z

t (z|y1:t )− pZt (z|y1:t )
∥
∥
L1=0 a.s.

limn→∞
∣
∣
∣ẑnt − IE[zt |y1:t ]

∣
∣
∣=0 a.s.

with
∥
∥�(z)

∥
∥
L1

=
∫

∣
∣�(z)

∣
∣dz, for an integrable function �(z).

pn,Z
t (z|y1:t ) is then an a.s. L1-convergent estimator of the pdf pZt (z|y1:t ) and then

also of the k-step ahead pdf of interest pXt+k(x |y1:t ).
Proof direct application to the state variable Zt of the convergence results of the
Resampled Convolution Particle filter (see [45], which gives also the rate of conver-
gence). ��
Theorem 7.2 For any t > 1, if the pdf pYt (y|y1:t−1) is continuous and strictly positive
at yt and if there exist M1 > 0 such that pX,Z

t (x, z|xt−1, zt−1, θt−1) ≤ M1, M2 > 0
such that pYt (y|xt , θt ) ≤ M2, and M3 > 0 such that pθ

t (θ |y1:t ) ≤ M3, then

{
δn =O

(
n−β/(s+2d+2p)

)

0<β < 1/2
⇒ ∀z, limn→∞ pn,Z

t (z|y1:t )= pZt (z|y1:t ) a.s. (41)

Proof idem (see [53]).

pn,X
t+k (x |y1:t ), the n-particle estimator of the k-step ahead conditional state pdf

pXt+k(x |y1:t ), is then given by the pdf pn,Z
t (z|y1:t ) defined in (39) and inherits its

convergence properties. ��
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Remark 7 Similar estimators pn,X
t (x |y1:t ) and pn,θ

t (θ |y1:t ), of pXt (x |y1:t ) and
pθ
t (θ |y1:t ) respectively, can be defined with similar convergent properties.

Appendix 2: Proof of Lemma 4.5

The almost sure epi-convergence of Sm(X , v) = ∑ j+H−1
t= j σm

t+1(xt+1, v j :t ) to

S(X , v) = ∑ j+H−1
t= j σt+1(xt+1, v j :t ) for all X , is established by the same stan-

dard approach as that already followed to show the epi-convergence of JmH to JH in
Sect. 4.4 and with the same notations, by checking the two inequalities

S(X , v) ≥ sup
B∈Nc(v)

lim sup
m→∞

inf
w∈B Sm(X ,w) (42)

and

S(X , v) ≤ sup
B∈Nc(v)

lim inf
m→∞ inf

w∈B Sm(X ,w) (43)

For brevity’s sake only the proof of (43) which is more specific, will be proposed.

By (39), ∀t ≥ j

pn(m),X
t+1

(
x |y1: j , u0: j−1, v j :t

)

= pn(m),Z
j

(
z|y1: j , u0: j−1, v j :t

) =
∑n(m)

i=1 KY
δn

(yij − y j )K Z
δn

(zij − z)
∑n(m)

i=1 KY
δn

(yij − y j )
, (44)

with zij = Ft+1

(
x̄ ij−1, θ̄

i
j−1, ε

i
j , ν

1,i
j , . . . , ν

(t+1− j),i
j , u0: j−1, v j :t

)
, i = 1, . . . , n(m).

and according to (8)

pn(m),X
t+1

(
x |y1: j , u0: j−1, v j :t

) m→∞−→ pXt+1

(
x |y1: j , u0: j−1, v j :t

)
a.s.

Now with the same notations as in Sect. 4.4, given X , let vk ∈ Bk ⊂ Bc, such that

Sm(X , vk) ≤ inf
w∈Bk

S(X ,w) + 1

k
, ∀k ∈ IN+. (45)

By the same approach as that proposed in Sect. 4.4, it is possible to choose a
subsequence {kl} such that Bkl ⊃ Bkl+1 , with ∩l Bkl = {v}.

Then

sup
B∈Nc(v)

lim inf
m→∞ inf

w∈B Sm(X ,w)

= sup
B∈Nc(v)

lim inf
m→∞ inf

w∈B

j+H−1∑

t= j

ct+1(xt+1, wt )
pn(m),X
t+1

(
xt+1|y1: j , u0: j−1, w j :t

)

q(xt+1)

(46)
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≥ sup
B∈Nc(v)

lim inf
m→∞

j+H−1∑

t= j

inf
w∈B

(
ct+1(xt+1, wt )

pn(m),X
t+1

(
xt+1|y1: j , u0: j−1, w j :t

)

q(xt+1)

)

(47)

≥ sup
B∈Nc(v)

j+H−1∑

t= j

lim inf
m→∞ inf

w∈B

(
ct+1(xt+1, wt )

pn(m),X
t+1

(
xt+1|y1: j , u0: j−1, w j :t

)

q(xt+1)

)

(48)

= lim
l→∞

j+H−1∑

t= j

lim inf
m→∞ inf

w∈Bkl

(
ct+1(xt+1, wt )

pn(m),X
t+1

(
xt+1|y1: j , u0: j−1, w j :t

)

q(xt+1)

)

(49)

=
j+H−1∑

t= j

lim inf
m→∞

(
ct+1(xt+1, vt )

pn(m),X
t+1

(
xt+1|y1: j , u0: j−1, v j :t

)

q(xt+1)

)
(50)

=
j+H−1∑

t= j

ct+1(xt+1, vt )

q(xt+1)
lim inf
m→∞ pn(m),X

t+1

(
xt+1|y1: j , u0: j−1, v j :t

)
(51)

=
j+H−1∑

t= j

ct+1(xt+1, vt )

q(xt+1)
pXt+1

(
xt+1|y1: j , u0: j−1, v j :t

)
(52)

= S(X , v). (53)

��
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