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Abstract The present paper represents a continuation of Migórski et al. (J Elast
127:151–178, 2017). There, the analysis of a new class of elliptic variational–
hemivariational inequalities in reflexive Banach spaces, including existence and
convergence results, was provided. An inequality in the class is governed by a nonlin-
ear operator, a convex set of constraints and two nondifferentiable functionals, among
which at least one is convex. In the current paper we complete this study with new
results, including a convergence result with respect the set of constraints. Then we
formulate two optimal control problems for which we prove the existence of optimal
pairs, together with some convergence results. Finally, we exemplify our results in the
study of a one-dimensional mathematical model which describes the equilibrium of
an elastic rod in unilateral contact with a foundation, under the action of a body force.

Keywords Variational–hemivariational inequality · Clarke subdifferential · Weak
convergence · Optimal pair · Optimal control · Elastic rod · Contact problem
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1 Introduction

The theory of variational inequalities was built in early sixties, by using arguments
of monotonicity and convexity, including properties of the subdifferential of a convex
function. Reference in the field are the works [1,3,4,14,23], among others. In contrast,
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the theory of hemivariational inequalities has started in early eighties and is based on
properties of the Clarke subdifferential, defined for locally Lipschitz functions which
may be nonconvex. Reference in the field include the books [11,19,22,24,27]. Both
variational and hemivariational inequalities have been intensively used in the study
of various boundary value problems in Contact Mechanics, see for instance [9,10,12,
13,16,19,23–26] and the references therein. Their optimal control was the object of
a number of works including [2,29] and, more recently, [5,15,17,18]. Variational–
hemivariational inequalities represent a special class of inequalities, in which both
convex and nonconvex functions are involved.

In [21] we have studied variational–hemivariational inequalities of the form

u ∈ K , 〈Au, v − u〉 + ϕ(u, v) − ϕ(u, u) + j0(u; v − u)

≥ 〈 ˜f , v − u〉 ∀ v ∈ K . (1.1)

Here and everwhere in the rest of the paper X is a reflexive Banach space, 〈·, ·〉 denotes
the duality pairing between X∗ and its dual X∗, K ⊂ X , A : X → X∗,ϕ : X ×X → R,
j : X → R and ˜f ∈ X∗. Note that the function ϕ(u, ·) is assumed to be convex and
the function j is locally Lipschitz and, in general, nonconvex. Therefore inequality
(1.1) is a variational–hemivariational inequality.

A short description of the results obtained in [21] is the following. First, the exis-
tence and uniqueness result of the solution of (1.1) was proved by using arguments
of surjectivity for pseudomonotone operators and the Banach fixed point argument.
Then, the continuous dependence of the solution with respect the functions ϕ and j
was studied and a penalty method was introduced, for which a convergence result
was proved. The proof was based on compactness and lower semicontinuity argu-
ments. Finally, a mathematical model which describes the equilibrium of an elastic
body in unilateral contact with a foundation was considered. The weak formulation
of the model was in a form of a variational–hemivariational inequality for the dis-
placement field. The abstract results were applied in the study of the corresponding
inequality.

In this paper we continue the study of elliptic variational–hemivariational inequal-
ities of the form (1.1), by considering a special case in which ˜f is associated to an
element f which belongs to a Hilbert space, and the set of constraints is of the form
Kg = gK with K ⊂ X and g > 0. Such special kind of inequalities arise in the
study of mathematical models in Contact Mechanics. We establish the weak-strong
convergence of the solution with respect to f and g. This result represents the first trait
of novelty of this paper since, in particular, it provides the continuous dependence of
the solution with respect to the set of constraints.We also consider two optimal control
problems for such kind of inequalities in which the controls are f and g, respectively.
The analysis of these problems, including the existence of optimal pairs together with
various convergence results, represents the second trait of novelty of our current work.

The rest of the manuscript is organized as follows. In Sect. 2 we introduce some
notation and recall the existence and uniqueness result in [21]. In Sect. 3 we provide
our first convergence result. In Sects. 4 and 5 we deal with the optimal control prob-
lems. There, we present results on the existence and convergence of the optimal pairs,
respectively. Finally, in Sect. 6 we give an example which provides the physical moti-
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vation of our abstract study. It describes the contact of an elastic rod with a foundation
made of a rigid body covered by an rigid-elastic layer.

2 Preliminaries

In order to recall our main existence and uniqueness result in [21] we need some
preliminary material. For more details on the results we present in this section we
refer to [6–8,30].

We use notation ‖ · ‖X and 0X for the norm and the zero space element of X ,
respectively. All the limits, upper and lower limits below are considered as n → ∞,
even if we do not mention it explicitly. The symbols “⇀” and “→” denote the weak
and the strong convergence in various spaces which will be specified. Nevertheless,
for simplicity, we write gn → g for the convergence in R.

Definition 1 A function ϕ : X → R is lower semicontinuous (l.s.c.) if xn → x in X
implies lim inf ϕ(xn) ≥ ϕ(x). A function ϕ : X → R is weakly lower semicontinuous
(weakly l.s.c.) if xn ⇀ x in X implies lim inf ϕ(xn) ≥ ϕ(x).

We note that a continuous function is lower semicontinuous and a weakly lower
semicontinuous function is lower semicontinuous, while the converse does not hold,
in general. Nevertheless, the following result holds.

Proposition 2 Assume that ϕ : X → R is a convex function. Then ϕ is lower semi-
continuous if and only if it is weakly lower semicontinuous.

We now recall the definition of the Clarke subdifferential for a locally Lipschitz
function.

Definition 3 Let X be a Banach space. A function h : X → R is said to be locally
Lipschitz, if for every x ∈ X , there exists Ux a neighborhood of x and a constant
Lx > 0 such that |h(y) − h(z)| ≤ Lx‖y − z‖X for all y, z ∈ Ux .

We note that a convex continuous function h : X → R is locally Lipschitz. More-
over, if a function h : X → R is Lipschitz continuous on bounded sets of X , then it is
locally Lipschitz, while the converse does not hold, in general.

Definition 4 Let h : X → R be a locally Lipschitz function. The generalized (Clarke)
directional derivative of h at the point x ∈ X in the direction v ∈ X is defined by

h0(x; v) = lim sup
y→x, λ↓0

h(y + λv) − h(y)

λ
.

The generalized gradient (subdifferential) of h at x is a subset of the dual space X∗
given by

∂h(x) = { ζ ∈ X∗ | h0(x; v) ≥ 〈ζ, v〉 ∀ v ∈ X }.
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A locally Lipschitz function h is said to be regular (in the sense of Clarke) at the
point x ∈ X if for all v ∈ X the one-sided directional derivative h′(x; v) exists and
h0(x; v) = h′(x; v).

We shall use the following properties of the generalized directional derivative and
the generalized gradient.

Proposition 5 Assume that h : X → R is a locally Lipschitz function. Then the fol-
lowing hold:

(i) For every x ∈ X, the function X � v �→ h0(x; v) ∈ R is positively homogeneous
and subadditive, i.e., h0(x; λv) = λh0(x; v) for all λ ≥ 0, v ∈ X and h0(x; v1 +
v2) ≤ h0(x; v1) + h0(x; v2) for all v1, v2 ∈ X, respectively.

(ii) For every v ∈ X, we have h0(x; v) = max { 〈ξ, v〉 | ξ ∈ ∂h(x) }.
Next, we proceed with the definition of some classes of operators.

Definition 6 An operator A : X → X∗ is said to be:

(a) monotone, if for all u, v ∈ X , we have 〈Au − Av, u − v〉 ≥ 0;
(b) bounded, if A maps bounded sets of X into bounded sets of X∗;
(c) pseudomonotone, if it is bounded and un → u weakly in X with

lim sup 〈Aun, un − u〉 ≤ 0

imply lim inf 〈Aun, un − v〉 ≥ 〈Au, u − v〉 for all v ∈ X .

In the study of (1.1), we consider the following hypotheses on the data.

K is nonempty, closed and convex subset of X. (2.1)
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

A : X → X∗ is such that
(a) it is pseudomonotone.
(b) there exist αA > 0, β, γ ∈ R and u0 ∈ K such that

〈Av, v − u0〉 ≥ αA ‖v‖2X − β ‖v‖X − γ for all v ∈ X.

(c) strongly monotone, i.e., there exists m A > 0 such that
〈Av1 − Av2, v1 − v2〉 ≥ m A‖v1 − v2‖2X for all v1, v2 ∈ X.

(2.2)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ϕ : X × X → R is such that
(a) ϕ(η, ·) : X → R is convex and lower semicontinuous,

for all η ∈ X.

(b) there exists αϕ > 0 such that
ϕ(η1, v2)−ϕ(η1, v1) + ϕ(η2, v1) − ϕ(η2, v2) ≤ αϕ‖η1 − η2‖X ‖v1 − v2‖X

for all η1, η2, v1, v2 ∈ X.

(2.3)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

j : X → R is such that
(a) j is locally Lipschitz.
(b) ‖ξ‖X∗ ≤ c0 + c1 ‖v‖X for all v ∈ X, ξ ∈ ∂ j (v), with c0, c1 ≥ 0.
(c) there exists α j > 0 such that

j0(v1; v2 − v1) + j0(v2; v1 − v2) ≤ α j ‖v1 − v2‖2X
for all v1, v2 ∈ X.

(2.4)
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˜f ∈ X∗. (2.5)

It can be proved that for a locally Lipschitz function j : X → R, hypothesis (2.4)(c)
is equivalent to the so-called relaxed monotonicity condition see, e.g., [19]. Note also
that if j : X → R is a convex function, then (2.4)(c) holds with α j = 0, since it
reduces to the monotonicity of the (convex) subdifferential. Examples of functions
which satisfy condition (2.4)(c) have been provided in [20,21,27,28].

The unique solvability of the variational–hemivariational inequality (1.1) is pro-
vided by the following existence and uniqueness result, obtained in [21].

Theorem 7 Assume (2.1)–(2.5) and, in addition, assume the smallness conditions

αϕ + α j < m A, (2.6)

α j < αA. (2.7)

Then, inequality (1.1) has a unique solution u ∈ K .

The proof of Theorem 7 was carried out in several steps, by using the properties
of the subdifferential, a surjectivity result for pseudomonotone multivalued operators
and the Banach fixed point argument.

We now consider a special version of inequality (1.1). Thus, we assume in what
follows that g > 0 and we denote by Kg the subset of X given by Kg = gK . In
addition, let Y be a real Hilbert space endowed with the inner product (·, ·)Y and
π : X → Y . Then, the inequality problem we consider in this paper is the following.

Problem P . Given f ∈ Y and g > 0, find u ∈ Kg such that

〈Au, v − u〉 + ϕ(u, v) − ϕ(u, u) + j0(u; v − u) ≥ ( f, πv − πu)Y ∀ v ∈ Kg.

(2.8)

We start with a unique solvability result for ProblemP and, to this end, we consider
the following assumptions.

⎧

⎨

⎩

A : X → X∗ is strongly monotone and Lipschitz continuous, i.e.,
(a) 〈Au − Av, u − v〉 ≥ m A‖u − v‖2X ∀ u, v ∈ X with m A > 0,
(b) ‖Au − Av‖X∗ ≤ L A ‖u − v‖X ∀ u, v ∈ X with L A > 0.

(2.9)

{

π : X → Y is a linear continuous operator, i.e.,
‖πv‖Y ≤ d0 ‖v‖X ∀ v ∈ X with d0 > 0.

(2.10)

We have the following existence and uniqueness result.

Theorem 8 Assume that (2.1), (2.3), (2.4), (2.9) and (2.10). In addition, assume that
(2.6) holds. Then, for each f ∈ Y and g > 0, the variational–hemivariational inequal-
ity (2.8) has a unique solution.

Proof First, we note that assumption (2.1) on the set K implies that the set Kg = gK
satisfies condition (2.1), too. Moreover, it is well known that a monotone Lipschitz
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continuous operator is pseudomonotone and, therefore, assumption (2.9) on the oper-
ator A imply that A : X → X∗ is pseudomonotone. In addition, for any v ∈ V and
u0 ∈ Kg we have

〈Av, v − u0〉 = 〈Av − Au0, v − u0〉 + 〈Au0, v − u0〉 ≥
≥ m A‖v − u0‖2X − ‖Au0‖X‖v − u0‖X ≥
≥ m A

(‖v‖X − ‖u0‖X
)2 − ‖Au0‖X‖v‖X − ‖Au0‖X‖u0‖X

which shows that A satisfies condition (2.2)(b) with αA = m A. We conclude from
above that assumption (2.2) holds. Next, we use assumption (2.10) to see that, given
f ∈ Y , there exists a unique element ˜f ∈ X such that

〈 ˜f , v〉 = ( f, πv)Y ∀ v ∈ X. (2.11)

Finally, we note that condition (2.6) implies condition (2.7) since αA = m A and
αϕ > 0.The existence anduniqueness part of Proposition8 is nowadirect consequence
of Theorem 7 combined with equality (2.11). ��

3 Convergence Results

Theorem 8 allows to define the map ( f, g) �→ u( f, g) which associates to each pair
( f, g) ∈ Y × (0,+∞) the solution u = u( f, g) ∈ Kg of the variational–hemivaria-
tional inequality (2.8). An important property of this operator is its weak-strong
continuity that we state and prove in this section, under additional assumptions. This
property represents a crucial ingredient in the study of optimal control problems asso-
ciated to inequality (2.8). Assume in what follows that

0X ∈ K . (3.1)
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ϕ : X × X → R is such that
(a) ϕ(u, λv) = λϕ(u, v) ∀ u, v ∈ X, λ > 0.
(b) ϕ(v, v) ≥ 0 ∀ v ∈ X.

(c) ηn ⇀ η in X, un ⇀ u in X �⇒
lim sup [ϕ(ηn, v) − ϕ(ηn, un)] ≤ ϕ(η, v) − ϕ(η, u) ∀ v ∈ X.

(3.2)

{

j : X → R is such that un ⇀ u in X �⇒
lim sup j0(un; v − un) ≤ j0(u; v − u) ∀ v ∈ X.

(3.3)

{

π : X → Y is such that
vn ⇀ v in X �⇒ πvn → πv in Y.

(3.4)

Note that hypothesis (3.3) was already used in [21,27]. There, sufficient conditions
for functions which satisfy this hypothesis can be found. In addition, assumption (3.4)
shows that the operator π : X → Y is completely continuous.

The main result of this section is the following.
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Theorem 9 Assume that (2.1), (2.3), (2.4), (2.9), (2.10), (3.1)–(3.4) hold. In addition,
assume that (2.6) holds, too. Let { fn} ⊂ Y , {gn} ⊂ (0,+∞) and let f ∈ Y , g > 0.
Then,

fn ⇀ f in Y, gn → g �⇒ u( fn, gn) → u( f, g) in X. (3.5)

The proof of Theorem 9 will be carried out in several steps that we present in what
follows. Everywhere below we assume that the hypotheses of Theorem 9 hold. The
first step of the proof is the following.

Lemma 10 Given f ∈ Y and g > 0, the solution u = u( f, g) of the variational–
hemivariational inequality (2.8) satisfies the bound

‖u‖X ≤ 1

m A − α j

(‖A0X‖X∗ + d0‖ f ‖Y + c0
)

. (3.6)

Proof Weuse assumption (3.1) and takev = 0X ∈ Kg in (2.8), thenweuse assumption
(3.2)(a),(b). As a result we obtain

〈Au, u〉 ≤ ( f, πu)Y + j0(u;−u).

We now write Au = Au − A0X + A0X and use the property (2.9)(a) of the operator
A and inequality (2.10) to see that

m A‖u‖2X ≤ (‖A0X‖X + d0 ‖ f ‖Y )‖u‖X + j0(u;−u). (3.7)

On the other hand, taking v1 = u and v2 = 0X in (2.4)(c) we find that

j0(u;−u) ≤ α j‖u‖2X − j0(0X ; u). (3.8)

Moreover, using Proposition 5 (ii) we have

− j0(0X ; u) ≤ | j0(0X ; u)| = | max
ξ∈∂ j (0X )

〈ξ, u〉|
≤ max

ξ∈∂ j (0X )
|〈ξ, u〉| ≤ max

ξ∈∂ j (0X )
‖ξ‖X∗‖u‖X

and, using condition (2.4)(b) with v = 0X yields

− j0(0X ; u) ≤ c0‖u‖X . (3.9)

We now combine inequalities (3.8) and (3.9) to see that

j0(u;−u) ≤ α j‖u‖2X + c0‖u‖X ,
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then we use this inequality in (3.7) to deduce that

(m A − α j )‖u‖X ≤ (‖A0X‖X + d0 ‖ f ‖Y ) + c0.

Inequality (3.6) is now a direct consequence of the smallness assumption (2.6). ��
The next step of the proof is given by the following convergence result.

Lemma 11 Let { fn} ⊂ Y , and let g > 0. Then,

fn ⇀ f in Y �⇒ u( fn, g) → u( f, g) in X. (3.10)

Proof Let { fn} be a sequence of elements in Y such that

fn ⇀ f in Y as n → ∞ (3.11)

and, for simplicity, denote u( fn, g) = un , u( f, g) = u. Then, it follows that { fn} is a
bounded sequence in Y , hence inequality (3.6) implies that {un} is a bounded sequence
in X . Therefore, by the reflexivity of X we deduce that there exists ũ ∈ X such that

un ⇀ ũ in X as n → ∞. (3.12)

On the other hand, we recall that Kg is a closed convex subset of the space X and
{un} ⊂ Kg . Then, (3.12) implies that

ũ ∈ Kg. (3.13)

Let n ∈ N. We write inequality (2.8) for f = fn to obtain

〈Aun, un − v〉 ≤ ϕ(un, v) − ϕ(un, un)

+ j0(un; v − un) + ( fn, πun − πv)Y ∀ v ∈ Kg, (3.14)

then we take v = ũ ∈ Kg to find that

〈Aun, un − ũ〉 ≤ ϕ(un, ũ) − ϕ(un, un) + j0(un; ũ − un) + ( fn, πun − π ũ)Y .

(3.15)

We use the convergences (3.11), (3.12) and assumptions (3.2)(c), (3.3), (3.4) to see
that

lim sup
[

ϕ(un, ũ) − ϕ(un, un)
] ≤ 0,

lim sup j0(un; ũ − un) ≤ j0(̃u; 0X ) = 0,

lim ( fn, πun − π ũ)Y = 0.
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Therefore, inequality (3.15) implies that

lim sup 〈Aun, un − ũ〉 ≤ 0.

Next, since A is pseudomonotone, the Convergence (3.12) and Definition 6 (c) guar-
antee that

lim inf 〈Aun, un − v〉 ≥ 〈Aũ, ũ − v〉 ∀ v ∈ X. (3.16)

On the other hand, passing to the upper limit in inequality (3.14) and using the
Convergences, (3.11), (3.12) and Assumptions (3.2)(c), (3.3) (3.4), yields

lim sup 〈Aun, un − v〉 ≤ ϕ(̃u, v) − ϕ(̃u, ũ)

+ j0(̃u; v − ũ) + ( f, π ũ − πv)Y ∀ v ∈ Kg. (3.17)

We now combine the inequalities (3.16) and (3.17) to see that

〈Aũ, v − ũ〉 + ϕ(̃u, v) − ϕ(̃u, ũ) + j0(̃u; v − ũ) ≥ ( f, πv − π ũ)Y ∀ v ∈ Kg.

(3.18)

Next, it follows from (3.13) and (3.18) that ũ is a solution of inequality (2.8) and, by
the uniqueness of the solution of this inequality, guaranteed by Theorem 8, we obtain
that

ũ = u (3.19)

where, recall, u = u( f, g). This implies that the whole sequence {un} converges
weakly in X to u as n → ∞, i.e.,

un ⇀ u in X as n → ∞. (3.20)

Let n ∈ N be given. We take v = u in inequality (3.14) to see that

〈Aun, un − u〉 ≤ ϕ(un, u) − ϕ(un, un)

+ j0(un; u − un) + ( fn, πun − πu)Y . (3.21)

Next, we use assumption (2.9) (a) and (3.21) to find that

m ‖un − u‖2X ≤ 〈Aun − Au, un − u〉
= 〈Aun, un − u〉 − 〈Au, un − u〉 ≤ ϕ(un, u) − ϕ(un, un)

+ j0(un; u − un) + ( fn, πun − πu)Y − 〈Au, un − u〉.

We now pass to the upper limit in this inequality and use the convergences, (3.11),
(3.20) and assumptions (3.2)(c), (3.3), (3.4) to deduce that ‖un − u‖2X → 0 which
concludes the proof. ��

We proceed with the following result.
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Lemma 12 Let { fn} ⊂ Y be a bounded sequence and let {gn} ⊂ (0,+∞), g > 0.
Then,

gn → g �⇒ u( fn, gn) − u( fn, g) → 0X in X. (3.22)

Proof Let n ∈ N and, for simplicity, denote u( fn, gn) = un , u( fn, g) = ũn , cn = gn
g .

First, we write (2.8) for f = fn to see that

〈Aũn, v − ũn〉 + ϕ(̃un, v) − ϕ(̃un, ũn)

+ j0(̃un; v − ũn) ≥ ( fn, πv − π ũn)Y ∀ v ∈ Kg, (3.23)

then we write (2.8) for f = fn and g = gn to obtain

〈Aun, v − un〉 + ϕ(un, v) − ϕ(un, un)

+ j0(un; v − un) ≥ ( fn, πv − πun)Y ∀ v ∈ Kgn . (3.24)

Next, since Kgn = gn K = gn
g Kg = cn Kg , we are allowed to take v = 1

cn
un in

(3.23) and v = cnũn ∈ Kgn . As a result we obtain

〈

Aũn,
1

cn
un − ũn

〉

+ϕ

(

ũn,
1

cn
un

)

− ϕ (̃un, ũn)

+ j0(̃un; 1

cn
un − ũn) ≥

(

fn, π
( 1

cn
un

)

− π ũn

)

Y
, (3.25)

〈Aun, cnũn − un〉 + ϕ(un, cnũn) − ϕ(un, un)

+ j0(un; cnũn − un) ≥ ( f, π(cnũn) − πun)Y . (3.26)

We now multiplying inequality (3.25) with cn > 0, use assumptions (3.2)(b) and
Proposition 5 (i), then we add the resulting inequality to (3.26) to find that

〈Aun − Aũn, un − cnũn〉
≤ ϕ(un, cnũn) − ϕ(un, un) + ϕ(̃un, un) − ϕ(̃un, cnũ)

+ j0(̃un; un − cnũn) + j0(un; cnũn − un).

Therefore,

〈Aun − Aũn, un − ũn〉 ≤ 〈Aun − Aũn, cnũn − ũn〉
+ϕ(un, cnũn) − ϕ(un, un) + ϕ(̃un, un) − ϕ(̃un, cnũn)

+ j0(̃un; un − cnũn) + j0(un; cnũn − un). (3.27)

We now use the properties (2.9) of the operator A to see that

〈Aun − Aũn, un − ũn〉 ≥ m A‖un − ũn‖2X , (3.28)
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〈Aun − Aũn, cnũn − ũn〉 ≤ L A|1 − cn| ‖un − ũn‖X‖ũn‖X . (3.29)

Moreover, assumption (2.3)(b) yields

ϕ(un, cnũn) − ϕ(un, un) + ϕ(̃un, un) − ϕ(̃un, cnũn)

≤ αϕ‖un − ũn‖X‖un − cnũn‖X

and, writing un − cnũn = un − ũn + ũn − cnũn we deduce that

ϕ(un, cnũn) − ϕ(un, un) + ϕ(̃un, un) − ϕ(̃un, cnũn)

≤ αϕ‖un − ũn‖2X + αϕ |1 − cn| ‖un − ũn‖X‖ũn‖X . (3.30)

On the other hand, using Proposition 5 (i), again, we deduce that

j0(̃un; un − cnũn) + j0(un; cnũn − un)

= j0(̃un; un − ũn + ũn − cnũn) + j0(un; ũn − un + cnũn − ũn)

≤ j0(̃un; un − ũn) + j0(̃un; ũn − cnũn)+ j0(un; ũn − un) + j0(un; cnũn − ũn).

Therefore, assumption (2.4)(c) yields

j0(̃un; un − cnũn) + j0(un; cnũn − un)

≤ α j‖un − ũn‖2X + j0(̃un; ũn − cnũn) + j0(un; cnũn − ũn). (3.31)

Moreover, Proposition 5(ii) implies that

j0(̃un; ũn − cnũn) = max
ξ∈∂ j (̃un)

〈ξ, ũn − cnũn〉
≤ max

ξ∈∂ j (̃un)
‖ξ‖X∗‖ũn − cnũn‖X

and, using condition (2.4)(b) yields

j0(̃un; ũn − cnũn) ≤ |1 − cn| (c0 + c1‖ũn‖X )‖ũn‖X . (3.32)

A similar arguments shows that

j0(un; cnũn − ũn) ≤ |1 − cn| (c0 + c1‖un‖X )‖ũn‖X . (3.33)

We now combine inequalities (3.31)–(3.33) to obtain

j0(̃un; un − cnũn) + j0(un; cnũn − un)

≤ α j‖un − ũn‖2X + |1 − cn| (2c0 + c1‖ũn‖X + c1‖un‖X )‖ũn‖X . (3.34)
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Therefore, using inequalities (3.27)–(3.30) and (3.34) we see that

(m A − αϕ − α j )‖un − ũn‖2X
≤ (L A + αϕ)|1 − cn| ‖un − ũn‖X‖ũn‖X

+|1 − cn| (2c0 + c1‖ũn‖X + c1‖un‖X )‖ũn‖X . (3.35)

On the other hand, since ũn and un are solutions to inequalities (3.23) and (3.14),
respectively, and the sequence { fn} is bounded in Y , it follows from Lemma 10 that
{un} and {̃un} are bounded sequences in X . Therefore, inequality (3.35) combined
with the smallness assumption (2.6) imply that there exists a positive constant k which
does not depend on n such that

‖un − ũn‖2X ≤ k |1 − cn|.

Finally, we pass to the limit as n → ∞ and use the convergence cn → 1 to see that
‖un − ũn‖X → 0, which concludes the proof. ��

We now have all the ingredients to provide the proof of Theorem 9.

Proof Assume that fn ⇀ f in Y and gn → g. We write

‖u( fn, gn) − u( f, g)‖X ≤ ‖u( fn, gn) − u( fn, g)‖X + ‖u( fn, g) − u( f, g)‖X ,

then we apply Lemmas 11 and 12 to see that ‖u( fn, gn) − u( f, g)‖X → 0 which
concludes the proof. ��

4 Two Optimal Control Problems

In this section we study two optimal control problems associated to inequality (2.8). In
the first problem the control is f ∈ Y and, in the second one, we control the solution
of the variational–hemivariational inequality (2.8) with g > 0. Everywhere below
X × Y the represents the product of the spaces X and Y , equipped with the canonical
topology product. Notation X × R will have a a similar meaning.

We start with the first control problem. Let g > 0 be given and consider the set of
admissible pairs for inequality (2.8) defined by

V1
ad = { (u, f ) ∈ Kg × Y such that (2.8) holds }. (4.1)

It follows from here that a pair (u, f ) belongs to V1
ad if and only if f ∈ Y and,

moreover, u is the solution of the variational–hemivariational inequality (2.8) with the
data f and g, i.e. u = u( f, g). Consider also a cost functional L1 : X × Y → R.
Then, the problem we are interested in is the following.

Problem Q1. Find (u∗, f ∗) ∈ V1
ad such that

L1(u
∗, f ∗) = min

(u, f )∈V1
ad

L1(u, f ). (4.2)
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We assume that

L1(u, f ) = U (u) + F( f ) ∀ u ∈ X, f ∈ Y (4.3)

where U and F are functions which satisfy the following conditions.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

U : X → R is continuous, bounded and positive, i.e.,
(a) vn → v in X �⇒ U (vn) → U (v).

(b) U maps bounded sets in X into bounded sets in R.

(c) U (v) ≥ 0 ∀ v ∈ X.

(4.4)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

F : Y → R is weakly lower semicontinuous, positive and coercive, i.e.,
(a) fn ⇀ f in Y �⇒ lim inf F( fn) ≥ F( f ).

(b) F( f ) ≥ 0 ∀ f ∈ Y.

(c) ‖ fn‖Y → +∞ �⇒ F( fn) → +∞.

(4.5)

Our first result in this section is the following.

Theorem 13 Assume that (2.1), (2.3), (2.4), (2.9), (2.10), (3.1)–(3.4), (4.3)–(4.5) hold.
In addition, assume that (2.6) holds and g > 0. Then, there exists at least one solution
(u∗, f ∗) ∈ V1

ad of Problem Q1.

Proof Let

θ = inf
(u, f )∈V1

ad

L1(u, f ) ∈ R (4.6)

and let {(un, fn)} ⊂ V1
ad be a minimizing sequence for the functional L1, i.e.,

lim L1(un, fn) = θ. (4.7)

We claim that the sequence { fn} is bounded in Y . Arguing by contradiction, assume
that { fn} is not bounded in Y . Then, passing to a subsequence still denoted { fn}, we
have

‖ fn‖Y → +∞ as n → +∞. (4.8)

We now use equality (4.3) and inequality (4.4)(c) to see that

L1(un, fn) ≥ F( fn).

Therefore, passing to the limit as n → +∞ and using (4.8) combined with assumption
(4.5)(c) we deduce that

lim L1(un, fn) = +∞. (4.9)

Equalities (4.7) and (4.9) imply that θ = +∞ which is in contradiction with (4.6).
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We conclude from above that the sequence { fn} is bounded in Y and, therefore
there exists f ∗ ∈ Y such that, passing to a subsequence still denoted { fn}, we have

fn ⇀ f ∗ in Y as n → +∞. (4.10)

Let u∗ be the solution of the variational inequality (2.8) for f = f ∗, i.e., u∗ =
u( f ∗, g). Then, by the definition (4.1) of the set V1

ad we have

(u∗, f ∗) ∈ V1
ad . (4.11)

Moreover, using (4.10) and (3.5) it follows that

un → u∗ in X as n → +∞. (4.12)

We now use the convergences (4.10), (4.12) and the weakly lower semicontinuity of
the functional L1, guaranteed by assumptions (4.4)(a) and (4.5)(a), to deduce that

lim inf L1(un, fn) ≥ L1(u
∗, f ∗). (4.13)

It follows now from (4.7) and (4.13) that

θ ≥ L1(u
∗, f ∗). (4.14)

In addition, (4.6) and (4.11) yield

θ ≤ L1(u
∗, f ∗). (4.15)

We now combine (4.11) with inequalities (4.14) and (4.15) to see that (4.2) holds,
which concludes the proof. ��

We now move to the second problem in which the control is g > 0. To this end we
assume that f ∈ Y is given and we consider the set W = [g0,∞) where g0 > 0 is
given, as well. Also, we define the set of admissible pairs by

V2
ad = { (u, g) ∈ K × W such that (2.8) holds }. (4.16)

It follows from here that a pair (u, g) belongs to V2
ad if and only if g ∈ W and,

moreover, u is the solution of the variational–hemivariational inequality (2.8) with the
data f and g, i.e., u = u( f, g). LetL2 : X ×W → R be a cost functional that we shall
describe below. Then, the second optimal control problem we study in this section is
the following.

Problem Q2. Find (u∗, g∗) ∈ V2
ad such that

L2(u
∗, g∗) = min

(u,g)∈V2
ad

L2(u, g). (4.17)
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We assume that

L2(u, f ) = U (u) + G(g) ∀ u ∈ X, g ∈ W (4.18)

where U satisfies condition (4.4) and G is such that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

G : W → R is weakly lower semicontinuous, positive and coercive, i.e.,
(a) gn → g �⇒ lim inf G(gn) ≥ G(g).

(b) G(g) ≥ 0 ∀ g ∈ W.

(c) gn → +∞ �⇒ G(gn) → +∞.

(4.19)

Our second result in this section is the following.

Theorem 14 Assume that (2.1), (2.3), (2.4), (2.9), (2.10), (3.1)–(3.4), (4.4), (4.18),
(4.19) hold. In addition, assume that (2.6) holds and f ∈ Y . Then, there exists at least
one solution (u∗, g∗) ∈ V2

ad of Problem Q2.

The proof of Theorem 14 is based on arguments similar to those used on the proof
of Theorem 13 and, therefore, we skip it.

5 Convergence Results for the Optimal Pairs

In this section we focus on the dependence of the optimal pairs of problems Q1 and
Q2 with respect the data g and f , respectively.

We start with the study of ProblemQ1 and, to this end, we assume in what follows
that (2.1), (2.3), (2.4), (2.9), (2.10), (3.1)–(3.4) hold. In addition, we assume that (2.6)
holds and let gn be a perturbation of g. As usual, we denote Kn = gn K and we
consider the following perturbation of Problem P .

Problem P1
n . Given f ∈ Y and gn > 0, find un ∈ Kgn such that

〈Aun, v − un〉 + ϕ(un, v) − ϕ(un, un) + j0(un; v − un) ≥ ( f, πv − πun)Y

∀ v ∈ Kgn . (5.1)

It follows from Theorem 8 that for each f ∈ Y and gn > 0 there exists a unique
solution un = u( f, gn) to the variational–hemivariational inequality (5.1). Moreover,
the solution satisfies

‖un‖X ≤ 1

m A − α j

(‖A0X‖X∗ + d0‖ f ‖Y + c0
)

. (5.2)

We define set of admissible pairs for inequality (5.1) by

V1n
ad = { (un, f ) ∈ Kgn × Y such that (5.1) holds }. (5.3)
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Then, optimal control problem associated to Problem P1
n is the following.

Problem Q1
n . Find (u∗

n, f ∗
n ) ∈ V1n

ad such that

L1(u
∗
n, f ∗

n ) = min
(un , fn)∈V1n

ad

L1(un, fn). (5.4)

Using Theorem 13 it follows that, if (4.3)–(4.5) hold, then for each n ∈ N there
exists at least one solution (u∗

n, f ∗
n ) ∈ V1n

ad of Problem Q1
n . Our first result in this

section, valid on the above-mentioned assumptions, is the following.

Theorem 15 Let {(u∗
n, f ∗

n )} be a sequence of solutions of Problem Q1
n and assume

that gn → g. Then, there exists a subsequence of the sequence {(u∗
n, f ∗

n )}, again
denoted {(u∗

n, f ∗
n )}, and a solution (u∗, f ∗) of Problem Q1, such that

un → u∗ in X and f ∗
n ⇀ f ∗ in Y. (5.5)

Proof Let n ∈ N. We claim that the sequence { f ∗
n } is bounded in Y . Arguing by

contradiction, assume that { f ∗
n } is not bounded in Y . Then, passing to a subsequence

still denoted { f ∗
n }, we have

‖ f ∗
n ‖Y → +∞ as n → +∞. (5.6)

We use equality (4.3) and inequality (4.4)(b) to see that

L1(u
∗
n, f ∗

n ) ≥ F( f ∗
n ).

Therefore, passing to the limit as n → ∞ in this inequality and using (5.6) combined
with assumption (4.5)(c) we deduce that

lim L1(u
∗
n, f ∗

n ) = +∞. (5.7)

On the other hand, since (u∗
n, f ∗

n ) represents a solution to Problem Q1
n we have

L1(u
∗
n, f ∗

n ) ≤ L1(un, fn) ∀ (un, fn) ∈ V1n
ad . (5.8)

We now fix an element f 0 ∈ Y and we denote by u0
n the solution of Problem P1

n for
f = f 0, i.e. u0

n = u( f 0, gn). Then (u0
n, f 0) ∈ V1n

ad and, therefore, (5.8), (4.3) imply
that

L1(u
∗
n, f ∗

n ) ≤ U (u0
n) + F( f 0). (5.9)

We now use the bound (5.2) and assumption (4.4)(c) on the function U to see that
there exists D > 0 which does not depend on n such that

U (u0
n) + F( f 0) ≤ D ∀ n > 0. (5.10)
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Relations (5.7), (5.9) and (5.10) lead to a contradiction, which concludes the claim.
Next, since the sequence { f ∗

n } is bounded in Y we can find a subsequence, again
denoted { f ∗

n }, and an element f ∗ ∈ Y such that

f ∗
n ⇀ f ∗ in Y as n → 0. (5.11)

Denote by u∗ the solution of Problem P for f = f ∗, i.e. u∗ = u( f ∗, g). Then, we
have

(u∗, f ∗) ∈ V1
ad (5.12)

where, recall, V1
ad is defined by (4.1). Moreover, (3.5) yields

u∗
n → u∗ in X as n → 0. (5.13)

We now prove that (u∗, f ∗) is a solution to the optimal control problem Q1. To
this end we use the convergences (5.11), (5.13) and the weakly lower semicontinuity
of the functional L1, guaranteed by (4.4)(a) and (4.5)(a), to see that

L1(u
∗, f ∗) ≤ lim inf

n→0
L1(u

∗
n, f ∗

n ). (5.14)

Next, we fix a solution (u∗
0, f ∗

0 ) of Problem Q1 and, for each n ∈ N we denote by ũ0
n

the solution of Problem P1
n for fn = f ∗

0 , i.e. ũ0
n = u( f ∗

0 , gn). It follows from here
that (̃u0

n, f ∗
0 ) ∈ V1n

ad and, by the optimality of the pair (u∗
n, f ∗

n ), we have that

L1(u
∗
n, f ∗

n ) ≤ L1(̃u
0
n, f ∗

0 ) ∀ n > 0.

We pass to the upper limit in this inequality to see that

lim sup L1(u
∗
n, f ∗

n ) ≤ lim sup L1(̃u
0
n, f ∗

0 ). (5.15)

Now, remember thatu∗
0 is the solutionof the inequality (2.8) for f = f ∗

0 and ũ0
n is the

solution of the inequality (5.1) for fn = f ∗
0 , i.e., ũ∗

0 = u( f ∗
0 , g) and ũ0

n = u( f ∗
0 , gn).

Therefore, (3.5) implies that

ũ0
n → u∗

0 in X as n → +∞.

Hence, the continuity of the functional u �→ L(u, f ∗
0 ) : X → R yields

lim L1(̃u
0
n, f ∗

0 ) = L1(u
∗
0, f ∗

0 ). (5.16)

We now combine (5.14)–(5.16) to see that

L1(u
∗, f ∗) ≤ L1(u

∗
0, f ∗

0 ). (5.17)
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On the other hand, since (u∗
0, f ∗

0 ) is a solution of Problem Q1, inclusion (5.12)
implies that

L1(u
∗
0, f ∗

0 ) ≤ L1(u
∗, f ∗). (5.18)

We now use the inequalities (5.17) and (5.18) to see that L1(u∗, f ∗) = L1(u∗
0, f ∗

0 ).
This equality combined with (5.12) shows that

(u∗, f ∗) is a solution of Problem Q1. (5.19)

Theorem 15 is now a consequence of (5.11), (5.13) and (5.19). ��
We proceed with the study of Problem Q2 and, to this end we assume in what

follows that (2.1), (2.3), (2.4), (2.9), (2.10), (3.1)–(3.4) hold. In addition, assume that
(2.6) holds and let fn be a perturbation of f . We consider the following perturbation
of Problem P .

Problem P2
n . Given fn ∈ Y and g > 0, find un ∈ Kg such that

〈Aun, v − un〉 + ϕ(un, v) − ϕ(un, un) + j0(un; v − un)

≥ ( fn, πv − πun)Y ∀ v ∈ Kg. (5.20)

It follows from Theorem 8 that for each fn ∈ Y and g > 0 there exists a unique
solution un = u( fn, g) to the inequality (4.16). We define set of admissible pairs for
inequality (4.16) by

V2n
ad = { (un, g) ∈ Kg × W such that (5.20) holds }. (5.21)

where W = [g0,+∞) with g0 > 0 given. Then, optimal control problem associated
to Problem P2

n the following.

Problem Q2
n . Find (u∗

n, g∗
n) ∈ V2n

ad such that

L2(u
∗
n, g∗

n) = min
(un , fn)∈V2n

ad

L2(un, fn). (5.22)

Using Theorem 14 it follows that, under assumptions (4.4), (4.18), (4.19), for each
n ∈ N there exists at least one solution (u∗

n, g∗
n) ∈ V2n

ad of Problem Q2
n . Our second

result in this section, valid on the above-mentionned assumptions, is the following.

Theorem 16 Let {(u∗
n, g∗

n)} be a sequence of solutions of Problem Q2
n and assume

that fn ⇀ f in Y . Then, there exists a subsequence of the sequence {(u∗
n, g∗

n)}, again
denoted {(u∗

n, g∗
n)}, and a solution (u∗, g∗) of Problem Qn

1 , such that

un → u∗ in X and g∗
n → g∗. (5.23)

The proof of Theorem 16 is similar to that of Theorem 19 and, therefore, we skip
it.
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Fig. 1 Physical setting

6 A Rod in Contact with Unilateral Constraints

The abstract results in Sects. 3–5 are useful in the study of variousmathematicalmodels
which describe the equilibrium of elastic bodies in frictional contact with a foundation.
To provide an example, we consider in this section an elementary one-dimensional
problem.

The physical setting is depicted in Fig. 1 and is described in what follows. We
consider an elastic rod which occupies, in the reference configuration, the interval
[0, L] on the Ox axis. The rod is fixed in x = 0, is acted by body forces of density f
which act along the Ox , and its extremity x = L is in contact with an obstacle made
of a rigid body covered by a deformable layer of thickness g > 0. This layer behaves
rigid-elastically, i.e. allows penetration but only when the magnitude of the stress in
the contact point reaches a critical value, the yield limit, denoted by P . In addition,
the reaction of this layer depends on the penetration, this dependence being described
by a given positive function p. We denote by a prime the derivative with respect the
spatial variable x ∈ [0, L]. Then, the problem of finding the equilibrium of the rod in
the physical setting above can be formulated as follows.

ProblemP1d .Find a displacement field u : [0, L] → R and a stress field σ : [0, L] →
R such that

σ(x) = F u′(x) for x ∈ (0, L), (6.1)

σ ′(x) + f (x) = 0 for x ∈ (0, L), (6.2)

u(0) = 0, (6.3)

u(L) ≤ g,

σ (L) = 0 if u(L) < 0
−σ(L) ∈ [0, P] if u(L) = 0
−σ(L) = P + p(u(L)) if 0 < u(L) < g
−σ(L) ≥ P + p(u(L)) if u(L) = g

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (6.4)
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Fig. 2 The contact conditions

A brief description of the equations and conditions in Problem P1d is the follow-
ing. First, Eq. (6.1) represents the elastic constitutive law in which F is the elasticity
operator and the derivative u′ represents the linearized strain field. Equation (6.2) is
the equilibrium equation and condition (6.3) represents the displacement condition.
We use it here since the rod is assumed to be fixed in x = 0. Conditions (6.4) represent
the contact conditions in x = L . Our interest is in these conditions and, therefore, we
describe them in detail, together with the corresponding mechanical interpretations.

First, note that conditions (6.4) provide amultivalued relation between the displace-
ment u(L) and the opposite of the normal stress, −σ(L). We have four possibilities,
which correspond to the four parts of the graph in Fig. 2.

(a) For the points in which u(L) < 0 we have σ(L) = 0. In this case we have
separation between the rod and the foundation and, therefore, there is no reaction of
the foundation on the point x = L .

(b) When u(L) = 0 we have−σ(L) ∈ [0, P]. In this case the rod is in contact with
the foundation and the reaction of the foundation is towards the rod. Nevertheless,
there is no penetration, since the magnitude of the stress in x = L is less than the yield
limit P and, therefore, the deformable layer behaves like a rigid.

(c) When 0 < u(L) < g we have −σ(L) = P + p(u(L)). This shows that the
magnitude of the stress in x = L reached the yield limit P and, therefore, there
is partial penetration into the rigid-elastic layer which now behaves elastically. The
reaction of the foundation is towards the rod and depends on the penetration.

(d) When u(L) = g we have −σ(L) ≥ P + p(u(L)). This shows that the rigid-
elastic layer is completely penetrated and the tip x = L reached the rigid body. The
magnitude of the reaction in this point is larger than P + p(u(L)), since at the reaction
of the rigid-elastic layer we add the reaction of the rigid body, which now is active.

Note that the unilateral constraint u(L) ≤ g represents a bound for the displacement
in x = L which is imposed here since the rigid body does not allow penetration. Also,
note that the function p in (6.4) is not assumed to be increasing and, therefore, it could
describe properties of hardening and softening of the foundation. All these ingredients
make the contact model P1d interesting from physical point of view and challenging
from the mathematical point of view.
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In the study of ProblemP1d we use the standard notation for Lebesgue and Sobolev
spaces and, in addition, we use the space

V = { v ∈ H1(0, L) | v(0) = 0 }.

It is well known that the space V is a real Hilbert space with the inner product

(u, v)V =
∫ L

0
u′ v′ dx ∀ u, v ∈ V . (6.5)

and the associated norm ‖ · ‖V . Recall that the completeness of the space (V, ‖ · ‖V )

follows from the Friedrichs-Poincaré inequality. Moreover, from the Sobolev trace
theorem it follows that there exists a positive constant k0 such that

|v(L)| ≤ k0‖v‖V ∀ v ∈ V . (6.6)

We denote by V ∗ and 〈·, ·〉 the dual of V and the duality pairing between V ∗ and V ,
respectively.

We now turn to the variational formulation of Problem P and, to this end, we
assume that the elasticity operator F and the normal compliance function p satisfy
the following conditions.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(a) F : (0, L) × R → R.

(b) There exists LF > 0 such that
|F(x, ε1) − F(x, ε2)| ≤ LF |ε1 − ε2|

∀ ε1, ε2 ∈ R, a.e. x ∈ (0, L).

(c) There exists mF > 0 such that
(F(x, ε1) − F(x, ε2))(ε1 − ε2) ≥ mF |ε1 − ε2|2

∀ ε1, ε2 ∈ R, a.e. x ∈ (0, L).

(d) The mapping x �→ F(x, ε) is measurable on (0, L),

for any ε ∈ R.

(e) The mapping x �→ F(x, 0) belongs to L2(0, L).

(6.7)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(a) p : R → R.

(b) p is continuous.
(c) There exists c0 > 0, c1 > 0 such that

|p(r)| ≤ c0 + c1 |r | ∀ r ∈ R.

(d) There existsαp > 0 such that
r �→ αpr + p(r) is nondecreasing.

(e) p(r) ≥ 0 if r > 0 and p(r) = 0 if r ≤ 0.

(6.8)

We also assume the smallness condition

αp <
mF
k20

(6.9)
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where, recall, k0, mF and αp are the constants which appear in (6.6), (6.7) and (6.8),
respectively. Finally, the yield limit is positive, i.e.,

P > 0. (6.10)

Denote by q : R → R the function defined by

q(r) =
∫ r

0
p(s) ds for all r ∈ R. (6.11)

and note that the function q could be nonconvex. Nevertheless, it is a regular function
in the sense of Definition 4 and, moreover, it satisfies the equality

q0(s; r) = p(s) r for all r, s ∈ R, (6.12)

where q0(s; r) denotes the generalized directional derivative of q at the point s in the
direction r .

We assume that f ∈ L2(0, L), g > 0 and we define the set Kg , the operators
A : V → V ∗, π : V → L2(0, L) and the functions ϕ : V × V → R, j : V → R by

Kg = { u ∈ V | u(L) ≤ g }, (6.13)

〈Au, v〉 =
∫ L

0
F(u′) v′ dx for all u, v ∈ V, (6.14)

πv = v for all v ∈ V, (6.15)

ϕ(u, v) = Pv(L)+ for all u, v ∈ V, (6.16)

j (v) = q(v(L)) for all v ∈ V . (6.17)

Toderive the variational formulationofProblemP1d weassume inwhat follows that
(u, σ ) are sufficiently smooth functions which satisfy (6.1)–(6.4). Note that condition
(6.4) implies that

u ∈ Kg. (6.18)

Let v ∈ Kg . We perform an integration by parts and use the equilibrium Eq. (6.2) to
see that

∫ L

0
σ (v′ − u′) dx =

∫ L

0
f (v − u) dx + σ(L)(v(L) − u(L)) − σ(0)(v(0) − u(0)).

Next, since v(0) = u(0) = 0, we deduce that

∫ L

0
σ (v′ − u′) dx =

∫ L

0
f (v − u) dx + σ(L)(v(L) − u(L)). (6.19)
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Moreover, using the contact condition (6.4), the definition (6.13) of the set Kg and the
properties (6.8) of the function p it follows that

σ(L)(v(L) − u(L)) ≥ −P (v(L)+ − u(L)+) − p(u(L))(v(L) − u(L)). (6.20)

We now combine (6.19), (6.20) and use equality (6.12) to find that

∫ L

0
σ (v′ − u′) dx + Pv(L)+ − Pu(L)+

+q0(u(L); v(L) − u(L)) ≥
∫ L

0
f (v − u) dx . (6.21)

On the other hand, using a standard argument (Theorem 3.47 in [19] or Lemma 8(vi)
in [27], for instance) we have

j0(u; v) = q0(u(L); v(L)) for all u, v ∈ V, (6.22)

where j0(u; v) denotes the generalized directional derivative of j at the point u in
the direction v. We now substitute the constitutive law (6.1) in (6.21), then we use
definitions (6.14)–(6.16), equality (6.22) and regularity (6.18) to obtain the following
variational formulation of Problem P1d .

Problem P1d
V . Find a displacement field u ∈ Kg such that

〈Au, v − u〉+ϕ(u, v)−ϕ(u, u) + j0(u; v − u) ≥ ( f, πv − πu)L2(0,L) ∀ v ∈ Kg.

(6.23)

The existence of a unique solution to Problem P1d
V follows from Theorem 9 and

can be stated as follows.

Theorem 17 Assume that (6.7)–(6.10) hold. Then, for each f ∈ L2(0, L) and g > 0,
the variational–hemivariational inequality (6.23) has a unique solution.

Proof We use Theorem 7 with X = V , K = {u ∈ V | u(L) ≤ 1 } and Y = L2(0, L).
To this end we use properties (6.7) of the constitutive function F to see that the
operator A given by (6.14) satisfies conditions (2.9) with m A = mF and L A = LF .
In addition, it is easy to see that the function ϕ defined by (6.16) satisfies condition
(2.3) with αϕ = 0. Moreover, using standard arguments on subdifferential calculus
(Theorem 3.47 in [19], for instance), (6.12) and (6.8) (d) it follows that the function j
defined by (6.17) satisfies conditions (2.4) (a) and (b). In addition, using (6.22), (6.12)
and (6.8)(d) we have

j0(u; v − u) + j0(v; u − v)

= (

p(u(L)) − p(v(L)
)

(u(L) − v(L)) ≤ αp|u(L) − v(L)|2

for all u, v ∈ V . Therefore, using the trace inequality (6.6) we obtain that j satisfies
condition (2.4)(c) with α j = αpk20. We now conclude from (6.9) that the smallness
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assumption (2.6) holds, too. The rest of the assumptions of Theorem 7 are clearly
satisfies, which completes the proof. ��

Theorem 17 allows to define the map ( f, g) �→ u( f, g) which associates to each
pair ( f, g) ∈ L2(0, L) × (0,+∞) the solution u = u( f, g) ∈ Kg of the variational–
hemivariational inequality (6.23). Moreover, using the compactness of the trace map
and of the embedding V ⊂ L2(0, L), among others, it is easy to verify that conditions
(3.1)–(3.4) are satisfied. Therefore, a direct use of Theorem 9 allows us to obtain the
following convergence result.

Theorem 18 Assume that (6.7)–(6.10) hold. Let { fn} ⊂ L2(0, L), {gn} ⊂ (0,+∞)

and let f ∈ L2(0, L), g > 0. Then,

fn ⇀ f in L2(0, L), gn → g �⇒ u( fn, gn) → u( f, g) in V .

In addition to the mathematical interest in this convergence result it is important
from the mechanical point of view, since it shows that the weak solution of the elastic
one-dimensional contact problem depends continuously on the density of applied
forces and the bound g.

We now formulate the optimal control problems Q2 in the one-dimensional case
of Problem P1d . Let g0 > 0 and let W = [g0,+∞). We use use (4.16) to define

˜V2
ad = { (u, g) ∈ K × W such that (6.23) holds } (6.24)

and we choose the cost functional

L2(u, g) = α |u(L) − φ| + β |g|, (6.25)

where φ ∈ R, α > 0, β > 0. Then, the problem we consider can be formulated as
follows.

Problem Q1d
2 . Find (u∗, g∗) ∈ ˜V2

ad such that

L2(u
∗, g∗) = min

(u,g)∈˜V2
ad

L2(u, g). (6.26)

The mechanical interpretation of ProblemQ1d
2 is the following : we are looking for

a thickness g ∈ W such that the displacement of the rod in x = L , given by (6.23), is
as close as possible to the “desired displacement” φ. Furthermore, this choice has to
fulfill a minimum expenditure condition which is taken into account by the last term
in (6.25) In fact, a compromise policy between the two aims (“u(L) close to φ” and
“minimal thickness g”) has to be found and the relative importance of each criterion
with respect to the other is expressed by the choice of the weight coefficients α, β > 0.

Our main result in the study of Problem Q1d
2 is the following.

Theorem 19 Assume that (6.7)–(6.10)hold and, moreover, assume that f ∈ L2(0, L),
φ ∈ R, α > 0, β > 0. Then, there exists at least one solution (u∗, g∗) ∈ ˜V2

ad to Q1d
2 .
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Theorem 19 is a direct consequence of Theorem 14, since conditions (4.18), (4.4),
(4.19) are obviously satisfied. Finally, we note that Theorem16 provides a convergence
result for a sequence of optimal pairs of Problem Q1d

2 .
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