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Abstract In this paper we model the role of a government of a large population as a
mean field optimal control problem. Such control problems are constrained by a PDE
of continuity-type, governing the dynamics of the probability distribution of the agent
population.We show the existence ofmean field optimal controls both in the stochastic
and deterministic setting. We derive rigorously the first order optimality conditions
useful for numerical computation of mean field optimal controls.We introduce a novel
approximating hierarchy of sub-optimal controls based on a Boltzmann approach,
whose computation requires a very moderate numerical complexity with respect to
the one of the optimal control.Weprovide numerical experiments formodels in opinion
formation comparing the behavior of the control hierarchy.

Keywords PDE constrained optimization multi-agent systems · Boltzmann
equations · Kinetic equations

B Massimo Fornasier
massimo.fornasier@ma.tum.de

Giacomo Albi
giacomo.albi@univr.it

Young-Pil Choi
ypchoi@inha.ac.kr

Dante Kalise
dante.kalise@oeaw.ac.at

1 Department of Computer Science, University of Verona, Str. Le Grazie,15, 37134 Verona, Italy

2 Department of Mathematics, Inha University, Incheon 402-751, Republic of Korea

3 Department of Mathematics, TU München, Boltzmannstr. 3, 85748 Garching bei München,
Germany

4 RICAM, Austrian Academy of Sciences, Altenbergerstr. 69, 4040 Linz, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00245-017-9429-x&domain=pdf


94 Appl Math Optim (2017) 76:93–135

1 Introduction

Self-organization in social interactions is a fascinating mechanism, which inspired
the mathematical modeling of multi-agent interactions towards formation of coherent
global behaviors, with applications in the study of biological, social, and economical
phenomena. Recently there has been a vigorous development of literature in applied
mathematics and physics describing collective behavior of multiagent systems [41–
43,52,56,58,82], towards modeling phenomena in biology, such as cell aggregation
and motility [21,59,60,73], coordinated animal motion [12,27,34,37–39,43,66,70,
71,74,79,85], coordinated human [40,44,76] and synthetic agent behavior and inter-
actions, such as cooperative robots [35,63,72,77]. As it is very hard to be exhaustive
in accounting all the developments of this very fast growing field, we refer to [28–
30,33,81] for recent surveys.

Two main mechanisms are considered in such models to drive the dynamics. The
first, which takes inspiration, e.g., from physics laws of motion, is based on binary
forces encoding observed “first principles” of biological, social, or economical inter-
actions. Most of these models start from particle-like systems, borrowing a leaf from
Newtonian physics, by including fundamental “social interaction” forces within clas-
sical systems of 1st or 2nd order equations. In this paper we mix general principles
with concrete modeling instances to encounter the need of both a certain level of gen-
erality and to provide immediately concrete applications. Accordingly, we consider
here mainly large particle/agent systems of form:

dxi =
⎛
⎝ 1

N

N∑
j=1

P(xi , x j )(x j − xi )

⎞
⎠ dt + √

2σ d Bt
i , i = 1, . . . , N , t > 0,

(1.1)

where P(·, ·) represents the communication function between agents xi ∈ R
d and Bt

i
is a d-dimensional Brownian motion.

The secondmechanism,whichwe do not address in detail here, is based on evolutive
games, where the dynamics is driven by the simultaneous optimization of costs by the
players, perhaps subjected to selection, from game theoretic models of evolution [54]
to mean field games, introduced in [62] and independently under the name Nash
Certainty Equivalence (NCE) in [55], later greatly popularized, e.g., within consensus
problems, for instance in [67,68].

The common viewpoint of these branches of mathematical modeling of multi-agent
systems is that the dynamics are based on the free interaction of the agents or decen-
tralized control. The wished phenomenon to be described is their self-organization in
terms of the formation of complex macroscopic patterns.

One fundamental goal of these studies is in fact to reveal the possible relationship
between the simple binary forces acting at individual level, being the “first principles”
of social interaction or the game rules, and the potential emergence of a global behavior
in the form of specific patterns.

For instance one can use the model in (1.1), for d = 1 and xi ∈ I = [−1, 1], a
bounded interval, to formulate classical opinion models, where xi represents an opin-
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ion in the continuous set between two opposite opinions {−1, 1}. According to the
choice of the communication function P(·, ·), consensus can emerge or not, and dif-
ferent studies have beenmade in order to enforce the emergence of a global consensus,
[5–7,45,80]. The mathematical property for a system to form patterns is actually its
persistent compactness. There are actually several mechanisms of promotion of com-
pactness to yield eventually self-organization. In the recent paper [65], for instance,
the authors name the heterophilia, i.e., the tendency to bond more with those who are
“different” rather than those who are similar, as a positive mechanism in consensus
models to reach accord. However also in homophilious societies influenced by more
local interactions, global self-organization towards consensus can be expected as soon
as enough initial coherence is given. At this point, and perhaps reminiscently of biblic
stories from the Genesis, one could enthusiastically argue “Let us give them good
rules and they will find their way!” Unfortunately, this is not true, at all. In fact, in
homophilious regimes there are plenty of situations where patterns will not sponta-
neously form. In Sect. 5 below we mathematically demonstrate with a few simple
numerical examples the incompleteness of the self-organization paradigm, and we
refer to [18] for its systematic discussion. Consequently, we propose to amend it by
allowing possible external interventions in form of centralized controls. The human
society calls them government.

The general idea consists in considering dynamics of the form

dxi =
⎛
⎝ 1

N

N∑
j=1

P(xi , x j )(x j − xi )

⎞
⎠ dt+ fi dt + √

2σ d Bt
i , i = 1, . . . , N , t > 0,

(1.2)

where the control f = ( f1, . . . , fN ) minimizes a given functional J (x, f ). As an
example we can consider the following variational formulation

f = argmin
g∈U

J (x, g) := E

[∫ T

0

1

N

N∑
i=1

(
1

2
|xi − x̄ |2 + γ�(gi )

)
dt

]
, (1.3)

where x̄ represents a target point, γ is the penalization parameter of the control g,
which is chosen among the admissible controls in U , and � : Rd → R+ ∪ {0} is
a convex function. The choice of this particular cost function, and especially of the
term

∫ T
0

1
2

∫ |x − x̄ |2μ(x, t) dx is absolutely arbitrary. It is consistent with our wish
of mixing general statements with instances of applications, and the cost function is
so given to provide immediately a specific instance of application oriented to opin-
ion consensus problems. Similar models as (1.3) have been studied recently also for
the flocking dynamics in [4,17,24,51] and one can of course consider many more
instances, as soon as one ensures enough continuity of the cost, see, e.g., [51].

As the number of particles N → ∞, the finite dimensional optimal control problem
withODEconstraints (1.2)–(1.3) converges to the followingmeanfield optimal control
problem [1,15,51,61]:
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∂tμ + ∇ · ((P[μ] + f ) μ) = σ�μ, (1.4)

where the interaction force P is given by

P[μ](x) =
∫

P(x, y)(y − x)μ(y, t) dy (1.5)

and the solution μ is controlled by the minimizer of the cost functional

J (μ, f ) =
∫ T

0

(
1

2

∫
|x − x̄ |2μ(x, t) dx + γ

∫
�( f )μ(x, t) dx

)
dt. (1.6)

To a certain extent, themean field optimal control problem (1.4)–(1.6) can be viewed as
a generalization of optimal transport problems [14] for which the term P ≡ 0, the term∫ T
0

1
2

∫ |x − x̄ |2μ(x, t) dx does not appear in the cost, and final conditions are given.
Differently from mean field games [62] the goal here is not to derive the equilibria
of a multi-player game, rather to compute mean field optimal government strategies
for a population so large that the curse of dimensionality would otherwise prohibit
numerical solutions. The mean field optimal control problem (1.4)–(1.6) provides an
artificial confinement vector field f , inducing the right amount of compactness to have
global convergence to steady states (pattern formation). Local convergence towards,
e.g., to global Maxwellians, is provided for certain second order mean field-type of
equations in [32,46]. Hence, our results can be also interpreted as an external model
perturbation to induce global stability.

In this paper we provide a friendly introduction tomean field optimal controls of the
type (1.4)–(1.6), showing their main analytical properties and furnish a simple route
to their numerical solutions, which we call “the control hierarchy”. Although some
of the results contained in this paper are certainly also derived elsewhere, see, e.g.,
[15,51], we made an effort to present them in a simplified form as well as providing
rigorous derivations.

In particular, in Sect. 2, we show existence of mean field optimal controls for
first order models in case of both stochastic and deterministic control problems. We
also derive rigorously in Sect. 3 the corresponding first order optimality conditions,
resulting in a coupled systemof forward/backward time-dependent PDEs. The forward
equation is given by (1.4), while the backward one is a nonlocal integro-differential
advection-reaction-diffusion equation. The presence of nonlocal interaction terms in
form of integral functions is another feature, which distinguishes mean field optimal
control problems from classical mean field games [62] and optimal transport problems
[14], where usually P ≡ 0. The nonlocal terms pose additional challenges in the
numerical solution, which are subject of recent studies [22].

Althoughmean field optimal controls are designed to be independent of the number
N of agents to provide away to circumvent the curse of dimensionality of N → ∞, still
their numerical computation needs to be realized by solving the first-order optimality
conditions. The complexity of their solution depends on the intrinsic dimensionality
d of the agents, which is affordable only at moderate dimensions (e.g., d ≤ 3). For
this reason, in Sect. 4 we approach the solution of the mean field optimal control,

123



Appl Math Optim (2017) 76:93–135 97

by means of a novel hierarchy of suboptimal controls, computed by a Boltzmann
approach: first one derives a control for a system of two representative particles, then
one plugs it into a collisional operator considering the statistics of the interactions of a
distribution of agents, and finally one performs a quasi-invariant limit to approximate
the PDE of continuity-type, governing the dynamics of the probability distribution
of the agent population. For the two particle system considered in the first step of
the Boltzmann approach above, we propose two suboptimal controls stemming from
the binary Boltzmann approach: the first level is given by an instantaneous model
predictive control on two interacting agents—we shall call this control instantaneous
control (IC), while the second stems from the solution of the binary optimal control
problem by means of the Bellman dynamical programming principle—we shall call
this control finite horizon control (FH). These two controls have the advantage that the
complexity of their computation is dramatically reduced with respect to the mean field
optimal control (OC) in its full glory, still retaining their ability to induce government of
the population.Wedescribe in detail how they canbe efficiently numerically computed.
In Sect. 5 we provide simple numerical approaches, easily implementable, for solving
one-dimensional mean field optimal control problems of the type (1.4)–(1.6). We
eventually numerically compare the control hierarchy with the mean field optimal
control in a model of opinion formation and we show the quasi-optimality of the
Boltzmann–Bellman (FH) control. To facilitate the reproducibility of our results and
to allow other scientists to easily access this very exciting field, we provide at the
link https://www-m15.ma.tum.de/Allgemeines/SoftwareSite the Matlab code used to
produce our numerical experiments.

2 Existence of Mean Field Optimal Controls

2.1 Deterministic Case

In this section, we study global existence and uniqueness of weak solutions for Eq.
(1.4) in Rd without the diffusion, i.e., σ = 0, namely

∂tμ + ∇ · ((P[μ] + f ) μ) = 0, x ∈ R
d , t > 0. (2.1)

We also investigate themean field limit of the ODE constrained control problem (1.2)–
(1.3) in the deterministic setting. Let us denote by M(Rd) and Mp(R

d) the sets of
all probability measures and the ones with finite moments of order p ∈ [1,∞) onRd ,
respectively. We first define a notion of weak solutions to the equation to (2.1).

Definition 2.1 For a given T > 0, we call μ ∈ C([0, T ];M1(R
d)) a weak solution

of (2.1) on the time-interval [0, T ] if for all compactly supported test functions ϕ ∈
C∞

c (Rd × [0, T ]),
∫
Rd

ϕ(x, T ) μT (dx) −
∫ T

0

∫
Rd

(∂tϕ + (P[μt ] + f ) · ∇ϕ) μt (dx)dt

=
∫
Rd

ϕ0(x) μ0(dx).
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We also introduce a set of admissible controls F�([0, T ]) in the definition below.

Definition 2.2 For a given T and q ∈ [1,∞), we fix a control bound function � ∈
Lq(0, T ). Then f ∈ F�([0, T ]) if and only if

(i) f : Rd × [0, T ] → R
d is a Carathéodory function.

(ii) f (·, t) ∈ W 1,∞
loc (Rd) for almost every t ∈ [0, T ].

(iii) | f (0, t)| + ‖ f (·, t)‖Lip ≤ �(t) for almost every t ∈ [0, T ].
For the existence and mean field limit, we use the topology on probability measures

induced by the Wasserstein distance, which is defined by

Wp(μ, ν) := inf
π∈�(μ,ν)

(∫
R2d

|x−y|p π(dx, dy)

)1/p

for p ≥ 1 and μ, ν ∈ M(Rd),

where �(μ, ν) is the set of all probability measures on R
2d with first and second

marginalsμ and ν, respectively.Note thatM1(R
d) is a completemetric space endowed

with the W1 distance, and W1 is equivalently characterized in duality with Lipschitz
continuous functions [84].

The following result is a rather straightforward adaptation from [51] and we shall
prove it rather concisely. For more details we address the interested reader to [51],
which has been written in a more scholastic and perhaps accessible form.

Theorem 2.1 Let the initial data μ0 ∈ M(Rd) and assume that μ0 is compactly
supported, i.e., there exists R > 0 such that

supp μ0 ⊂ B(0, R),

where B(0, R) := {x ∈ R
d : |x | < R}. Furthermore, we assume that P ∈

W 1,∞(R2d). Then, for a given f ∈ F�([0, T ]), there exists a unique weak solu-
tion μ ∈ C([0, T ];M1(R

d)) to Eq. (1.4) with σ = 0. Furthermore, μ is determined
as the push-forward of the initial measure μ0 through the flow map generated by the
locally Lipschitz velocity field P[μ] + f . Moreover, if μi , i = 1, 2 are two such with
initial data μi

0 satisfying the above assumption, we have

W1(μ
1
t , μ

2
t ) ≤ CW1(μ

1
0, μ

2
0) for t ∈ [0, T ],

where C > 0 depends only on ‖P‖W 1,∞ , R, T , and ‖�‖Lq .

Proof • Existence and Uniqueness Letμ ∈ C([0, T ];M1(R
d))with compact support

in B(0, R) for some positive constant R > 0. Then we can easily show that the
interaction force P is locally bounded and Lipschitz:

|P[μ](x)| ≤ C(‖P‖L∞ , R)(1 + |x |),

and

|P[μ](x) − P[μ](y)| ≤ C(‖P‖W 1,∞ , R)(1 + |x |)|x − y|.
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On the other hand, since f ∈ F�([0, T ]), we obtain that the vector field P[μ] + f is
also locally bounded and Lipschitz. Then this together with employing the argument
in [23, Theorem 3.10] and existence theory for Carathéodory differential equation in
[50], we can get the local-in-time existence and uniqueness of weak solutions to the
system (1.4) with σ = 0 in the sense of Definition 2.1. Note that those solutions exist
as long as that solutions are compactly supported. Set

R(t) := max
x,y∈supp(μt )

|x − y| for t ∈ [0, T ].

Let us consider the following characteristic X (t) := X (t; s, x) : R+×R+×R
d → R

d :

d X (t; s, x)

dt
= P[μt ](X (t; s, x), t) + f (X (t; s, x), t) for all t, s ∈ [0, T ], (2.2)

with the initial data X0 = x ∈ R
d . We notice that characteristic is well-defined on

the time interval [0, T ] due to the regularity of the velocity field. A straightforward
computation yields that for x, y ∈ supp(μ0)

d|X (t) − Y (t)|2
dt

= (X (t) − Y (t)) · d (X (t) − Y (t))

dt
≤ |X (t) − Y (t)| |P[μt ](X (t), t) − P[μt ](Y (t), t)|

+ |X (t) − Y (t)|| f (X (t), t) − f (Y (t), t)|
≤ 2‖P‖L∞|X (t) − Y (t)|

∫
Rd

|z − X (t)|μ(z, t) dz + ‖P‖L∞|X (t) − Y (t)|2

+‖ f (·, t)‖Lip|X (t) − Y (t)|2.

This deduces

d R(t)

dt
≤ (

3‖P‖L∞ + ‖ f (·, t)‖Lip
)

R(t) ≤ (3‖P‖L∞ + �(t)) R(t),

and

R(t) ≤ C R0 for t ∈ [0, T ],

where C depends only on T , ‖P‖L∞ , and ‖�‖Lq . Thus, by continuity arguments, we
have the global existence of weak solutions. We can also find that for h ∈ C∞

c (Rd)

∫
Rd

μ(x, t)h(x) dx =
∫
Rd

μ0(x)h(X (0; t, x)) dx for t ∈ [0, T ].

This implies that μ is determined as the push-forward of the initial density through
the flow map (2.2).
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• Stability Estimate Let T > 0 and μi , i = 1, 2 be the weak solutions to Eq.
(1.4) with σ = 0 obtained in the above. Let Xi be the characteristic flows defined in
(2.2) generated by the velocity fields P[μi ] + f , respectively. For a fixed t0 ∈ [0, T ],
we choose an optimal transport map for W1 denoted by T 0(x) between μ1

t0 and μ2
t0 ,

i.e., μ2
t0 = T 0#μ1

t0 . It also follows from the above that μi
t = Xi (t; t0, ·)#μi

t0 for
t ≥ t0. Furthermore, we get T t#μ1

t = μ2
t with T t = X2(t; t0, ·) ◦ T 0 ◦ X1(t0; t, ·)

for t ∈ [t0, T ]. Then we obtain

d+W1(μ
1
t , μ

2
t )

dt

∣∣∣
t=t0+

≤
∫
Rd

∣∣∣P[μ1
t0 ](X1(t; t0, x), t) − P[μ2

t0 ](X2(t; t0, T 0(x)), t)
∣∣∣μ1

t0(dx)

∣∣∣
t=t0+

+
∫
Rd

∣∣∣ f (X1(t; t0, x), t) − f (X2(t; t0, T 0(x)), t)
∣∣∣μ1

t0(dx)

∣∣∣
t=t0+

= I1 + I2,

where Ii , i = 1, 2 are estimated as follows.

I1 ≤
∫
R2d

∣∣∣P(x, y)(y − x) − P(T 0(x), T 0(y))(T 0(y) − T 0(x))

∣∣∣μ1
t0(dx)μ1

t0(dy)

≤
∫
R2d

|P(x, y) − P(T 0(x), T 0(y))||y − x |μ1
t0(dx)μ1

t0(dy)

+
∫
R2d

|P(T 0(x), T 0(y))|
(
|y − T 0(y)| + |x − T 0(x)|

)
μ1

t0(dx)μ1
t0(dy)

≤ C‖P‖W 1,∞W1(μ
1
t0 , μ

2
t0),

I2 =
∫
Rd

∣∣∣ f (x, t) − f (T 0(x), t)
∣∣∣μ1

t0(dx) ≤ ‖ f (·, t)‖LipW1(μ
1
t0 , μ

2
t0)

≤ �(t)W1(μ
1
t0 , μ

2
t0),

where we used the fact that μ has the compact support for the estimate of I1. We now
combine the above estimates together with being t0 arbitrary in [0, T ] to conclude

d+W1(μ
1
t , μ

2
t )

dt
≤ C

(‖P‖W 1,∞ + �(t)
)
W1(μ

1
t , μ

2
t ), for t ∈ [0, T ].

This completes the proof. ��

In Theorem 2.1, we show the global existence and uniqueness of weak solutions μ

to Eq. (1.4) with σ = 0 for a given control f ∈ F�([0, T ]). In the rest of this part, we
show the rigorous derivation of the infinite dimensional optimal control problem from
the finite dimensional one as N → ∞. Let us recall the finite/infinite dimensional
optimal control problems:
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• Finite dimensional optimal control problem:

min
f ∈F�

J (x, f ) := min
f ∈F�

∫ T

0

1

N

N∑
i=1

(
1

2
|xi − x̄ |2 + γ�( f (xi , t))

)
dt, (2.3)

where xi is a unique solution of

ẋi = 1

N

N∑
j=1

P(xi , x j )(x j − xi ) + f (xi , t), i = 1, . . . , N , t > 0, (2.4)

• Infinite dimensional optimal control problem:

min
f ∈F�

J (μt , f ) := min
f ∈F�

∫ T

0

(
1

2

∫
Rd

|x − x̄ |2 μt (dx) + γ

∫
Rd

�( f ) μt (dx)

)
dt,

(2.5)
where μ ∈ C([0, T ];M1(R

d)) is a unique weak solution of

∂tμt = ∇ · ((P[μt ] + f ) μt ) , (x, t) ∈ R
d × [0, T ],

P[μt ](x) =
∫
Rd

P(x, y)(y − x)μt (dy). (2.6)

For the convergence from (2.3)–(2.4) to (2.5)–(2.6), we need a weak compactness
result in F� whose proof can be found in [51, Corollary 2.7].

Lemma 2.2 Let p ∈ (1,∞). Suppose that ( f j ) j∈N ∈ F� with � ∈ Lq(0, T ) for
1 ≤ q < ∞. Then there exists a subsequence ( f jk )k∈N and a function f ∈ F� such
that

f jk ⇀ f weakly* in Lq(0, T ; W 1,p(Rd)) as k → ∞, (2.7)

i.e.,

lim
k→∞

∫ T

0

∫
Rd

φ(x, t)( f jk (x, t) − f (x, t)) dxdt = 0

for all φ ∈ Lq ′
(0, T ; W −1,p′

(Rd)).

Define the empirical measure μN associated to the particle system (2.4) as

μN
t := 1

N

N∑
i=1

δxi (t) for t ≥ 0.

Then we are now in a position to state our theorem on the mean field limit of the
optimal control problem.
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Theorem 2.3 Let T > 0. Suppose that P ∈ W 1,∞(R2d) and � satisfies that there
exist C ≥ 0 and 1 ≤ q < ∞

Lip(�, B(0, R)) ≤ C Rq−1 for all R > 0.

Let �(t) be a fixed function in Lq(0, T ). Furthermore we assume that {x0i }N
i=1 ⊂

B(0, R0) for R0 > 0 independent of N . For all N ∈ N, let us denote the control
function fN ∈ F� as a solution of the finite dimensional optimal control problem
(2.3)–(2.4). If there exits a compactly supported initial data μ0 ∈ M1(R

d) such that
limN→∞ W1(μ

N
0 , μ0), then there exists a subsequence ( f Nk

t )k∈N and a function f ∞
t

such that f Nk
t → f ∞

t in the sense of (2.7). Moreover, f ∞
t and the corresponding μ∞

t
are solutions of the infinite dimensional optimal control problem (2.5)–(2.6).

Proof We first notice that the existence of an optimal control f N
t on the time interval

[0, T ] for the finite dimensional optimal problem (2.3)–(2.4) can be obtained by using
the weak compactness estimate in Lemma 2.2 together with the strong regularity of
velocity field P + f , see [51, Theorem 3.3]. For any f ∈ F�([0, T ]), let us denote
(μ f )

N
t by the solution to the equation (2.4) with the initial data (μ f )

N
0 satisfying

limN→∞ W1((μ f )
N
0 , μ0) = 0. Let denote also by μ

ft
t is a solution associated to

(2.6) with the control ft and that initial data μ0, which is ensured by Theorem 2.1.
Moreover, by Theorem 2.1, limN→∞ W1((μ f )

N
t , μ

ft
t ) = 0. On the other hand, it

follows from Lemma 2.2 that there exists a subsequence f Nk
t such that f Nk

t ⇀ f ∞
t

weakly* in Lq(0, T ; W 1,p(Rd)) as k → ∞ for some f ∞
t ∈ F�. Letμ∞

t is the solution
to (2.6) with the control function f ∞

t . Then, by the lower-semicontinuity of the onset
functional, we get

lim inf
k→∞ J

(
μ

Nk
t , f Nk

t

)
≥ J (μ∞

t , f ∞
t ),

where μ
Nk
t is a solution to the particle equation (2.4) with the optimal control f Nk

t .
Then, due to the minimality of f Nk

t , it is clear that

J
(
(μ f )

Nk
t , ft

)
≥ J

(
μ

Nk
t , f Nk

t

)
for each k ∈ N.

We finally use the convergence of limk→∞ W1((μ f )
Nk
t , μ

f
t ) = 0 together with the

compactly supported solution μt to have

J (μ
ft
t , ft ) = lim

k→∞ J
(
(μ f )

Nk
t , ft

)
≥ lim inf

k→∞ J
(
μ

Nk
t , f Nk

t

)
≥ J (μ∞

t , f ∞
t ).

Since ft is arbitrarily chosen in F�([0, T ]), this concludes

min
ft ∈F�

J (μt , ft ) = J (μ∞
t , f ∞

t ),

i.e., f ∞
t is the optimal control for the problem (2.5)–(2.6). ��
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2.2 Stochastic Case

In this section, we study the parabolic optimal control problem in a bounded domain.
In this section we are to a certain extent inspired by the work [20]. As we are deviating
from that in certain estimates, we take the burden somehow of presenting the results
in more details than in the previous section.

Let � denote an open, bounded, smooth subset of Rd . We first introduce function
spaces:

V := L2(0, T ; H1(�)) ∩ Ḣ1(0, T ; H−1∗ (�)), and H−1∗ (�) = H1(�)′,

and the set of admissible controls

QM :=
{
‖ f ‖L2(0,T ;L∞(�)) ≤ M : f ∈ L2(0, T ; L∞(�))

}
,

for a given M > 0. Then our optimization problem is to show the existence of

min
f ∈QM

J (μ, f ) := min
f ∈QM

∫ T

0

(
1

2

∫
�

|x − x̄ |2μ(x, t) dx + γ

∫
�

�( f )μ(x, t) dx

)
dt,

(2.8)
where μ is a weak solution to the following parabolic equation:

∂tμ + ∇ · (P[μ]μ + f μ) = σ�μ, (x, t) ∈ �T := � × [0, T ], (2.9)

with the initial data

μ(·, 0) = μ0(x) x ∈ �,

and the zero-flux boundary condition

〈σ∇μ − (P[μ] + f )μ, n(x)〉 = 0, (x, t) ∈ ∂� × [0, T ],

where n(x) is the outward normal to ∂� at the point x ∈ ∂�. Here the interaction
term is given by

P[μ](x, t) =
∫

�

P(x, y)(y − x)μ(y, t) dy.

We next provide a notion of weak solution to Eq. (2.9).

Definition 2.3 For a given T > 0, a function μ : �T → [0,∞) is a weak solution of
Eq. (2.9) on the time-interval [0, T ] if and only if

1. μ ∈ L2(0, T ; H1(�)) and ∂tμ ∈ L2(0, T ; H−1∗ (�)).
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2. For any ϕ ∈ C1(�T ) with ϕ(·, 0) = ϕ(·, T ) = 0,

∫ T

0

∫
�

μ∂tϕ + (P[μ]μ + f μ − σ∇μ) · ∇ϕ dxdt = 0.

Theorem 2.4 For a given T, M > 0, let f ∈ QM and μ0 ∈ L2(�). Furthermore, we
assume P ∈ L∞(�2). Then there exists a unique weak solution μ to Eq. (2.9) in the
sense of Definition 2.3.

Proof Existence.- We first employ the following iteration scheme: Let μ1(x, t) :=
μ0(x) for (x, t) ∈ �T . For n ≥ 1, let μn+1 be the solution of

∂tμ
n+1 + ∇ · (P[μn]μn+1 + f μn+1) = σ�μn+1 (2.10)

with the initial data μn(x)|t=0 = μ0(x) for all n ≥ 1 x ∈ � and the zero-flux
boundary conditions. It is clear that

∫
�

μn(x, t) dx = ∫
�

μ0(x) dx . Note that for given
μn ∈ V we can have a unique weak solution to Eq. (2.10) since P[μn] ∈ L∞(�) and
f ∈ L∞(�). We next show that μn+1 ∈ V . A straightforward computation yields

1

2

d

dt

∫
�

(μn+1)2 dx + σ

∫
�

|∇μn+1|2 dx =
∫

�

∇μn+1 ·
(
P[μn]μn+1 + f μn+1

)
dx

=: I1 + I2,

where I2 can be easily estimated as

I2 ≤
∫

�

|∇μn+1|| f |μn+1 dx ≤ ε

2

∫
�

|∇μn+1|2 dx + Cε‖ f ‖2L∞

∫
�

(μn+1)2 dx .

For the estimate of I1, we use the fact that

‖P[μn]‖L∞ ≤ diam(�)‖P‖L∞‖μ0‖L1 < ∞, (2.11)

to obtain

|I1| ≤
∫

�

|∇μn+1||P[μn]|μn+1 dx ≤ ε

2

∫
�

|∇μn+1|2 dx + Cε

∫
�

(μn+1)2 dx .

Combining the above estimates and choosing ε < σ , we find

1

2

d

dt

∫
�

(μn+1)2 dx + (σ − ε)

∫
�

|∇μn+1|2 dx ≤ Cε

(
1 + ‖ f ‖2L∞

) ∫
�

(μn+1)2 dx .

Applying Gronwall’s inequality to the above differential inequality deduces

∫
�

(μn+1)2 dx +
∫ t

0

∫
�

|∇μn+1|2 dxds ≤ C(T, σ, ‖μ0‖L2 , M). (2.12)
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We also get that for all ψ ∈ H1(�)

‖∂tμ
n+1‖H−1∗ = sup

‖ψ‖H1≤1
|〈∂tμ

n+1, ψ〉|

≤ sup
‖ψ‖H1≤1

∣∣∣
〈
P[μn]μn+1 + f μn+1 + σ∇μn+1,∇ψ

〉∣∣∣

≤ (‖P[μn]‖L∞ + ‖ f ‖L∞
) ‖μn+1‖L2 + σ‖∇μn+1‖L2 .

Thus we obtain ∂tμ
n+1 ∈ L2(0, T ; H−1∗ (�)) due to (2.11) and (2.12). This concludes

μn ∈ V for all n ≥ 2. Note that this also impliesμn ∈ C([0, T ]; L2(�)) for all n ≥ 2.
Indeed, we have

max
0≤t≤T

‖μn(t)‖L2 ≤ C
(
‖μn‖L2(0,T ;H1) + ‖∂tμ

n‖L2(0,T ;H−1∗ )

)
for all n ≥ 2,

where C only depends on T . Then, by Aubin–Lions lemma, there exist a subsequence
μnk and a function μ ∈ L2(�T ) such that

μnk → μ in L2(�T ) as k → ∞. (2.13)

We next show that the above limiting function μ solves Eq. (2.9) in the sense of
Definition 2.3. For this, it suffices to take into account the interaction term P[μ]μ
since the other terms are linear with respect to μ. Using the linearity of the functional
P together with (2.11) and the following fact

‖P[ f ]‖L∞ ≤ diam(�)‖P‖L∞
√|�|‖ f ‖L2 ,

we get

∫ T

0

∫
�

∣∣μnk+1P[μnk ] − μP[μ]∣∣2 dxdt

≤ 2
∫ T

0

∫
�

∣∣μnk+1 − μ
∣∣2 |P[μnk ]|2 dxdt + 2

∫ T

0

∫
�

μ2|P[μnk − μ]|2 dxdt

≤ C0

∫ T

0

∫
�

∣∣μnk+1 − μ
∣∣2 + ∣∣μnk − μ

∣∣2 dxdt → 0 as k → ∞, (2.14)

where C0 > 0 is given by

C0 := 2 diam(�)2‖P‖2L∞
(
‖μ0‖2L1 + |�|‖μ‖2L∞(0,T ;L2)

)
.

Hence we have that the limiting function μ satisfies

∫ T

0

∫
�

μ∂tϕ + (P[μ]μ + f μ − σ∇μ) · ∇ϕ dxdt = 0.
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Uniqueness.- Letμi , i = 1, 2 be two solutions to Eq. (2.9) with initial dataμi (0) ∈
L2(�). Then, by using the similar estimate as in (2.14), we find

1

2

d

dt

∫
�

|μ1 − μ2|2 dx + σ

∫
�

|∇(μ1 − μ2)|2 dx

=
∫

�

∇(μ1 − μ2) · (P[μ1 − μ2]μ1 + P[μ2](μ1 − μ2) + f (μ1 − μ2)) dx

≤ ε

∫
�

|∇(μ1 − μ2)|2 dx + Cε

(
1 + ‖ f ‖2L∞

) ∫
�

|μ1 − μ2|2 dx,

where Cε depends only on �, ε, ‖μ1‖L∞(0,T ;L2), and ‖μ2(0)‖L1 . Finally, we apply
the Gronwall’s inequality to the above differential inequality to get

‖μ1 − μ2‖2L∞(0,T ;L2)
+ ‖∇(μ1 − μ2)‖2L2(0,T ;L2)

≤ C1‖μ1(0) − μ2(0)‖2L2

where C1 depends only on T, σ, ‖μ2(0)‖L2 , M,�, and ‖μ1‖L∞(0,T ;L2). This com-
pletes the proof. ��
Theorem 2.5 For a given T, M > 0, let us assume μ0 ∈ L2(�). Furthermore, we
assume that P ∈ L∞(�2) and � satisfies that for all R > 0

W 1,∞(�, B(0, R)) ≤ C R,

for some C > 0. Then there exist f ∞ ∈ QM and the corresponding density μ∞
solving the optimal control problem (2.8)–(2.9).

Proof For f ∈ QM , by Theorem 2.4, there exists a weak solution μ in the sense of
Definition 2.3. Note that 0 ∈ QM and

J (μ0, 0) = 1

2

∫ T

0

∫
�

|x − x̄ |2μ(x, t) dxdt ≤ C(T,�)‖μ0‖L1(�) ≤ C,

where μ0 is a weak solution of Eq. (2.9) with f = 0. Since J (μ, f ) ≥ 0 for all
(μ, f ) ∈ V × QM , there exist a sequence ( f j ) j∈N ∈ QM and the corresponding
density (μ j ) j∈N ∈ V solving (2.9) such that

lim
j→∞ J (μ j , f j ) = inf

f ∈QM
J (μ, f ).

On the other hand, since (μ j , f j ) j∈N ∈ V × QM , by Banach–Alaoglu theorem,
there exist a subsequence (μ jk , f jk ) ∈ V × QM and (μ∞, f ∞) ∈ V × QM such that

μ jk → μ∞ in L2(�T ) and f jk ∗
⇀ f ∞ in L2(0, T ; L∞(�)). (2.15)

We next show that (μ∞, f ∞) is a solution to (2.9). Since the term involving P[μ]
can be easily handled by using the similar estimate to (2.14) and the above strong
convergence (2.15), it is enough to show that
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Ik :=
∫ T

0

∫
�

(
f jk μ jk − f ∞μ∞)φ dxdt → 0 as k → ∞,

for φ ∈ L2(0, T ; H1(�)). For this, we decompose Ik into two parts as

Ik =
∫ T

0

∫
�

( f jk − f ∞)μ jk φ dxdt +
∫ T

0

∫
�

(μ jk − μ∞) f ∞φ dxdt =: I 1k + I 2k .

Since

L2(0, T ; L∞(�)) =
(

L2(0, T ; L1(�))
)′

and μ jk φ ∈ L2(0, T ; L1(�)),

it is clear from (2.15) that I 1k → 0 as k → ∞. For the convergence of I 2k , we get

I 2k ≤
∫ T

0
‖ f ∞‖L∞‖μ jk − μ∞‖L2‖φ‖L2 dt

≤ ‖φ‖L∞(0,T ;L2)‖ f ∞‖L2(0,T ;L∞)‖μ jk − μ∞‖L2(0,T ;L2) → 0 as k → ∞.

Thus we conclude that (μ∞, f ∞) is a solution to (2.9). Furthermore, we obtain

∫ T

0

∫
�

|x − x̄ |2μ jk dxdt →
∫ T

0

∫
�

|x − x̄ |2μ∞ dxdt as k → ∞,

due to |�| < ∞. We also find

lim
k→∞

∫ T

0

∫
�

�( f jk )μ jk dxdt ≥
∫ T

0

∫
�

�( f ∞)μ∞ dxdt. (2.16)

More precisely, we estimate

∫ T

0

∫
�

(
�( f jk )μ jk − �( f ∞)μ∞) dxdt

=
∫ T

0

∫
�

(
�( f jk ) − �( f ∞)

)
μ jk + �( f ∞)

(
μ jk − μ∞) dxdt

≥
∫ T

0

∫
�

∇�( f ∞) · ( f jk − f ∞)μ jk dxdt +
∫ T

0

∫
�

�( f ∞)
(
μ jk − μ∞) dxdt

=: J 1
k + J 2

k ,

where we used the convexity of � and the positivity of μ jk . We then claim that
limk→∞ J 1

k ≥ 0 and limk→∞ J 2
k ≥ 0, and for this, we show that

∇�( f ∞) · f jk μ jk ∗
⇀ ∇�( f ∞) · f ∞μ jk

and �( f ∞)μ jk ∗
⇀ �( f ∞)μ∞ inM(�T ) as k → ∞.
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For φ ∈ Cc(�T ), we get

∫ T

0

∫
�

�( f ∞)(μ jk − μ∞)φ dxdt ≤ C‖φ‖L∞(�T )

∫ T

0
‖ f ∞‖L∞‖μ jk − μ∞‖L2 dt

≤ M‖φ‖L∞(�T )‖μ jk − μ∞‖L2(�T ),

thus J 2
k → 0 as k → ∞. Similarly as before, for the estimate of J 1

k , we use the
fact that ∇�( f ∞) μ jk φ ∈ L2(0, T ; L1(�)) uniformly in k and (L2(0, T ; L1))′ =
L2(0, T ; L∞) to obtain J 1

k → 0 as k → ∞. Then, this and together with de la
Vallée–Poussin’s theorem, provides the semicontinuity (2.16). This yields

lim inf
k→∞ J (μ jk , f jk ) ≥ J (μ∞, f ∞).

Hence we conclude

inf
f ∈QM

J (μ, f ) = lim
j→∞ J (μ j , f j ) = lim inf

k→∞ J (μ jk , f jk ) ≥ J (μ∞, f ∞). ��

3 First Order Optimality Conditions

In this section, we derive first order optimality conditions for the mean field optimal
control problem studied in Sect. 2:

∂tμ + ∇ · ((P[μ] + f )μ) = σ�μ, x ∈ �, t > 0, (3.1)

where the control f is the solution of theminimization of the following cost functional:

J (μ, f ) =
∫ T

0

(
1

2

∫
�

|x − x̄ |2μ(x, t) dx + γ

∫
�

�( f )μ(x, t) dx

)
dt. (3.2)

3.1 Formal Derivation of the Optimality Conditions

Let us first write the Lagrangian of the mean field optimal control defined by (3.1) and
(3.2), as follows

L(μ,ψ, f ) =
∫ T

0

(
1

2

∫
�

|x − x̄ |2μ(x, t) dx + γ

∫
�

�( f )μ(x, t) dx

)
dt

−
∫ T

0

[∫
�

ψ(x, t) (∂tμ(x, t) + ∇ · (P[μ(x, t)]
+ f (x, t))μ(x, t)) − σ�μ(x, t)) dx] dt. (3.3)
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Integrating by parts and taking the terminal data ψ(x, T ) = 0, we get

L(μ,ψ, f ) =
∫ T

0

(
1

2

∫
�

|x − x̄ |2μ dx + γ

∫
�

�( f )μ dx

)
dt

+
∫

�

ψ(x, 0)μ(x, 0) dx +
∫ T

0

∫
�

∂tψ μ dxdt

+
∫ T

0

∫
�

∇ψ · (P[μ]μ) dxdt

+
∫ T

0

∫
�

∇ψ · ( f μ) dxdt + σ

∫ T

0

∫
�

μ�ψ dxdt, (3.4)

where we omit the dependency on (x, t) where not necessary. We compute the func-
tional derivatives of the Lagrangian with respect to the state functionμ and the control
f ,

δL
δ f

= γ∇�( f )μ+∇ψ μ = (γ∇�( f )+∇ψ)μ, (3.5)

δL
δμ

= 1

2
|x − x̄ |2 + γ�( f ) + ∂tψ + ∇ψ · f + σ�ψ

+
∫

�

(P(x, y)∇ψ(x, t) − P(y, x)∇ψ(y, t)) · (y − x)μ(y, t) dy. (3.6)

Let (μ∗, ψ∗, f ∗) be the solution to the optimal control problem. Then we have

δL
δ f

∣∣∣
(μ,ψ, f )=(μ∗,ψ∗, f ∗)

= 0 and
δL
δμ

∣∣∣
(μ,ψ, f )=(μ∗,ψ∗, f ∗)

= 0.

This yields from (3.5) that

γ∇�( f ∗) = −∇ψ∗ on the support of μ∗. (3.7)

We also find from (3.6) that ψ∗ satisfies

∂tψ
∗ + 1

2
|x − x̄ |2 + γ�( f ∗) + ∇ψ∗ · f ∗ + σ�ψ∗

+
∫

�

(
P(x, y)∇ψ∗(x, t) − P(y, x)∇ψ∗(y, t)

) · (y − x)μ∗(y, t) dy = 0,

or equivalently

∂tψ
∗ + 1

2
|x − x̄ |2 + γ

(
�( f ∗)−∇�( f ∗) · f ∗)+ σ�ψ∗

+
∫

�

(
P(x, y)∇ψ∗(x, t) − P(y, x)∇ψ∗(y, t)

) · (y − x)μ∗(y, t) dy = 0,

(3.8)
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due to (3.7), where μ∗ satisfies

∂tμ
∗ + ∇ · ((P[μ∗] + f ∗)μ∗) = σ�μ∗ with ∇�( f ∗) = − 1

γ
∇ψ∗.

3.2 Rigorous Derivation of the Optimality Conditions

The first order optimality conditions (3.10) are of utmost relevance as they are often
used for the numerical computation of mean field optimal controls and we show how
to proceed for that in Sect. 5. Although they are very often formally derived, as we do
above, and used in several contributions, see, e.g. [15], as a relatively straightforward
consequence of the Lagrangemultiplier theorem, we feel that presenting their rigorous
derivation can be useful for a reader not familiar with such derivations. Moreover, by
doing so, we highlight more precisely certain technical difficulties and aspects, which
one may in fact encounter along the process, and are often left to a certain extent as
for granted. Let us recall then the Lagrange multiplier theorem in Banach spaces.

Let X and Y be Banach spaces, and let a functional J : U (x∗) ⊆ X → R

and a mapping G : U (x∗) ⊆ X → Y be continuously differentiable on an open
neighbourhood of x∗. Consider the following optimal problem:

J (x) → inf, G(x) = 0. (3.9)

Then we recall the following first order optimality condition whose proof can be found
in [86, Sect. 4.14].

Theorem 3.1 Let x∗ be a solution to the problem (3.9), and let the range of the
operator G ′(x∗) : X → Y be closed. Then there exists a nonzero pair (λ, p) ∈ R×Y ′
such that

L′
x (x∗, λ, p)(x) = 0 for all x ∈ X,

where

L(x, λ, p) = λJ (x) + G(x)(p).

Moreover, if Im G ′(x∗) = Y , then λ �= 0 in the above, thus we can assume that λ = 1.

In order to apply the above theorem, we set

X = V × L2(�T ), Y = L2(0, T ; H−1(�)),

J (μ, f ) =
∫ T

0

(
1

2

∫
�

|x − x̄ |2μ(x, t) dx + γ

∫
�

�( f )μ(x, t) dx

)
dt,

and

G(μ, f )(ψ) = −
∫ T

0

∫
�

∂tψ μ dxdt +
∫ T

0

∫
�

∇ψ · (P[μ]μ) dxdt
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+
∫ T

0

∫
�

∇ψ · ( f μ) dxdt − σ

∫ T

0

∫
�

∇μ · ∇ψ dxdt,

for ψ ∈ Y ′ = L2(0, T ; H1
0 (�)). Then straightforward computations yield

G ′
μ(μ, f )(ν, ψ) = −

∫ T

0

∫
�

∂tψ ν dxdt

+
∫ T

0

∫
�

∇ψ · (P[ν]μ + P[μ]ν + f ν) dxdt

− σ

∫ T

0

∫
�

∇ν · ∇ψ dxdt,

for (ν, ψ) ∈ V × Y ′, and

G ′
f (μ, f )(g, ψ) =

∫ T

0

∫
�

∇ψ · (gμ) dxdt for (g, ψ) ∈ QM × V ′.

Note that the interaction termson the right hand side of the equality forG ′
μ(μ, f )(ν, ψ)

can be rewritten as

∫ T

0

∫
�

∇ψ · (P[ν]μ + P[μ]ν)dxdt

=
∫ T

0

∫
�2

∇ψ(x)P(x, y) · (y − x)(ν(y)μ(x) + μ(y)ν(x)) dxdydt

= −
∫ T

0

∫
�2

∇ψ(y)P(y, x) · (y − x)(ν(y)μ(x) + μ(y)ν(x)) dxdydt

= 1

2

∫ T

0

∫
�2

(P(x, y)∇ψ(x) − P(y, x)∇ψ(y))

·(y − x) (ν(x)μ(y) + μ(x)ν(y)) dxdydt.

Wenowpresent ourmain result on the first order optimality condition in the theorem
below.

Theorem 3.2 Let (μ∗, f ∗) ∈ V × QM be a solution to the problem (3.1)–(3.2).
Suppose that there exists a μ� > 0 such that μ∗ ≥ μ� for all (x, t) ∈ �T . Then there
exists ψ∗ ∈ Y ′ such that

G ′
μ(μ∗, f ∗)(ν, ψ∗) = J ′

μ(μ∗, f ∗)(ν), for all ν ∈ V,

G ′
f (μ

∗, f ∗)(g, ψ∗) = J ′
f (μ

∗, f ∗)(g), for all g ∈ L2(�T ). (3.10)

Before presenting the proof of the first order optimality conditions (3.10), let us
comment the positivity principle on the existence of μ� > 0 such that μ∗ ≥ μ� for
all (x, t) ∈ �T . If we assume that μ0, f, P ∈ C2 and μ0 is bounded from below by
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a positive constant, then by Feynman–Kac formula, we can show that μ is bounded
from below by some positive constant until the fixed time T . However, we a priori
assume it to avoid any further stronger regularity assumption for the control f . Later,
we will verify this property numerically in Sect. 5.

Proof For the proof, we show that linear operators G ′
μ(μ∗, f ∗) : V → Y and

G ′
f (μ

∗, f ∗) : L2(�T ) (⊇ QM ) → Y are surjective. Then, by Theorem 3.1, we con-
clude our desired results.

Surjectivity of G ′
μ(μ∗, f ∗). Let (μ∗, f ∗) ∈ V × QM be a solution to (3.1)–(3.2).

We want to show that for any η ∈ Y there exists a ν ∈ V such that

G ′
μ(μ∗, f ∗)(ν) = η, i.e., G ′

μ(μ∗, f ∗)(ν, ψ) = η(ψ) for all ψ ∈ Y ′.

Note that finding the above equality is equivalent to show that for given (μ∗, f ∗, η) ∈
V × QM × Y , there exists a solution ν ∈ V to the Cauchy problem:

∂tν + ∇ · (P[ν]μ∗ + P[μ∗]ν + f ∗ν
) = σ�ν − η, x ∈ �, t > 0, (3.11)

with the initial data ν0 ∈ L2(�) and the boundary condition:

〈
σ∇ν − P[ν]μ∗ − (

P[μ∗] + f ∗) ν, n(x)
〉 = 0, (x, t) ∈ ∂� × R+.

We notice that (3.11) is linear parabolic equation of ν. Thus the existence of ν ∈ V
is enough to show the following a priori estimates which are very similar to that in the
proof of Theorem 2.4:

1

2

d

dt
‖ν‖2L2 + σ‖∇ν‖2L2

≤ ‖∇ν‖L2
(‖P[ν]μ∗‖L2 + ‖P[μ∗]ν‖L2 + ‖ f ∗ν‖L2

)+ ‖η‖H−1‖ν‖H1

≤ σ

2
‖∇ν‖2L2 + C

(
‖P[ν]‖2L∞‖μ∗‖2L2 +

(
‖P[μ∗]‖2L∞ + ‖ f ∗‖2L∞

)
‖ν‖2L2

)

+‖η‖2H−1 + ‖ν‖2L2

≤ σ

2
‖∇ν‖2L2 + C

(
‖μ∗‖2L2 + ‖ f ∗‖2L∞ + 1

)
‖ν‖2L2 + ‖η‖2H−1 ,

‖∂tν‖H−1 ≤ ‖P[ν]‖L∞‖μ∗‖L2 + (‖P[μ∗]‖L∞ + ‖ f ∗‖L∞
) ‖ν‖L2

+σ‖∇ν‖L2 + ‖η‖H−1

�
(‖μ∗‖L2 + ‖ f ∗‖L∞

) ‖ν‖L2 + σ‖∇ν‖L2 + ‖η‖H−1 .

Here we used

‖P[ν]‖L∞ ≤ diam(�)
√|�|‖P‖L∞‖ν‖L2 ,

and similarly

‖P[μ∗]‖L∞ ≤ diam(�)
√|�|‖P‖L∞‖μ∗‖L2 .
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This yields

‖ν(·, t)‖2L2 +
∫ t

0
‖∇ν(·, s)‖2L2ds

≤
(
‖ν0‖2L2 + ‖η‖2L2(0,T ;H−1)

)
exp

(
C
∫ T

0

(
‖μ∗(·, s)‖2L2 + ‖ f ∗(·, s)‖2L∞ + 1

)
ds

)

and

‖∂tν‖L2(0,T ;H−1) � ‖ν‖L∞(0,T ;L2)

(‖μ∗‖L2(�T ) + ‖ f ∗‖L2(0,T ;L∞)

)

+ σ‖∇ν‖L2(�T ) + ‖η‖L2(0,T ;H−1).

Surjectivity of G ′
f (μ

∗, f ∗). For ξ ∈ Y , we first consider the following weak
formulation of Poisson equation:

∫ t

0

∫
�

∇ψ · ∇u dxds =
∫ t

0

∫
�

ξψ dxds, for any ψ ∈ H1
0 (�), (3.12)

where we already took account the space–time decomposition of the test function.
Note that solving Eq. (3.12) is equivalent to finding u ∈ L2(0, T ; H1

0 (�)) such that

a(u, v) = ( f, v) for all L2(0, T ; H1
0 (�)),

with

a(u, v) := (∇u,∇v) =
∫ T

0

∫
�

∇u · ∇v dxdt,

and (·, ·) is the inner product in L2(�T ). Due to Poincaré inequality, we find that
a(·, ·) is an inner product on L2(0, T ; H1

0 (�)) with the induced norm:

‖v‖2
L2(0,T ;H1

0 )
= a(v, v).

Define

F(v) :=
∫ T

0

∫
�

f v dxdt for v ∈ L2(0, T ; H1
0 (�)).

Then this functional is continuouson L2(0, T ; H1
0 (�)) since |F(v)| ≤ ‖ f ‖L2(0,T ;H−1)

‖v‖L2(0,T ;H1
0 ). Thus, by Riesz representation theorem, there exists a unique u ∈

L2(0, T ; H1
0 (�)) solving Eq. (3.12).

We now get back to our original problem. Our goal was to show that for given
μ∗ ∈ V and ξ ∈ Y , there exists a function g ∈ L2(�T ) such that

∫ T

0

∫
�

∇ψ · (gμ∗) dxdt =
∫ T

0

∫
�

ξ ψ dxdt for any ψ ∈ Y ′.
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Then we now construct the solution g to the above equation by

gμ∗ = ∇u, i.e., g = ∇u

μ∗ on the support of μ∗,

where the existence of u ∈ L2(0, T ; H1
0 (�)) was guaranteed in the beginning of the

proof. Moreover, by the assumption μ∗(x, t) > μ� > 0 in � × [0, T ], we have

∫ T

0

∫
�

|g(x, t)|2 dxdt =
∫ T

0

∫
�

∣∣∣∣
∇u(x, t)

μ∗(x, t)

∣∣∣∣
2

dxdt

≤ 1

μ2
�

∫ T

0

∫
�

|∇u(x, t)|2 dxdt < ∞,

due to u ∈ L2(0, T ; H1
0 (�)). This completes the proof. ��

4 Hierarchy of Controls via Boltzmann Equation

For large values of N , the solution of finite horizon control problems of the type
(1.2)–(1.3) through standard methods stumble upon prohibitive computational costs,
due to the nonlinear constraints and the lack of convexity in the cost. Although mean
field optimal controls (1.4)–(1.6) are designed to be independent of the number N of
agents to provide a way to circumvent the course of dimensionality of N → ∞, still
their numerical computation needs to be realized by solving the first-order optimality
conditions. The complexity of their solution depends on the intrinsic dimensionality
d of the agents, which is affordable only at moderate dimensions (e.g., d ≤ 3). In
order to tackle these difficulties, we introduce a novel reduced setting, by introducing
a binary dynamics whose evolution can be described by means of a Boltzmann-type
equation, [3,69]. Hence we will show that this description, under a proper scaling
[80,83], converges to the mean field equation (1.4), [6,36,80]. This type of approach
allows to embed the control dynamics into two different ways:

(i) we can assume the control f to be a given function, possibly obtained from the
solution of the optimal control problem (1.2)–(1.3);

(ii) alternatively, the control is obtained as a solution of the reduced optimal control
problem associated to the dynamics of two single agents. We refer to this approach
as binary control.

Similar ideas have been used in a control context in [5–7,45,49]. We devote the
forthcoming sections to show different strategies to derive such binary controls. Thus
we want to approach the mean field optimal control problem (1.2)–(1.3) as the last
step of a control hierarchy, starting from an instantaneous control strategy and going
towards a binary Hamilton–Jacobi–Bellmann control.
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4.1 Binary Controlled Dynamics

We consider the discrete controlled system (1.2)–(1.3) in the simplified case of only
two interacting agents (xi (t), x j (t)) and in absence of noise, i.e. σ = 0. Hence, by
defining the sample time �t such that tm = m�t , so that 0 = t0 < · · · < tm < · · · <

tM = T and introducing a forward Euler discretization, we write (1.2) as follows

xm+1
i = xm

i + �t
2 P(xm

i , xm
j )(xm

j − xm
i ) + �tum

i ,

xm+1
j = xm

j + �t
2 P(xm

j , xm
i )(xm

i − xm
j ) + �tum

j , (4.1)

where from now on we denote the control pair u := (ui , u j ) associated to the state
variable x := (xi , x j ), and having used the compact notation for xm

i = xi (tm), um
i =

ui (tm).
The discretized form for the functional (1.3) for the binary dynamics (4.1) reads

JM (x, u) :=
M−1∑
m=0

∫ tm+1

tm
L (x(t), u(t)) dt, (4.2)

where the stage cost is given by

L(x, u) = 1

2

(
|xi − x̄ |2 + |x j − x̄ |2

)
+ γ

(
�(ui ) + �(u j )

)
. (4.3)

In the following we propose two alternative methods in order to characterize ui , u j

as (sub-)optimal feedback controller. In both cases, we will consider the controlled
dynamics in the deterministic case. Nonetheless, we will show in Sect. 5.3 that such
controls are robust with respect to the presence of noise, (σ > 0) and they shall be
employed in the corresponding stochastic setting as well.

4.1.1 Instantaneous Control

A first approach towards obtaining a low complexity computational realization of the
solution of the optimal control problem (4.1)–(4.2) is the so-called model predictive
control (MPC). This strategy furnishes a suboptimal control by an iterative solution
over a sequence of finite time steps, representing the predictive horizon [6,8,64]. Since
we are only interested in instantaneous control strategies, we limit the MPC method
to a single time prediction horizon, therefore we reduce the original optimization into
the minimization on every time interval [tm, tm+1] of the following functional

J�t (xm, um) = �t L(x(tm+1), u(tm)) = �t

(
1

2

(
|xm+1

i − x̄ |2 + |xm+1
j − x̄ |2

)

+ γ
(
�(um

i ) + �(um
j )
))

. (4.4)
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Note that from (4.1) we have that xm+1 depends linearly on um , thus

U m
i j := U (xi , x j , tm) = argmin

um
J�t (xm, um)

can be directly computed from the following system

�t2U m
i j + 2γ∇ui �(U m

i j ) + �t (xm
i − x̄) + �t2

2
P(xm

i , xm
j )(xm

j − xm
i ) = 0,

�t2U m
ji + 2γ∇u j �(U m

ji ) + �t (xm
j − x̄) + �t2

2
P(xm

j , xm
i )(xm

i − xm
j ) = 0.

(4.5)

In the case of a quadratic penalization of the control, i.e. �(c) := |c|2/2, we can
furnish the following explicit expression for the minimizers

U m
i j = �t

2γ + �t2

(
(x̄ − xm

i ) − �t

2
P(xm

i , xm
j )(xm

j − xm
i )

)
,

U m
ji = �t

2γ + �t2

(
(x̄ − xm

j ) − �t

2
P(xm

j , xm
i )(xm

i − xm
j )

)
, (4.6)

hence (4.5) gives a feedback control for the full binary dynamics, which can be plugged
as an instantaneous control into (4.1).

Remark 4.1 Note that the instantaneous control (4.6) embedded into the discretized
dynamics (4.1), is of order o(�t). To obtain an effective contribution of the control in
the dynamics we will assume that the penalization parameter γ scales with the time
discretization, in this way the leading order is recovered, [6,8], e.g. for γ = �t γ̄ we
have

U m
i j = 1

2γ̄ + �t

(
(x̄ − xm

i ) − �t

2
P(xm

i , xm
j )(xm

j − xm
i )

)
. (4.7)

4.1.2 Finite Horizon Optimal Control

The instantaneous feedback control derived in the previous section is the optimal
control action for the binary systemwith a single step prediction horizon.An improved,
yet more complex optimal feedback synthesis can be performed by considering an
extended finite horizon control problem. Let us define the value function associated
to the finite horizon discrete cost (4.2) as

V (xi , x j , tm) := inf
u∈U

M−1∑
k=m

�t L(xi (tk), x j (tk), u(tk)), for m = 0, . . . , M − 1,

(4.8)
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with terminal condition V (xi , x j , tM ) = 0. It is well-known that the application of the
Dynamic Programming Principle [13] with the discrete time dynamics (4.1) charac-
terizes the value function as the solution of the following recursive Bellman equation

V (xi , x j , tM ) = 0,

V (xi , x j , tm) = inf
u∈U

{
�t L(xi , x j , u) + V (x + �t (F(xi , x j ) + u), tm+1)

}
,

m = M − 1, . . . , 0, (4.9)

where x = (xi , x j ),u = (ui , u j ), and F(xi , x j ) := (P(xi , x j )(x j−xi ), P(xi , x j )(x j−
xi )). Once this functional relation has been solved, for every time step the optimal
control is recovered from the optimality condition as follows

U (xi , x j , tm) = argmin
u∈U

{
�t L(xi , x j , u) + V (x + �t (F(xi , x j ) + u), tm+1)

}
.

(4.10)
As in the expression (4.5), this optimal control is also in feedback form, depending
not only on the current states of binary system (xi , x j ), but also on the discrete time
variable tm .

Remark 4.2 The system (4.9) is a first-order approximation of the Hamilton–Jacobi–
Bellman equation

∂t V (x, t) + inf
u∈U

{L(x, u) + ∇V (x, t) · [F(x) + u]} = 0, (4.11)

related to the continuous time optimal control problem. In fact, this latter equation
corresponds to the adjoint (3.6) when the nonlocal integral terms are neglected, and
therefore this approach although optimal for the binary system, cannot be expected
to satisfy the optimality system (3.5)–(3.6) related to the mean field optimal control
problem.

4.2 Boltzmann Description

We introduce now a Boltzmann framework in order to describe the statistical evolution
of a system of agents ruled by binary interactions, [8,69].

Let μ(x, t) denote the kinetic density of agents in position x ∈ � at time t ≥ 0,
such that the total mass is normalized

ρ(t) =
∫

�

μ(x, t) dx = 1,

and the time evolution of the density μ is given as a balance between the bilinear gain
and loss of the agents positiondue to the binary interaction. In a general formulation,we
assume that two agents have positions x, y ∈ � and modify their positions according
to the following rule

x∗ = x + αP(x, y)(y − x) + αUα(x, y, t) + √
2αξ,
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y∗ = y + αP(y, x)(x − y) + αUα(y, x, t) + √
2αζ, (4.12)

where (x∗, y∗) are the post-interaction positions, the parameter α measures the influ-
ence strength of the different terms, (ξ, ζ ) is a vector of i.i.d. random variables with a
symmetric distribution �(·) with zero mean and variance σ , and Uα(x, y, t) indicates
the forcing term due to the control dynamics.

We consider now a kinetic model for the evolution of the density μ = μ(x, t) of
agents with x ∈ R

d at time t ≥ 0 and ruled by the following Boltzmann-type equation

∂tμ(x, t) = Qα(μ,μ)(x, t), (4.13)

where the interaction operator Qα(μ,μ) in (4.13), accounts the loss and gain of agents
in position x at time t , as follows

Qα(μ,μ)(x, t) = E

[∫
�

(
B∗

1

Jα

μ(x∗, t)μ(y∗, t) − Bμ(x, t)μ(y, t)

)
dy

]
,

(4.14)

where (x∗, y∗) are the pre-interaction positions that generate arrivals (x, y). The bilin-
ear operator Qα(·, ·) includes the expectation valuewith respect to ξ x and ξ y , whileJα

represents the Jacobian of the transformation (x, y) → (x∗, y∗), described by (4.12).
Here B∗ = B(x∗,y∗)→(x,y) and B = B(x,y)→(x∗,y∗) are the transition rate functions.
More into the details we take into account

B(x,y)→(x∗,y∗) = ηχ�(x∗)χ�(y∗),

as the functions with an interaction rate η > 0, and where χ� is the characteristic
function of the domain �. Note that in this case the transition functions depends on
the relative position, similarly to [80], as we introduced a bounded domain � into the
dynamics. A major simplification occurs in the case the bounded domain is preserved
by the binary interactions itself, therefore the transition is constant and the interaction
operator (4.14) reads

Qα(μ,μ)(x, t) = ηE

[∫
�

(
1

Jα

μ(x∗, t)μ(y∗, t) − μ(x, t)μ(y, t)

)
dy

]
. (4.15)

In [6,80] authors showed that in opinion dynamics binary interactions are able to
preserve the boundary, according to the choice of a small support of the symmetric
random variable ξ and introducing a suitable function D(x) acting as a local weight
on the noise in (4.12).

In the next section we will perform the analysis of this model in the simplified case
of � = R

d and constant rate of interaction η.

Remark 4.3 Note that the binary dynamics (4.12) is equivalent to theEuler–Maruyama
discretization for Eq. (1.2) in the two agents case
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xm+1
i = xm

i + �t
2 P(xm

i , xm
j )(xm

j − xm
i ) + �tU m

i j + √
2σ�Bm

i ,

xm+1
j = xm

j + �t
2 P(xm

j , xm
i )(xm

i − xm
j ) + �tU m

ji + √
2σ�Bm

j , (4.16)

where we impose that α = �t/2, αUα(xi , x j ) = �tU m
i j , and

√
2αξ = √

2σ�Bm
i

is a random variable normally distributed with zero mean value and variance �t , for
�Bm

i defined as the �Bm
i = Bi (tm+1) − Bi (tm).

4.2.1 The Quasi-Invariant Limit

We consider now the Boltzmann operator (4.15) in the case � = R
d , and in order

to obtain a more regular description we introduce the so-called quasi-invariant inter-
action limit, whose basic idea is considering a regime where interactions strength is
low and frequency is high. This technique, analogous to the grazing collision limit
in plasma physics, has been thoroughly studied in [83] and specifically for first order
models in [36,80], and allows to pass from Boltzmann equation (4.13) to a mean field
equation of the Fokker–Planck-type, [5,6]. In order to state the main result we start
fixing some notation and terminology.

Definition 4.1 (Multi-index) For any a ∈ N
d we set |a| = ∑d

i=1 ai , and for any
function h ∈ Cq(Rd × R

d ,R), with q ≥ 0 and any a ∈ N
d such that |a| ≤ q, we

define for every (x, v) ∈ R
d × R

d

∂a
x h(x) := ∂ |a|h

∂a1x1 . . . ∂ad x̄
(x),

with the convention that if a = (0, . . . , 0) then ∂a
x h(x) := h(x).

Definition 4.2 (Test functions) We denote by Tδ the set of compactly supported func-
tions ϕ from R

d to R such that for any multi-index a ∈ N
d we have,

1. if |a| < 2, then ∂a
x ϕ(·) is continuous for every x ∈ R

d ;
2. if |a| = 2, then there existsC > 0 such that, ∂a

x ϕ(·) is uniformlyHölder continuous
of order δ for every x ∈ R

d with Hölder bound C , that is for every x, y ∈ R
d

∥∥∂a
x ϕ(x) − ∂a

x ϕ(y)
∥∥ ≤ C ‖x − y‖δ ,

and ‖∂a
x ϕ(x)‖ ≤ C for every x ∈ R

d .

Definition 4.3 (δ-weak solution) Let T > 0, δ > 0, we call a δ-weak solution of the
initial value problem for Eq. (4.13), with initial datum μ0 = μ(x, 0) ∈ M0(R

d) in
the interval [0, T ], if μ ∈ L2([0, T ],M0(R

d)) such that, μ(x, 0) = μ0(x) for every
x ∈ R

d , and there exists RT > 0 such that supp(μ(t)) ⊂ BRT (0) for every t ∈ [0, T ]
and μ satisfies the weak form of Eq. (4.13), i.e.,

d

dt
〈μ, ϕ〉 = 〈Qα(μ,μ), ϕ〉 , (4.17)
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for all t ∈ (0, T ] and all ϕ ∈ Tδ , where

〈Qα(μ,μ), ϕ〉 = E

[∫
R2d

η
(
ϕ(x∗) − ϕ(x)

)
μ(x)μ(y) dx dy

]
. (4.18)

Moreover, we assume that

(a) the system (4.12) constitutes invertible changes of variables from (x, y) to
(x∗, y∗);

(b) there exists an integrable function K (x, y, t) such that the following limit is well
defined

lim
α→0

Uα(x, y, t) = K (x, y, t). (4.19)

In the case of instantaneous control of type (4.6), we can explicitly give an expres-
sion to the limit as K (x, y, t) = (x̄ − x)/γ .

We state the following theorem.

Theorem 4.4 Let us fix a control Uα ∈ U and α ≥ 0, and T > 0, δ > 0, ε > 0, and
assume that density � ∈ M2+δ(R

d) and the function P(·, ·) ∈ Lq
loc for q = 2, 2 + δ

and for every t ≥ 0. We consider a δ-weak solution μ of Eq. (4.13) with initial datum
μ0(x). Thus introducing the following scaling

α = ε, η = 1/ε, (4.20)

for the binary interaction (4.12) and defining by με(x, t) a solution for the scaled
equation (4.13), for ε → 0 με(x, t) converges pointwise, up to a subsequence, to
μ(x, t) where μ satisfies the following Fokker–Planck-type equation,

∂tμ + ∇ · ((P[μ] + K[μ])μ) = σ�μ, (4.21)

with initial data μ0(x) = μ(x, 0) and where P represents the interaction kernel (1.5)
and K is the control.

K[μ](x, t) =
∫
Rd

K (x, y, t)μ(y, t) dy. (4.22)

with K (x, y, t) defined as in (4.19).

Proof • Taylor approximation We consider the weak formulation of the Boltzmann
equation (4.17) and we expand ϕ(x∗) inside the operator (4.18) in Taylor series of
x∗ − x up to the second order, obtaining

〈Qα(μ,μ), ϕ〉 = T ϕ
1 + T ϕ

2 + Rϕ
1 , (4.23)
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where the first and second order terms are

T ϕ
1 := ηE

[ ∫
R2d

∇ϕ(x) · (x∗ − x
)
μ(x)μ(y) dxdy

]
, (4.24)

T ϕ
2 := η

2
E

⎡
⎣
∫
R2d

⎛
⎝

d∑
i, j=1

∂
(i, j)
x ϕ(x)

(
x∗ − x

)
i

(
x∗ − x

)
j

⎞
⎠μ(x)μ(y) dxdy

⎤
⎦ ,

(4.25)

and Rϕ
1 (ε) is the reminder of the Taylor expansion, with a form

Rϕ
1 := η

2
E

⎡
⎣
∫
R2d

⎛
⎝

d∑
i, j=1

(
∂

(i, j)
x ϕ(x) − ∂

(i, j)
x ϕ(x)

) (
x∗ − x

)
i

(
x∗ − x

)
j

⎞
⎠μ(x)μ(y) dxdy

⎤
⎦ ,

with x := (1 − θ)x∗ + θx , for some θ ∈ [0, 1]. By using the relation given by the
scaled interaction rule (4.12), i.e.

x∗ − x = αFα(x, y) + √
2αξ

where for the sake of brevity we denoted Fα(x, y) := P(x, y)(y − x) + Uα(x, y).
Note that from the hypothesis it follows that Fα ∈ Lq

loc. Thus we obtain

T ϕ
1 = ηE

[
α

∫
R2d

∇ϕ(x) ·
(

Fα(x, y) +√
2/α ξ

)
μ(x)μ(y) dxdy

]

= ηα

∫
R2d

∇ϕ(x) · Fα(x, y)μ(x)μ(y) dxdy

where the noise term, ξ is canceled out since it has zero mean. For the same reason in
the second order term T ϕ

2 all the mixed products between Fα and ξ vanish, the same
hold for all the crossing terms ξiξ j since ξi are supposed to be independent variables.
Hence the only contribution we have reads

T ϕ
2 = η

2
E

⎡
⎣
∫
R2d

α2

⎛
⎝

d∑
j=1

∂
( j, j)
x ϕ(x)

(
Fα(x, y) j

)2
⎞
⎠

+
⎛
⎝

d∑
j=1

∂
( j, j)
x ϕ(x)

(
2αξ2j

)⎞⎠μ(x)μ(y) dxdy

⎤
⎦

= ηα

∫
R2d

σ�ϕ(x)μ(x)μ(y) dxdy
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+ ηα2

2

∫
R2d

⎛
⎝

d∑
j=1

∂
( j, j)
x ϕ(x)

(
Fα(x, y) j

)2
⎞
⎠μ(x)μ(y) dxdy,

=: T ϕ
22 + Rϕ

2 .

• Quasi-invariant limit We now introduce the scaling (4.20), for which we can
substitute in the previous equations, ηα = 1 and ηα2 = ε, thus we have that terms
T ϕ
1 and T ϕ

22 represent the leading order and Rϕ(ε) := Rϕ
1 + Rϕ

2 a reminder, so we can
recast the scaled expression (4.23) as follows

∫
R2d

(∇ϕ · Fε(x, y) + σ�ϕ(x)) μ(x)μ(y) dxdy + Rϕ(ε). (4.26)

Let us now consider the limit ε → 0, assuming that for every ϕ ∈ Tδ

lim
ε→0

Rϕ(ε) = 0 (4.27)

holds true, we have thanks to (4.19) and (4.26) that the weak scaled Boltzman equation
(4.17) converges pointwise to the Fokker–Planck-type equation (4.21) as follows

d

dt
〈μ, ϕ〉 = 〈μ,∇ϕ · (P [μ] + K[μ]) + σ�ϕ〉 , (4.28)

where the operatorsP[μ] andK[μ] are defined in (1.5) and (4.22). Sinceϕ has compact
support, Eq. (4.28) can be revert in strong form by means of integration by parts, we
eventually obtain system (4.21).

•Estimates for the reminder In order to conclude theproof it is sufficient to show that
the limit (4.27) for Rϕ(ε) vanishes. From the definition of x it follows that ‖x − x‖ ≤
‖x∗ − x‖, then for every ϕ ∈ Tδ we have

∥∥∥∂(i, j)
x ϕ(x) − ∂

(i, j)
x ϕ(x)

∥∥∥ ≤ C ‖x − x‖δ ≤ C
∥∥x∗ − x

∥∥δ
.

Hence for Rϕ
1 we get

∥∥Rϕ
1

∥∥ ≤ C

2ε
E

[∫
R2d

∥∥x∗ − x
∥∥2+δ

μ(x)μ(y) dxdy

]

= C

2
ε1+δ

E

[∫
R2d

∥∥∥Fε(x, y) +√
2/ε ξ

∥∥∥2+δ

μ(x)μ(y) dxdy

]

from the inequality |a + b|2+δ ≤ 22+2δ(|a|2+δ + |b|2+δ) for some a, b we obtain

∥∥Rϕ
1

∥∥ ≤ 21+2δC(
ε1+δ

∫
R2d

‖Fε(x, y)‖2+δ μ(x)μ(y) dxdy + 21+δ/2εδ/2
E

[
‖ξ‖2+δ

])
.
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Analogous computation can be yield for Rϕ
2 forwhichwe have the following inequality

∥∥Rϕ
2

∥∥ ≤ εC

2

∫
R2d

‖Fε(x, y)‖2 μ(x)μ(y) dxdy.

Since Fε ∈ Lq
loc for q = 2, 2+δ and� ∈ M2+δ(R

d)we can conclude that for ε → 0
the limit (4.27) holds true. ��
Remark 4.4 Note that in the case Uα(x, y, t) = Uα(x, t), namely if the feedback
control depends only by the position x of the agents at time t , then the kernelK[μ](x, t)
reduces to K (x, t). This observation holds also if we consider a sampling from the
optimal control, i.e.Uα(x, y, t) = f (x, t), thusEq. (4.21) becomes exactly the original
equation (1.2).

5 Numerical Methods

In this section we are concerned with the development of numerical methods for the
mean field optimal control problem (1.2)–(1.3). First, we present direct simulation
Monte Carlo methods for the constrained Boltzmann-type model (4.13), and discuss
the implementation of the binary feedback controllers introduced in Sect. 4.1. Next,
we describe a sweeping algorithm based on the iterative solution of the optimality
system, (3.1)–(3.8).

5.1 Asymptotic Constrained Binary Algorithms

One of the most common approaches to solve Boltzmann-type equations is based on
Monte Carlo methods. For this, we consider the initial value problem given by Eq.
(4.13), in the grazing interaction regime (4.20), with initial dataμ(x, t = 0) = μ0(x),
as follows ⎧⎨

⎩
d

dt
μ(x, t) = 1

ε

[
Q+

ε (μ,μ)(x, t) − μ(x, t)
]
,

μ(x, 0) = μ0(x).
(5.1)

Here we have made explicit the dependence of the interaction operator Qε(·, ·) on the
frequency of interactions 1/ε, and decomposing it into its gain and loss parts according
to (4.15). With Q+

ε (·, ·) we denote the gain part, which accounts the density of agents
gained at position x after the binary interaction (4.12).

We tackle the Boltzmann-type equation (5.1) by means of a binary interaction
algorithm [3,69], where the basic idea is to solve the binary exchange of information
described by (4.12), under the grazing interaction scaling (4.20), in order to obtain
in the limit an approximate solution of the mean field equation (4.21). Note that the
consistency of this procedure is given by Theorem 4.4.

Let us now consider a time interval [0, T ] discretized in Mtot intervals of size �t .
We denote byμm the approximation ofμ(x, m�t), thus the first order forward scheme
of the scaled Boltzmann-type equation (5.1) reads
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μm+1 =
(
1 − �t

ε

)
μm + �t

ε
Q+

ε (μm, μm), (5.2)

where, since μm is a probability density, thanks to mass conservation, and also
Q+

ε (μm, μm) is a probability density. Under the restriction �t ≤ ε, μm+1 is a proba-
bility density, since it is a convex combination of probability densities.

From a Monte Carlo point of view, Eq. (5.2) can be interpreted as follows: an
individual with position x will not interact with other individuals with probability
1 − �t/ε and it will interact with others with probability �t/ε according to the
interaction law stated by Q+

ε (μm, μm). Note that, since we aim at small values of ε

and we have to fulfill the condition �t ≤ ε, the natural choice is to take �t = ε. At
every time step, this choice maximizes the number of interactions among the agents.

For the numerical treatment of the operator Q+
ε (μm, μm), we have to account that,

every interaction includes action of the feedback control. In the case of instantaneous
control this can be evaluated directly, for example in the case of quadratic functional
defining the scaling version of (4.7) as

Uε(x, y, t) = 1

γ + ε
((x̄ − x) + αP(x, y)(y − x)) .

On theother hand, the realizationof the optimal feedback controller in thefinite hori-
zon setting requires the numerical approximation of the Bellman equation (4.9). This
approximation is performed offline and only once, previous to the simulation of the
meanfieldmodel. For a state space ofmoderate dimension, such as in our binarymodel,
several numerical schemes for the approximation ofHamilton–Jacobbi–Bellman equa-
tions are available, and we refer the reader to [47, Chap. 8] for a comprehensive
description of the different available techniques. Since the binary model is already
introduced in discrete time, a natural choice is to solve eq. (4.9) by means of a sequen-
tial semi-Lagrangian scheme, following the same guidelines as in the recent works
[11,48,57]. Once the value function has been approximated, online feedback con-
trollers can be implemented through the evaluation of the optimality condition (4.10).

We report in Algorithm 1 a stochastic procedure to solve (5.2), based on Nanbu’s
method for plasma physics, [3,16].

Where function Iround(·) denotes the integer stochastic rounding defined as

Iround(x) =
{

[x] + 1, ζ < x − [x],
[x], elsewhere

with ζ a uniform [0, 1] random number and [·] the integer part.
Remark 5.1 (Efficency) In general, computing the interactions among a multi-agent
system is a procedure of quadratic cost with respect to the number of agents, since
every agent needs to evaluate its influencewith every other. Note thatwith the proposed
algorithm this cost becomes linear with respect to the number of samples introduced
O(Ns), since only binary interactions are accounted. A major difference compared to
standard algorithms for Boltzmann equations is the way inwhich particles are sampled
from Q+

ε (μm, μm) which does not require the introduction of a space grid [16].
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Algorithm 1 Asymptotic constrained binary algorithm
0. Pre-compute the feedback control Uε(x, y, t) on an appropriate discretized grid of the domain � ×

[0, T ].
1. Given Ns samples

{
x0k

}Ns

k=1
, from the initial distribution μ0(x);

for m = 0 to Mtot − 1

a. set Nc = Iround(Ns/2);
b. select Nc random pairs (i, j) uniformly without repetition among all possible pairs of individuals

at time level tm ;
c. evaluate P(xi , x j ), P(x j , xi ) and Uε(xi , x j , tm ), Uε(x j , xi , tm );
d. compute the post-interaction position x∗

i , x∗
j for each pair (i, j) using relations (4.12) and ξi , ξ j

sampled from a normal distribution N (0, σ );
e. set xn+1

i = x∗
i , xn+1

j = x∗
j .

end for

Remark 5.2 (Accuracy) The choice�t = ε is optimal if ε is of the order of O(Ns
−1/2).

Indeed, the accuracy of the method will not increase for smaller values of�t , because
the numerical error is dominated by the fluctuations of the Monte Carlo method. For
further details we refer to [3,69].

5.2 Numerical Approximation of the Optimality Conditions

As shown in Sect. 3, the solution of the mean field optimal control problem (3.1)–(3.2)
satisfies the optimality system

∂tμ = −∇ · ((P[μ] + f )μ) + σ�μ, (5.3)

−∂tψ = 1

2
|x − x̄ |2 + γ�( f ) + ∇ψ · f + σ�ψ

+
∫

�

(P(x, y)∇ψ(x, t) − P(y, x)∇ψ(y, t)) · (y − x)μ(y, t) dy, (5.4)

∇�( f ) = − 1

γ
∇ψ, μ(x, 0) = μ0(x), ψ(x, T ) = 0. (5.5)

5.2.1 Forward Equation

In order to solve Eq. (5.3), we consider a first order forward scheme the time evolution
and the Chang–Cooper scheme for the space discretization, [31]. The formulation is
based on the finite volume approximation of the densityμ and f . Defining the operator
G[μ, f ] := F[μ, f ] + σ∇μ, with F[μ, f ] = P[μ] + f , then we can write in the
one-dimensional domain [−L , L] the (semi)-discretized equation (5.3) as

d

dt
μi (t) = Gi+1/2[μ, f ] − Gi−1/2[μ, f ]

δx
, with μi (t) = 1

δx

∫ x+1/2

x−1/2
μ(x, t) dx,

(5.6)
where we have introduced the uniform grid xi = −L + iδx , i = 0, . . . , N , with
δx = 2L/N , and denoted by xi±1/2 = xi ± δx/2. Thus, the operator Gi+1/2[μ, f ] in
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the case of constant diffusion σ reads

Gi+1/2[μ, f ] = (
(1 − θi+1/2)μi+1 + θi+1/2μi

)
F[μi+1/2, fi+1/2] + σ(μi+1 − μi )

δx
,

(5.7)
where the weights θi+1/2 are in general depending on the solution and the parameters
of Eq. (5.3). Hence the flux functions are defined as a combination of upwind and
centered discretizations, and such that for σ = 0 the scheme reduces to an upwind
scheme, i.e. θi+1/2 = 0. The choice of the weights is the key point of the scheme
(5.6), which allows to preserve steady state solutions and the non-negativity of the
numerical density. We refer to [9,19,31] for the details on the properties and analysis
of the Chang–Cooper scheme for similar Fokker–Planck models and to [75], and
references therein, for applications to control problems.

Alternatively, scheme (5.2) furnishes a consistentmethod to solve the forward equa-
tion (5.3), which we expect to bemore efficient for problemswith high dimensionality,
since it relies on a stochastic evaluation of the nonlocal operator P[ f ].

5.2.2 Backward Equation

The main difficulty of the integro-differential advection-reaction-diffusion equation
(5.4) resides on the efficient approximation of the integral term. We follow a finite
difference approach, which we describe in the following. First, with time parameter
δt as in the forward problem, we consider the first-order temporal approximation

−ψm − ψm+1

δt
= 1

2
|x − x̄ |2 + γ�( f m+1)

+
(

f m+1+
∫

�

P(x, y) · (y − x)μm+1 dy

)
· ∇ψm+1

+ σ�ψm+1−
∫

�

(
P(y, x)∇yψ

m+1
)

· (y − x)μm+1 dy, m = 0, . . . , M

where ψ M = 0. At this level, f , μ, and ∇ψ are treated as external data available
at every discrete instance. In particular ∇y (inside the integral) is reconstructed by
numerical differentiation. Then, the integral terms are evaluated with a Monte Carlo
method generating Ms samples according to the distribution μ, and values of ∇yψ

are obtained by interpolation of the reconstructed variable. The advection term is
approximated with a space-dependent upwind scheme, and diffusion is approximated
with centered differences.

5.2.3 Optimality Condition and Sweeping Iteration

Once the forward–backward systemhas been discretized,what remains is to establish a
coupling procedure in order to find the solution of the optimality systemmatching both
initial and terminal conditions. For this, a first possibility is to consider the full space–
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time discretization of the forward–backward system, together with the optimality
condition ∇�( f ) = − 1

γ
∇ψ , and cast it as a large-scale set of nonlinear equations,

which can be solved via a Newton method. This idea has been already successfully
applied in the context of mean field games in [2]. We pursue a different approach
that has proven to be equally effective, developed in [26], where the authors apply a
sweeping algorithm, which in our setting reads as follows.

Algorithm 2 Sweeping algorithm
0. Given initial guess f0, tolerance tol, and i = 0

1. while ‖ fi − fi−1‖ ≤ tol

a. Perform a forward solve (5.3) with data fi for μi ;
b. Perform a backward solve (5.4) with data fi , μi , for ψi ;
c. Update through ∇�( fi+1) = − 1

γ ∇ψi ;
d. set i = i + 1.

end while

Our numerical experience is consistent with what has been already reported in
[26], in the sense that solutions satisfying the optimality system can be found after
few sweeps. Convergence of a similar sweeping iteration in the context of mean-
field games has been recently proven in [25]. An alternative approach is to follow a
gradient-type method, as in [20].

5.3 Numerical Experiments

In order to validate our previous analysis we focus on models for opinion dynamics,
[53,69,78,80], thus in the unidimensional case the state variable x ∈ [−L , L] rep-
resents the agent opinion with respect to two opposite opinions {−L ,+L}, and the
control f (x, t) can be interpreted as the strategy of a policy maker, [5,6].

Therefore we consider the following initial value problem

∂tμ + ∂x

((∫ +L

−L
P(x, y)(y − x)μ(y)dy + f

)
μ

)
= σ∂2x μ, μ(x, 0) = μ0(x)

(5.8)
with no-flux boundary conditions, and where f denotes the control term, solution of

f = argmin
g∈U

1

2

∫ T

0

∫ +L

−L

(
|x − x̄ |2 + γ g2

)
μ(x, t) dx dt, (5.9)

where we consider a quadratic penalization of the control, i.e. �(c) = |c|2/2.
For different interaction kernels P(·, ·), we will study the performance of the pro-

posed controllers f = f (x, t), obtained through the following synthesis procedures:
instantaneous control (IC), finite horizon (FH), and the sweeping algorithm (OC).

We report in Table 1 the choice of the algorithms and parameters, indicating for
which method they have been used to compute (5.8)–(5.9).
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Table 1 Parameters choice for the various algorithms and optimization methods

Algorithm Ns ε = δt δx Tol

IC/FH Alg 1 5 × 105 2.5 × 10−3 2.5 × 10−2 −
Uncontrolled/OC Alg 2 − 2.5 × 10−3 2.5 × 10−2 10−5

5.3.1 Test 1: Sznajd Model

We consider the Sznajd model, [10,78] for which the interaction operator P(·, ·) in
(5.8) is defined as follows

P(x, y) = β(1 − x2), (5.10)

for β a constant. Note that in this case the interaction kernel P(·, ·)models the propen-
sity of voters to change their opinions within the domain � = [−1, 1], and for values
close to the extremal opinions {−1, 1} the influence is low, conversely for opinions
close to zero the influence is high. The dynamics is such that for β > 0 concen-
tration of the density profile appears, whereas for β < 0 separation occurs, namely
concentration around x = 1 and x = −1, see [10].

For our first test we fix β = −1 and we define in the time interval [0, T ], T = 8.We
solve the control problem (5.8)–(5.9), with a bivariate initial data μ0(x) := �+(x +
0.75; 0.05, 0.5) + �+(x − 0.5; 0.15, 1), where �+(y; a, b) := max{−(y/b)2 + a, 0},
with diffusion coefficient σ = 0.01, and desired state x̄ = −0.5.

In Fig. 1 we depict the final state of (5.10) at time T = 8 for the uncontrolled and
controlled dynamics. The simulations show the concentration of the profiles around
the reference position x̄ in presence of the control, instead in the uncontrolled case
the density tends to concentrate around the boundary. The left-hand side figure refers
to a penalization of the control γ = 0.5, the right-hand side figure with γ = 0.05.
As expected, with smaller control penalizations, the final state is driven closer to the
desired reference.

Figure 2 illustrates the transient behavior of the density μ(x, t) and the control
f (x, t) in the [−1,+1] × [0, T ] frame, respectively for γ = 0.5 and γ = 0.05,
and we report the values of the cost function J (μ, f ) corresponding to the different
methods. Note that that the action of the instantaneous control is almost constant in
time steering the system toward x̄ but with the higher cost J (μ, f ), on the other hand
the optimal finite horizon for the binary dynamics (FH) produces a similar control
with respect to the optimal control obtained by the sweeping algorithm (OC), with a
small difference between the values of the cost functional.

5.3.2 Test 2: Hegselmann–Krause Model

In this second test we consider the mean field Hegselmann–Krause model [53], also
known as bounded confidence model, whose interaction kernel reads
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Fig. 1 Test #1: Final states at time T = 8 of the Sznajd model (5.10) for β = −1 with initial data μ0(x).
Concentration around the desired state x̄ is observed in presence of the controls: instantaneous control (IC),
finite horizon approach (FH), optimal control (OC), separation is observed in the uncontrolled setting. Left
figure γ = 0.5, right figure γ = 0.05

P(x, y) = χ{|x−y|≤κ}(y). (5.11)

This type of model describes the propensity of agents to interact only within a confi-
dence range K = [x − κ, x + κ] of their opinion x , in the present experiment we fix
κ = 0.15. Thus we study the evolution of the control problem (5.8)–(5.9) up to time
T = 20 with initial data defined as μ0(x) = C0(0.5 + ε(1 − x2)), for ε = 0.01 and
C0 such that the total density is a probability distribution. The diffusion coefficient is
σ = 10−5, the penalization parameter γ = 2.5, and the desired state x̄ = 0.

The uncontrolled evolution of this model shows the emergence of multiple clusters,
as it is shown in the top picture of Fig. 3, due to the small value of κ and small diffusion.
Figure 3 depicts the transient behavior of the density μ(x, t) and the control signal
f (x, t) in the frame � × [0, T ].
We observe in Fig. 3 that for the instantaneous control (IC), consensus is slowly

reached with a cost functional value of JI C (μ, f ) = 0.8807; the finite horizon control
(FH) and the solution of the optimality conditions (OC) are able to steer faster the
system towards x̄ , respectively with cost JF H (μ, f ) = 0.6079, and JOC = 0.5080.

These experiments are showing very clearly the hierarchy of the controls
(IC)→ (FH)→ (OC). In particular, it is evident the quasi-optimality of (FH), to the
extent that we can claim (FH)≈ (OC). The intuition is that (FH) is an optimal control
on the binary dynamics of two particles, and, through the Boltzmann collisional oper-
ator, its binary optimality is “smeared” over the entire population. However, we have
no quantitative method yet to assess such an approximation. In fact, as commented
in Remark 4.2, although the (FH) fulfills a Hamilton–Jacobi–Bellman equation, its
synthesis by means of (4.22) to control (4.21) unfortunately does not fulfill the back-
ward equation (5.4) of the optimality conditions, even not approximately: by testing
(4.22) within (5.4), there a few useful cancellations, but, because of lack of symmetry,
certain terms remains, whose magnitude is still hard to estimate. We expect that those
terms are actually not so large and this would somehow justify the quasi-optimality
of (FH). This issue remains an interesting open problem.
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Fig. 2 Test #1: Transient behavior of the density μ(x, t) and the control f (x, t) in [−L ,+L] × [0, T ],
with L = 1, T = 8, for the Sdnajz’s model, (5.8)–(5.10). The top picture depicts the transient density of
the unconstrained dynamics. Value of the cost functional are reported in correspondence of the choice of
the method and the penalization parameter γ
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Fig. 3 Test #2: Transient behavior of the densityμ(x, t) and the control f (x, t) in [−L ,+L]×[0, T ], with
L = 1, T = 20, for the Hegelmann–Krause’s model, (5.8)–(5.9). The top picture shows the emergence of
opinion clustering in the unconstraineddynamics.Value of the cost functional are reported in correspondence
of the choice of the method with penalization parameter γ = 2.5

6 Concluding Remarks

In this paper, we have presented a hierarchy of control designs formean field dynamics.
At the bottom of the hierarchy, we have introduced optimal feedback controls which
are derived for two-agentmodels, andwhich are subsequently realized at themeanfield
level through a Boltzmann approach. At the top of the hierarchy, one finds the mean
field optimal control problem and its correspondent optimality conditions. In both
cases, we presented a theoretical and numerical analysis of the proposed designs, as
well as computational implementations. From the numerical experiments presented
in the last section, we observe that although the numerical realization of the mean
field optimality system yields the best controller in terms of the cost functional value,
feedback controllers obtained for the binary system perform reasonably well, and
provide a much simpler control synthesis. We expect to further proceed along this
direction of research, in particular in relation to the computation of feedback controllers
via Dynamic Programming and Hamilton–Jacobi–Bellman equations for the binary
system, as it provides a versatile framework to address different control problems.
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