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Abstract In this paper we study a class of critical Kirchhoff type equations involving
the fractional p–Laplacian operator, that is

M

(∫∫
R2N

|u(x) − u(y)|p

|x − y|N+ps
dxdy

)
(−�)s

pu=λw(x)|u|q−2u + |u|p∗
s −2u, x ∈ R

N ,

where (−�)s
p is the fractional p–Laplacian operator with 0 < s < 1 < p < ∞,

dimension N > ps, 1 < q < p∗
s , p∗

s is the critical exponent of the fractional Sobolev
space W s,p(RN ), λ is a positive parameter, M is a non-negative function while w is
a positive weight. By exploiting Kajikiya’s new version of the symmetric mountain
pass lemma, we establish the existence of infinitely many solutions which tend to zero
under a suitable value of λ. The main feature and difficulty of our equations is the fact
that the Kirchhoff term M is zero at zero, that is the equation is degenerate. To our
best knowledge, our results are new even in the Laplacian and p–Laplacian cases.
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1 Introduction

In the last years, the interest towards nonlinear Kirchhoff type problems has grown
more and more, thanks in particular to their intriguing analytical structure due to the
presence of the nonlocal Kirchhoff function M which makes the equation no longer
a pointwise identity. In this paper, we consider the following critical Kirchhoff type
equation involving the fractional p–Laplacian operator

M
([u]p

s,p
)
(−�)s

pu = λw(x)|u|q−2u + |u|p∗
s −2u, in R

N ,

[u]p
s,p =

∫∫
R2N

|u(x) − u(y)|p

|x − y|N+ps
dxdy, (1.1)

where s ∈ (0, 1), p ∈ (1,∞), dimension N ∈ (ps,∞), q ∈ (1, p), p∗
s = N p/(N −

ps) is the critical exponent of the fractional Sobolev space W s,p(RN ), λ is a positive
parameter andw is a positiveweightwhose assumptionwill be introduced in the sequel.
Here (−�)s

p denotes the fractional p–Laplace operator which, up to normalization
factors, may be defined by the Riesz potential as

(−�)s
pu(x) = 2 lim

ε→0+

∫
RN \Bε(x)

|u(x) − u(y)|p−2(u(x) − u(y))

|x − y|N+ps
dy, x ∈ R

N ,

along any u ∈ C∞
0 (RN ), where Bε(x) = {y ∈ R

N : |x − y| < ε}. For more
details about the fractional p–Laplacian, for example, we refer to [13,22,33] and the
references therein.

Concerning the Kirchhoff term, we assume that M : R+
0 → R

+
0 is a continuous

function for which

(M1) there exists θ ∈ (1, p∗
s /p) such that t M(t) ≤ θM (t) for all t ∈ R

+
0 , where

M (t) = ∫ t
0 M(τ )dτ ;

(M2) for any τ > 0 there exists κ = κ(τ) > 0 such that M(t) ≥ κ for all t ≥ τ ;
(M3) there exists m0 > 0 such that M(t) ≥ m0tθ−1 for all t ∈ [0, 1].
A prototype for M , due to Kirchhoff, is given by

M(t) = a + bθ tθ−1, a, b ≥ 0, a + b > 0, θ ≥ 1. (1.2)

When M(t) ≥ c > 0 for all t ∈ R
+
0 , Kirchhoff equations like (1.1) are said to be

non-degenerate and this happens for example if a > 0 in the model case (1.2). While,
if M(0) = 0 but M(t) > 0 for all t ∈ R

+, Kirchhoff equations as (1.1) are called
degenerate. Of course, for (1.2) this occurs when a = 0. In the present paper, we are
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interested in the study of (1.1) on a degenerate setting. For this, in (M1) we have to
require θ > 1, as shown in Lemma 3.1 of [5].

In the appendix of the recent paper [11], the authors provide a detailed discussion
about the physical meaning underlying the fractional Kirchhoff problems and their
applications. Indeed, they propose in [11] a stationary Kirchhoff variational problem,
which models, as a special significant case, the nonlocal aspect of the tension arising
from nonlocal measurements of the fractional length of the string. In this case, M
measures the change of the tension on the string caused by the change of its length
during the vibration. For this, the fact that M(0) = 0 means that the base tension of
the string is zero, a very realistic model.

Several recent papers are focused both on theoretical aspects and applications
related to nonlocal fractional models. Always in [11], the following critical fractional
problem on � bounded was studied for the first time in the literature

⎧⎪⎨
⎪⎩

M

(∫∫
R2N

|u(x) − u(y)|2
|x − y|N+2s

dxdy

)
(−�)su = λ f (x, u) + |u|2∗

s −2u in �

u = 0 in R
N \ �.

(1.3)

The authors prove the existence of a non-trivial non-negative solution for (1.3)
on a non-degenerate setting, combining a truncation argument with a concentration
compactness principle. The degenerate case of problem (1.3) is studied in [2], by
introducing a new technical approach based on the asymptotic property of the criti-
cal mountain pass level. Furthermore, the existence of a solution for different critical
fractional Kirchhoff problems set on the whole space RN is given in [5,9,10,24,27]
adapting the variational technique developed in [2]. For multiplicity results, we refer
to [25], where they consider a nonhomogeneous fractional Schrödinger–Kirchhoff
equation. By combining the mountain pass theorem with Ekeland’s variational prin-
ciple, in [25] the authors establish the existence of two solutions on a non-degenerate
situation. Recently, themultiplicity result in [25] has been improved in [29], by consid-
ering weaker assumptions on the potential and on the subcritical term. With a similar
approach to [25], in [31] they prove the existence of two solutions for a degenerate
Kirchhoff equation in R

N with a concave–convex nonlinearity, while in [34] they
consider a critical equation akin to (1.1) with M as in (1.2), a = 0 and b = 1. In
[32], by the Fountain theorem and the dual Fountain theorem, the authors get the
existence of infinitely many solutions for a symmetric subcritical Kirchhoff problem
on �, with suitable non-degenerate assumptions for M . The existence of infinitely
many solutions is still proved in [21,26] by using Krasnoselskii’s genus theory, under
degenerate frameworks. Moreover, to get infinitely many solutions, Krasnoselskii’s
genus theory is used in [8] for a critical problem similar to (1.3), but just on the non-
degenerate case. In [30], applying Kajikiya’s new version of the symmetric mountain
pass lemma, the existence of infinitely many solutions for a critical equation similar
to (1.1) is proved under a non-degenerate situation. Finally, the symmetric mountain
pass theorem is applied to study both a fractional Schrödinger–Kirchhoff equation, in
[23], and a subcritical degenerate Kirchhoff system on a bounded domain �, in [33].

Motivated by the above works, in the present paper we provide the existence of
infinitely many solutions for (1.1) on a degenerate setting. As far as we know, our
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multiplicity result is new even for degenerate Kirchhoff equations similar to (1.1),
but driven by either the Laplacian or the p–Laplacian operator. Indeed, while there
is a wide literature concerning the study of multiplicity results for critical Kirchhoff
problems under a non-degenerate setting, see for example [6,7,12,16,18,35–37], very
few attempts have been made to cover also the degenerate case. We refer to [17,19]
in the Laplacian setting, where the authors just consider M like the prototype in (1.2)
with a = 0. Furthermore, they are able to give multiplicity results either when N = 4
or by considering a small perturbation. Here, by using a different approach we allow
M to be more general in (1.1).

Concerning the positive weight w : RN → R, we suppose that

(w) w ∈ Lr (RN )
⋂

L∞
loc(R

N ), with r = p∗
s /(p∗

s − q).

Condition (w) is necessary, since it guaranties that the embedding Ds,p(RN ) ↪→
Lq(RN , w) is compact, as shown in Lemma 2.1 of [5]. Indeed, the natural solution
space for Eq. (1.1) is the fractional Beppo–Levi space Ds,p(RN ), that is the closure
of C∞

0 (RN ) with respect to the norm [ · ]s,p, given by

[u]s,p =
(∫∫

R2N

|u(x) − u(y)|p

|x − y|N+ps
dxdy

)1/p

.

Denoting with Jλ : Ds,p(RN ) → R the Euler–Lagrange functional related to vari-
ational equation (1.1), we are ready to state the main result of our paper as follows.

Theorem 1.1 Let M(0) = 0, N ∈ (ps,∞), q ∈ (1, p), with s ∈ (0, 1) and p ∈
(1,∞). Assume that M and w satisfy assumptions (M1)–(M3) and (w).

Then, there exists λ > 0 such that for any λ ∈ (0, λ) Eq. (1.1) admits a sequence
of solutions {un}n in Ds,p(RN ) with Jλ(un) < 0, Jλ(un) → 0 and {un}n converges
to zero as n → ∞.

Theproof ofTheorem1.1 ismainly basedon the applicationof the symmetricmountain
pass lemma, introduced by Kajikiya in [14]. For this, we need a truncation argument
which allow us to control from below functional Jλ. Furthermore, as usual in elliptic
problems involving critical nonlinearities, we must pay attention to the lack of com-
pactness at critical level L p∗

s (RN ). To overcome this difficulty, we fix parameter λ

under a suitable threshold strongly depending on assumptions (M2) and (M3).
Because of the geometry of functional Jλ for (1.1), we are not able to cover the

range q ∈ [p, p∗
s ). However, we can improve the result stated in Theorem 1.1 under

the degenerate model case (1.2), with a = 0. That is, we consider the equation

b[u]p(θ−1)
s,p (−�)s

pu = λw(x)|u|q−2u + |u|p∗
s −2u, in R

N ,

[u]p
s,p =

∫∫
R2N

|u(x) − u(y)|p

|x − y|N+ps
dxdy, (1.4)

with still s ∈ (0, 1), p ∈ (1,∞), dimension N ∈ (ps,∞), b > 0, θ ∈ (1, p∗
s ) and

here q ∈ (1, pθ). Thus, arguing similarly as in Theorem 1.1, we get the following
result.
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Theorem 1.2 Let b > 0, N ∈ (ps,∞), θ ∈ (1, p∗
s /p), q ∈ (1, pθ), with s ∈ (0, 1)

and p ∈ (1,∞). Assume that w satisfies assumption (w).
Then, there exists λ > 0 such that for any λ ∈ (0, λ) Eq. (1.4) admits a sequence

of solutions {un}n in Ds,p(RN ) with Jλ(un) < 0, Jλ(un) → 0 and {un}n converges
to zero as n → ∞.

The paper is organized as follows. In Sect. 2 we discuss the variational formulation
of the Eq. (1.1) and introduce some topological notions. In Sect. 3 we prove the Palais–
Smale condition for the functional Jλ. In Sect. 4 we introduce a truncation argument
for our functional. In Sect. 5 we prove Theorems 1.1 and 1.2.

2 Preliminaries

In this section, we first give the variational formulation of Eq. (1.1) and then provide
some useful technical results, which will be used in the sequel.

Let Lq(RN , w) be the weighted Lebesgue space, endowed with the norm

‖u‖q
q,w =

∫
RN

w(x)|u(x)|qdx .

By Proposition A.6 of [1] the Banach space Lq(RN , w) = (Lq(RN , w), ‖ · ‖q,w) is
uniformly convex. Furthermore, by Lemma 2.1 of [5], the embedding Ds,p(RN ) ↪→
Lq(RN , w) is compact, with

‖u‖q,w ≤ Cw[u]s,p for all u ∈ Ds,p(RN ), (2.1)

and Cw = S−1/p‖w‖1/q
r > 0, where S = S(N , p, s) is the best fractional critical

Sobolev constant, given by

S = inf
u∈Ds,p(RN )\{0}

[u]p
s,p

‖u‖p
p∗

s

. (2.2)

Of course number S is positive, since Theorem 1 of [20].
We say that u ∈ Ds,p(RN ) is a (weak) solution of Eq. (1.1), if u satisfies

M([u]p
s,p)〈u, ϕ〉s,p = λ〈u, ϕ〉q,w + 〈u, ϕ〉p∗

s
,

for all ϕ ∈ Ds,p(RN ), where

〈u, ϕ〉s,p =
∫∫

R2N

|u(x) − u(y)|p−2[u(x) − u(y)] · [ϕ(x) − ϕ(y)]
|x − y|N+sp

dxdy,

〈u, ϕ〉q,w =
∫
RN

w(x)|u(x)|q−2u(x)ϕ(x)dx, 〈u, ϕ〉p∗
s
=

∫
RN

|u(x)|p∗
s −2u(x)ϕ(x)dx .
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Equation (1.1) has a variational structure and Jλ : Ds,p(RN ) → R, defined by

Jλ(u) = 1

p
M ([u]p

s,p) − λ

q
‖u‖q

q,w − 1

p∗
s
‖u‖p∗

s
p∗

s
,

is the underlying functional associated with (1.1). Essentially, as shown in Lemma 4.2
of [5], the functional Jλ is of class C1(Ds,p(RN )).

In order to handle the degenerate Kirchhoff coefficient we need appropriate lower
and upper bounds for M , given by (M1) and (M2). Indeed, condition (M2) implies
that M(t) > 0 for any t > 0 and consequently by (M1) for all t ∈ (0, 1] we have
M(t)/M (t) ≤ θ/t . Thus, integrating on [t, 1], with 0 < t < 1, we get

M (t) ≥ M (1)tθ , (2.3)

and (2.3) holds for all t ∈ [0, 1] by continuity. Hence, (M3) is a stronger request.
Furthermore (2.3) is compatible with (M3), since integrating (M3) we have M (t) ≥
m0tθ /θ for any t ∈ [0, 1], from which M (1) ≥ m0/θ .

Similarly, for any ε > 0 there exists δε = M (ε)/εθ > 0 such that

M (t) ≤ δεtθ for any t ≥ ε. (2.4)

To prove the multiplicity result stated in Theorem 1.1, we will use some topological
results introduced by Krasnoselskii in [15]. For the sake of completeness and for
reader’s convenience, we recall here some basic notions on the Krasnoselskii’s genus.
Let X be a Banach space and let us denote by � the class of all closed subsets
A ⊂ X \ {0} that are symmetric with respect to the origin, that is, u ∈ A implies
−u ∈ A.

Definition 2.1 Let A ∈ �. The Krasnoselskii’s genus γ (A) of A is defined as being
the least positive integer n such that there is an odd mapping φ ∈ C(A,Rn) such that
φ(x) �= 0 for any x ∈ A. If n does not exist, we set γ (A) = ∞. Furthermore, we set
γ (∅) = 0.

In the sequel we will recall only the properties of the genus that will be used
throughout this work. More information on this subject may be found in the references
[14,15,28].

Proposition 2.1 Let A and B be closed symmetric subsets of X which do not contain
the origin. Then the following hold.

(1) If there exists an odd continuous mapping from A to B, then γ (A) ≤ γ (B);
(2) If there is an odd homeomorphism from A to B, then γ (A) = γ (B);
(3) If γ (B) < ∞, then γ (A \ B) ≥ γ (A) − γ (B);
(4) Then n-dimensional sphere Sn has a genus of n+1 by theBorsuk–UlamTheorem;
(5) If A is compact, then γ (A) < ∞ and there exists δ > 0 such that Nδ(A) ⊂ �

and γ (Nδ(A)) = γ (A), with Nδ(A) = {x ∈ X : dist (x, A) ≤ δ}.
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We conclude this section recalling the symmetric mountain-pass lemma introduced
by Kajikiya in [14]. The proof of Theorem 1.1 is based on the application of the
following result.

Lemma 2.1 Let E be an infinite-dimensional space and J ∈ C1(E,R) and suppose
the following conditions hold.

(J1) J (u) is even, bounded from below, J (0) = 0 and J (u) satisfies the local Palais-
Smale condition, i.e. for some c̄ > 0, in the case when every sequence {un}n in
E satisfying lim

n→∞ J (un) = c < c̄ and lim
n→∞ ‖J ′(un)‖E ′ = 0 has a convergent

subsequence;
(J2) For each n ∈ N, there exists an An ∈ �n such that sup

u∈An

J (u) < 0.

Then either (i) or (i i) below holds.

(i) There exists a sequence {un}n such that J ′(un) = 0, J (un) < 0 and {un}n

converges to zero.
(ii) There exist two sequences {un}n and {vn}n such that J ′(un) = 0, J (un) = 0,

un �= 0, lim
n→∞ un = 0, J ′(vn) = 0, J (vn) < 0, lim

n→∞ J (vn) = 0, and {vn}n

converges to a non-zero limit.

3 The Palais–Smale Condition

Throughout this paper, we consider N > ps with s ∈ (0, 1) and p ∈ (1,∞),
M(0) = 0 and we assume M and w satisfy (M1)–(M3) and (w), without further
mentioning .

To apply Lemma 2.1, we discuss now the compactness property for the functional
Jλ, given by the Palais–Smale condition. We recall that {un}n ⊂ Ds,p(RN ) is a
Palais–Smale sequence for Jλ at level c ∈ R if

Jλ(un) → c and J ′
λ(un) → 0 in (Ds,p(RN ))′ as n → ∞. (3.1)

We say that Jλ satisfies the Palais–Smale condition at level c if any Palais–Smale
sequence {un}n at level c admits a convergent subsequence in Ds,p(RN ).

Lemma 3.1 Let c < 0. Then, there exists λ0 > 0 such that for any λ ∈ (0, λ0), the
functional Jλ satisfies (P S)c.

Proof Let us consider λ0 > 0 sufficiently small such that

(
1

pθ
− 1

p∗
s

)− p∗
s

p∗
s −q

[
λ0

(
1

q
− 1

pθ

)
‖w‖r

] p∗
s

p∗
s −q

< min

{(
m1/θ

0 S
) p∗

s θ

p∗
s −pθ

, (κS)
p∗
s

p∗
s −p

}
(3.2)

where q < p < pθ < p∗
s , m0 comes from (M3), κ = κ(1) is defined in (M2) with

τ = 1, while S is given in (2.2).
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Let λ ∈ (0, λ0) and let {un}n be a (P S)c sequence in Ds,p(RN ). Due to the
degenerate nature of (1.1), two situations must be considered: either inf

n∈N[un]s,p =
d > 0 or inf

n∈N[un]s,p = 0. For this, we divide the proof in two cases.

•Case inf
n∈N[un]s,p = d > 0. We first show that {un}n is bounded. By (M2), with

τ = d p, there exists κ = κ(d p) > 0 such that

M([un]p
s,p) ≥ κ for any n ∈ N. (3.3)

Furthermore, from (M1), (2.1) and (3.3) we get

Jλ(un) − 1

p∗
s
〈J ′

λ(un), un〉 = 1

p
M ([un]p

s,p) − 1

p∗
s

M([un]p
s,p)[un]p

s,p

−
( 1

q
− 1

p∗
s

)
λ‖un‖q

q,w

≥
( 1

pθ
− 1

p∗
s

)
κ[un]p

s,p−
( 1

q
− 1

p∗
s

)
λCq

w[un]q
s,p.

Thus, by (3.1) there exists σ > 0 such that as n → ∞

c + σ [un]q
s,p + o(1) ≥

( 1

pθ
− 1

p∗
s

)
κ[un]p

s,p,

being q < p < pθ < p∗
s . This implies at once that {un}n is bounded in Ds,p(RN ).

Therefore, using arguments similar to Lemma 2.1 of [5], there exist a subsequence,
still denoted by {un}n , and a function u ∈ Ds,p(RN ) such that

un ⇀ u in Ds,p(RN ), [un]s,p → μ,

un ⇀ u in L p∗
s (RN ), ‖un − u‖p∗

s
→ �,

un → u in Lq(RN , w), un → u a.e. in RN
(3.4)

as n → ∞. Clearly μ > 0 since we are in the case in which d > 0.
Furthermore, as shown in the proof of Lemma 2.4 of [5], by (3.4) the sequence

{Un}n , defined in R2N \ DiagR2N by

(x, y) �→ Un(x, y) = |un(x) − un(y)|p−2(un(x) − un(y))

|x − y|(N+ps)/p′ ,

is bounded in L p′
(R2N ) as well as Un → U a.e. in R2N , where

U(x, y) = |u(x) − u(y)|p−2(u(x) − u(y))

|x − y|(N+ps)/p′ .

Thus, up to a subsequence, we get Un → U in L p′
(R2N ), and so as n → ∞

〈un, ϕ〉s,p → 〈u, ϕ〉s,p (3.5)
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for any ϕ ∈ Ds,p(RN ), since |ϕ(x)−ϕ(y)| · |x − y|−(N+ps)/p ∈ L p(R2N ). Similarly,
(3.4) and Proposition A.8 of [1] imply that |un|q−2un ⇀ |u|q−2u in Lq ′

(RN , w) and
|un|p∗

s −2un ⇀ |u|p∗
s −2u in L p∗

s
′
(RN ), from which as n → ∞

〈un, ϕ〉q,w → 〈u, ϕ〉q,w, 〈un, ϕ〉p∗
s

→ 〈u, ϕ〉p∗
s
, (3.6)

for any ϕ ∈ Ds,p(RN ), Then, (3.1), (3.4), (3.5) and (3.6) give

M(μp)〈u, ϕ〉s,p = λ〈u, ϕ〉q,w + 〈u, ϕ〉p∗
s
,

for any ϕ ∈ Ds,p(RN ). Hence, u is a critical point of the C1(Ds,p(RN )) functional

J̃λ(u) = 1

p
M(μp)[u]p

s,p − λ

q
‖u‖q

q,w − 1

p∗
s
‖u‖p∗

s
p∗

s
. (3.7)

Thanks to (3.4) it results

lim
n→∞

∫
RN

w(x)(|un(x)|q−2un(x) − |u(x)|q−2u(x))(un(x) − u(x))dx = 0. (3.8)

Furthermore, using again (3.4) and the celebrated Brézis and Lieb lemma of [4]

[un]p
s,p = [un − u]p

s,p + [u]p
s,p + o(1), ‖un‖p∗

s
p∗

s
= ‖un − u‖p∗

s
p∗

s
+ ‖u‖p∗

s
p∗

s
+ o(1) (3.9)

as n → ∞. Consequently, we deduce from (3.1), (3.4), (3.7), (3.8) and (3.9) that as
n → ∞

o(1) = 〈J ′
λ(un) − J̃ ′

λ(u), un − u〉
= M([un]p

s,p)[un]p
s,p + M(μp)[u]p

s,p − 〈un, u〉s,p[M([un]p
s,p) + M(μp)]

− λ

∫
RN

w(x)(|un(x)|q−2un(x) − |u(x)|q−2u(x))(un(x) − u(x))dx

−
∫
RN

(|un(x)|p∗
s −2un(x) − |u(x)|p∗

s −2u(x))(un(x) − u(x))dx

= M(μp)(μp − [u]p
s,p) − ‖un‖p∗

s
p∗

s
+ ‖u‖p∗

s
p∗

s
+ o(1)

= M(μp)[un − u]p
s,p − ‖un − u‖p∗

s
p∗

s
+ o(1).

Therefore, we have proved the crucial formula

M(μp) lim
n→∞[un − u]p

s,p = lim
n→∞ ‖un − u‖p∗

s
p∗

s
. (3.10)

By (2.2), the notation in (3.4) and (3.10), we get

�p∗
s ≥ S M(μp)�p. (3.11)
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When � = 0, since μ > 0 and M admits a unique zero at 0, then (3.10) yields un → u
in Ds,p(RN ), concluding the proof.

Thus, let us assume by contradiction that � > 0. Noting that (3.10) implies in
particular that

M(μp)
(
μp − [u]p

s,p
) = �p∗

s ,

using (3.11), it follows that

(
�p∗

s
)ps/N = M(μp)ps/N (

μp − [u]p
s,p

)ps/N ≥ S M(μp). (3.12)

Since we do not know the exact behavior of M , we must consider other two situations:
either μ ∈ (0, 1) or μ > 1. For this, we divide the proof of the first case in two
subcases.
•Subcase μ ∈ (0, 1). By (3.12) and (M3), we obtain

μp2s/N ≥ (
μp − [u]p

s,p
)ps/N ≥ S M(μp)

N−ps
N ≥ m

N−ps
N

0 S μ
p(θ−1)(N−ps)

N

and considering N < psθ/(θ − 1) = psθ ′, it follows that

μp ≥
(

m
N−ps

N
0 S

) N
psθ−N (θ−1)

. (3.13)

Indeed, the restriction N/(pθ ′) < s follows directly from the fact that 1 < θ <

p∗
s /p = N/(N − ps). By using (M3), (3.12) and (3.13), we obtain

�p∗
s ≥ (

S M(μp)
)N/ps ≥

(
S m0 μp(θ−1)

)N/ps ≥
(

m1/θ
0 S

) Nθ
psθ−N (θ−1)

. (3.14)

Now, by (M1) for any n ∈ N we have

Jλ(un) − 1

pθ

〈J ′
λ(un), un

〉 = 1

p
M ([un]p

s,p) − 1

pθ
M([un]p

s,p)[un]p
s,p

+ λ

(
1

pθ
− 1

q

)
‖un‖q

q,w +
(

1

pθ
− 1

p∗
s

)
‖un‖p∗

s
p∗

s

≥ λ

(
1

pθ
− 1

q

)
‖un‖q

q,w +
(

1

pθ
− 1

p∗
s

)
‖un‖p∗

s
p∗

s
.
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From this, as n → ∞, by (3.1), (3.4), (3.9), (w), the Hölder inequality and Young
inequality

c ≥
(

1

pθ
− 1

p∗
s

)(
�p∗

s + ‖u‖p∗
s

p∗
s

)
− λ

(
1

q
− 1

pθ

)
‖u‖q

q,w

≥
(

1

pθ
− 1

p∗
s

)(
�p∗

s + ‖u‖p∗
s

p∗
s

)
− λ

(
1

q
− 1

pθ

)
‖w‖r‖u‖q

p∗
s

≥
(

1

pθ
− 1

p∗
s

)(
�p∗

s + ‖u‖p∗
s

p∗
s

)
−

(
1

pθ
− 1

p∗
s

)
‖u‖p∗

s
p∗

s

−
(

1

pθ
− 1

p∗
s

)− q
p∗
s −q

[
λ

(
1

q
− 1

pθ

)
‖w‖r

] p∗
s

p∗
s −q

.

(3.15)

Finally, by (3.14) we get

0 > c≥
(

1

pθ
− 1

p∗
s

) (
m1/θ
0 S

) p∗
s θ

p∗
s −pθ −

(
1

pθ
− 1

p∗
s

)− q
p∗
s −q

[
λ

(
1

q
− 1

pθ

)
‖w‖r

] p∗
s

p∗
s −q

>0,

where last inequality follows from (3.2). We obtain our contradiction concluding the
proof of the first subcase.
•Subcase μ ≥ 1. Here, by (3.12) and (M2) with τ = 1, we obtain

�p∗
s ≥ (κ S)N/ps,

with κ = κ(1) > 0. Thus, (3.15) yields

0 > c ≥
(

1

pθ
− 1

p∗
s

)
(κ S)

p∗
s

p∗
s −p −

(
1

pθ
− 1

p∗
s

)− q
p∗
s −q

[
λ

(
1

q
− 1

pθ

)
‖w‖r

] p∗
s

p∗
s −q

> 0,

where again last inequality follows from (3.2). We still have a contradiction which
concludes the proof of the first case.
•Case inf

n∈N[un]s,p = 0. Here, either 0 is an accumulation point for the real sequence

{[un]s,p}n and so there is a subsequence of {un}n strongly converging to u = 0, or 0 is
an isolated point of {[un]s,p}n . Thefirst case cannot occur since it implies that the trivial
solution is a critical point at level c. This is impossible, being 0 = Jλ(0) = c < 0.
Hence only the latter case can occur, so that there is a subsequence, denoted by
{[unk ]s,p}k , such that inf

k∈N[unk ]s,p = d > 0 and we can proceed as before. This

completes the proof of the second case and of the lemma. ��

4 A Truncation Argument

We note that our functional Jλ is not bounded from below in Ds,p(RN ). Indeed, by
fixing ε > 0 in (2.4) we see that for any u ∈ Ds,p(RN )
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Jλ(tu) ≤ t pθ δε

p
[u]pθ

s,p − tq λ

q
‖u‖q

q,w − t p∗
s
1

p∗
s

‖u‖p∗
s

p∗
s

→ −∞ as t → ∞,

since q < p < pθ < p∗
s .

For this in the sequel we introduce a truncation like in [1], to get a special lower
bound which will be worth to construct critical values for Jλ. Let us denote

Gλ(t) = M (1)

p
t pθ − λ

q
Cq

w tq − 1

p∗
s S

t p∗
s

where Cw comes from (2.1), while S is defined in (2.2). Denoting κ = κ(1) the
constant given by (M2) with τ = 1, we can take R1 ∈ (0, 1) sufficiently small such
that

κ

pθ
R p
1 >

M (1)

p
R pθ
1 >

1

p∗
s S

R
p∗

s
1 , (4.1)

since p < pθ < p∗
s , and we define

λ∗ = q

2Cq
w Rq

1

(
M (1)

p
R pθ
1 − 1

p∗
s S

R
p∗

s
1

)
, (4.2)

so that Gλ∗(R1) > 0. From this, we consider

R0 = max {t ∈ (0, R1) : Gλ∗(t) ≤ 0} .

Since by q < p we have Gλ(t) ≤ 0 for t near to 0 and since also Gλ∗(R1) > 0, it
easily follows that Gλ∗(R0) = 0.

We can choose φ ∈ C∞
0 ([0,∞), [0, 1]) such that φ(t) = 1 if t ∈ [0, R0] and

φ(t) = 0 if t ∈ [R1,∞). Thus, we consider the truncated functional

Iλ(u) = 1

p
M ([u]p

s,p) − λ

q
‖u‖q

q,w − φ([u]s,p)
1

p∗
s
‖u‖p∗

s
p∗

s
.

It immediately follows that Iλ(u) → ∞ as [u]s,p → ∞, by (M1) and (M2). Hence,
Iλ is coercive and bounded from below.

Now, we prove a local Palais–Smale and a topological result for the truncated
functional Iλ.

Lemma 4.1 There exists λ > 0 such that, for any λ ∈ (0, λ)

(i) if Iλ(u) ≤ 0 then [u]s,p < R0 and also Jλ(v) = Iλ(v) for any v in a sufficiently
small neighborhood of u;

(ii) Iλ satisfies a local Palais–Smale condition for c < 0.

Proof Considering λ0 and λ∗ given respectively by Lemma 3.1 and (4.2), we choose
λ sufficiently small such that λ ≤ min {λ0, λ∗}. Let λ < λ.
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For proving (i) we assume that Iλ(u) ≤ 0. When [u]s,p ≥ 1, by using (M1), (M2)

with τ = 1, (2.1) and λ < λ∗, we see that

Iλ(u) ≥ κ

pθ
[u]p

s,p − λ∗

q
Cq

w[u]q
s,p > 0

where the last inequality follows by q < p and because by Gλ∗(R1) > 0 and (4.1) we
have

κ

pθ
R p
1 − λ∗

q
Cq

w Rq
1 > 0.

Thus, we get the contradiction 0 ≥ Iλ(u) > 0. Similarly, when R1 ≤ [u]s,p < 1, by
using (2.1), (2.3) and λ < λ∗, we obtain

Iλ(u) ≥ M (1)

p
[u]pθ

s,p − λ∗

q
Cq

w[u]q
s,p > 0

where the last inequality follows by q < p < pθ and because by Gλ∗(R1) > 0 we
have

M (1)

p
R pθ
1 − λ∗

q
Cq

w Rq
1 > 0.

We get again the contradiction 0 ≥ Iλ(u) > 0. When [u]s,p < R1, since φ(t) ≤ 1 for
any t ∈ [0,∞) and λ < λ∗, we have

0 ≥ Iλ(u) ≥ Gλ([u]s,p) ≥ Gλ∗([u]s,p),

and this yields [u]s,p ≤ R0, by definition of R0. Furthermore, for any u ∈ B(0, R0/2)
we have Iλ(u) = Jλ(u).

To prove a local Palais–Smale condition for Iλ at level c < 0, we first observe that
any Palais–Smale sequences for Iλ must be bounded, since Iλ is coercive. Thus, since
λ < λ0 by Lemma 3.1 we have a local Palais–Smale condition for Jλ ≡ Iλ at any
level c < 0. ��

Here, in order to get the next technical result, we need a finite dimensional subspace
of Ds,p(RN ). For this, since Ds,p(RN ) is a separable and reflexive Banach space, see
for example [26], there exists {ϕn}n ⊂ Ds,p(RN ). Then, for any n ∈ N we can set
Xn = span {ϕn} and Yn = ⊕n

i=1Xi .

Lemma 4.2 For any λ > 0 and n ∈ N, there exists ε = ε(λ, n) > 0 such that

γ (I−ε
λ ) ≥ n,

where I−ε
λ = {

u ∈ Ds,p(RN ) : Iλ(u) ≤ −ε
}
.
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Proof Fix λ > 0, n ∈ N. Since Yn is finite dimensional, there exists a positive constant
c(n) such that

c(n)[u]q
s,p ≤ ‖u‖q

q,w ,

for any u ∈ Yn . Thus, for any u ∈ Yn with [u]s,p ≤ R0 we get

Iλ(u) ≤ M∗

p
[u]p

s,p − λ

q
‖u‖q

q,w − 1

p∗
s

‖u‖p∗
s

p∗
s

≤ M∗

p
[u]p

s,p − λ

q
c(n)[u]q

s,p,

with M∗ = max
τ∈[0,R0]

M(τ ) < ∞, by continuity of M . Finally, let ρ and R be two

positive constants with

ρ < R < min

{
R0,

[
λ c(n) p

q M∗

] 1
p−q

}
, (4.3)

and let

Sn = {
u ∈ Yn : [u]s,p = ρ

}
.

Of course, Sn is homeomorphic to the n − 1–dimensional sphere Sn−1. Moreover for
any u ∈ Sn

Iλ(u) ≤ ρq
(

M∗

p
ρ p−q − λ c(n)

q

)

≤ Rq
(

M∗

p
R p−q − λ c(n)

q

)
< 0

where the last inequality follows by (4.3). Thus, we can find a constant ε > 0 such that
Iλ(u) < −ε for any u ∈ Sn . Hence Sn ⊂ I−ε

λ , by parts (2) and (4) of Proposition 2.1
we get γ (I−ε

λ ) ≥ γ (Sn) = n. ��

5 Main Results

Here we define for any n ∈ N the sets

�n =
{

A ⊂ Ds,p(RN ) \ {0} : A is closed, A = −A and γ (A) ≥ n
}

,

Kc =
{

u ∈ Ds,p(RN ) : I ′
λ(u) = 0 and Iλ(u) = c

}
,
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and the number

cn = inf
A∈�n

sup
u∈A

Iλ(u). (5.1)

Before proving our main results, we state some crucial properties of the family of
numbers {cn}n .

Lemma 5.1 For any λ > 0 and n ∈ N, the number cn is negative.

Proof Let λ > 0 and n ∈ N. By Lemma 4.2, there exists ε > 0 such that γ (I−ε
λ ) ≥ n.

Since also Iλ is continuous and even, I−ε
λ ∈ �n . From Iλ(0) = 0 we have 0 /∈

I−ε
λ . Furthermore supu∈I−ε

λ
Iλ(u) ≤ −ε. In conclusion, remembering also that Iλ is

bounded from below, we get

−∞ < cn = inf
A∈�n

sup
u∈A

Iλ(u) ≤ sup
u∈I−ε

λ

Iλ(u) ≤ −ε < 0.

Hence the proof is complete. ��
Lemma 5.2 Let λ ∈ (0, λ), with λ given in Lemma 4.1.

Then, all cn given by (5.1) are critical values for Iλ and cn → 0 as n → ∞.

Proof It is clear that cn ≤ cn+1, By Lemma 5.1 we have cn < 0. Hence cn → c ≤ 0.
Moreover, by Lemma 4.1 the functional Iλ satisfies the Palais–Smale condition at cn .
Thus, it follows from standard arguments as in [28] that all cn are critical values of Iλ.
We claim that c = 0. If c < 0, then still by by Lemma 4.1, we have Kc is compact.
From part (5) of Proposition 2.1 it follows that γ (Kc) = n0 < ∞ and there exists
δ > 0 such that γ (Kc) = γ (Nδ(Kc)) = n0.

By Theorem 3.4 of [3] there exist ε ∈ (0, c) and an odd homeomorphism η :
Ds,p(RN ) → Ds,p(RN ) such that

η(Ic+ε
λ \ Nδ(Kc)) ⊂ Ic−ε

λ . (5.2)

Since cn is increasing and converges to c, there exists n ∈ N such that cn > c − ε

and cn+n0 ≤ c. Choose A ∈ �n+n0 such that sup
u∈A

Iλ(u) < c + ε. By part (3) of

Proposition 2.1, we have

γ (A \ Nδ(Kc)) ≥ γ (A) − γ (Nδ(Kc)), γ (η(A \ Nδ(Kc))) ≥ n. (5.3)

Therefore, we have

η(A \ Nδ(Kc)) ∈ �n .

Consequently

sup
u∈η(A\Nδ(Kc))

Iλ(u) ≥ cn > c − ε. (5.4)
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On the other hand, by (5.2) and (5.3), we have

η(A \ Nδ(Kc)) ⊂ η(Ic+ε
λ \ Nδ(Kc)) ⊂ Ic−ε

λ , (5.5)

which contradicts (5.4). Hence cn → 0 as n → ∞. ��
Now, we are ready to give the proof of Theorem 1.1, as follows.

Proof of Theorem 1.1 By Lemma 4.1, Iλ(u) = Jλ(u) if Iλ(u) < 0. Then, by Lem-
mas 4.1, 4.2, 5.1 and 5.2, one can see that all the assumptions of Lemma 2.1 are
satisfied. This completes the proof. ��

We conclude proving our second main result.

Proof of Theorem 1.2 The proof is substantially similar to the one of Theorem 1.1.
We just observe that, to prove Lemma 3.1 we must consider λ ∈ (0, λ0) with λ0
sufficiently small such that

(
1

pθ
− 1

p∗
s

)− p∗
s

p∗
s −q

[
λ0

(
1

q
− 1

pθ

)
‖w‖r

] p∗
s

p∗
s −q

<
(

b1/θ S
) p∗

s θ

p∗
s −pθ

,

where q < pθ < p∗
s , b comes from (1.4) and S is given in (2.2). While, in order to

state our truncation argument as in Sect. 4, we must take R1 ∈ (0, 1) sufficiently small
and λ∗ > 0 as follows

0 <
b

pθ
R pθ
1 − 1

p∗
s S

R
p∗

s
1 and λ∗ = q

2Cq
w Rq

1

(
b

pθ
R pθ
1 − 1

p∗
s S

R
p∗

s
1

)
.

Hence, by considering q ∈ (1, pθ) we can argue as in Theorem 1.1. ��
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