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1 Introduction

Piecewise deterministic Markov processes (PDMPs) were introduced in [2] and
[3] as a general family of continuous-time non-diffusion stochastic models, suit-
able for formulating many optimization problems in queuing and inventory systems,
maintenance-replacementmodels, andmany other areas of engineering and operations
research. PDMPs are determined by three local characteristics: the flow φ, the jump
rate λ, and the transitionmeasure Q. Starting from x , themotion of the process follows
the flow φ(x, t) until the first jump time T1, which occurs either spontaneously in a
Poisson-like fashion with rate λ or when the flow φ(x, t) hits the boundary of the state
space. In either case the location of the process at the jump time T1 is selected by
the transition measure Q(φ(x, T1), .) and the motion restarts from this new point as
before. As shown in [3], a suitable choice of the state space and the local characteris-
tics φ, λ, and Q provides stochastic models covering a great number of problems of
engineering and operations research (see, for instance, [3,4]).

Zero-sum stochastic dynamic games have been recently widely studied in the liter-
ature, in discrete as well as continuous time. Regarding the first case the evolution of
the process follows a discrete-time Markov process, and we can mention the book [6]
and the papers [7,10,15–17] as a sample of works dealing with the discrete-time case.
For these problems the admissible strategy of the players can be past-depend on the
previous states and actions, and the optimal equilibrium solution is usually obtained
from stochastic measurable selectors (thus depending only on the present state value)
that satisfy a min–max optimality equation. For the continuous-time case the defini-
tion of the admissible strategies depends on the model that it is considered. In the
so-called semi-Markov case (see, for instance, [13,14,22]) the controlled process is
defined in terms of a sequence of random decision (jump) epochs and post-jump loca-
tions, and the decisions are taken immediately after a jump. The admissible strategies
for the players are transition probabilities that may depend on the whole past history
of the process and actions up to the present value of the state value. Notice that in
this semi-Markov case there is no motion of the process between the jumps. Another
approach for the problem is to consider that the state process evolves according to a
continuous-time jump Markov process (see, for instance, [8,9]). In this formulation
both players 1 and 2 observe continuously the current state of the system andwhenever
it is at some state x(t) they choose independently their actions a(t) and b(t) according
to stochastic kernels π1

t (.|x(t)) and π2
t (.|x(t)). Notice that in this case there is no

dependence on previous actions and state values, and the strategies depend only on
the present state value x(t).

In this paper we consider the zero-sum games with an infinite horizon discounted
reward criterion for PDMP in general Borel spaces. The two players can act on the
jump rate and transition measure of the process, with the decisions being taken just
after a jump of the process. We assume that the players’ decisions may depend on
the previous actions and the post-jump locations up to the present location. When
compared with [13,14,22], the process considered in this paper is more general since
it includes a possible flowmotion between jumps and also jumps whenever the process
touches the frontier. Note that a semi-Markov process can be written as a PDMPwhen
it is “markovianized” as shown, for instance, in [21]. Indeed, as presented in [21],
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pages 71–72, to markovianize a semi-Markov model taking values in a sate space ˜X
and with probability distribution function ˜F(x, t) for the sojourn time at the state x ,
the state space has to be enlarged to X = ˜X × [0,∞) so that for (x, t) ∈ X we have
that x represents the location of the process and t the elapsed sojourn time in state x .
Writing this model as a PDMP, the flowwould be φ((x, t), s) = (x, t+s), and λ(x, t)
the failure rate of ˜F(x, t) so that, in this sense, the PDMP can be seen as more general
than the semi-Markov case. On the other hand in order to get our closed expressions
for the min–max optimality equation we exclude from the admissible strategies the
dependence on the previous inter-arrival jump times. Indeed, the basic idea of our
approach is to re-write the min–max continuous-time problem in a discrete-time way,
and derive the optimality equations by iterations of a kernel G(.|x, a, b), to be defined
in (17), where x will represent the post-jump location and a and b the post-jump actions
from players 1 and 2 respectively. Thus to get our iterative procedure through kernel
G we had to exclude the dependence on the sojourn times. When compared with [8,9]
our approach has the advantage of allowing the dependence on the previous actions
and post-jump location of the process, being more within the context of a game.

This paper is organized as follows. In Sect. 2 we present the notation and problem
formulation. Sections 3 presents the main operators that will be required in the paper.
In Sect. 4 we present some auxiliary results. In Sect. 5 we derive conditions for the
existence and characterization of min–max strategies for the infinite horizon total
expected discounted payoff function, which is the main result of the paper. In the
Appendix we present the proof of an auxiliary result.

2 Notation and Problem Formulation

In this section we start by introducing in Sect. 2.1 the main notation that will be used
along the paper. Section 2.2 aims at presenting the spaces and parameters related to the
problem. In Sect. 2.3 we introduce the construction of the process while in Sect. 2.4
we define the set of admissible strategies and the associated conditional distribution
of the controlled process.

2.1 Notation

The following notation will be used in this paper: N is the set of natural numbers
including 0, N∗ = N − {0}, R denotes the set of real numbers, R+ the set of non-
negative real numbers, R∗+ = R+ − {0}, R∗+ = R+ ∪{+∞} and R

∗
+ = R

∗+ ∪{+∞}.
For X a Borel space (i.e. a Borel-measurable subset of a complete and separable metric
space), we denote by B(X) its associated Borel σ -algebra. For X , Y Borel spaces, we
write M(X,Y ) for the space of Borel-measurable functions from X to Y . The set of
Borel-measurable and Borel-measurable and bounded real-valued functions defined
on the Borel space X is denoted respectively by M(X) and B(X). By M(X)+ we
mean the set of non-negative Borel-measurable real-valued functions, and similarly
for B(X)+. For g ∈ M(X) with g(x) > 0 for all x ∈ X , Bg(X) is the set of functions

v ∈ M(X) such that sup
x∈X

|v(x)|
g(x)

< +∞. For any set A, IA denotes the indicator
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function of the set A. P(X) is the set of probability measures defined on (X,B(X)),
and P(X |Y ) is the set of stochastic kernels on X given Y where Y denotes a Borel
space. For any point x ∈ X , δx denotes the Dirac measure defined by δx (�) = I�(x)
for any � ∈ B(X). If R is a kernel on Y given X and f ∈ M(Y ), then for any x ∈ X ,
R f (x) denotes

∫

Y f (y)R(dy|x) provided the integral exists. Finally, the infimum over
an empty set is understood to be equal to +∞, and we set e−∞ = 0.

2.2 Preliminaries

For the definition of the state space of the PDMP we will consider for notational
simplicity that X is an open subset of Rn (n ∈ N

∗) with ∂X denoting the boundary
of X, and �X its closure. This definition could be easily generalized to include some
boundary points and countable union of sets as in [3, Sect. 24]. In what follows the
sets A and B are the action spaces for players 1 and 2, respectively, and assumed to be
Borel spaces. For each x ∈ X, we define the subsets A(x) of A and B(x) of B as the
set of feasible control actions for players 1 and 2, respectively, that can be taken when
the state process is in x ∈ X. Let U be another Borel space associated to the control
process.

We introduce next some data that will be used to define the controlled PDMP.

• The flow φ(x, t) is a function φ : Rn ×R+ −→ R
n continuous in (x, t) and such

that φ(x, t + s) = φ(φ(x, t), s).
• For each x ∈ X, the time the flow takes to reach the boundary starting from x is
defined as

t∗(x)
.= inf{t > 0 : φ(x, t) ∈ ∂X}.

It is assumed that t∗ ∈ M(X, R̄+) (see [3, Lemma 27.1] for conditions that assure
that t∗ is Borel measurable). For x ∈ X such that t∗(x) = ∞ (that is, the flow
starting from x never touches the boundary), we set φ(x, t∗(x)) = 	, where 	 is
a fixed point in ∂X.

• The jump rate λ ∈ M(X × U)+.
• The transition measure Q which is a stochastic kernel in P(X|�X × U). To avoid
jumps to the same point, we assume that Q({x}|x, u) = 0 for any x ∈ X, u ∈ U.

• The pre-defined control function 
 ∈ M(X × A × B × R+,U).

Remark 2.1 The ideabehind thedefinition above is that after a jump fromapoint x ∈ X
an action a ∈ A(x) will be chosen for player 1, and similarly an action b ∈ B(x) will
be chosen for player 2. Actions a and b will parametrize the function 
(x, a, b, t),
with 0 ≤ t ≤ t∗(x), which will regulate the jump rate and transition measure of the
PDMP until the next jump time. Therefore in the model considered in this paper the
decisions for players 1 and 2 are taken only after a jump time, and the behavior of λ

and Q will depend on the pre-defined function 
(x, a, b, t) for 0 ≤ t ≤ t∗(x).

We define � = {x ∈ ∂X : x = φ(y, t) for some y ∈ X and t ∈ R
∗+}, the so called

active boundary. As usual we will assume that the set K = {

(x, a, b) : x ∈ X, a ∈
A(x), b ∈ B(x)

}

is a Borel subset of �X × A × B.
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2.3 Construction of the Process

Let X∞ = X ∪ {x∞}, where x∞ is an isolated artificial point corresponding to the
case when no jumps occur in the future. Similarly A∞ = A∪ {a∞}, B∞ = B∪ {b∞},
A(x∞) = {a∞}, and B(x∞) = {b∞} where a∞, b∞ are isolated artificial actions for
players 1 and 2 corresponding to the case when no jumps occur in the future. For
notational convenience, we introduce K∞ = {

(x, a, b) : x ∈ X∞, a ∈ A(x), b ∈
B(x)

}

.

We put �n = X × (A × B × R
∗+ × X)n × ({a∞} × {b∞} × {∞} × {x∞})∞. The

canonical space denoted by � is defined as � = ⋃∞
n=1 �n

⋃ (

(X×A×B×R
∗+)∞

)

and is endowed with its Borel σ -algebra denoted by F . For notational convenience,
ω ∈ � will be represented as

ω = (x0, a0, b0, θ1, x1, a1, b1, θ2, x2, a2, b2, θ3, x3, . . .).

Here, x0 ∈ X is the initial state of the controlled point process ξ with values in X,
defined below. For n ∈ N

∗, the components θn > 0 and xn correspond to the intervals
between two consecutive jumps and the values of the process immediately after jumps,
and an , bn the actions taken by players 1 and 2 respectively, also immediately after
jumps. In case θn < ∞ and θn+1 = ∞, the trajectory has only n jumps, and we put
θm = ∞ and xm = x∞, am = a∞, bm = b∞ (artificial points) for all m ≥ n + 1.
Between jumps, the state of the process ξ moves according to the flow φ.

The path up to n ∈ N is denoted by hn = (x0, a0, b0, θ1, x1, a1, b1, θ2, . . . , xn−1,

an−1, bn−1, θn, xn) (thus excluding the decisions at n), and the collection of all such
paths is denoted by Hn . For n ∈ N, introduce the mappings Xn : � → X∞
by Xn(ω) = xn , An : � → A∞ by An(ω) = an , Bn : � → B∞ by
Bn(ω) = bn and, for n ≥ 1, the mappings �n : � → R

∗
+ by �n(ω) = θn ;

�0(ω) = 0. The sequence (Tn)n∈N∗ of R
∗
+-valued mappings is defined on � by

Tn(ω) = ∑n
i=1 �i (ω) = ∑n

i=1 θi and T∞(ω) = limn→∞ Tn(ω). We denote by
Hn = (X0, A0, B0,�1, X1, A1, B1, . . . , An−1, Bn−1,�n, Xn) the n-term random
history process taking values in Hn for n ∈ N.

The random measure μ associated with (�n, Xn, An, Bn)n∈N is a measure defined
on R∗+ × X × A × B by

μ(ω; dt, dx, da, db) =
∑

n≥1

I{Tn(ω)<∞}δ(Tn(ω),Xn(ω),An(ω),Bn(ω))(dt, dx, da, db).

Roughly speaking, for any� ∈ B(R∗+×X×A×B),μ(�) gives the number of elements
of the sequence (Tn, Xn, An, Bn)n∈N that are in �. For notational convenience the
dependence on ω will be suppressed and, instead of μ(ω; dt, dx, da, db), it will be
written μ(dt, dx, da, db). Moreover, we will denote the marginal of the measure μ

on R∗+ by μ(dt,X × A × B), that is

μ(dt,X × A × B) =
∑

n≥1

I{Tn(ω)<∞}δTn(ω)(dt). (1)
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Define Ft = σ {H0} ∨ σ {μ(]0, s] × B) : s ≤ t, B ∈ B(X × A × B} for
t ∈ R+. Finally, we define the controlled process

{

ξ(t)
}

t∈R+ and the action processes
{

a(t)}t∈R+ ,
{

b(t)
}

t∈R+ as follows:

ξ(t) =
{

φ(Xn, t − Tn) if Tn ≤ t < Tn+1 for n ∈ N;
x∞, if T∞ ≤ t,

(2)

a(t) =
{

An, if Tn ≤ t < Tn+1 for n ∈ N;
a∞, if T∞ ≤ t,

(3)

b(t) =
{

Bn, if Tn ≤ t < Tn+1 for n ∈ N;
b∞, if T∞ ≤ t.

(4)

Obviously, the process (ξ(t), a(t), b(t))t∈R+ can be equivalently described by the
sequence of random variables (�n, Xn, An, Bn)n∈N. We define the random process
{u(t)}t∈R+ taking values in U as follows:

u(t) =
∑

n∈N
I{Tn<t≤Tn+1}
(Xn, An, Bn, t − Tn),

for t ∈ R
∗+. The process {u(t)}t∈R+ is {Ft }t∈R+-predictable with values in U.

2.4 Admissible Strategies and Conditional Distribution of the Controlled
Process

In what follows we will consider strategies that depend, just after the nth jump, on the
past values of the post-jump location Xk , k = 0, . . . , Xn , and the previous actions Ak ,
Bk , k = 0, . . . , n − 1. For this we define, following the definition presented before,
˜hn = (x0, a0, b0, x1, a1, b1, . . . , xn−1, an−1, bn−1, xn) (thus excluding the decisions
at n, and all the inter-jump times θk) and by ˜Hn the collection of all such paths. An
admissible strategy for players 1 and 2 respectively is a sequence π = (πn)n∈N and
γ = (γn)n∈N such that, for any n ∈ N,

• πn is a stochastic kernel on A given ˜Hn . For˜hn = (x0, a0, b0, x1, . . . , xn) ∈ ˜Hn ,
it satisfies πn(A(xn)|˜hn) = 1.

• γn is a stochastic kernel on B given ˜Hn . For ˜hn = (x0, a0, b0, x1, . . . , xn) ∈ ˜Hn ,
it satisfies γn(B(xn)|˜hn) = 1.

For simplicity we denote the set of admissible strategies for player 1 by � and the set
of admissible strategies for player 2 by �.

Definition 2.2 A randomized Markov strategy for player 1 is of the form p =
(p0, p1, . . .) where pk is a stochastic kernel on A given X satisfying pk(A(x)|x) = 1
and similarly for a randomized Markov strategy for player 2, denoted by q =
(q0, q1, . . .). We denote the set of Markov randomized strategies for player 1 by �M

and the set of randomizedMarkov strategies for player 2 by �M . The case in which pk
and qk are measurable functions is referred to as the set of deterministicMarkov strate-
gies for players 1 and 2, and denoted respectively by �D and �D . The stationary case
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corresponds to pk = p and qk = q for all k, where p and q are stochastic kernels on
A given X and B given X respectively, satisfying p(A(x)|x) = 1 and q(B(x)|x) = 1.
This case will be denoted by P and Q respectively.

The cumulative jump rate �a,b(x, t) is given by

�a,b(x, t)
.=

∫

[0,t[
λ(φ(x, s), 
(x, a, b, s))ds, (5)

for (x, a, b) ∈ K, and t ∈ [0, t∗(x)]. With a slight abuse of notation, we denote

λQ(A|φ(x, t), 
(x, a, b, t))
.= λ(φ(x, t), 
(x, a, b, t))Q(A|φ(x, t), 
(x, a, b, t))

(6)

for (x, a, b) ∈ K, t ∈ [0, t∗(x)], and A ∈ B(X). Now, let us introduce the stochastic
kernel D on R

∗
+ ×X∞ given K∞ describing the joint distribution of the next sojourn

time and state of the process:

D(� × S|x, a, b) =
[

I{x=x∞} + e−�a,b(x,+∞) I{x∈X} I{t∗(x)=+∞}
]

δ(+∞,x∞)(� × S)

+ I{x∈X}
[

I{t∗(x)<+∞}δt∗(x)(�)Q(S|φ(x, t∗(x)),


(x, a, b, t∗(x)))e−�a,b(x,t∗(x))

+
∫

� ∩]0,t∗(x)[
λQ(S|φ(x, t), 
(x, a, b, t))e−�a,b(x,t)dt

]

, (7)

for � ∈ B(R
∗
+), S ∈ B(X∞).

Roughly speaking, given x the last post-jump location of the process, a the action
for player 1 and b the action for player 2, the first line in the previous equation gives
the probability of the next sojourn time and the state of the process to be equal to
(+∞, x∞), that is,

D({∞ × x∞}|x, a, b) =
{

e−�a,b(x,+∞) for x ∈ X, t∗(x) = +∞,

1 for x = x∞.
(8)

The second line gives the probability of the next sojourn time to be equal to t∗(x)
(corresponding to a jump at the boundary) and the state of the process to be in S, that
is, for x ∈ X such that t∗(x) < ∞, we have that

D({t∗(x)} × S|x, a, b) = Q(S|φ(x, t∗(x)), 
(x, a, b, t∗(x)))e−�a,b(x,t∗(x)). (9)

The third line gives the probability of the next sojourn time to be less than t∗(x)
(corresponding to a natural jump) and the state of the process to be in S, that is, for
x ∈ X and τ < t∗(x), we have that
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D([0, τ ) × S|x, a, b) =
∫ τ

0
λQ(S|φ(x, t), 
(x, a, b, t))e−�a,b(x,t)dt. (10)

Consider the strategies (π, γ ) for players 1 and 2 and an initial state x0 ∈
X. From Remark 3.43 in [12], there exists a probability P

π,γ
x0 on (�,F) and a

sequence of random variables (�n, Xn, An, Bn)n∈N (or equivalently a stochastic pro-
cess (ξ(t), a(t), b(t))t∈R+ , see Eqs. (2), (3), (4)) such that the conditional distribution
of (�n+1, Xn+1, An+1, Bn+1) given FTn under Pπ,γ

x0 is determined by the stochastic
kernel Dπ,γ

n on R
∗
+ × K∞ given Hn given by

Dπ,γ
n (ds, dx, da, db|hn) := D(ds, dx |Xn, a, b)πn(da|˜hn)γn(db|˜hn).

We write Eπ,γ
x0 (.) to denote the expectation under the probability P

π,γ
x0 . We can sum-

marize the dynamics of the stochastic process (ξ(t), a(t), b(t))t∈R+ as follows. At
time t = 0 the first actions for players 1 and 2, denoted by A0 and B0, are obtained
randomly from the probability measures π0(.|x0) and γ0(.|x0) respectively. The first
jump time T1 is a random random variable with distribution given by

P
π,γ
x0 (T1 > t |H0) =

{

e−�A0,B0 (x,t) for t < t∗(x0),
0 for t ≥ t∗(x0).

(11)

If T1 is equal to infinity, then ξ(t) = φ(x0, t), a(t) = A0, b(t) = B0 for t ∈ R+,
and Xn = x∞, An = a∞, Bn = b∞ for n ∈ N

∗. Otherwise select independently an
X-valued random variable X1 having distribution, for S ∈ B(X), given by

P
π,γ
x0 (X1 ∈ S|H0) = Q(S|φ(x0, T1), 
(x, A0, B0, T1)). (12)

The trajectory of {ξ(t)} starting from x0 and for t ≤ T1 is given by (2), and for {a(t)}
and {b(t)} for t < T1 is as given in (3) and (4). In general, at time Tn and starting from
Xn , we select the actions for players 1 and 2, denoted by An and Bn , randomly from
the probability measures π1(.|H̃n) and γ1(.|H̃n) respectively, and the next inter-jump
time Tn+1 − Tn and post-jump location Xn+1 as in (11) and (12) respectively.

The value function for the min–max problem will contain two terms, a running
reward function f associated to the gradual actions of players 1 and 2, and a boundary
reward function r , associated with the impulsive actions on the boundary � of players
1 and 2. We assume that f ∈ M(X∞) and r ∈ M(�).

The associated Tn-horizon and infinite-horizon discounted payoff criterion corre-
sponding to strategies (π, γ ) for players 1 and 2 are defined by

D(n, π, γ, x0) = E
π,γ
x0

[ ∫

]0,Tn [
e−αt f (ξ(t), u(t))dt

+
∫

]0,Tn [
e−αt I{ξ(t−)∈�}r(ξ(t−), u(t−))μ(dt,X × A × B)

]

,

(13)
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and

D(π, γ, x0) = E
π,γ
x0

[ ∫

]0,∞[
e−αt f (ξ(t), u(t))dt

+
∫

]0,∞[
e−αt I{ξ(t−)∈�}r(ξ(t−), u(t−))μ(dt,X × A × B)

]

(14)

where themeasureμ(dt,X×A×B) has been defined in (1). In the previous expression,
α > 0 is the discount factor, D(n, π, γ, x0) and D(π, γ, x0) are understood to be
equal to +∞ if the integrals of both the positive and negative parts of the integrand
are infinite. Note that, for any strategy π ∈ �, γ ∈ �, the functions D(n, π, γ, ·) and
D(π, γ, ·) are measurable. The Tn-horizon and infinite horizon lower value (denoted
by the superscript l) and upper value (denoted by the superscript u) problems for the
discounted payoff games are defined respectively as:

J l(n, x0) = sup
π∈�

inf
γ∈�

D(n, π, γ, x0), J l(x0) = sup
π∈�

inf
γ∈�

D(π, γ, x0), (15)

J u(n, x0) = inf
γ∈�

sup
π∈�

D(n, π, γ, x0), J u(x0) = inf
γ∈�

sup
π∈�

D(π, γ, x0). (16)

Clearly we have that J l(n, x0) ≤ J u(n, x0) and J l(x0) ≤ J u(x0). If J l(n, x0) =
J u(n, x0) (J l(x0) = J u(x0)) then the common value is called the value of the game
and denoted byV(n, x0) (V(x0) respectively). If the infinite horizon game has a valueV
then a strategyπ∗ ∈ � is said to be optimal for player 1 if infγ∈�D(π∗, γ, x0) = V(x0)
and similarlyγ ∗ ∈ � is said to be optimal for player 2 if supπ∈�D(π, γ ∗, x0) = V(x0).
The pair (π∗, γ ∗) is said to be a pair of optimal strategies if π∗ is optimal for player
1 and γ ∗ is optimal for player 2. Similar definitions hold the finite horizon case.

3 Main Operators

In this section we present some important operators associated to the Tn-horizon and
infinite horizon min-max problems problem posed in (15) and (16) respectively. Let
us introduce the kernel G on X∞ given K∞ as follows:

G(A|x, a, b)
.=I{x∈X}

∫

R+
e−αs D(ds, A|x, a, b)

=I{x∈X}
[

∫

]0,t∗(x)[
e−αs−�a,b(x,s)λQ(A ∩ X|φ(x, s), 
(x, a, b, s))ds

+ e−αt∗(x)−�a,b(x,t∗(x))Q(A ∩ X|φ(x, t∗(x)), 
(x, a, b, t∗(x)))
]

(17)
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for (x, a, b) ∈ K∞, A ∈ B(X∞) and the kernel L (respectively, H ) defined on X×U
(respectively, � × U) given K∞ as follows:

L(A|x, a, b)
.= I{x∈X}

∫

]0,t∗(x)[
e−αs−�a,b(x,s)δ(φ(x,s),
(x,a,b,s))(A)ds, (18)

H(B|x, a, b)
.= I{x∈X}e−αt∗(x)−�a,b(x,t∗(x))δ(φ(x,t∗(x)),
(x,a,b,t∗(x)))(B), (19)

for (x, a, b) ∈ K∞, A ∈ B(X × U), B ∈ B(� × U).

Remark 3.1 When t∗(x) = ∞ for x ∈ X we have that e−αt∗(x) = 0 and thus
the kernels G and H have a special form. Indeed in this case G(A|x, a, b) =
∫ t∗(x)

0
e−αs−�a,b(x,s)λQ(A|φ(x, s), 
(x, a, b, s))ds (see the notation in (6)) and

H(B|x, a, b) = 0, for (x, a, b) ∈ K, A ∈ B(X), B ∈ B(� × U).

We conclude this section introducing the following notation. For � ∈ P(A(x)),
χ ∈ P(B(x)) and a function h ∈ M(K), we write

h(x, �, χ) =
∫

A(x)

∫

B(x)
h(x, a, b)�(da)χ(db). (20)

For π̄ ∈ P(A∞|X∞) and γ̄ ∈ P(B∞|X∞) respectively, satisfying π̄(A(x)|x) = 1
and γ̄ (B(x)|x) = 1, we write

h(x, π̄ , γ̄ ) =
∫

A(x)

∫

B(x)
h(x, a, b)π̄(da|x)γ̄ (db|x), (21)

and for admissible strategies π = (πn)n∈N ∈ � and γ = (γn)n∈N ∈ � for players 1
and 2 respectively, we write

h(xk, πk(.|˜hk), γk(.|˜hk)) =
∫

A(x)

∫

B(x)
h(xk, a, b)πk(da|˜hk)γk(db|˜hk), (22)

where we recall that ˜hk = (x0, a0, b0, x1, a1, b1, . . . , xk−1, ak−1, bk−1, xk). Follow-
ing (21) and (22) we set, for π̄ ∈ P(A∞|X∞) and γ = (γn)n∈N ∈ � an admissible
strategy for player 2,

h(xk, π̄ , γk(.|˜hk)) =
∫

A(x)

∫

B(x)
h(xk, a, b)π̄(da|xk)γk(db|˜hk), (23)

and similarly for h(xk, π(.|˜hk), γ̄ ), for the case in which π = (πn)n∈N ∈ � is an
admissible strategy for player 1 and γ̄ ∈ P(B∞|X∞).
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4 Assumptions and Auxiliary Results

The purpose of this section is to introduce the main assumptions and present some
auxiliary results that will be needed for deriving our main results. The first assumption
is related to an upper bound for the jump rate λ.

Assumption A There exists �λ ∈ M(X) satisfying
∫ t

0

�λ(φ(x, s))ds < ∞ for t ∈
[0, t∗(x)) such that, for any (x, r) ∈ X × U, λ(x, r) ≤ �λ(x).

The next proposition will be used in the sequel to establish an iterative procedure to
get upper and lower bounds for the payoff functions (15) and (16), using the operator
G defined in (17).

Proposition 4.1 Suppose that Assumption A holds and that there exist Borel-
measurable functions W : X∞ �→ R+, S : X∞ �→ R and C : K∞ �→ R

and a constant M satisfying GW(x, a, b) ≤ MW(x), |S(x)| ≤ MW(x) and
|C(x, a, b)| ≤ MW(x) for any (x, a, b) ∈ K∞. Consider x0 ∈ X, π = (πk)k∈N ∈ �

and γ = (γk)k∈N ∈ � such that

∫

A

∫

B

[

GS(xk, ak, bk) + C(xk, ak, bk)
]

πk(dak |˜hk)γk(dbk |˜hk) ≤ S(xk) (24)

for any k ∈ N and˜hk ∈ ˜Hk . We have that

E
π,γ
x0

[

e−αTn+1S(Xn+1)
]

+
n

∑

k=0

E
π,γ
x0

[

e−αTkC(Xk, Ak, Bk)
]

≤ S(x0). (25)

Proof See Appendix. 
�
Condition (24) is usually hard to be checked since it is written in terms of the

operator G, which involves an integral with respect to the primitive data Q and λ of
the process, as well as some boundary conditions. The next assumption presents an
infinitesimal condition written directly in terms of the primitive data Q and λ, and the
boundary conditions, that will be used to verify (24). But first we need to introduce the
setMac(X∞) of real valuedmeasurable functions defined onX∞ which are absolutely
continuous with respect to the flow φ, that is, the set of functions g ∈ M(X∞) such
that for any x ∈ X, the function g(φ(x, ·)) is absolutely continuous on [0, t∗(x)[
and limt→t∗(x) g(φ(x, t)) exists whenever t∗(x) < ∞. From Lemma 2.2 in [1], if
g ∈ M

ac(X∞) then there exists a real-valued measurable function X g defined on X
satisfying

g(φ(x, t)) = g(x) +
∫

[0,t]
X g(φ(x, s))ds, (26)

for any x ∈ X, and t ∈ [0, t∗(x)[. Notice that the domain of definition of the mapping
g ∈ M

ac(X) can be extended to X∞ ∪ � by setting g(z) = limt→t∗(x) g(φ(x, t))
where z = φ(x, t∗(x)) ∈ �.
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Assumption B There exist constants 0 < c1 < α, d1 ≥ 0 and a function W ∈
M

ac(X∞) satisfying W ≥ 1 such that for all (x, a, b) ∈ K, and 0 ≤ t < t∗(x),

XW (φ(x, t))

− λ(φ(x, t), 
(x, a, b, t))
[

W (φ(x, t)) − QW (φ(x, t), 
(x, a, b, t))
]

≤ c1W (φ(x, t)) + d1, (27)

and

QW (φ(x, t∗(x)), 
(x, a, b, t∗(x)) ≤ (1 − (α − c1))W (φ(x, t∗(x))), (28)

whenever t∗(x) < ∞.

Remark 4.2 Similarly as in Remark 3.2 of [8], Assumption B can be seen as an exten-
sion of the “drift condition” presented in (2.4) of [20] for PDMPs, and it is also known
as a Lyapunov or Foster-Lyapunov condition. This condition is usually used to obtain
growth conditions as in Proposition 4.3 below, and also for some forms of ergodicity,
see, for instance, [13]. In Remark 4.5 we show that, for the continuous-time jump
Markov process in Polish spaces case as considered in [8], condition (27) becomes
condition (a) in Assumption 3.1 of [8].

Combining Assumptions A and B and using the operators L and H as defined in
(18) and (19) we obtain a condition similar to (24) for fixed actions a and b.

Proposition 4.3 Suppose that Assumptions A and B hold. For any M̄1 > 0 define

�C(x, a, b) = LW (x, a, b) + HW (x, a, b), (29)

and

S(x) = M̄1

α − c1
W (x) + d1M̄1

α(α − c1)
, (30)

where W, c1 and d1 are as in Assumption B. Then, for any (x, a, b) ∈ K∞,

GS(x, a, b) + M̄1�C(x, a, b) ≤ S(x). (31)

Proof From the definition of the kernels L and H in (18) and (19) we have that
LW (x∞, a∞, b∞) = 0 and HW (x∞, a∞, b∞) = 0 since x∞ /∈ X. Thus from (29)
we get that GS(x∞, a∞, b∞) = �C(x∞, a∞, b∞) = 0 and so (31) is trivially satisfied.
Now, consider (x, a, b) ∈ K. After some algebraic manipulations we get from (27)
and (28) in Assumption B and S as defined in (30) that

X S(φ(x, t)) − αS(φ(x, t)) + M̄1W (φ(x, t))

− λ(φ(x, t), 
(x, a, b, t))
[

S(φ(x, t)) − QS(φ(x, t), 
(x, a, b, t))
]

≤ 0, (32)
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M̄1W (φ(x, t∗(x))) + QS(φ(x, t∗(x)), 
(x, a, b, t∗(x))
≤ S(φ(x, t∗(x)) for t∗(x) < ∞. (33)

Now, multiplying the inequality (32) by e−αt−�a,b(x,t) and integrating over [0, s] for
s < t∗(x), we get

e−αs−�a,b(x,s)S(φ(x, s)) − S(x) +
∫ s

0
e−αt−�a,b(x,t)λQS(φ(x, t), 
(x, a, b, t))dt

+ M̄1

∫ s

0
e−αt−�a,b(x,t)W (φ(x, t))dt ≤ 0 (34)

where we have used Assumption A to claim that

e−αs−�a,b(x,s)S(φ(x, s)) − S(x)

=
∫ s

0
e−αt−�a,b(x,t)

(

X S(φ(x, t)) − [

α + λ(φ(x, t), 
(x, a, b, t))
]

S(φ(x, t))
)

dt.

Consider first the case where t∗(x) < ∞. Recalling that S(φ(x, ·)) is absolutely
continuous on [0, t∗(x)] we obtain

e−αt∗(x)−�a,b(x,t∗(x))S(φ(x, t∗(x))) − S(x)

+
∫ t∗(x)

0
e−αt−�a,b(x,t)λQS(φ(x, t), 
(x, a, b, t))dt

+ M̄1

∫ t∗(x)

0
e−αt−�a,b(x,t)W (φ(x, t))dt ≤ 0

by taking the limit in (34) as s tends to t∗(x). Now, by using (33) we easily get the
result.
Now let us assume that t∗(x) = ∞. Recalling that S is positive we get from (34) that

∫ t∗(x)

0
e−αt−�a,b(x,t)λQS(φ(x, t), 
(x, a, b, t))dt

+ M̄1

∫ t∗(x)

0
e−αt−�a,b(x,t)W (φ(x, t))dt ≤ S(x)

which is precisely the claim since t∗(x) = ∞ (see Remark 3.1). 
�

In the next assumption we consider an upper bound function W (x) for | f (x, u)|
and |r(z, u)|. This function W (x) will be the same function as in Assumption B.

Assumption C There exists M1 > 0 such that | f (x, u)| ≤ M1W (x) for all x ∈ X,
u ∈ U, and |r(z, u)| ≤ M1W (z) for all z ∈ �, u ∈ U.
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Lemma 4.4 Suppose that Assumptions A, B, and C hold, and consider �C as in (29).
Then the real-valued function C defined on K∞ by

C(x, a, b) = L f (x, a, b) + Hr(x, a, b) (35)

satisfies sup
(x,a,b)∈K∞

|C(x, a, b)|
W (x)

< ∞.Moreover, sup
(x,a,b)∈K∞

�C(x, a, b) + GW (x, a, b)

W (x)
< ∞.

Proof It is a straightforward application of Proposition 4.3 and Assumption C. 
�
The next assumption is needed to guarantee the convergence of the sum of some

discounted payoff functions related to the infinite horizon problem (14).

Assumption D There exist constants 0 < c2 < α, d2 ≥ 0 and a function W2 ∈
M

ac(X∞) such that for all (x, a, b) ∈ K with x ∈ X, and 0 ≤ t < t∗(x),

XW2(φ(x, t))

− λ(φ(x, t), 
(x, a, b, t))
[

W2(φ(x, t)) − QW2(φ(x, t), 
(x, a, b, t))
]

≤ c2W2(φ(x, t)) + d2, (36)

and

QW2(φ(x, t∗(x)), 
(x, a, b, t∗(x)) ≤ (1 − (α − c2))W2(φ(x, t∗(x))), (37)

whenever t∗(x) < ∞. Moreover,

W (x) ≤ M2(LW2(x, a, b) + HW2(x, a, b)), for all (x, a, b) ∈ K, (38)

for some M2 > 0 and for the function W introduced in Assumption B.

Remark 4.5 We show in this remark that for the case in which there is no flow, that is,
φ(x, t) = x for all t (and thus there is no boundary), Assumptions B and D are similar
to Assumptions 3.1(a) and Assumption 5.2(d) in [8] obtained for a continuous-time
jumpMarkov process in Polish spaces. Indeed, for the case in which there is nomotion
we would have φ(x, t) = x , 
(x, a, b, t) = (a, b), t∗(x) = ∞ for all x ∈ X, t ∈ R+.
For each x ∈ X, a ∈ A(x), b ∈ A(x), define the signed measure q(.|x, a, b) on B(X)

as

q(S|x, a, b) = λ(x, a, b)(Q(S|x, a, b) − δx (S)), S ∈ B(X). (39)

Then function q(.|x, a, b), referred to as the function of transition rates in [8], satisfies
the conditions (T1), (T2), (T3) in [8], and −q({x}|x, a, b) = λ(x, a, b), so that

q(x)
.= sup

a∈A(x), b∈B(x)
(−q({x}|x, a, b)) = sup

a∈A(x), b∈B(x)
λ(x, a, b). (40)
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Note that W (φ(x, t)) = W (x), W2(φ(x, t)) = W2(x) for all t ∈ R+, so that the
derivative with respect to t is zero, that is, XW (φ(x, t)) = 0 and XW2(φ(x, t)) = 0.
Using the notation in (39) we have that (27) and (36) can be written respectively as
qW (x, a, b) ≤ c1W (x) + d1 and qW2(x, a, b) ≤ c2W2(x) + d2, which corresponds
to Assumption 3.1(a) and the second part of Assumption 5.2(d) in [8]. Notice now that
HW2(x, a, b) = 0 and

LW2(x, a, b) =
∫ ∞

0
e−(α+λ(x,a,b))sdsW2(x) = 1

α + λ(x, a, b)
W2(x)

so that (38) can be re-written as (α+λ(x, a, b))W (x) ≤ M2W2(x)which is equivalent,
using the notation in (40), to (α + q(x))W (x) ≤ M2W2(x) for some M2 > 0. We
show next that this is equivalent to the first part of the Assumption 5.2(d) in [8], that
is, q(x)W (x) ≤ ˜M2W2(x), for some ˜M2 > 0, assuming that 0 < qmin ≤ q(x) for all
x ∈ X. In fact from (α + q(x))W (x) ≤ M2W2(x) it is immediate that q(x)W (x) ≤
(α + q(x))W (x) ≤ M2W2(x). On the other hand, if q(x)W (x) ≤ ˜M2W2(x) then

W (x) ≤ ˜M2
qmin

W2(x) and (α + q(x))W (x) ≤ ˜M2(1 + α
qmin

)W2(x) = M2W2(x) with

M2 = (1 + α
qmin

) ˜M2, showing the equivalence.

The next result shows the convergence of the expected discounted sum of the
function W , that will be used for the infinite horizon problem (14).

Proposition 4.6 Consider Assumptions A, B and D. For x0 ∈ X, π = (πk)k∈N ∈ �

and γ = (γk)k∈N ∈ �, n ∈ N we have that

n
∑

k=0

E
π,γ
x0

[

e−αTkW (Xk)
]

≤ S2(x0) (41)

where S2(x) = M2
α−c2

W2(x) + d2M2
α(α−c2)

. In particular, Pπ,γ
x0

({T∞ < ∞}) = 0 for any
π = (πk)k∈N ∈ � and γ = (γk)k∈N ∈ �.

Proof Using the same arguments as in the Proposition 4.3 we get that for any
(x, a, b) ∈ K∞ GS2(x, a, b) + M2�C2(x, a, b) ≤ S2(x) with �C2(x, a, b) =
LW2(x, a, b) + HW2(x, a, b). Now, we can apply Proposition 4.1 to the functions
W(x) = S(x) = S2(x) and C(x, a, b) = M2�C2(x, a, b) to get

E
π,γ
x0

[

e−αTn+1 S2(Xn+1)
]

+ M2

n
∑

k=0

E
π,γ
x0

[

e−αTk �C2(Xk, Ak, Bk)
]

≤ S2(x0).

Recalling that S2 is positive we obtain that

n
∑

k=0

E
π,γ
x0

[

e−αTk I{Xk∈X}W (Xk)
]

≤ S2(x0) (42)
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by using inequality (38). Since Pπ,γ
x0

(

{Xk = x∞} ∩ {Tk = ∞}
)

= 1 we get that

E
π,γ
x0

[

e−αTk I{Xk=x∞}W (Xk)
]

= 0,

and thus we have that

E
π,γ
x0

[

e−αTkW (Xk)
]

= E
π,γ
x0

[

e−αTk I{Xk∈X}W (Xk)
]

+ E
π,γ
x0

[

e−αTk I{Xk=x∞}W (Xk)
]

= E
π,γ
x0

[

e−αTk I{Xk∈X}W (Xk)
]

. (43)

From (42) and (43)we get (41). Now, sinceW ≥ 1, we get from (41) and theMonotone

Convergence Theorem that Eπ,γ
x0

[

∑∞
k=0 e

−αTk
]

≤ S2(x0), implying the last part of

the result. 
�
The following auxiliary results will be useful in the sequel, in order to re-write our

min–max continuous-time problem in a discrete-time framework, in which the stages
are defined by the jump times Tk of the PDMP. The first result gives an interpretation
of (18), (19), in terms of the jump time T1.

Lemma 4.7 Suppose that Assumptions A, B, and C hold. For x0 ∈ X, π = (πn)n∈N ∈
� and γ = (γn)n∈N ∈ �, k ∈ N

E
π,γ
x0

[

∫

]Tk ,Tk+1]
e−αt f (ξ(t), u(t))dt |Hk

]

= e−αTk L f (Xk, πk(.| ˜Hk), γk(.| ˜Hk)),

E
π,γ
x0

[ ∫

]Tk ,Tk+1]
e−αt I{ξ(t−)∈�}r(ξ(t−), u(t−))μ(dt,X)|Hk

]

= e−αTk Hr(Xk, πk(.| ˜Hk), γk(.| ˜Hk)).

Proof From(8) to (10) we have that

E
π,γ
x0

[

∫ T1

0
e−αs f (φ(x0, s), 
(x0, A0, B0, s))ds|H0

]

= L f (x0, A0, B0), (44)

E
π,γ
x0

[

e−αT1 I{T1=t∗(x0)}r(φ(x0, t∗(x0)), 
(x0, A0, B0, t∗(x0)))|H0

]

=Hr(x0, A0, B0).

(45)

Moreover, denoting Sk+1 = Tk+1 − Tk , we have from (44) and similar reasoning as
in (43) that

E
π,γ
x0

[

∫

]Tk ,Tk+1]
e−αt f (ξ(t), u(t))dt |Hk

]

= E
π,γ
x0

[

e−αTk

∫ Sk+1

0
e−αs f (φ(Xk, s), 
(Xk, Ak, Bk, s))ds|Hk

]
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= e−αTkE
π,γ
x0

[

L f (Xk, Ak, Bk, s)ds|Hk

]

= e−αTk L f (Xk, πk(.| ˜Hk), γk(.| ˜Hk)).

Similarly, from (45) we get that

E
π,γ
x0

[ ∫

]Tk ,Tk+1]
e−αt I{ξ(t−)∈�}r(ξ(t−), u(t−))μ(dt,X)|Hk

]

= E
π,γ
x0

[

e−αTk
(

e−αSk+1r(φ(Xk , t∗(Xk)), 
(Xk , Ak, Bk, t∗(Xk)))
)

I{Sk+1=t∗(Xk )}|Hk

]

= e−αTkE
π,γ
x0

[

Hr(Xk , Ak , Bk)|Hk

]

= e−αTk Hr(Xk , πk(.| ˜Hk), γk(.| ˜Hk)),

completing the proof. 
�
The next result re-writes the payoff functions in a discrete-time fashion, using the

operators L and H defined in (18) and (19) respectively.

Proposition 4.8 Consider Assumptions A, B, C andD. For x0 ∈ X,π = (πk)k∈N ∈ �

and γ = (γk)k∈N ∈ �, n ∈ N, we have that

D(n + 1, π, γ, x0) =
n

∑

k=0

E
π,γ
x0

[

e−αTkC(Xk, Ak, Bk)
]

=
n

∑

k=0

E
π,γ
x0

[

e−αTkC(Xk, πk(.| ˜Hk), γk(.| ˜Hk))
]

(46)

and D(π, γ, x0) = limn→∞ D(n, π, γ, x0).

Proof Recalling the definition ofD(n+1, π, γ, x0) (see Eq. (13)) andC (see Eq. (35)),
we easily obtain the first part of the claim by using Lemma 4.7. Moreover, we have
that

E
π,γ
x0

[ ∫

]0,∞[
e−αtW (ξ(t))dt +

∫

]0,∞[
e−αt I{ξ(t−)∈�}W (ξ(t−))μ(dt,X)

]

,

= lim
n→∞E

π,γ
x0

[ ∫

]0,Tn [
e−αtW (ξ(t))dt +

∫

]0,Tn [
e−αt I{ξ(t−)∈�}W (ξ(t−))μ(dt,X)

]

from the Monotone Convergence Theorem and since limk→∞ Tk = ∞, Pπ,γ
x0 -a.s. (see

Lemma 4.7). Recalling the definition of �C in equation (29) we have that

lim
n→∞E

π,γ
x0

[ ∫

]0,Tn [
e−αtW (ξ(t))dt +

∫

]0,Tn [
e−αt I{ξ(t−)∈�}W (ξ(t−))μ(dt,X)

]

= lim
n→∞

n
∑

k=0

E
π,γ
x0

[

e−αTk �C(Xk, πk(.| ˜Hk), γk(.| ˜Hk))
]
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≤ M lim
n→∞

n
∑

k=0

E
π,γ
x0

[

e−αTkW (Xk)
]

for some positive constant M where we have used the fact that �C(x, a, b) ≤ MW (x)
(see Eqs. (30) and (31)) to get the last inequality. Proposition 4.6 gives that

E
π,γ
x0

[ ∫

]0,∞[
e−αtW (ξ(t))dt +

∫

]0,∞[
e−αt I{ξ(t−)∈�}W (ξ(t−))μ(dt,X)

]

< ∞.

Consequently, by using Assumption C and the Bounded Convergence Theorem, we
get the last part of the result. 
�

5 Main Results

In this section we present the main results of this paper. We start by introducing some
continuity and compactness conditions on the parameters of the problem. Proposition
5.1 establishes the existence of optimalMarkov strategies for thefinite horizonproblem
(13). The infinite horizon case (14) is considered in Propositions 5.2 and 5.3. It is
shown first in Proposition 5.2 the existence of a solution for the optimality equation
associated to the zero-sum game problem. Proposition 5.3 establishes uniqueness of
the optimality equation and the existence of optimal stationary Markov strategies.

Consider the following assumptions:

Assumption E (E1) The set-valued mappings defined by x �→ A(x) and x �→ B(x)
defined on X∞ are Borel-measurable and compact valued.

(E2) For each x ∈ X∞, C(x, a, b) in continuous in (a, b) ∈ A(x) × B(x).
(E3) For each x ∈ X∞ and u ∈ B(X∞), Gu(x, a, b) is continuous in (a, b) ∈

A(x) × B(x).
(E4) For each x ∈ X∞, GW (x, a, b) is continuous in (a, b) ∈ A(x) × B(x).

From Lemma 4.4, it follows that C(x, �, χ) + Gh(x, �, χ) is well defined for any
x ∈ X∞, � ∈ P(A(x)) and χ ∈ P(B(x)) whenever h ∈ BW (X∞). Consequently,
proceeding as in the proof of Theorem 5.1 (c) in [8], it easily follows fromAssumption
E that the functions T and R defined on BW (X∞) by

Th(x) = inf
χ∈P(B(x))

sup
�∈P(A(x))

[

C(x, �, χ) + Gh(x, �, χ)
]

, (47)

Rh(x) = sup
�∈P(A(x))

inf
χ∈P(B(x))

[

C(x, �, χ) + Gh(x, �, χ)
]

, (48)

are well defined and maps BW (X∞) into BW (X∞). Moreover, from Fan’s min–max
theorem in [5], and the min–max measurable selection theorem in [18] and [19], there
exist p ∈ P and q ∈ Q such that

Th(x) = Rh(x) = min
χ∈P(B(x))

max
�∈P(A(x))

[

C(x, �, χ) + Gh(x, �, χ)
]
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= max
�∈P(A(x))

min
χ∈P(B(x))

[

C(x, �, χ) + Gh(x, �, χ)
]

= max
�∈P(A(x))

[

C(x, �, q) + Gh(x, �, q)
]

= min
χ∈P(B(x))

[

C(x, p, χ) + Gh(x, p, χ)
]

= C(x, p, q) + Gh(x, p, q). (49)

Set recursively

Vk(x) = T Vk−1(x), V−1(x) = 0, k = 0, 1, . . . . (50)

Proposition 5.1 Consider Assumptions A, B, C and D and E. Then there exist p =
(pn)n∈N ∈ �M and q = (qn)n∈N ∈ �M such that

Vk+1(x) = T Vk(x) =
[

C(x, pk, qk) + GV (x, pk, qk)
]

for k ∈ N. Moreover, the finite horizon game has a value V(n, x) satisfying

V(n, x0) = D(n + 1, p, q, x0) = Vn(x0) (51)

and |V(n, x)| ≤ S(x) for any x ∈ X.

Proof The first statements can be easily obtained by using similar arguments as in
Theorem 4.1 in [15] and Eq. (49). To show that |V(n, x)| ≤ S(x), we first notice
that GS(x, a, b) + C(x, a, b) ≤ S(x) for any (x, a, b) ∈ K∞ by combining (31)
and Assumption C. From Proposition 4.1 considering the functions W(x) = W (x),
S(x) = S(x) and C(x, a, b) = C(x, a, b) we get the desired result. 
�

Define now the sequence Uk+1(x) = TUk(x), with U0(x) = −S(x).

Proposition 5.2 Suppose that Assumptions A, B,C andDandEhold. Then there exists
a functionU∗ ∈ BW (X∞) such thatU∗ = TU∗ = RU∗ and limk→∞ Uk(x) = U∗(x)
for each x ∈ X∞.

Proof It follows similar arguments as in the proof of Theorem 5.1 in [8]. First we
show by induction on k that |Uk(x)| ≤ S(x). For k = 0 it is immediate by defi-
nition. If it holds for k then, from Proposition 4.3, |C(x, a, b) + GUk(x, a, b)| ≤
�C(x, a, b) + GS(x) ≤ S(x) showing that |Uk+1(x)| ≤ S(x). We also have from
Proposition 4.3 that (Uk(x))k∈N is a pointwise non-decreasing sequence of func-
tions since C(x, a, b) + GU0(x, a, b) ≥ −�C(x, a, b) − GS(x) ≥ −S(x), and thus
U1(x) ≥ U0(x), and the operator T is monotone. From this we have that there exists
U∗(x) = limk→∞ Uk(x) ≤ S(x), and so U∗ ∈ BW (X∞). Since T is monotone and
U∗ ≥ Uk it follows that TU∗ ≥ TUk = Uk+1, which shows that TU∗ ≥ U∗. From
(49) there exists qn ∈ Q such that for any �′ ∈ P(A(x)),

U∗(x) ≥ Un+1(x) = TUn(x) = min
χ∈P(B(x))

max
�∈P(A(x))

[

C(x, �, χ) + GUn(x, �, χ)
]
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= max
�∈P(A(x))

[

C(x, �, qn) + GUn(x, �, qn)
]

≥
[

C(x, �′, qn) + GUn(x, �
′, qn)

]

.

(52)

SinceP(B(x)) is compact it can be assumed without loss of generality that qn(.|x) →
χ ′ as n → ∞ for some χ ′ ∈ P(B(x)). From the extended Fatou’s lemma (see Lemma
8.3.7 in [11]) and the continuity assumptions made we get from (52) that

U∗(x) ≥ lim
n→∞

[

C(x, �′, qn) + GUn(x, �
′, qn)

]

≥ C(x, �′, χ ′) + GU∗(x, �′, χ ′)

≥ min
χ∈P(B(x))

[

C(x, �′, χ) + GU∗(x, �′, χ)
]

. (53)

From (53) it follows that U∗(x) ≥ RU∗(x) = TU∗(x) completing the proof. 
�
Proposition 5.3 Suppose that Assumptions A, B, C andD and E hold and considerU∗
as in Proposition 5.2. ThenU∗ is the unique solution for V = T V with V ∈ BW (X∞).
Moreover the discounted infinite horizon game has a value V satisfying

V(x0) = U∗(x0) = D(p∗, q∗, x0)

where the pair of optimal strategies (p∗, q∗) ∈ P × Q is such that U∗(x) =
C(x, p∗, q∗) + GU∗(x, p∗, q∗).

Proof Let V ∈ BW (X∞) satisfy V = T V . The idea of the proof is to show that the
discounted infinite horizon game has a value V , and that V = V , so that V is the
unique solution of V = T V with V ∈ BW (X∞), and from Proposition 5.2 we have
that V = U∗. Consider any strategy π ∈ � for player 1 and set q∗ ∈ Q such that (see
(49))

V (x) = T V (x) = min
χ∈P(B(x))

max
�∈P(A(x))

[

C(x, �, χ) + GV (x, �, χ)
]

= max
�∈P(A(x))

[

C(x, �, q∗) + GV (x, �, q∗)
]

≥ C(x, �, q∗) + GV (x, �, q∗)

(54)

for any � ∈ P(A(x)). From Proposition 4.1 considering the functionsW(x) = W (x),
S(x) = V (x),C(x, a, b) = C(x, a, b), and using the inequalityV (x) ≥ C(x, �, q∗)+
GV (x, �, q∗) for any � ∈ P(A(x)) obtained from (54), we get that

E
π,q∗
x0

[

e−αTn+1V (Xn+1)
]

+
n

∑

k=0

E
π,q∗
x0

[

e−αTkC(Xk, πk(.| ˜Hk), q
∗)

]

≤ V (x0). (55)

Taking the limit in (55) as n → ∞ we obtain from Proposition 4.6 that

D(π, q∗, x0) ≤ V (x0) ⇒ J u(x0) = inf
γ∈�

sup
π∈�

D(π, γ, x0)

≤ sup
π∈�

D(π, q∗, x0) ≤ V (x0). (56)
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Similarly consider any strategy γ ∈ � for player 2 and set p∗ ∈ P such that (see (49))

V (x) = T V (x) = RV (x) = max
�∈P(A(x))

min
χ∈P(B(x))

[

C(x, �, χ) + GV (x, �, χ)
]

= min
χ∈P(B(x))

[

C(x, p∗, χ) + GV (x, p∗, χ)
]

≤ C(x, p∗, χ) + GV (x, p∗, χ)

(57)

for any χ ∈ P(B(x)). From Proposition 4.1 considering the functionsW(x) = W (x),
S(x) = −V (x), C(x, a, b) = −C(x, a, b), and using the inequality V (x) ≤
C(x, p∗, χ) + GV (x, p∗, χ) for any χ ∈ P(B(x)) obtained from (57), we get that

E
p∗,γ
x0

[

e−αTn+1V (Xn+1)
]

+
n

∑

k=0

E
p∗,γ
x0

[

e−αTkC(Xk, p
∗, γk(.| ˜Hk))

]

≥ V (x0). (58)

Taking the limit in (58) as n → ∞ and from Proposition 4.6 we get that

D(p∗, γ, x0) ≥ V (x0) ⇒ J l(x0) = sup
π∈�

inf
γ∈�

D(π, γ, x0)

≥ inf
γ∈�

D(p∗, γ, x0) ≥ V (x0). (59)

From (56) and (59) we get that

V (x0) ≤ J l(x0) ≤ J u(x0) ≤ V (x0)

and thus the discounted infinite horizon game has a value V , and V = V . Therefore
for any V ∈ BW (X∞) satisfying V = T V we have that V = V , which shows that V
is the unique fixed point solution of V = T V with V ∈ BW (X∞). From Proposition
5.2 we get that V(x) = U∗(x). Moreover by taking π = p∗ in (59) and γ = q∗ in
(56) we get that V(x0) = D(p∗, q∗, x0) completing the proof. 
�
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Appendix: Proof of Proposition 4.1

For the proof of this proposition,weneedfirst to derive someauxiliary technical results.
In what follows we write for notational convenience˜hk = (˜hk−1, ak−1, bk−1, xk) and
we introduce

vnn (
˜hn) = C(xn, πn(.|˜hn), γn(.|˜hn)), (60)
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vnk−1(
˜hk−1) =

∫

A

∫

B

∫

X
vnk ((

˜hk−1, ak−1, bk−1, xk))G(dxk |xk−1, ak−1, bk−1)

πk−1(dak−1|˜hk−1)γk−1(dbk−1|˜hk−1) (61)

and

snn (˜hn) = GS(xn, πn(.|˜hn), γn(.|˜hn)), (62)

snk−1(
˜hk−1) =

∫

A

∫

B

∫

X
snk ((˜hk−1, ak−1, bk−1, xk))G(dxk |xk−1, ak−1, bk−1)

πk−1(dak−1|˜hk−1)γk−1(dbk−1|˜hk−1) (63)

for π = (πk)k∈N ∈ �, γ = (γk)k∈N ∈ � and n ∈ N, k ∈ N
∗
n (for simplicity we omit

the dependence on (π, γ ) for the functions vnk , s
n
k defined below). Observe that for

any n ∈ N, k ∈ Nn and ˜hk ∈ ˜Hk , vnk (
˜hk) and snk (˜hk) are well defined by using the

hypotheses on W , S and C.
Proposition 6.1 For x0 ∈ X, π = (πk)k∈N ∈ � and γ = (γk)k∈N ∈ �, m ∈ N, we
have that

E
π,γ
x0

[

e−α�m−kvmm−k(
˜Hm−k)|Hm−(k+1)

]

= vmm−(k+1)(
˜Hm−(k+1)), fork ∈ Nm−1,

E
π,γ
x0

[

e−α�m+1−k smm+1−k(
˜Hm+1−k)|Hm−k

]

= smm−k(
˜Hm−k)), fork ∈ Nm .

Proof It is an immediate application of the construction of the process. 
�
As a consequence of the previous proposition, we have the following result.

Proposition 6.2 For x0 ∈ X, π = (πk)k∈N ∈ � and γ = (γk)k∈N ∈ �, m ∈ N we
have that

E
π,γ
x0

[

e−αTmC(Xm, πm(.| ˜Hm), γm(.| ˜Hm))
]

= vm0 (x0, π0, γ0), (64)

E
π,γ
x0

[

e−αTm+1S(Xm+1)
]

= sm0 (x0, π0, γ0). (65)

Proof By definition, we have

E
π,γ
x0

[

e−αTmC(Xm, πm(.| ˜Hm), γm(.| ˜Hm))
]

= E
π,γ
x0

[

e−αTm−1E
π,γ
x0

[

e−α�mvmm ( ˜Hm)|Hm−1

]]

,

and so from Proposition 6.1,

E
π,γ
x0

[

e−αTmC(Xm, πm(.| ˜Hm), γm(.| ˜Hm))
]

= E
π,γ
x0

[

e−αTm−1vmm−1(
˜Hm−1)

]

.

Repeating this procedure we get (64), and similarly we get (65). 
�
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For notational convenience, let us define

gnk (˜hk) =
n

∑

i=k

vik(
˜hk). (66)

Proposition 6.3 For k ∈ Nn, we have that

snk (˜hk) + gnk (˜hk) ≤ S(xk). (67)

Proof Let us prove (67) by induction on k. For k = n we have from (60),
(62) and (66) that snn (˜hn) = GS(xn, π(.|˜hn), γn(.|˜hn)), gnn (˜hn) = vnn (

˜hn) =
C(xn, πn(.|˜hn), γn(.|˜hn)) and thus from (24),

snn (˜hn) + gnn (˜hn)

=
∫

A

∫

B

(

GS(xn, an, bn) + C(xn, an, bn)
)

πn(dan|˜hn), γn(dbn|˜hn) ≤ S(xn).

This proves the result for n. Suppose (67) holds for k. Let us show that it also holds
for k − 1. We have from (60), (61), (63), (66), the induction hypothesis (67), and (24),
that

∫

A

∫

B

∫

X

(

snk ((˜hk−1, ak−1, bk−1, xk))

+ gnk ((˜hk−1, ak−1, bk−1, xk))
)

G(dxk |xk−1, ak−1, bk−1)

πk−1(dak−1|˜hk−1)γk−1(dbk−1|˜hk−1)

=
∫

A

∫

B

∫

X
snk ((˜hk−1, ak−1, bk−1, xk))

G(dxk |xk−1, ak−1, bk−1)πk−1(dak−1|˜hk−1)γk−1(dbk−1|˜hk−1)

+
n

∑

i=k

∫

A

∫

B

∫

X
vik((

˜hk−1, ak−1, bk−1, xk))

G(dxk |xk−1, ak−1, bk−1)πk−1(dak−1|˜hk−1)γk−1(dbk−1|˜hk−1)

= snk−1(
˜hk−1) +

n
∑

i=k

vik−1(
˜hk−1)

≤
∫

A

∫

B

∫

X
S(xk)

G(dxk |xk−1, ak−1, bk−1)πk−1(dak−1|˜hk−1)γk−1(dbk−1|˜hk−1)

=
∫

A

∫

B

GS(xk−1, ak−1, bk−1)πk−1(dak−1|˜hk−1)γk−1(dbk−1|˜hk−1)

≤
∫

A

∫

B

(

S(xk−1) − C(xk−1, ak−1, bk−1)
)
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πk−1(dak−1|˜hk−1)γk−1(dbk−1|˜hk−1)

= S(xk−1) − C(xk−1, π(.|˜hk−1), γ (.|˜hk−1))

= S(xk−1) − vk−1
k−1(

˜hk−1),

where the last inequality follows from (24). Thus re-arranging the terms we get that
snk−1(

˜hk−1)+∑n
i=k−1 vik−1(

˜hk−1) ≤ S(xk−1) showing (67) for k − 1, completing the
proof. 
�

Now the proof of Proposition 4.1 is a straightforward consequence of Propositions
6.2 and 6.3. From (67), we have sn0 (˜h0)+ gn0 (˜h0) ≤ S(x0). Moreover, combining (64)

and (66) we get gn0 (˜h0) = ∑n
k=0 E

π,γ
x0

[

e−αTkC(Xk, πk(.| ˜Hk), γk(.| ˜Hk))
]

and from

(65), sn0 (x0, π0, γ0) = E
π,γ
x0

[

e−αTn+1S(Xn+1)
]

giving the result.
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