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Abstract This paper analyzes problems in which a large benevolent player, con-
trolling a set of policy variables, maximizes aggregate welfare in a continuous-time
economy populated by atomistic agents subject to idiosyncratic shocks. We first
provide as a benchmark the social optimum solution, in which a planner directly
determines the individual controls. Then we analyze the optimal design of social poli-
cies depending on whether the large player may credibly commit to the future path of
policies. On the one hand, we analyze the open-loop Stackelberg solution, in which
the optimal policy path is set at time zero and the problem is time-inconsistent. On the
other hand we analyze the time-consistent feedback Stackelberg solution.

Keywords Mean field games · Mean field control · Stackelberg solution ·
Time-inconsistency · Gateaux derivative

1 Introduction

Many problems of interest in economics involve a major player, typically the Gov-
ernment or the Central Bank, choosing some aggregate policy instrument such as
a tax or an interest rate in order to maximize some aggregate welfare criterion.
Most of the existing models analyzing optimal policies drastically simplify the econ-
omy by assuming a “representative agent,” that is, they summarize the behavior
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of heterogeneous firms or households in a single individual that accounts for the
mean of the distribution.1 The few exceptions typically rely either on “ brute force”
numerical methods, that is, parameterizing the time-path of the optimal policies and
then running a numerical search to find the optimal nodes, or on some particular set
of assumptions such that a closed-form analytical solution can be obtained.2

In this paper we analyze problems in which a large benevolent player, controlling a
set of policy variables, maximizes an aggregate welfare criterion in a continuous-time
economy populated by atomistic agents subject to idiosyncratic shocks. This can be
seen as a particular case of the theory of mean field games (MFGs), introduced by
[32,33] and [27].3 The economy is described as an infinite-horizon mean field game
with state constraints in which the aggregate distribution affects individual agents
through the dynamics of some aggregate variables. This framework encompasses the
standard notion of a dynamic competitive equilibrium in macroeconomics, in which
individual agents choose their control variables to maximize their value functions
given the path of some aggregate variables (typically prices) and simultaneously the
value of these variables is set such that aggregate supply equals aggregate demand
(i.e., markets clear).4 In continuous time, the system is composed by a Hamilton-
Jacobi-Bellman (HJB) equation, which characterizes the individual problem in terms
of the value function, a Kolmogorov forward (KF) or Fokker-Planck equation, which
describes the dynamics of the cross-sectional distribution, and a number of market-
clearing conditions based on the aggregation of individual variables. The individual
agents may also face state constraints, so that the accessible state space is restricted
to a subset of Rn . This model is typically denoted as the “ incomplete-market model
with idiosyncratic shocks,” as there is no aggregate uncertainty.

Before analyzing the optimal policies, we set as a benchmark the social optimum,
defined as the allocation produced by a planner that maximizes aggregate welfare by
directly determining the individual controls of each agent, under full information. The
welfare criterion is summarized by a social welfare function, which aggregates the
individual utility flows across time and states. We assume that the planner discounts
future utility flows using the same discount factor as individual agents.5 This problem
can be seen as a particular case of the mean field control problem analyzed in [7] or
the control of McKean-Vlasov dynamics studied by [11,13] and [14]. The problem
can be solved using calculus techniques in infinite-dimensional Hilbert spaces.6 The
necessary conditions can be characterized, as in the competitive equilibrium, by a

1 For example, see Woodford [48] for a textbook treatment of monetary policy following a representative-
agent approach.
2 Examples of the first approach are [19] or [35]. Examples of the second are [24] or [30].
3 Inmacroeconomics, general equilibriummodelswith heterogeneous forward-looking agents have existed
al least since the original contributions of [9] and [4]. For a survey of heterogeneous-agent models in
macroeconomics see, e.g., [26].
4 For a textbook introduction to dynamic general equilibrium models in macroeconomics, see for instance
[36].
5 A particular case of interest is the utilitarian one, in which the planner equaly weighs the utility of every
agent. In this case we show how the welfare criterion is equivalent to aggregate the initial value function of
the agents, given the initial state distribution.
6 See [10,38] or [20] and the references therein.
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forward-backward system of partial differential equations. The difference is that the
individual value function is now replaced by the social value function, which describes
the value that the planner assigns to each agent depending on her state. This social
value function can be obtained from the planner’s HJB equation, which includes some
Lagrange multipliers capturing the “ shadow price” of the market clearing conditions.

In order to analyze the optimal social policieswe extend the competitive equilibrium
model to include some aggregate policy variables controlled by a large benevolent
agent, that we denote as ‘the leader,’ who maximizes the social welfare function.
In contrast to the social optimum above, this is not a mean field control problem
but a mean field game with a large (non-atomistic) player. In order to characterize
this kind of games it is essential to understand whether the leader is able to make
credible commitments about the future path of the policy variables. We consider two
polar cases. On the one hand, we consider what economists typically define as the
“ Ramsey problem,” which corresponds to the open-loop Stackelberg solution of the
game.7 In this case the leader solves at time zero, given the initial state distribution,
a maximization problem in which it takes into account the impact of its decisions
on the individual agents’ value and control functions. The necessary conditions for
optimality include a social value function similar to the one in the social optimum and
a distribution of costates that keep track of the value of breaking the “ promises” made
at time zero about the future path of aggregate policies. As originally discussed by [31]
this problem is time-inconsistent.On the other hand,we analyze the feedback (Markov)
Stackelberg solution, in which the leader cannot make credible commitments.8 This
problem is time-consistent and can be seen as a setting in which the leader has only
instantaneous advantage. The solution in this case is similar to the solution under
commitment with the Lagrange multiplier associated to the individual HJB equation
equal to zero. The intuition for this result is that in the feedback Stackelberg solution no
credible promises can bemade by the leader and thus the value of breaking them is zero.

Related Literature Since the original contribution of [34] a growing literature has
emerged analyzing mean field control problems. In addition to the papers commented
above, we should mention recent contributions by [29,44–46,49] and [25], among
others. In economics, the problem has been analyzed in [17] in discrete time and
in [37] and [42] in continuous time. The present paper reproduces the results in [42]
analyzing the optimal allocation in ameanfield gamewith state constraints inwhich the
aggregate distribution affects individual agents only through some aggregate variables.

The literature analyzing mean field games with a non-atomistic (‘major’) player is
less extensive. [28] and [39] introduced a linear-quadratic model with a major player
whose influence does not fade away as the number of players tends to infinity. [41]
generalized the model to the nonlinear case. In these early contributions the major
player does not directly affect the dynamics of the atomistic players, only their cost
functionals, and hence they are of little interest in most economic applications. [40]
consider the more general case in which the major player directly affects the indi-
vidual dynamics, but only in the context of linear-quadratic models. [8] analyze the

7 For an introduction to the theory of differential games, please see [6,18,50].
8 See, e. g., Basar and Olsder [6, p. 413].
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general nonlinear case assuming a closed-loop Stackelberg game strategy in which
the major player chooses her own control to minimize its expected cost taking into
account the impact of this decision on the controls selected by the minor players. The
solution is characterized by a set of stochastic partial differential equations. Carmona
and Zhu [16] and Carmona and Wang [15], instead, consider a Nash game strategy
using the probabilistic approach developed by [12]. Carmona and Wang [15], in par-
ticular, characterize the solution under open-loop, closed-loop and feedback controls.
Our paper contributes to this literature in three main aspects. First, up to our knowl-
edge this is the first paper to analyze both the open-loop and the feedback Stackelberg
solutions in a model without aggregate uncertainty, characterizing these solutions as
forward-backward systems of partial differential equations.9 Second, we consider a
case in which the major player (‘the leader’) maximizes the aggregate welfare of the
atomistic agents—instead of its own individual welfare—in a model with state con-
straints and aggregate variables. This provides a useful tool for the future analysis of
optimal policies in economic problems. Third, by presenting together the results under
competitive equilibrium, social optimum and optimal social policies under commit-
ment and discretion this paper aims at providing a unified framework to compare the
properties of the resulting forward-backward systems.

The structure of the paper is as follows. Section 2 introduces the competitive equilib-
rium in a MFG form. Section 3 analyzes the social optimum, following [42]. Section
4 builds on [43] to analyze the optimal policies under commitment and discretion,
including necessary conditions for the open-loop and feedback Stackelberg solutions.
Finally, Sect. 5 concludes. All the proofs are presented in the Appendix.

It is important to remark that the proofs in this paper should be considered as “
informal” or as “ sketches of a proof” at best, and that many important issues have
been overlooked. We hope that this paper will open new avenues for future research
in mean field game theory with important applications in economics.

2 Competitive Equilibrium

First we provide a general model of a “ competitive equilibrium,” as it is typically
understood in economics. We consider a continuous-time infinite-horizon economy.
Let (�,F , {Ft } ,P) be a filtered probability space. There is a continuum of unit mass
of ex-ante identical agents indexed by i ∈ [0, 1].

2.1 Individual Problem

State First we analyze the problem of an individual agent. Let Wi (t) be a n-
dimensional Ft -adapted Brownian motion and Xi (t) ∈ R

n denote the state of the
agent i at time t ∈ [0,∞). The individual state evolves according to a multidimen-
sional Itô process of the form

9 The closest paper to ours is [43], who analyze both the open-loop and the feedback Stackelberg solutions
in the context of the analysis of optimal monetary policy in a model with heterogeneous agents. The current
paper extends the methodology of [43] to the general case.
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dXi (t) = b
(
Xi (t) , ui (t), Z (t)

)
dt + σ

(
Xi (t)

)
dWi (t) , (1)

Xi (0) = xi0,

where u ∈ U ⊂ R
m is am-dimensional vector of control variables and Z (t) ∈ R

p is a
deterministic p-dimensional vector of aggregate variables. The functional coefficients
are defined as follows

b : Rn ×U × R
p → R

n,

σ : Rn → R
n,

Z : [0,∞) → R
p,

u : [0,∞) × R
n → U.

Themeasurable functionsb andσ satisfy a uniformLipschitz condition inU : ∃K ≥ 0,
such that ∀x, x ′ ∈ R

n, ∀u, u′ ∈ U, ∀Z , Z ′ ∈ R
p

∣∣b (x, u, Z) − b
(
x ′, u′, Z ′)∣∣ ≤ K

(∣∣x − x ′∣∣ + ∣∣u − u′∣∣ + ∣∣Z − Z ′∣∣) ,∣∣σ (x) − σ
(
x ′)∣∣ ≤ K

∣∣x − x ′∣∣ .

We assume thatU is a closed subset ofRm . Let U be the set of measurable controls
taking values inU.We allow for state constraints in which the state X (t) cannot leave
the compact region � ⊂ R

n , that is, control u (·) at a point X (t) = x is an admissible
control if u (·) ∈ U (t, x) , where10

U (t, x) := {u (·) ∈ U such that X (s) ∈ �, ∀s ≥ t with X (t) = x} .

We also assume that σn (x) = 0 if x ∈ ∂�n that is, that the volatility in the nth
dimension is zero if the n−th dimensional boundary is reached. From now on, we
drop the superindex i as there is no possibility of confusion.

Utility Functional Each agent maximizes her utility functional

J (t, x, u (·)) = E

[∫ ∞

t
e−ρ(s−t) f (X (s) , u (s))ds | X (t) = x

]
,

where the discount factor ρ is a positive constant. The instantaneous utility function

f : Rn × R
m → R,

satisfies a polynomial growth condition: ∃K , c > 0, such that ∀x ∈ R
n, ∀u ∈ U,

| f (x, u)| ≤ K
(
1 + |x |c + |u|c) .

10 This definition of state constraints can be found, for instance, in Bardi and Capuzzo-Dolcetta [5, p.
271], Fleming and Soner [22, p. 7] or Falcone and Ferretti [21, pp. 228–229].
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The optimal value function V (t, x) is defined as

V (t, x) = max
u(·)∈U(t,x)

J (t, x, u (·)) , (2)

subject to (1). The transversality condition is

lim
t→∞ e−ρt V (t, x) = 0. (3)

Hamilton–Jacobi–Bellman (HJB) Equation The solution to this problem is given
by a value function V (t, x) and a control strategy u(t, x) that satisfy the HJB equation

ρV (t, x) = ∂V

∂t
+ max

u∈Ut,x

{
f (x, u) + Au,Z V

}
, (4)

where Au,Z is given by:

Au,Z V =
n∑

i=1

bi (x, u, Z)
∂V

∂xi
+

n∑
i=1

n∑
k=1

(
σ(x)σ (x)�

)
i,k

2

∂2V

∂xi∂xk
. (5)

and Ut,x is the subset of controls such that the corresponding vector field b (·) points
inside the constraint, i.e.

Ut,x =
{
U, if x ∈ int (�) ,

{u ∈ U : b (x, u, Z (t)) · ν (x) < 0} if x ∈ ∂�,

with ν (x) being the outward normal vector at x ∈ ∂�.11

2.2 Aggregate Distribution and Aggregate Variables

Kolmogorov Forward (KF) Equation Assume that the transition measure of X (t)
with initial value x0 has a density μ(t, x; 0, x0), such that ∀F ∈ L2(Rn) :

E0 [F(X (t))|X (0) = x0] =
∫

F(x)μ(t, x; 0, x0)dx .

The initial distribution of X at time t = 0 is μ(0, x) = μ0(x). The dynamics of
the distribution of agents

μ(t, x) =
∫

μ(t, x; 0, x0)μ0(x0)dx0

11 See Fleming and Soner [22, pp. 107–108] or Falcone and Ferretti [21, p. 229].
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are given by the Kolmogorov Forward (KF) or Fokker-Planck equation

∂μ

∂t
= A∗

u,Zμ, (6)
∫

μ(t, x)dx = 1, (7)

where A∗
u,Z is the adjoint operator of Au,Z :

A∗
u,Zμ = −

n∑
i=1

∂

∂xi
[bi (x, u, Z) μ (t, x)]

+ 1

2

n∑
i=1

n∑
k=1

∂2

∂xi∂xk

[(
σ(x)σ (x)�

)
i,k

μ (t, x)

]
.

Market Clearing Conditions The vector of aggregate variables is determined by a
system of p equations:

Zk(t) =
∫

gk(x, u (t, x))μ(t, x)dx, k = 1, . . . , p, (8)

where
gk : Rn ×U → R.

These equations are typically the market clearing conditions of the economy.
We may define the competitive equilibrium of this economy.

Definition 1 (Competitive equilibrium) The competitive equilibrium is composed by
the vector of aggregate variables Z (t), the value function V (t, x), the control u(t, x)
and the distribution μ(t, x) such that

1. Given Z (t) and μ(t, x), V (t, x) is the solution of the HJB equation (4) and the
optimal control is u(t, x).

2. Given u(t, x) and Z (t), μ(t, x) is the solution of the KF equation (6, 7).
3. Given u(t, x) andμ(t, x), the aggregate variables Z (t) satisfy the market clearing

conditions (8).

Remark 1 It should be clear from this definition that a competitive equilibrium is just
a particular instance of mean field game theory in which the aggregate distribution
affects each individual agent only through the dynamics of the aggregate variables
Z (t) .

3 The Social Optimum

Social Welfare Functional We study as a benchmark the allocation produced by
a benevolent social planner who maximizes an aggregate welfare criterion, that is,
instead of a decentralized problem with multiple decision makers we consider the
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case of a single decision-maker who controls each individual agent. This is a mean
field control problem instead of a mean field game. The planner chooses the vector of
control variables u(t, x) to be applied to every agent. The social welfare functional is

Jopt (μ (0, ·) , u(·)) =
∫ ∞

0
e−ρt

[∫
ω(t, x) f (x, u)μ(t, x)dx

]
dt, (9)

where ω(t, x) are state-dependent Pareto weights. If ω(t, x) = 1, for all t and x, then
we have a purely utilitarian social welfare function which gives the same weight to
every agent.

The planner’s optimal value functional is

V opt (μ (0, ·)) = max
u(·)∈U(t,x)

Jopt (μ (0, ·) , u(·)) , (10)

subject to the law of motion of the distribution (6, 7) and to the market clearing
conditions (8).

Remark 2 Notice that the state variable at time t in this case is the infinite-dimensional
density μ (t) .

Remark 3 In the utilitarian case, the planner’s social welfare functional under a given
control ũ (t, x) ∈ U (t, x) is equivalent to aggregating the individual value function
under the same control across all agents at time zero:

∫
V ũ(0, x)μ(0, x)dx =

∫
E

[∫ ∞

0
e−ρt f (X (t) , ũ (t))dt |X (0) = x

]
μ(0, x)dx

=
∫ [∫ ∫ ∞

0
e−ρt f (x̃, ũ)μ(t, x̃; 0, x)dx̃dt

]
μ(0, x)dx

=
∫ ∞

0
e−ρt

∫
f (x̃, ũ)

[∫
μ(t, x̃; 0, x)μ(0, x)dx

]
dx̃ds

=
∫ ∞

0
e−ρt

∫
f (x̃, ũ)μ(t, x̃)dx̃ds = Jopt (μ (0, ·) , ũ(·)) ,

where V ũ(t, x) is the individual value function under control ũ, characterized by the
HJB

ρV ũ (t, x) = ∂V ũ

∂t
+

{
f (x, ũ) + Aũ,Z V

ũ
}

,

and μ(t, x̃; 0, x) is the transition probability from X (0) = x to X (t) = x̃ and

∫
μ(t, x̃; 0, x)μ(0, x)dx = μ(t, x̃),

is the Chapman–Kolmogorov equation.

We provide necessary conditions to the problem (10).
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Proposition 1 (Necessary conditions - social optimum) If a solution to problem (10)
exists with e−ρt u, e−ρtμ ∈ L2 ([0,∞) × R

n) and e−ρt Z ∈ L2[0,∞), then the opti-
mal value functional V opt (μ (0, ·)) can be expressed as

V opt (μ (0, ·)) =
∫

φ(0, x)μ(0, x)dx, (11)

where φ (t, x) is the marginal social value function, which represents the social value
of an agent at time t and state x . The social value function satisfies the planner’s HJB

ρφ(t, x)= ∂φ

∂t
+ max

u∈Ut,x

{
ω(t, x) f (x, u) +

p∑
k=1

λk(t) [gk(x, u) − Zk (t)] + Au,Zφ

}
,

(12)

lim
T→∞ e−ρTφ(T, x) = 0 (13)

where the Lagrange multipliers λ(t) := [
λ1(t), . . . , λk(t), . . . , λp(t)

]�
, are given by

λk(t) =
∫ n∑

i=1

∂φ

∂xi

∂bi
∂Zk

μ(t, x)dx . (14)

The social optimum of this economy is defined in a similar fashion as in the case
of a competitive equilibrium above.

Remark 4 The social optimum is composed by the vector of aggregate variables Z (t),
the social value function φ(t, x), the control u(t, x), the Lagrange multipliers λ(t) and
the distribution μ(t, x) such that

1. Given Z (t) , λ(t) andμ(t, x), φ(t, x) is the solution of the planner’s HJB equation
(12) and the optimal control is u(t, x).

2. Given u(t, x) and Z (t), μ(t, x) is the solution of the KF equation (6, 7).
3. Given u(t, x) andμ(t, x), the aggregate variables Z (t) satisfy the market clearing

conditions (8).
4. Given u(t, x), Z (t) and μ(t, x), the Lagrange multipliers λ(t) satisfy (14).

Remark 5 The Lagrange multipliers λ(t) reflect the ‘shadow prices’ of the market
clearing condition (8). They price, in utility terms, the deviation of an agent from the
value of the aggregate variable: gk(x, u) − Zk .

Corollary 1 If the competitive equilibrium allocation satisfies

∫ n∑
i=1

∂V

∂xi

∂bi
∂Zk

μ(t, x)dx = 0, (15)

then the competitive equilibrium and the utilitarian optimal allocation (ω = 1) coin-
cide:

λk(t) = 0, k = 1, . . . , p
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and
φ(t, x) = V (t, x).

4 Optimal Social Policies

4.1 General Setting

Aggregate Policy VariablesConsider again the decentralized competitive equilibrium
and assume that the state of each individual agent is now given by

dX (t) = b (X (t) , u(t), Z (t) ,Y (t)) dt + σ (X (t)) dW (t) , (16)

where Y (t) ∈ R
q is a q-dimensional vector of aggregate policy variables:

Y : [0,∞) → R
q ,

and b satisfy a uniform Lipschitz condition.12 These policy variables are chosen by a
large agent, which we denote as ‘the leader.’ The leader maximizes a social welfare
function

J lead (t, μ(t, ·),Y (·)) =
∫ ∞

t
e−ρ(s−t)

[∫
ω(s, x) f (x, u)μ(s, x)dx

]
ds, (17)

similar to the one in the previous section.

Remark 6 The difference between this problem and the social optimum is that, instead
of a mean field control case, here we are analyzing a mean field game including a large
non-atomistic agent (the leader).

Equilibrium Concepts We consider two alternative equilibrium concepts, which
depend on the ability of the leader tomake credible commitments about future policies.

1. Commitment In the first case, we assume that at time zero the leader is able to cred-
ibly commit to the complete future path of policies {Y (t)}∞t=0 . This corresponds
to the open-loop Stackelberg equilibrium of the game, with

Y (t) = ϒC (t, μ(0, ·)) ,

where ϒC is a deterministic measurable function of calendar time and the initial
distribution. This is equivalent to say that, given the initial distribution μ (0, ·) ,

the leader announces at time t = 0 the complete future evolution of the aggregate
policy variables {Y (t)}∞t=0 and commits not to reevaluate this initial plan. When
formulating the optimal plan, the leader takes into account the impact of its aggre-
gate policies on each atomistic agent’s optimal controls. Given the leader’s policy
path, individual agents maximize their individual value functions (2). The result

12 The process (16) is now characterized by an operator Au,Z ,Y .
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is a vector optimal individual controls u
(
t, x; {Y (s)}∞s=0

)
which depends on the

complete path of the leader policy variables.
2. Discretion In the second case, no commitment device is available. This corresponds

to the feedback Stackelberg equilibrium of the game, with

Y (t) = ϒD (t, μ(t, ·)) ,

whereϒD is a deterministic progressively measurable function of the current state
distribution. In this case the aggregate policies are time-consistent. This problem
can be seen as the limit as� → 0 of a sequence of open-loop Stackelberg problems
of length � in which the initial state at each stage n is given by the distribution at
the beginning of the stage μ(tn, ·).

4.2 Commitment

First we consider the solution under commitment, which in economics is typically
denoted as the ‘Ramsey problem’ andwhich corresponds to the open-loop Stackelberg
solution of this game.

Definition 2 (Commitment) The problem of the leader under commitment is to choose
the complete path of policies {Y (t)}∞t=0 at time zero in order to maximize the aggre-
gate welfare (17) when the aggregate distribution μ(t, x), aggregate variables Z (t)
and individual value function V (t, x) and controls u(t, x) constitute a competitive
equilibrium given {Y (t)}∞t=0. Formally, this amounts to

max{Y (t)}t∈[0,∞)

J lead (0, μ (0, ·) ,Y (·)) , (18)

subject to law of motion of the distribution (6, 7), to the market clearing conditions
(8) and to the individual HJB equation (4).

The solution is given by the following proposition.

Proposition 2 (Necessary conditions—Commitment) If a solution to problem (18)
exists with e−ρt u, e−ρtμ, e−ρt V ∈ L2 ([0,∞) × R

n) and e−ρt Z , e−ρt Y ∈ L2[0,∞),
it should satisfy the system of equations

∫ ⎧⎨
⎩θ(t, x)

n∑
i=1

∂bi
∂Yr

∂V

∂xi
+

m∑
j=1

n∑
i=1

η j (t, x)
∂2bi

∂Yr∂u j

∂V

∂xi
+ μ(t, x)

n∑
i=1

∂bi
∂Yr

∂φ

∂xi

⎫⎬
⎭ dx = 0,

r = 1, . . . , q, (19)

where φ(t, x) is the marginal social value function, given by

ρφ(t, x) = ∂φ

∂t
+ ω(t, x) f (x, u) +

p∑
k=1

λk(t) (gk(x, u) − Zk (t)) + Au,Z ,Yφ,

(20)
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lim
T→∞ e−ρTφ(T, x) = 0. (21)

The Lagrange multipliers associated to the market clearing condition (8)

λ(t) := [
λ1(t), . . . , λk(t), . . . , λp(t)

]�

satisfy, k = 1, . . . , p :

λk(t) =
∫ ⎧⎨

⎩θ(t, x)
n∑

i=1

∂bi
∂Zk

∂V

∂xi
+

m∑
j=1

n∑
i=1

η j (t, x)
∂2bi

∂Zk∂u j

∂V

∂xi

+ μ(t, x)
n∑

i=1

∂bi
∂Zk

∂φ

∂xi

}
dx . (22)

The distribution of Lagrange multipliers θ (t, x) associated to the individual HJB
equation follows

∂θ

∂t
= A∗

u,Z ,Y θ −
n∑

i=1

m∑
j=1

∂

∂xi

(
η j (t, x)

∂bi
∂u j

)
,

θ (0, ·) = 0, (23)

and the Lagrange multipliers associated to the individual first-order conditions

η (t, x) := [η1 (t, x) , . . . , ηk (t, x) , . . . , ηm (t, x)]�

satisfy, j = 1, . . . ,m :
(

ω(t, x)
∂ f

∂u j
+

n∑
i=1

∂bi
∂u j

∂φ

∂xi
+

p∑
k=1

λk
∂gk
∂u j

)
μ (t, x)

+
m∑

k=1

ηk (t, x)

(
∂2 f

∂u j∂uk
+

n∑
i=1

∂2bi
∂u j∂uk

∂V

∂xi

)
= 0. (24)

Remark 7 The equilibrium under commitment is composed by the competitive equi-
librium equations described in Definition 1 plus the necessary conditions of the leader
(19)–(24).

Remark 8 Notice that the problem in the case with m = 1, ω (·) = 1, f strictly

concave and ∂2bi
∂u j ∂uk

= 0 for j = 1, . . . ,m, k = 1, . . . , p, if the solution is such that
λk (·) = 0, k = 1, . . . , p, then the other Lagrange multipliers are zero: θ (·) = η (·) =
0 and the social value function coincides with the individual one, φ(t, x) = V (t, x).
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The optimal aggregate policy Y (t) is such that

∫ n∑
i=1

μ(t, x)
∂bi
∂Yr

∂φ

∂xi
dx = 0, r = 1, . . . , q.

4.3 Discretion

Next we consider the case without commitment or feedback Stackelberg equilibrium
of the game. We first define a finite-horizon commitment problem, in the same lines
as Definition 2.

Definition 3 (Commitment - finite horizon) Given an initial density μ(t, x), the prob-
lem of the leader under commitment in an interval [t, t + �] with a terminal value
functional W (·) , is to choose the complete path of policies

{
Y� (s)

}
s∈[t,t+�] at time

t in order to maximize the aggregate welfare (17) when the aggregate distribution
μ(s, x), aggregate variables Z (s) and individual value function V (s, x) and controls
u(s, x) constitute a competitive equilibrium given

{
Y� (s)

}
s∈[t,t+�]. Formally, this

amounts to

max{Y�(s)}s∈[t,t+�]

∫ t+�

t
e−ρ(s−t)

[∫
ω(s, x) f (x, u)μ(s, x)dx

]
ds + e−ρ�W (μ (t + �, ·))

(25)

subject to law of motion of the distribution (6, 7), to the market clearing conditions
(8) and to the individual HJB equation (4).The terminal indvidual value function
v (t + �, ·) is also taken as given.

Given T > 0, we assume that the interval [0, T ] is divided in N intervals of length
� := T/N .

Definition 4 (Discretion) An equilibrium under discretion in a finite interval [0, T ]
with a terminal value functional WT (·) is defined as the limit as N → ∞, or
equivalently � → 0, of a sequence of functions Y� (t) given by the finite-horizon
commitment problem introduced in Definition 3 over the intervals [t, t + �] where
t = n�, n = 0, . . . , N − 1 and the terminal value of an interval n is defined as the
value functional of the next interval:

Wn (μ (n�, ·))
= max{Y�(s)}s∈[n�,(n+1)�]

∫ (n+1)�

n�

e−ρ(s−t)
[∫

ω(s, x) f (x, u)μ(s, x)dx

]
ds (26)

+ e−ρ�Wn+1 (μ ((n + 1)�, ·)) , (27)

with WN (·) = WT (·) . The infinite-horizon case is defined as the limit as T → ∞
with a transversality condition

lim
T→∞ e−ρT WT (·) = 0.
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The solution is given by the following proposition.

Proposition 3 (Necessary conditions—Discretion) If a solution to problem under
discretion exists, it should satisfy the system of equations

∫ ⎧
⎨
⎩

m∑
j=1

n∑
i=1

η j (t, x)
∂2bi

∂Yr∂u j

∂V

∂xi
+

n∑
i=1

∂φ

∂xi

∂bi
∂Yr

μ(t, x)

⎫
⎬
⎭ dx = 0, (28)

r = 1, . . . , q, where φ(t, x) is the marginal social value function, given by

ρφ(t, x) = ∂φ

∂t
+ ω(t, x) f (x, u) +

p∑
k=1

λk(t) (gk(x, u) − Zk (t)) + Au,Z ,Yφ, (29)

lim
T→∞ e−ρTφ(T, x) = 0, (30)

the Lagrange multipliers associated to the market clearing condition (8), λk(t), k =
1, . . . , p, satisfy

λk(t) =
∫ ⎧⎨

⎩
m∑
j=1

n∑
i=1

η j (t, x)
∂2bi

∂Zk∂u j

∂V

∂xi
+

n∑
i=1

∂φ

∂xi

∂bi
∂Zk

μ(t, x)

⎫⎬
⎭ dx, (31)

and the Lagrange multipliers associated to the individual first-order conditions

η (t, x) := [η1 (t, x) , . . . , ηk (t, x) , . . . , ηm (t, x)]�

satisfy, j = 1, . . . ,m :
(

ω(t, x)
∂ f

∂u j
+

n∑
i=1

∂bi
∂u j

∂φ

∂xi
+

p∑
k=1

λk
∂gk
∂u j

)
μ (t, x)

+
m∑

k=1

ηk (t, x)

(
∂2 f

∂u j∂uk
+

n∑
i=1

∂2bi
∂u j∂uk

∂V

∂xi

)
= 0. (32)

Remark 9 The equilibrium under discretion is composed by the competitive equilib-
rium equations described in Definition 1 plus the necessary conditions of the leader
(28)–(32).

Remark 10 Equations (28)–(32) coincide with the equivalent equations in the case
of commitment with the Lagrange multipliers θ (·) = 0. Lagrange multipliers θ can
be interpreted as the value to the leader of breaking the “promises” that the leader
is making to individual agents. Under discretion, no promises can be made and thus
these multipliers are zero.
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5 Conclusions

This paper has analyzed the design of optimal social policies in an economy composed
by a continuum of atomistic players subject to idiosyncratic shocks. The optimality
of the policies is defined according to a social welfare function that aggregates, given
some state-dependent Pareto weights, the individual utilities across agents. First, we
consider two alternative benchmarks without social policies. On the one hand, the
decentralized competitive equilibrium is defined as mean field game with aggregate
variables and state constraints. On the other hand, the social optimum is a mean field
control problem in which a planner chooses the individual policies in order to maxi-
mize aggregate welfare. Next we assume that a (non-atomistic) leader controls a vector
of aggregate policies. This is a mean field game with a large player. We analyze two
different equilibrium concepts. In the open-loop Stackelberg solution of the game the
large player is able to make a credible commitment about the future path of the aggre-
gate policy variables. In the feedback Stackelberg solution no such a commitment is
possible and the policies are time-consistent. We characterize the necessary condi-
tions, but we do not analyze important issues such as the existence or uniqueness of
the solutions, which we leave for future research.

The main analytical tool employed in this paper is the Lagrange multiplier method
in infinite-dimensional Hilbert spaces. An interesting question would be to analyze to
what extent these results can also be obtained by means of the Pontryagin principle.

Finally, neither have we discussed the numerical implementation of the solution in
the cases in which no analytical results are available. Nuño and Moll [42] and Nuño
and Thomas [43] provide some insights on this respect extending previous work by
[1,2] and [3]. Due to the relevance of the potential applications, we are sure that this
will be a fruitful field of research in the coming years.

Acknowledgements The author is very grateful to Carlos Thomas and to an anonymous referee for helpful
comments and suggestions. All remaining errors are mine.

Appendix

Proof of Proposition 1: Necessary Conditions in the Social Optimum

The problem of the planner is to maximize Jopt (u (·)) subject to the KF equation (6)
and the market clearing conditions (8). The latter can be expressed as

∫
(gk(x, u) − Zk(t)) μ(t, x)dx, k = 1, . . . , p, ∀t ∈ [0,∞). (33)

We define the domain � := [0,∞) × R
n . The problem of the planner can be

expressed as an optimization problem in a suitable functional space such as

L̃2 (�) :=
{
f : � → R such that

∥∥e−ρt f
∥∥
L2(�)

< ∞
}

.
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Nuño and Moll [42] show how L̃2 (�) is a Hilbert space with the inner product

( f, g)� := 〈
e−ρt f, g

〉
�

, for all f, g ∈ L̃2 (�) ,

where 〈·, ·〉� is the standard inner product in L2 (�) :

〈 f, μ〉� =
∫

�

f μdx, ∀ f, μ ∈ L2 (�) .

The idea is to construct a Lagragian including the KF equation (6) and the market
clearing conditions (8) and to optimize with respect to the individual control u (·) and
the aggregate variables Z (·) .

The Lagrangian functional results in

L (
μ, u1, . . . , um, Z1, . . . , Z p

) = 〈
e−ρtω f, μ

〉
�

+
〈
e−ρtφ,−∂μ

∂t
+ A∗

u,Zμ

〉

�

+
p∑

k=1

〈
e−ρtλk, (gk − Zk) μ

〉
�

, (34)

where e−ρtφ(t, x) ∈ L2 (�) and e−ρtλk(t) ∈ L2[0,∞), k = 1, . . . , p are the
Lagrange multipliers associated to the KF equation (6) and market clearing condi-
tions (8), respectively.

If L has continuous Fréchet derivatives, a necessary condition for (μ, u1, . . . , um,

Z1, . . . , Z p
)
to be a maximum of (34) is that the Gateaux derivatives with respect to

each of these functions equals zero.13

It will prove useful to modify the second term in the Lagrangian

〈
e−ρtφ,−∂μ

∂t
+ A∗

u,Zμ

〉

�

= −
∫ ∞

0

∫
e−ρtφ (t, x)

∂μ

∂t
dxdt + 〈

e−ρtφ,A∗
u,Zμ

〉
�

= −
∫

e−ρtφ (t, x) μ (t, x)
∣∣∞
0 dx +

∫ ∞

0

∫
e−ρt

(
∂φ

∂t
− ρφ (t, x)

)
μdtdx

+ 〈
e−ρtAu,Zφ,μ

〉
�

= − lim
T→∞

∫
e−ρTφ (T, x) μ (T, x) dx +

∫
φ (0, x) μ (0, x) dx

+
〈
e−ρt

(
∂φ

∂t
− ρφ + Au,Zφ

)
, μ

〉

�

, (35)

13 See, for example, Luenberger [38, p. 243]. For a definition of the Gateaux derivative, see [23,38] or
[47].
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where we have integrated by parts with respect to time in the term ∂μ
∂t and applied the

fact that A∗
u,Z is the adjoint operator of Au,Z in L2 (Rn) ⊂ L̃2 (�) .

The Gateaux derivative with respect to μ is

d

dα
L (

μ + αh, u1, . . . , um, Z1, . . . , Z p
)∣∣∣∣

α=0

= d

dα

〈
e−ρtω f, μ + αh

〉
�

∣∣∣∣
α=0

+ d

dα

〈
e−ρt

(
∂φ

∂t
− ρφ + Au,Zφ

)
, μ + αh

〉

�

∣∣∣∣
α=0

+ d

dα

p∑
k=1

〈
e−ρtλk, (gk − Zk) (μ + αh)

〉
�

∣∣∣∣∣
α=0

− d

dα
lim

T→∞

∫
e−ρTφ (T, x) (μ (T, x) + αh (T, x)) dx

∣∣∣∣
α=0

= 〈
e−ρtω f, h

〉
�

+
〈
e−ρt

(
∂φ

∂t
− ρφ + Au,Zφ

)
, h

〉

�

+
p∑

k=1

〈
e−ρtλk, (gk − Zk) h

〉
�

− lim
T→∞

∫
e−ρTφ (T, x) h (T, x) dx,

and it equals zero in the maximum for any function h(t, x) ∈ L̃2 (�). The term∫
φ (0, x) μ (0, x) dx can be ignored in the optimization as μ (0, x) = μ0(x), that is,

the initial distribution is given and thus h (0, x) = 0 for all x ∈ R
n . We obtain

∂φ

∂t
+ ω f +

p∑
k=1

λk (gk − Zk) + Au,Zφ = ρφ, ∀ (t, x) ∈ �, (36)

lim
T→∞ e−ρTφ (T, x) = 0, ∀x ∈ R

n, (37)

which is the HJB equation of the planner (12).
The Gateaux derivative with respect to the control u j is

d

dα
L (

μ, u1, . . . , u j + αh, ..um, Z1, . . . , Z p
)∣∣∣∣

α=0

= d

dα

〈
e−ρtω f

(
x, u j + αh

)
, μ

〉
�

∣∣∣∣
α=0

+ d

dα

〈
e−ρt

(
∂φ

∂t
− ρφ + Au j+αh,Zφ

)
, μ

〉

�

∣∣∣∣
α=0

+ d

dα

p∑
k=1

〈
e−ρtλk,

(
gk

(
x, u j + αh

) − Zk
)
μ

〉
�

∣∣∣∣∣
α=0

, (38)
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where Au j+αh,Z := Au1,...,u j+αh,...,um ,Z . Given the state constraint u ∈ U(t, x) and
the optimality condition that (38) equals zero in the maximum for any h(t, x) ∈
L̃2 ([0,∞) × �) then

u = arg max
ũ∈Ut,x

{
ω f (x, ũ) +

p∑
k=1

λkgk (x, ũ) + Aũ,Zφ

}
. (39)

The Gateaux derivative with respect to the aggregate variable Zk is

d

dα
L (

μ, u1, . . . , um, Z1, ..Zk + αh, ..Z p
)∣∣∣∣

α=0

= d

dα

〈
e−ρtφ,

(
−∂μ

∂t
+ A∗

u,Zk+αhμ

)〉

�

∣∣∣∣
α=0

+ d

dα

p∑
k=1

〈
e−ρtλk, (gk − (Zk + αh)) μ

〉
�

∣∣∣∣∣
α=0

,

and it equals zero in the maximum for any e−ρt h(t) ∈ L2[0,∞). Here A∗
u,Zk+αh :=

A∗
u,Z1,...,Zk+αh,..Z p

. This can be expressed as

lim
α→0

∫ ∞

0

∫
e−ρtφ(t, x)

d

dα

{
−

n∑
i=1

∂

∂xi

[
bi

(
x, u, Z1, . . . , Zk + αh, . . . , Z p

)
μ (t, x)

]

−
p∑

k=1

λk (Zk + αh) μ

}
dxdt,

and hence

∫ ∞

0

e−ρt h(t)

⎧⎨
⎩

∫
φ(t, x)

⎛
⎝

n∑
i=1

⎡
⎣ ∂2bi

∂Zk∂xi
μ(t, x)

+
m∑
j=1

∂2bi
∂Zk∂u j

∂u j

∂xi
μ + ∂bi

∂Zk

∂μ

∂xi

⎤
⎦

⎞
⎠ dx + λk(t)

⎫
⎬
⎭ dt = 0.

As this is satisfied for any h(t), we obtain that

λk(t) = −
∫

φ(t, x)

⎧
⎨
⎩

n∑
i=1

⎡
⎣ ∂2bi

∂Zk∂xi
μ(t, x) +

m∑
j=1

∂2bi
∂Zk∂u j

∂u j

∂xi
μ(t, x) + ∂bi

∂Zk

∂μ

∂xi

⎤
⎦

⎫
⎬
⎭ dx

=
∫ n∑

i=1

∂φ

∂xi

∂bi
∂Zk

μ(t, x)dx, (40)

where we have integrated by parts.
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Finally, if we multiply by e−ρtμ (t, x) and integrate at both sides of the planner’s
HJB equation (36)

∫ ∞

0

∫
e−ρt

(
∂φ

∂t
+ ω f +

p∑
k=1

λk (gk − Zk) + Au,Zφ

)
μdxdt

=
∫ ∞

0

∫
e−ρtρφμdxdt,

∫ ∞

0

∫
e−ρt

(
∂φ

∂t
− ρφ + ω f + Au,Zφ

)
μdxdt = 0,

∫ ∞

0

∫
e−ρt

(
∂φ

∂t
μ − ρφμ + ω f μ + φA∗

u,Zμ

)
dxdt = 0,

where in the second line we have applied the market clearing condition (8) and in the
third line the fact that A∗

u,Z is the adjoint operator of Au,Z . If we integrate by parts
the first term

∫ ∞

0

∫
e−ρt

(
∂φ

∂t
μ − ρφμ

)
dxdt

=
∫

e−ρtφ (t, x) μ (t, x)
∣∣∞
0 dx

+
∫ ∞

0

∫
e−ρt

(
−∂μ

∂t
φ + ρφμ − ρφμ

)
dxdt

= −
∫

φ (0, x) μ (0, x) dx −
∫ ∞

0

∫
e−ρtφ

∂μ

∂t
dxdt

as limT→∞ e−ρTφ (T, x) = 0. Therefore, we have

∫ ∞

0

∫
e−ρt

⎡
⎢⎢⎢⎣ω f μ + φ

0︷ ︸︸ ︷(
−∂μ

∂t
+ A∗

u,Zμ

)
⎤
⎥⎥⎥⎦ dxdt =

∫
φ (0, x) μ (0, x) dx,

∫ ∞

0

∫
e−ρtω f μdxdt =

∫
φ (0, x) μ (0, x) dx,

where we have applied the fact thatμ satisfies the KF equation (6):− ∂μ
∂t +A∗

u,Zμ = 0.
The social value functional is thus

V opt (μ (0, ·)) =
∫ ∞

0

∫
e−ρtω (t, x) f (x, u) μ (t, x) dxdt

=
∫

φ (0, x) μ (0, x) dx .

123



48 Appl Math Optim (2017) 76:29–57

Proof of Proposition 2: Necessary Conditions in the Problem with Commitment

The problem of the leader is to maximize (17) subject to the KF equation (6), the
market clearing conditions (8) and to the individual HJB equations (4), where the
optimal individual controls are given by the first-order conditions

∂ f

∂u j
+

n∑
i=1

∂bi
∂u j

∂V

∂xi
= 0, j = 1, . . . ,m,∀ (t, x) ∈ �. (41)

The Lagragian in this case is the one in Proposition 1 extended to include two extra
terms that capture the value function and control dynamics:

L (
μ, V, u1, . . . , um, Z1, . . . , Z p, Y1, . . . , Yq

)

= 〈
e−ρtω f, μ

〉
�

+
〈
e−ρtφ,−∂μ

∂t
+ A∗

u,Z ,Yμ

〉

�

+
p∑

k=1

〈
e−ρtλk, (gk − Zk) μ

〉
�

+
〈
e−ρtθ,−ρV + ∂V

∂t
+ f + Au,Z ,Y V

〉

�

+
m∑
j=1

〈
e−ρtη j ,

∂ f

∂u j
+

n∑
i=1

∂bi
∂u j

∂V

∂xi

〉

�

,

(42)

where θ (t, x) , η j (t, x) ∈ L̃2 (�) , j = 1, . . . ,m, are the Lagrange multipliers asso-
ciated to the HJB equation (4) and to the first-order conditions (41), respectively.

The Gateaux derivative with respect to μ is again

d

dα
L (μ + αh, V, u, Z ,Y )

∣∣∣∣
α=0

= 〈
e−ρtω f, h

〉
�

+
〈
e−ρt

(
∂φ

∂t
− ρφ + Au,Z ,Yφ

)
, h

〉

�

+
p∑

k=1

〈
e−ρtλk, (gk − Zk) h

〉
�

− lim
T→∞

∫
e−ρTφ (T, x) h (T, x) dx,

and therefore φ (t, x) should satisfy the leader’s HJB

∂φ

∂t
+ ω f +

p∑
k=1

λk (gk − Zk) + Au,Z ,Yφ = ρφ, ∀ (t, x) ∈ �,

lim
T→∞ e−ρTφ (T, x) = 0, ∀x ∈ R

n .

The Gateaux derivative with respect to the aggregate variable Zk is

d

dα
L (

μ, V, u, Z1, ..Zk + αh, ..Z p,Y
)∣∣∣∣

α=0

= d

dα

〈
e−ρtφ,

(
−∂μ

∂t
+ A∗

u,Zk+αh,Yμ

)〉

�

∣∣∣∣
α=0
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+ d

dα

p∑
k=1

〈
e−ρtλk, (gk − (Zk + αh)) μ

〉
�

∣∣∣∣∣
α=0

+ d

dα

〈
e−ρtθ,−ρV + ∂V

∂t
+ f + Au,Zk+αh,Y V

〉

�

∣∣∣∣
α=0

+ d

dα

m∑
j=1

〈
e−ρtη j ,

∂ f

∂u j
+

n∑
i=1

∂bi (Zk + αh)

∂u j

∂V

∂xi

〉

�

∣∣∣∣∣∣
α=0

,

for any e−ρt h(t) ∈ L2[0,∞). Here A∗
u,Zk+αh,Y := A∗

u,Z1,...,Zk+αh,...,Z p,Y
and

bi (Zk + αh) := bi
(
x, u, Z1, . . . , Zk + αh, . . . , Z p,Y

)
.

The Gateaux derivative should be equal to zero in the maximum:

0 = −
∫ ∞

0

e−ρt h(t)

⎧⎨
⎩

∫
φ(t, x)

⎛
⎝

n∑
i=1

⎡
⎣ ∂2bi

∂Zk∂xi
μ(t, x)

+
m∑
j=1

∂2bi
∂Zk∂u j

∂u j

∂xi
μ + ∂bi

∂Zk

∂μ

∂xi

⎤
⎦

⎞
⎠ dx + λk(t)

⎫
⎬
⎭ dt

+
∫ ∞

0

e−ρt h(t)

{∫
θ(t, x)

(
n∑

i=1

∂bi
∂Zk

∂V

∂xi

)
dx

+
m∑
j=1

∫
η j (t, x)

(
n∑

i=1

∂2bi
∂Zk∂u j

∂V

∂xi

)
dx

⎫⎬
⎭ dt.

As this is satisfied for any h(t), we obtain that

λk(t) =
∫ ⎧⎨

⎩θ

n∑
i=1

∂bi
∂Zk

∂V

∂xi
+

m∑
j=1

η j

n∑
i=1

∂2bi
∂Zk∂u j

∂V

∂xi

−φ

n∑
i=1

⎡
⎣ ∂2bi

∂Zk∂xi
μ +

m∑
j=1

∂2bi
∂Zk∂u j

∂u j

∂xi
μ + ∂bi

∂Zk

∂μ

∂xi

⎤
⎦

⎫
⎬
⎭ dx

=
∫ ⎧⎨

⎩θ

n∑
i=1

∂bi
∂Zk

∂V

∂xi
+

m∑
j=1

η j

n∑
i=1

∂2bi
∂Zk∂u j

∂V

∂xi
+ μ

n∑
i=1

∂bi
∂Zk

∂φ

∂xi

⎫⎬
⎭ dx,

where we have integrated by parts in the last equality.
In order to compute the Gateaux derivative with respect to the individual value

function V , we first expressed the fourth term in the Lagragian as
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〈
e−ρtθ,−ρV + ∂V

∂t
+ ω f + Au,Z ,Y V

〉

�

=
∫ ∞

0

∫
e−ρtθ (t, x)

(
−ρV + ∂V

∂t

)
dxdt

+ 〈
e−ρtθ, ω f + Au,Z ,Y V

〉
�

=
∫

e−ρtθ (t, x) V (t, x)
∣∣∞
0 dx −

∫ ∞

0

∫
e−ρt ∂θ

∂t
V dtdx

+ 〈
e−ρtA∗

u,Z ,Y θ, V
〉
�

+ 〈
e−ρtθ, ω f

〉
�

= lim
T→∞

∫
e−ρT θ (T, x) V (T, x) dx −

∫
θ (0, x) V (0, x) dx

+
〈
e−ρt

(
−∂θ

∂t
+ A∗

u,Z ,Y θ

)
, V

〉

�

+ 〈
e−ρtθ, ω f

〉
�

,

where we have integrated by parts with respect to time in the term ∂V
∂t and applied the

fact that A∗
u,Z ,Y is the adjoint operator of Au,Z ,Y . The Gateaux derivative simplifies

to

d

dα
L (μ, V + αh, u, Z ,Y )

∣∣∣∣
α=0

= lim
T→∞

∫
e−ρT θ (T, x)

d

dα
(V (T, x) + αh (T, x))

∣∣∣∣
α=0

dx

−
∫

θ (0, x)
d

dα
(V (0, x) + αh (0, x))

∣∣∣∣
α=0

dx

+ d

dα

〈
e−ρt

(
−∂θ

∂t
+ A∗

u,Z ,Y θ

)
, V + αh

〉

�

∣∣∣∣
α=0

+ d

dα

m∑
j=1

〈
e−ρtη j ,

∂ f

∂u j
+

n∑
i=1

∂bi
∂u j

∂ (V + αh)

∂xi

〉

�

∣∣∣∣∣∣
α=0

= lim
T→∞

∫
e−ρT θ (T, x) h (T, x) dx −

∫
θ (0, x) h (0, x) dx

+
〈
e−ρt

(
−∂θ

∂t
+ A∗

u,Z ,Y θ

)
, h

〉

�

+
m∑
j=1

〈
e−ρtη j ,

n∑
i=1

∂bi
∂u j

∂h

∂xi

〉

�

.

The last term in the derivative can be expressed as

m∑
j=1

〈
e−ρtη j ,

n∑
i=1

∂bi
∂u j

∂h

∂xi

〉

�

=
n∑

i=1

m∑
j=1

∫ ∞

0

∫
e−ρtη j (t, x)

∂bi
∂u j

∂h

∂xi
dxdt

= −
n∑

i=1

m∑
j=1

∫ ∞

0

∫
e−ρt ∂

∂xi

(
η j

∂bi
∂u j

)
hdxdt,
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where we have integrated by parts. Due to the transversality condition of the individual
problem, limT→∞ e−ρT V (T, x) = 0, we have limT→∞ h (T, x) = 0 ∀x ∈ R

n . For
t < ∞, the Gateaux derivative should be zero for any h (t, x) ∈ L̃2 (�) and therefore
we obtain:

∂θ

∂t
= A∗

u,Z ,Y θ −
n∑

i=1

m∑
j=1

∂

∂xi

(
η j

∂bi
∂u j

)
,

θ (0, x) = 0,∀x ∈ R
n .

The Gateaux derivative with respect to the individual control u j is

d

dα
L (

μ, u1, . . . , u j + αh, ..um, Z ,Y
)∣∣∣∣

α=0

= d

dα

〈
e−ρtω f

(
x, u j + αh

)
, μ

〉
�

∣∣∣∣
α=0

+ d

dα

〈
e−ρt

(
∂φ

∂t
− ρφ + Au j+αh,Z ,Yφ

)
, μ

〉

�

∣∣∣∣
α=0

+ d

dα

p∑
k=1

〈
e−ρtλk,

(
gk

(
x, u j + αh

) − Zk
)
μ

〉
�

∣∣∣∣∣
α=0

+ d

dα

〈
e−ρtθ,−ρV + ∂V

∂t
+ f + Au j+αh,Z ,Y V

〉

�

∣∣∣∣
α=0

+ d

dα

m∑
k=1

〈
e−ρtηk,

∂ f
(
x, u j + αh

)

∂uk
+

n∑
i=1

∂bi
(
u j + αh

)

∂uk

∂V

∂xi

〉

�

∣∣∣∣∣
α=0

,

and thus the maximum should satisfy

(
ω

∂ f

∂u j
+

n∑
i=1

∂bi
∂u j

∂φ

∂xi
+

p∑
k=1

λk
∂gk
∂u j

)
μ + θ

0︷ ︸︸ ︷(
∂ f

∂u j
+

n∑
i=1

∂bi
∂u j

∂V

∂xi

)

+
m∑

k=1

ηk

(
∂2 f

∂u j∂uk
+

n∑
i=1

∂2bi
∂u j∂uk

∂V

∂xi

)
= 0. (43)

Notice that ∂ f
∂u j

+ ∑n
i=1

∂bi
∂u j

∂V
∂xi

= 0 due to the first-order conditions (41).
Finally, the Gateaux derivative with respect to the aggregate policy Yr

lim
α→0

d

dα
L (

μ, V, u, Z ,Y1, ..Yr + αh, ..Yq
)

= lim
α→0

⎧⎨
⎩

d

dα

〈
e−ρtφ,

(
−∂μ

∂t
+ A∗

u,Z ,Yr+αhμ

)〉

�
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+ d

dα

〈
e−ρtθ,−ρV + ∂V

∂t
+ f + Au,Z ,Yr+αhV

〉

�

+ d

dα

m∑
j=1

〈
e−ρtη j ,

∂ f

∂u j
+

n∑
i=1

∂bi (Yr + αh)

∂u j

∂V

∂xi

〉

�

⎫⎬
⎭ ,

equals zero in the maximum for any h(t) ∈ e−ρt L2[0,∞). Here A∗
u,Z ,Yr+αh :=

A∗
u,Z ,Y1,...,Yr+αh,...,Yq

. This can be expressed as

0 = −
∫ ∞

0

e−ρt h(t)
∫

φ(t, x)
n∑

i=1

[
∂2bi

∂Yr∂xi
μ(t, x)

+
m∑
j=1

∂2bi
∂Yr∂u j

∂u j

∂xi
μ + ∂bi

∂Yr

∂μ

∂xi

⎤
⎦ dxdt

+
∫ ∞

0

e−ρt h(t)

{∫
θ(t, x)

(
n∑

i=1

∂bi
∂Yr

∂V

∂xi

)
dx

+
m∑
j=1

∫
η j (t, x)

(
n∑

i=1

∂2bi
∂Yr∂u j

∂V

∂xi

)
dx

⎫⎬
⎭ dt

As this is satisfied for any h(t), we obtain that

∫ ⎧⎨
⎩θ

n∑
i=1

∂bi
∂Yr

∂V

∂xi
+

m∑
j=1

η j

n∑
i=1

∂2bi
∂Yr∂u j

∂V

∂xi

−φ

n∑
i=1

⎡
⎣ ∂2bi

∂Yr∂xi
μ +

m∑
j=1

∂2bi
∂Yr∂u j

∂u j

∂xi
μ + ∂bi

∂Yr

∂μ

∂xi

⎤
⎦

⎫
⎬
⎭ dx = 0,

∫ ⎧
⎨
⎩θ

n∑
i=1

∂bi
∂Yr

∂V

∂xi
+

m∑
j=1

η j

n∑
i=1

∂2bi
∂Yr∂u j

∂V

∂xi
+

n∑
i=1

∂φ

∂xi

∂bi
∂Yr

μ

⎫
⎬
⎭ dx = 0,

where we have integrated by parts to obtain the last expression.

Proof of Proposition 3: Necessary Conditions in the Problem with Discretion

The proof proceeds in two steps. First we solve a commitment problem over a fixed
period of length � taking as given the next period value functional W (μ (t + �, ·)) .

Then we take the limit as � → 0.

Step 1: Solution Given a Fixed Time Step �

We have assumed that, given T > 0, the interval [0, T ] is divided in N intervals of
length� := T/N . First we solve the open-loop Stackelberg problem (26) over a fixed
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time interval s ∈ [t, t + �], where t is a multiple of �, subject to the KF equation
(6), the market clearing conditions (8) and to the individual HJB equations (4) with
optimal individual controls (41).The solutionmimics the proof of Proposition 2 above
with two major differences. The first one is the finite-horizon nature of the problem.
The second is the presence of the terminal value W (μ (t + �, ·)) .

The Lagragian is similar as the one in (42) with the inclusion of the terminal value
functional W (μ (t + �, ·)):

〈
e−ρtω f, μ

〉
�t

+ e−ρ(t+�)W (μ (t + �, ·)) +
〈
e−ρtφ,−∂μ

∂s
+ A∗

u,Z ,Y�μ

〉

�t

+
p∑

k=1

〈
e−ρtλk, (gk − Zk) μ

〉
�t

+
〈
e−ρtθ,−ρV + ∂V

∂s
+ f + Au,Z ,Y�V

〉

�t

+
m∑
j=1

〈
e−ρtη j ,

∂ f

∂u j
+

n∑
i=1

∂bi
∂u j

∂V

∂xi

〉

�t

, (44)

where time is denoted as s ∈ [t, t + �] and �t := [t, t + �] × R
n .

The Gateaux derivative with respect to μ is14

〈
e−ρtω f, h

〉
�t

+
〈
e−ρt

(
∂φ

∂s
− ρφ + Au,Z ,Y�φ

)
, h

〉

�t

+
p∑

k=1

〈
e−ρtλk, (gk−Zk) h

〉
�t

−
∫

e−ρ�φ (t + �, x) h (t+�, x) dx + e−ρ(t+�)

d

dα
W (μ (t + �, ·) + αh (t + �, ·))

∣∣∣∣
α=0

.

If W is Frechet differentiable then the Gateaux derivative of W can be expressed as

d

dα
W (μ (t + �, ·) + αh (t + �, ·))

∣∣∣∣
α=0

=
∫

δW

δμ
(μ (t + �, ·))h (t + �, x) dx,

where δW
δμ

(μ (t + �, ·)) ∈ L2 (Rn) . The optimality condition then implies that

∂φ

∂s
+ ω f +

p∑
k=1

λk (gk − Zk) + Au,Z ,Y�φ = ρφ, ∀s ∈ [t, t + �), x ∈ R
n,

φ (t + �, x) = δW

δμ
(t + �, x), ∀x ∈ R

n . (45)

14 Notice that we are working now in L̃2 (�) .
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Theoptimality conditionswith respect to aggregate variables Zk , individual controls
u j and aggregate policies Y�

r are the same as in Proposition 2:

λk(t) =
∫ ⎧⎨

⎩θ

n∑
i=1

∂bi
∂Zk

∂V

∂xi
+

m∑
j=1

η j

n∑
i=1

∂2bi
∂Zk∂u j

∂V

∂xi
+ μ

n∑
i=1

∂bi
∂Zk

∂φ

∂xi

⎫⎬
⎭ dx,

0 =
(

ω
∂ f

∂u j
+

n∑
i=1

∂bi
∂u j

∂φ

∂xi
+

p∑
k=1

λk
∂gk
∂u j

)
μ

+
m∑

k=1

ηk

(
∂2 f

∂u j∂uk
+

n∑
i=1

∂2bi
∂u j∂uk

∂V

∂xi

)
,

0 =
∫ ⎧⎨

⎩θ

n∑
i=1

∂bi
∂Yr

∂V

∂xi
+

m∑
j=1

η j

n∑
i=1

∂2bi
∂Yr∂u j

∂V

∂xi
+

n∑
i=1

∂φ

∂xi

∂bi
∂Yr

μ

⎫⎬
⎭ dx .

Finally, the Gateaux derivative with respect to the individual value function V is

∫
e−ρ(t+�)θ (t + �, x) h (t + �, x) dx −

∫
θ (t, x) h (t, x) dx

+
〈
e−ρt

(
−∂θ

∂s
+ A∗

u,Z ,Y�θ

)
, h

〉

�t

+
m∑
j=1

〈
e−ρtη j ,

n∑
i=1

∂bi
∂u j

∂h

∂xi

〉

�t

,

and the optimality condition then results in

∂θ

∂s
= A∗

u,Z ,Y�θ −
n∑

i=1

m∑
j=1

∂

∂xi

(
η j

∂bi
∂u j

)
,∀s ∈ [t, t + �), x ∈ R

n, (46)

θ (t, x) = 0, ∀x ∈ R
n, (47)

where we have taken into account the fact that h (t + �, ·) = 0 as the terminal
individual value function v (t + �, ·) is given.
Step 2: Taking the Limit � → 0

We take the limit as N → ∞, or equivalently, � → 0.15 In this case, the value of
the Lagrange multiplier θ in equation (47) is zero: θ (t, x) = 0, ∀x ∈ R

n . The HJB
equation (45) then results in

∂φ

∂t
+ ω f +

p∑
k=1

λk (gk − Zk) + Au,Z ,Yφ = ρφ, ∀t ∈ [0, T ), x ∈ R
n, (48)

φ (T, x) = δW

δμ
(μ (T, x)), ∀x ∈ R

n .

15 The limit is taken in an “ informal” way. Investigating the limit properly should require a careful analysis
that we leave for future research.
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If we take the limit as T → ∞, then limT→∞ e−ρT δW
δμ

(μ (T, x)) = limT→∞ e−ρT

φ (T, x) = 0, which is the transversality condition of the infinite-horizon problem.
Taking into account the values of θ (·) = 0 and φ (·) = w (·) , the rest of optimality

conditions simplify to

λk(t) =
∫ ⎧

⎨
⎩

m∑
j=1

η j

n∑
i=1

∂2bi
∂Zk∂u j

∂V

∂xi
+ μ

n∑
i=1

∂bi
∂Zk

∂φ

∂xi

⎫
⎬
⎭ dx,

0 =
(

ω
∂ f

∂u j
+

n∑
i=1

∂bi
∂u j

∂φ

∂xi
+

p∑
k=1

λk
∂gk
∂u j

)
μ

+
m∑

k=1

ηk

(
∂2 f

∂u j∂uk
+

n∑
i=1

∂2bi
∂u j∂uk

∂V

∂xi

)
,

0 =
∫ ⎧⎨

⎩
m∑
j=1

η j

n∑
i=1

∂2bi
∂Yr∂u j

∂V

∂xi
+

n∑
i=1

∂φ

∂xi

∂bi
∂Yr

μ

⎫⎬
⎭ dx .
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