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Abstract We consider an optimal control problem for a diffuse interface model of
tumor growth. The state equations couples a Cahn–Hilliard equation and a reaction-
diffusion equation, which models the growth of a tumor in the presence of a nutrient
and surrounded by host tissue. The introduction of cytotoxic drugs into the system
serves to eliminate the tumor cells and in this setting the concentration of the cytotoxic
drugs will act as the control variable. Furthermore, we allow the objective functional
to depend on a free time variable, which represents the unknown treatment time to be
optimized. As a result, we obtain first order necessary optimality conditions for both
the cytotoxic concentration and the treatment time.
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1 Introduction

There has been a recent surge in the development of phase field models for tumor
growth. These models aim to describe the evolution of a tumor colony surrounded
by healthy tissues which experience biological mechanisms such as proliferation via
nutrient consumption, apoptosis, chemotaxis and active transport of specific chemical
species. For the case of a young tumor, before the development of quiescent cells, the
phase field models often consist of a Cahn–Hilliard equation coupled with a reaction-
diffusion equation for the nutrient [13,22,26,27,37]. One may also treat the tumor
cells and the healthy cells as inertia-less fluids, and include the effects of fluid flow
into the evolution of the tumor, leading to the development of a Cahn–Hilliard–Darcy
system [14,15,22,45].

Current treatments for cancer include surgery, immunotherapy (strengthening the
immune system), radiotherapy (using radiation to kill cancer cells) and chemotherapy
(using drugs to kill cancer cells). The latter three treatments are typically conducted
in cycles. A cycle is a period of treatment followed by a (longer) period of rest, so that
the patient’s body can build new healthy cells. The goal of these therapeutic treatments
is to shrink the tumor into a more manageable size for which surgery can be applied.
Further therapeutic treatments may be necessary in order to destroy the cancer cells
that may remain after the surgery.

In this work, we consider an optimal control problem involving a cancer treatment
with cytotoxic drugs. It is well-known that while cytotoxic drugs mainly target and
damage rapidly dividing cells such as tumor cells, the drugs can also accumulate in
the body and cause adverse side-effects to the immune system and various vital organs
such as the kidneys and the liver. In a worst case scenario, too much cytotoxic drugs
may allow tumor cells to mutate and become resistant to the treatment. Thus, from
the viewpoint of the patient, the shortest treatment time in which the objectives of the
chemotherapy are achieved is the most ideal. Therefore, the optimal control problem
we study involves finding the optimal drug distribution and the optimal treatment
time.

For T > 0, in a bounded domain � ⊂ R
3 with C3-boundary �, we consider the

following Cahn–Hilliard model for tumor growth,

∂tϕ = �μ + (Pσ − A − αu)h(ϕ) in � × (0, T ) =: Q, (1.1a)

μ = A	 ′(ϕ) − B�ϕ in � × (0, T ), (1.1b)

∂tσ = �σ − Cσh(ϕ) + B (σS − σ) in � × (0, T ), (1.1c)

∂νϕ = ∂νμ = ∂νσ = 0 on � × (0, T ), (1.1d)

ϕ(0) = ϕ0, σ (0) = σ0 in �. (1.1e)

Here, α is a positive constant, ϕ denotes the difference in volume fractions, where
ϕ = 1 represents the tumor phase and ϕ = −1 represents the healthy tissue phase.
The function μ is a chemical potential associated to ϕ, 	 ′(ϕ) is the derivative of a
potential 	(ϕ) with equal minima at ϕ = ±1, σ denotes the concentration of an
unspecified chemical species acting as nutrient for the tumor cells, while u denotes
the concentration of cytotoxic drugs.
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The function h(ϕ) is an interpolation function such that h(−1) = 0 and h(1) = 1,
and the parametersP, A, C, andB denote the constant tumor proliferation rate, tumor
apoptosis rate, nutrient consumption rate, and nutrient supply rate, respectively. The
positive constants A and B are related to the thickness of the interfacial layer and the
surface tension, while ∂ν f = ∇ f · ν denotes the normal derivative of f where ν is
the unit outward normal of �.

The term h(ϕ)Pσ models the proliferation of tumor cells which is proportional to
the concentration of the nutrient, the term h(ϕ)Amodels the apoptosis of tumor cells,
and Ch(ϕ)σ models the consumption of the nutrient only by the tumor cells. The term
αuh(ϕ) models the elimination of the tumor cells by the cytotoxic drugs at a constant
rate α.Meanwhile, σS denotes the nutrient concentration in a pre-existing vasculature,
and B(σS − σ) models the supply of nutrient from the blood vessels if σS > σ and
the transport of nutrient away from the domain � if σS < σ.

In comparison with the models of [22], we have neglected the effects of chemotaxis
and active transport, but the new feature of (1.1) is the inclusion of the effects of
cytotoxic drugs via the term αuh(ϕ), and in this work the function u will act as our
control. For realistic applications the control u: [0, T ] → [0, 1] should be spatially
constant, where u = 1 represents a full dosage and u = 0 represents no dosage.
However, in the subsequent analysis, we allow for spatial dependence (seeAssumption
2.1 below).

For positive constants r, βu and βT , and nonnegative constants βQ, β�, and βS,

we consider the objective functional Jr given as

Jr (ϕ, u, τ ) = βQ
2

∫ τ

0

∫
�

∣
∣ϕ − ϕQ

∣
∣2 dx dt + β�

2
1
r

∫ τ

τ−r

∫
�

|ϕ − ϕ�|2 dx dt

+βS
2

1
r

∫ τ

τ−r

∫
�
1 + ϕ dx dt + βu

2

∫ T
0

∫
�

|u|2 dx dt + βT τ. (1.2)

In particular, (1.2) can be seen as the relaxation of the followingmore natural objective
functional

J (ϕ, u, τ ) = βQ
2

∫ τ

0

∫
�

∣
∣ϕ − ϕQ

∣
∣2 dx dt + β�

2

∫
�

|ϕ(τ) − ϕ�|2 dx

+βS
2

∫
�
1 + ϕ(τ) dx + βu

2

∫ τ

0

∫
�

|u|2 dx dt + βT τ. (1.3)

Here, τ ∈ (0, T ] represents the treatment time, ϕQ represents a desired evolution for
the tumor cells while ϕ� represents a desired final distribution. The first two terms of
J are of standard tracking type that are often considered in the literature of parabolic
optimal control, and the third term of J measures the size of the tumor at the end of
the treatment. The fourth term penalizes large concentrations of the cytotoxic drugs,
and the fifth term of J penalizes long treatment times.

Let us make the following comments:

(1) A large value of
∣
∣ϕ − ϕQ

∣
∣2 would mean that the patient suffers from the growth

of the tumor, and a large value of |u|2 would mean that the patient suffers from
high toxicity of the drug.
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(2) The function ϕ� can be a stable configuration of the system, so that the tumor
does not grow again once the treatment is completed. One can also choose ϕ� as
a configuration which is suitable for surgery.

(3) The variable τ can be regarded as the treatment time of one cycle, i.e., the amount
of time the drug is applied to the patient before the period of rest, or the treatment
time before surgery.

(4) It is possible to replace βT τ by a more general function f (τ ) where f :R≥0 →
R≥0 is continuously differentiable and increasing.

(5) We consider T ∈ (0, ∞) as a fixed maximal time in which the patient is allowed
to undergo a treatment obtained from this optimal control problem.

For technical reasons highlighted below, we consider an optimal control problem
with the relaxed objective functional (1.2) and the state equations (1.1). We denote
the space of admissible controls as Uad (see Assumption 2.1 below) and the optimal
control problem we study in this work can be expressed as follows,

minimise Jr (ϕ, u, τ ) subject to (1.1), u ∈ Uad, τ ∈ (0, T ). (P)

The optimal control problem (P) is a problem involving a free terminal time, and we
say that (u∗, τ∗) is a minimizer of (P) if

Jr (ϕ∗, u∗, τ∗) = inf Jr (φ, w, s),

where the infimum is taken over triplets (φ, w, s) such that w ∈ Uad, s ∈ [0, T ]
and φ solves (1.1) with datum w. In ODE constrained optimal control where the cost
functional depends on the free terminal time, the necessary optimality condition can
be derived with the help of the corresponding Hamiltonian function, see for instance
[35, Chap. 20] and [25,33,38]. One may use the notion of Hamiltonian functional to
derive the optimality condition for the free terminal time when the state equations are
partial differential equations, see in particular [2,39,40] for semilinear parabolic state
equations.

Below we illustrate with an example the optimality conditions obtained with the
Hamiltonian from ODE theory and with the Lagrangian method for PDE-constrained
optimization, see for instance [44, §2.10] and [32, §1.6.4]. Suppose the objective
functional is of the form

∫ τ

0

∫

�

F(t, ϕ(t, x), u(t, x)) dx dt +
∫

�

L(τ, ϕ(τ, x)) dx,

and ϕ satisfies for example

∂tϕ = �ϕ + f (t, ϕ, u).
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Let u∗ denote an optimal control with corresponding state ϕ∗. The Hamiltonian H is
defined as

H(t, ϕ, u, p) :=
∫

�

F(t, ϕ, u) dx +
∫

�

p�ϕ + p f (t, ϕ, u) dx,

where p act as the adjoint variable to ϕ∗. From the works of [2,39,40] and also from
the theory of ODE-constraint optimal control, the optimality condition for the optimal
time τ∗ is

0 = H(τ∗, ϕ∗(τ∗), u∗(τ∗), p(τ∗)) + ∫
�

∂L
∂t (τ∗, ϕ∗(τ∗)) dx . (1.4)

Now, let us define the Lagrangian

L :=
∫ τ

0

∫

�

F(t, ϕ, u) dx dt +
∫

�

L(τ, ϕ(τ )) dx

−
∫ τ

0

∫

�

p (∂tϕ − �ϕ − f (t, ϕ, u)) dx dt,

then one obtains from formally differentiating L with respect to τ the optimality
condition for τ∗, which is

∂L
∂τ

(τ∗, ϕ∗, u∗)

=
∫

�

F(τ∗, ϕ∗(τ∗), u∗(τ∗)) + ∂L

∂t
(τ∗, ϕ∗(τ∗)) + ∂L

∂ϕ
(τ∗, ϕ∗(τ∗))∂tϕ∗(τ∗) dx

−
∫

�

p(τ∗) (∂tϕ∗(τ∗) − �ϕ∗(τ∗) − f (τ∗, ϕ∗(τ∗), u∗(τ∗)) dx = 0.

The adjoint equation for p is a terminal time boundary value problem:

−∂t p = �p + ∂ f

∂ϕ
p + ∂ F

∂ϕ
, p(τ∗) = ∂L

∂ϕ
(τ∗, ϕ∗(τ∗)).

Using the terminal condition for p in the expression for ∂L
∂τ

(τ∗, ϕ∗, u∗) we see that

∂L

∂ϕ
(τ∗, ϕ∗(τ∗))∂tϕ∗(τ∗) − p(τ∗)∂tϕ∗(τ∗) = 0,

and thus ∂L
∂τ

(τ∗, ϕ∗, u∗) = 0 is equivalent to (1.4). That is, the optimality conditions
for the free terminal time obtain from the Hamiltonian formulation and the Lagrangian
formulation coincide.
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Let us briefly explain the issues with the objective functional (1.3). Formally dif-
ferentiating (1.3) with respect to τ, we obtain

∂ J

∂τ
(ϕ∗, u∗, τ∗) = βQ

2

∫

�

∣
∣ϕ∗(τ∗)−ϕQ(τ∗)

∣
∣2 dx+β�

∫

�

(ϕ∗(τ∗) − ϕ�) ∂tϕ∗(τ∗) dx

+βS

2

∫

�

∂tϕ∗(τ∗) dx + βu

2

∫

�

|u∗(τ∗)|2 dx + βT , (1.5)

and in order for the terms in (1.5) to be well-defined, we need that

u∗, ϕQ, ϕ∗, ∂tϕ∗ ∈ C0
(
[0, T ]; L2(�)

)
.

Furthermore, to rigorously establish the Fréchet differentiability of J with respect to
τ, it turns out that we require

∂t tϕ∗ ∈ L2
(
0, T ; L2(�)

)
, and u∗, ϕQ ∈ H1

(
0, T ; L2(�)

)
.

Thus, themainmathematical difficulties arise from establishing high temporal regular-
ity for the state variables. A preliminary analysis shows that it is possible to derive such
regularity but only under rather strong assumptions such asϕ0 ∈ H5(�), σ0 ∈ H3(�)

and ‖∂t u‖L2(0, T ; L2(�)) ≤ K for some fixed K > 0. The assumption on the a priori
boundedness of ∂t u is not meaningful as in applications it will be hard to verify this
condition. Furthermore using the Lagrangian method, one can compute that the ter-
minal condition for the adjoint variable p to ϕ∗ is p(τ∗) = β�(ϕ∗(τ∗) − ϕ�) + βS

2 ,

and so we can write (1.5) more compactly as

∂ J

∂τ
(ϕ∗, u∗, τ∗) =

∫

�

βQ

2

∣
∣ϕ∗(τ∗) − ϕQ(τ∗)

∣
∣2 + βu

2
|u∗(τ∗)|2 dx

+
∫

�

p(τ∗)∂tϕ(τ∗) dx + βT .

But this would mean that we require the weak formulation for the equation of ϕ∗ to
be satisfied pointwise in [0, T ], that is,
∫

�

p(t)∂tϕ∗(t) + ∇μ∗(t) · ∇ p(t) − h(ϕ∗(t))(Pσ∗(t) − A − αu∗(t))p(t) dx = 0,

holds for all t ∈ [0, T ]. This in turn implies that we need

p ∈ C0
(
[0, T ]; H1(�)

)
, ∂tϕ∗ ∈ C0

(
[0, T ]; L2(�)

)
,

μ∗ ∈ C0
(
[0, T ]; H1(�)

)
.

These difficulties motivates the current study with the relaxed objective functional Jr

(1.2).
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There have been many recent contributions regarding the well-posedness and
asymptotic behaviour for phase field type tumor models, see for example [7–9,17,20,
21] for the Cahn–Hilliard variant, and [3,15,19,34,36] for the Cahn–Hilliard–Darcy
variant. From the aspect of optimal control,wemention theworks of [5,6,11,12,29,47]
for the Cahn–Hilliard equation, [41,46,48,49] for the convective Cahn–Hilliard equa-
tion and [18,28,30,31] for the Cahn–Hilliard–Navier–Stokes system. In the context
of PDE-constraint optimal control for diffuse interface tumor models, we have the
recent work of [10], where the objective functional (1.3) with βS = βT = 0 and no
dependence of J on τ is studied with state equations given by the model of [27] and
the control enters the nutrient equation as a source term, similar to the term B(σS −σ)

in (1.1c).With this work we aim to provide a contribution to the theory of free terminal
time optimal control in the context of diffuse interface tumor models.

Let us provide some future directions of research motivated by this study:

(1) An optimal control u that is periodic in time, reflecting the cyclic nature of ther-
apeutic treatments.

(2) A feedback mechanism taking into account the patient’s response to the therapy,
and the tumor’s resistance to the drug.

(3) Analysis and identification of stable equilibria for diffuse interface models of
tumor growth.

Plan of the paper the rest of this paper is organized as follows. In Sect. 2 the general
assumptions are outlined and the main results are stated. The well-posedness of the
state equations (1.1) is established in Sect. 3. The existence of a minimizer to (P) is
proved in Sect. 4, while the unique solvability of the linearized state equations and
the Fréchet differentiability of the control-to-state mapping and of the functional Jr

are contained in Sect. 5. In Sect. 6, the unique solvability of the adjoint equations is
studied and the first order necessary optimality conditions are derived.

2 General Assumptions and Main Results

Notation for convenience, we will often use the notation L p := L p(�) and W k,p :=
W k,p(�) for any p ∈ [1, ∞], k > 0 to denote the standard Lebesgue and Sobolev
spaces equipped with the norms ‖·‖L p and ‖·‖W k,p . In the case p = 2 we use Hk :=
W k,2 and the norm ‖·‖Hk . Moreover, the dual space of a Banach space X will be
denoted by X∗, and the duality pairing between X and X∗ is denoted by 〈·, ·〉X . The
space–time cylinder�× (0, T )will be denoted by Q, and we use the notation L p(Q)

to denote the spaces L p(� × (0, T )) for 1 ≤ p ≤ ∞. Using Fubini’s theorem we
have the isometric isomorphism L p(0, T ; L p) ∼= L p(Q) for p ∈ [1, ∞). We point
out that L∞(0, T ; L∞) ⊂ L∞(Q), but the converse inclusion is not true in general
due to measurability issues (see for instance [42, Ex 1.4.2]).
Useful preliminaries the following Gronwall inequality in integral form will often be
used (see [21, Lemma 3.1] for a proof). For W, X, Y, Z real-valued functions defined
on [0, T ] such that W is integrable, X is nonnegative and continuous, Y is continuous,
Z is nonnegative and integrable. If Y and Z satisfy the integral inequality
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Y (s) +
∫ s

0
Z(t) dt ≤ W (s) +

∫ s

0
X (t)Y (t) dt for s ∈ (0, T ],

then it holds that

Y (s) +
∫ s

0
Z(t) dt ≤ W (s) +

∫ s

0
X (t)W (t) exp

(∫ t

0
X (z) dz

)

dt. (2.1)

The following Taylor’s theorem with integral remainder will be used to show the
Fréchet differentiability of the control-to-statemapping. For f ∈ C2(R) anda, x ∈ R,

it holds that

f (x) = f (a) + f ′(a)(x − a) + (x − a)2
∫ 1

0
f ′′(a + z(x − a))(1 − z) dz. (2.2)

The Gagliardo–Nirenberg interpolation inequality in dimension d is also useful
(see [16, Theorem 10.1, p. 27]): let � be a bounded domain with Cm boundary, and
f ∈ W m,r (�) ∩ Lq(�), 1 ≤ q, r ≤ ∞. For any integer j, 0 ≤ j < m, suppose
there is an α ∈ R such that

1

p
= j

d
+

(
1

r
− m

d

)

α + 1 − α

q
,

j

m
≤ α ≤ 1.

If r ∈ (1, ∞) and m − j − d
r is a nonnegative integer, we in addition assume α �=

1. Under these assumptions, there exists a positive constant C depending only on
�, m, j, q, r, and α such that

‖D j f ‖L p(�) ≤ C‖ f ‖α
W m,r (�)‖ f ‖1−α

Lq (�). (2.3)

We consider the following assumptions.

Assumption 2.1

(A1) The initial conditions satisfyϕ0 ∈ H3 with the compatibility condition ∂νϕ0 = 0
on �, σ0 ∈ H1, with 0 ≤ σ0 ≤ 1 a.e. in �, while the target functions satisfy
ϕQ, ϕ� ∈ L2(Q). The vasculature nutrient concentration σS satisfies 0 ≤ σS ≤
1 a.e. in Q.

(A2) The interpolation function h:R → [0, 1] is twice continuously differentiable
and Lipschitz continuous (with Lipschitz constant Lh). The parametersP, A, C
and B are nonnegative constants, and α is a positive constant.

(A3) The space of admissible controls is given as

Uad = {
u ∈ L∞ (

0, T ; L∞)
: 0 ≤ u ≤ 1 a.e. in Q

}
.
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(A4) The potential 	:R → R≥0 is three times continuously differentiable and satis-
fies for some positive constants {k j }5j=0,

∣
∣	 ′(s)

∣
∣ ≤ k0	(s) + k1, (2.4)

	(s) ≥ k2 |s| − k3, (2.5)
∣
∣	 ′′(s)

∣
∣ ≤ k4

(
1 + |s|2

)
, (2.6)

∣
∣	 ′(s) − 	 ′(t)

∣
∣ ≤ k5

(
1 + |s|2 + |t |2

)
|s − t | , (2.7)

for all s, t ∈ R.

Wepoint out that as� is a boundeddomain, there exists anopen setU ⊂ L2(Q) such
that Uad ⊂ U . In this work, we consider quartic potentials 	 for the state equations,
for which the classical double-well potential 	(s) = 1

4 (1− s2)2 is one example. The
well-posedness of the state equations with higher polynomial growth for 	 is also
possible, see for instance the procedure in [17, Proof of Theorem 1], but we restrict
our current analysis to that of quartic potentials to simplify the computations.

Theorem 2.1 (Well-posedness) For every T ∈ (0, ∞) and given data (ϕ0, σ0, u),

under Assumption 2.1 there exists a unique triplet of solutions (ϕ, μ, σ ) with

ϕ ∈ L∞ (
0, T ; H2

)
∩ L2

(
0, T ; H3

)
∩ H1

(
0, T ; L2

)
∩ C0(Q),

μ ∈ L2
(
0, T ; H2

)
∩ L∞ (

0, T ; L2
)

,

σ ∈ L∞ (
0, T ; H1

)
∩ L2

(
0, T ; H2

)
∩ H1

(
0, T ; L2

)
, 0 ≤ σ ≤ 1 a.e. in Q,

such that ϕ(0) = ϕ0, σ (0) = σ0, and for a.e. t ∈ (0, T ) and for all ζ ∈ H1,

0 =
∫

�

∂tϕζ + ∇μ · ∇ζ − (Pσ − A − αu)h(ϕ)ζ dx, (2.8a)

0 =
∫

�

μζ − A	 ′(ϕ)ζ − B∇ϕ · ∇ζ dx, (2.8b)

0 =
∫

�

∂tσζ + ∇σ · ∇ζ + (Ch(ϕ) + B)σζ − BσSζ dx . (2.8c)

Furthermore, it holds that

‖ϕ‖L∞(0, T ; H2)∩L2(0, T ; H3)∩H1(0, T ; L2) + ‖μ‖L2(0, T ; H2)∩L∞(0, T ; L2)

+ ‖σ‖L2(0, T ; H2)∩L∞(0, T ; H1)∩H1(0, T ; L2) ≤ C,

for some positive constant C not depending on (ϕ, μ, σ, u). Let (ϕi , μi , σi )i=1,2
denote two weak solutions to (1.1) satisfying (2.8) corresponding to {ui }i=1,2 with the
same initial data ϕ0 and σ0. Then, there exists a positive constant Ccts depending only
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on ‖ϕi‖L∞(0, T ; L∞), A, B, P, A, C, α, k5, T and the Lipschitz constant Lh, such
that for all s ∈ (0, T ],

‖ϕ1(s) − ϕ2(s)‖2L2 + ‖σ1(s) − σ2(s)‖2H1 + ‖μ1 − μ2‖2L2(0,s;L2)

+‖∂tσ1 − ∂tσ2‖2L2(0,s;L2)
+ ‖ϕ1 − ϕ2‖2L2(0,s;H2)

≤ Ccts‖u1 − u2‖2L2(0,s;L2)
.

(2.9)

The existence of solutions to the state equations (1.1) is proved via a fixed point
argument, see also [15] for a similar argument applied to a multispecies tumor model.
Onemay also use aGalerkin approximation, which has been applied to similar systems
in [7,17,19–21,34,36]. The key difference here are that we establish boundedness of
the nutrient concentration σ, which comes from the application of a weak comparison
principle. Here we also point out that the gradient ∇ϕ is continuous on the bound-
ary up to initial time by the embedding ϕ ∈ L∞(0, T ; H2) ∩ H1(0, T ; L2) ⊂⊂
C0([0, T ]; Hβ) for β < 2 and the trace theorem. Hence, the initial condition ϕ0
needs to fulfill the boundary conditions.

The unique solvability of the state equations (1.1) allows us to define a solution
operator S given as

S(u) := (ϕ, μ, σ ),

where the triplet (ϕ, μ, σ ) is the unique weak solution to (1.1) with data (ϕ0, σ0, u)

over the time interval [0, T ]. We use the notation ϕ = S1(u) for the first component
of S(u). Then, we deduce the existence of a minimizer to (P).

Theorem 2.2 (Existence of minimizer) Under Assumption 2.1, there exists at least
one minimizer (ϕ∗, u∗, τ∗) to (P). That is, ϕ∗ = S1(u∗) with

Jr (ϕ∗, u∗, τ∗) = inf
(w, s) ∈ Uad×[0, T ]

s.t. φ = S1(w)

Jr (φ, w, s).

Note that we cannot exclude the trivial cases where τ∗ = 0 or T . To establish
the Fréchet differentiability of the solution operator with respect to the control u, we
first investigate the linearized state equations. For arbitrary but fixed u ∈ Uad, let
(ϕ, μ, σ ) = S(u) denote the unique solution triplet to (1.1) from Theorem 2.1. For
w ∈ L2(Q), we consider the following linearized state equations,

∂t� = �� + h(ϕ)(P� − αw) + h′(ϕ)�(Pσ − A − αu) in Q, (2.10a)

� = A	 ′′(ϕ)� − B�� in Q, (2.10b)

∂t� = �� − B� − C(h(ϕ)� + h′(ϕ)�σ) in Q, (2.10c)

0 = ∂ν� = ∂ν� = ∂ν� on � × (0, T ),

(2.10d)

0 = �(0) = �(0) in �. (2.10e)

The unique solvability of (2.10) is obtained via a Galerkin procedure.
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Theorem 2.3 (Unique solvability of the linearized state equations) For any w ∈
L2(Q), there exists a unique triplet (�, �, �) with

� ∈ L∞ (
0, T ; H1

)
∩ L2

(
0, T ; H3

)
∩ H1

(
0, T ;

(
H1

)∗)
,

� ∈ L2
(
0, T ; H1

)
,

� ∈ L∞ (
0, T ; H1

)
∩ H1

(
0, T ; L2

)
∩ L2

(
0, T ; H2

)
,

such that for a.e. t ∈ (0, T ), and for all ζ ∈ H1,

0 = 〈∂t�, ζ 〉H1+
∫

�

∇� · ∇ζ − (h(ϕ)(P� − αw) + h′(ϕ)(Pσ − A − αu)�)ζ dx,

(2.11a)

0 =
∫

�

�ζ − A	 ′′(ϕ)�ζ − B∇� · ∇ζ dx, (2.11b)

0 =
∫

�

∂t�ζ + ∇� · ∇ζ + B�ζ + C(h(ϕ)� + h′(ϕ)�σ)ζ dx . (2.11c)

Furthermore, there exists a constant C > 0 not depending (�, �, �, w) such that

‖�‖L∞(0,T ;H1)∩L2(0,T ;H3)∩H1(0,T ;(H1)∗) + ‖�‖L2(0,T ;H1)

+ ‖�‖L∞(0,T ;H1)∩H1(0,T ;L2)∩L2(0,T ;H2) ≤ C‖w‖L2(0,T ;L2).

The expectation is as follows. Let u, û ∈ Uad ⊂ U be arbitrary,with (ϕ, μ, σ ) = S(u)

and (ϕ̂, μ̂, σ̂ ) = S(û) denoting the unique solution triplets to (1.1) corresponding to
u and û, respectively. Denote by w := û − u ∈ L2(Q) and let (�w, �w, �w) denote
the unique solution to the linearized state equations (2.10) associated to w. We define
the remainders to be

θw := ϕ̂ − ϕ − �w ∈ L2
(
0, T ; H3

)
∩ L∞ (

0, T ; H1
)

∩ H1
(
0, T ;

(
H1

)∗)
,

(2.12a)

ρw := μ̂ − μ − �w ∈ L2
(
0, T ; H1

)
, (2.12b)

ξw := σ̂ − σ − �w ∈ L∞ (
0, T ; H1

)
∩ L2

(
0, T ; H2

)
∩ H1

(
0, T ; L2

)
.

(2.12c)

If, for a suitable Banach space Y yet to be identified, we have

‖(θw, ρw, ξw)‖Y
‖w‖L2(Q)

→ 0 as ‖w‖L2(Q) → 0,

then, it holds that the solution operator S is Fréchet differentiable at u, the Fréchet
derivative with respect to the control u, denoted as DuS, belongs to L(L2(Q), Y),
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and satisfies

DuS(u)w = (
�w, �w, �w

)
.

With the unique solvability of the linearized state equations, we have the following
result on the Fréchet differentiability of the solution operator.

Theorem 2.4 (Fréchet differentiability with respect to the control)Under Assumption
2.1, the solution operator S is Fréchet differentiable in U as a mapping from L2(Q)

to the product Banach space

Y :=
[

L2
(
0, T ; H2

)
∩ H1

(
0, T ;

(
H2

)∗) ∩ C0
(
[0, T ]; L2

)]

× L2(Q) ×
[

L∞ (
0, T ; H1

)
∩ H1

(
0, T ; L2

)]
.

That is, for any û, u ∈ Uad ⊂ U with w = û − u ∈ L2(Q), there exists a positive
constant Cdiff,u not depending on û, u and w such that

‖(θw, ρw, ξw
)‖2Y ≤ Cdiff,u‖w‖4L2(Q)

, (2.13)

where (θw, ρw, ξw) are defined as in (2.12).

We now define a reduced functional

J (u, τ ) := Jr (S1(u), u, τ ) .

For any u ∈ Uad ⊂ U , set w = u −u∗ ∈ L2(Q) and let (�w, �w, �w) be the unique
solution to (2.10) corresponding to w, the optimal control u∗ and the corresponding
state variables (ϕ∗, μ∗, σ∗).By Theorem 2.4,J is Fréchet differentiable with respect
to the control with

(DuJ (u∗, τ∗)) w

= βQ

∫ τ∗

0

∫

�

(ϕ∗ − ϕQ)�w dx dt + β�

r

∫ τ∗

τ∗−r

∫

�

(ϕ∗ − ϕ�)�w dx dt

+ βS

2r

∫ τ∗

τ∗−r

∫

�

�w dx dt + βu

∫ T

0

∫

�

u∗w dx dt. (2.14)

Next, we make use of the following adjoint equation to eliminate the presence of the
linearized state variable �w in (2.14),

−∂t p + B�q = A	 ′′(ϕ∗)q − Ch′(ϕ∗)σ∗r + h′(ϕ∗)(Pσ∗ − A − αu∗)p

+ βQ
(
ϕ∗ − ϕQ

)

+ 1
2r χ(τ∗−r,τ∗)(t) (2β� (ϕ∗ − ϕ�) + βS) in � × (0, τ∗),

(2.15a)

q = �p in � × (0, τ∗),
(2.15b)
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−∂t r = �r − Br − Ch(ϕ∗)r + Ph(ϕ∗)p in � × (0, τ∗),
(2.15c)

0 = ∂ν p = ∂νq = ∂νr on � × (0, τ∗),
(2.15d)

r(τ∗) = 0, p(τ∗) = 0 in �. (2.15e)

Note that the adjoint system is supplemented with terminal conditions at the optimal
treatment time τ∗. We now state the unique solvability result.

Theorem 2.5 (Unique solvability of the adjoint equations)Under Assumption 2.1, for
any u ∈ Uad there exists a unique triplet (p, q, r) associated to S(u) = (ϕ, μ, σ )

with

p ∈ L2
(
0, τ∗; H2

)
∩ H1

(
0, τ∗;

(
H2

)∗) ∩ C0
(
[0, τ∗]; L2

)
,

q ∈ L2
(
0, τ∗; L2

)
,

r ∈ L2
(
0, τ∗; H2

)
∩ L∞ (

0, τ∗; H1
)

∩ H1
(
0, τ∗; L2

)
∩ C0

(
[0, τ∗]; L2

)
,

satisfying

0 = 〈−∂t p, ζ 〉H2 +
∫

�

Bq�ζ + h′(ϕ)(Cσr − (Pσ − A − αu)p)ζ dx (2.16a)

−
∫

�

(
A	 ′′(ϕ)q+βQ

(
ϕ − ϕQ

) + 1
2r χ(τ∗−r,τ∗)(t) (2β� (ϕ − ϕ�) + βS)

)
ζ dx,

0 =
∫

�

qη + ∇ p · ∇ζ dx, (2.16b)

0 =
∫

�

−∂t rη + ∇r · ∇η + Brη + Ch(ϕ)rη − Ph(ϕ)pη dx, (2.16c)

for a.e. t ∈ (0, τ∗) and for all η ∈ H1 and ζ ∈ H2.

The first order necessary optimality conditions for the minimizer (u∗, τ∗) of The-
orem 2.2 also requires the Fréchet derivative of J with respect to τ, and for this we
make the additional assumption on the target functions ϕQ and ϕ�.

Assumption 2.2 We now assume that ϕQ ∈ H1(0, T ; L2) and ϕ� ∈ H1(−r, T ;
L2).

Furthermore, we extend ϕ to negative times using the initial condition, i.e., ϕ(t) = ϕ0
for t < 0.

Theorem 2.6 (Fréchet differentiability of the reduced functional with respect to time)
Under Assumptions 2.1 and 2.2, let u ∈ Uad be arbitrary with corresponding state
variablesS(u) = (ϕ, μ, σ ). The reduced functionalJ (u, τ ) is Fréchet differentiable
with respect to τ with

123



508 Appl Math Optim (2018) 78:495–544

DτJ (u, τ ) = βT + βQ

2
‖ϕ(τ) − ϕQ(τ )‖2L2

+ βS

2r

∫

�

ϕ(τ) − ϕ(τ − r) dx

+ β�

2r

(
‖(ϕ − ϕ�) (τ)‖2L2 − ‖(ϕ − ϕ�) (τ − r)‖2L2

)
.

The first order necessary optimality conditions to (P) for the minimizer (u∗, τ∗)
are given as follows.

Theorem 2.7 (First order necessary optimality conditions) Under Assumptions 2.1
and 2.2, let (u∗, τ∗) ∈ Uad × [0, T ] denote a minimizer to (P) with corresponding
state variables S(u∗) = (ϕ∗, μ∗, σ∗) and associated adjoint variables (p, q, r).

Then, it holds that

∫ T

0

∫

�

βuu∗(u − u∗) dx dt −
∫ τ∗

0

∫

�

h(ϕ∗)αp(u − u∗) dx dt ≥ 0 ∀u ∈ Uad,

(2.17)

and

βT + βQ

2
‖(ϕ∗ − ϕQ

)
(τ∗)‖2L2 + βS

2r

∫

�

ϕ∗(τ∗) − ϕ∗(τ∗ − r) dx

+β�

2r

(
‖(ϕ∗ − ϕ�) (τ∗)‖2L2 − ‖(ϕ∗ − ϕ�) (τ∗ − r)‖2L2

)
⎧
⎨

⎩

≥0 if τ∗ = 0,
=0 if τ∗ ∈ (0, T ),

≤0 if τ∗ = T .

(2.18)

Remark 2.1 If we extend p by zero to (τ∗, T ], then we can express (2.17) as

∫ T

0

∫

�

(βuu∗ − h(ϕ∗)αp) (u − u∗) dx dt ≥ 0 ∀u ∈ Uad,

which allows for the interpretation that the optimal control u∗ is the L2(Q)-projection
of β−1

u h(ϕ∗)αp onto Uad.

3 Results on the State Equations

We show the existence of strong solutions to the state equations (1.1) by means of a
fixed point argument. The idea is to consider the following two auxiliary problems.
Let φ be given, we define the solution mapping M1 by σ = M1(φ), where σ is the
unique solution to

∂tσ = �σ − Ch(φ)σ + B (σS − σ) in Q, (AP1)
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with homogeneous Neumann boundary condition and initial condition σ0. Then, we
define the solution mapping M by ϕ = M(φ), where ϕ is the unique solution to

∂tϕ = �μ + h(ϕ) (PM1(φ) − A − αu) in Q,

μ = A	 ′(ϕ) − B�ϕ in Q, (AP2)

with homogeneous Neumann boundary conditions and initial condition ϕ0. If ϕ̃ is
a fixed point for M, with σ̃ = M1(ϕ̃) and μ̃ = A	 ′(ϕ̃) − B�ϕ̃, then the triplet
(ϕ̃, μ̃, σ̃ ) is a solution to (1.1).

3.1 Auxiliary Problems

Lemma 3.1 Let φ ∈ L2(Q) be given. Under Assumption 2.1, there exists a unique
solution

σ ∈ L2
(
0, T ; H2

)
∩ L∞ (

0, T ; H1
)

∩ H1
(
0, T ; L2

)
,

to (AP1) such that σ(0) = σ0 and 0 ≤ σ ≤ 1 a.e. in Q. Furthermore there exists a
positive constant CAP1 not depending on φ such that

‖σ‖L2(0,T ;H2)∩L∞(0,T ;H1)∩H1(0,T ;L2) ≤ CAP1. (3.1)

Proof As (AP1) is a linear parabolic equation in σ , the existence of weak solutions
can be shown using a Galerkin approximation, and we will only present the derivation
of a priori estimates here. The weak formulation of (AP1) is

∫

�

∂tσζ + ∇σ · ∇ζ + Ch(φ)σζ + Bσζ − BσSζ dx = 0, (3.2)

for a.e. t ∈ (0, T ) and for all ζ ∈ H1.

First estimate substituting ζ = σ in (3.2) yields

1

2

d

dt
‖σ‖2L2 + ‖∇σ‖2L2 +

∫

�

Ch(φ) |σ |2 + B |σ |2 dx ≤ B2

2
‖σS‖2L2 + 1

2
‖σ‖2L2 .

Neglecting the nonnegative term Ch(φ) |σ |2 + B |σ |2 , and the application of the
Gronwall inequality leads to

‖σ‖2L∞(0,T ;L2)
+ ‖∇σ‖2L2(0,T ;L2)

≤ C
(
T, ‖σS‖L2(Q), ‖σ0‖L2

)
. (3.3)

Second estimate substituting ζ = ∂tσ in (3.2) yields

‖∂tσ‖2L2 + 1

2

d

dt
‖∇σ‖2L2 ≤ 1

2

(
(C + B)‖σ‖L2 + B‖σS‖L2

)2 + 1

2
‖∂tσ‖2L2 ,
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wherewe used the boundedness of h. Integrating in time and using that σ0 ∈ H1, σS ∈
L2(Q) we have

‖∂tσ‖2L2(Q)
+ ‖∇σ‖2L∞(0,T ;L2)

≤ C
(
T, C, B, ‖σS‖L2(Q), ‖σ0‖H1

)
. (3.4)

Third estimate note that (3.2) can be seen as a weak formulation for the following
elliptic problem,

−�σ + σ = −∂tσ − Ch(φ)σ + B (σS − σ) + σ in �,

∂νσ = 0 on �. (3.5)

As the right-hand side of (3.5) belongs to L2 for a.e. t ∈ (0, T ), elliptic regularity
theory [24, Theorem 2.4.2.7] yields that σ(t) ∈ H2 for a.e. t ∈ (0, T ), with the
estimate

‖σ‖2H2 ≤ C
(
‖∂tσ‖2L2 + ‖σ‖2L2 + ‖σS‖2L2

)
,

where C is a positive constant not depending on σ and φ. Integrating in time gives

‖σ‖2L2(0,T ;H2)
≤ C

(
‖∂tσ‖2L2(Q)

+ ‖σ‖2L2(Q)
+ ‖σS‖2L2(Q)

)
. (3.6)

The a priori estimates (3.3), (3.4) and (3.6) are sufficient to deduce the existence of
a strong solution σ satisfying (3.2). The initial condition is attained by the use of the
continuous embedding L2(0, T ; H1)∩ H1(0, T ; L2) ⊂ C0([0, T ]; L2), and using
weak/weak-* lower semicontinuity of the norms, we obtain (3.1). We now establish
the boundedness property and continuous dependence on the data φ.

Boundedness substituting ζ = σ− := max(−σ, 0) in (3.2) leads to

1

2

d

dt
‖σ−‖2L2 +

∫

�

∣
∣∇σ−∣

∣2 + Ch(φ)
∣
∣σ−∣

∣2 + B ∣
∣σ−∣

∣2 + BσSσ− dx = 0. (3.7)

As the integrand is nonnegative, we neglect the second term on the left-hand side and
upon integrating yields

‖σ−(t)‖2L2 ≤ ‖σ−(0)‖2L2 = 0 ∀t ∈ (0, T ],

where we used that σ0 ≥ 0 a.e. in �, and so σ−(0) = 0 a.e. in �. Thus σ ≥ 0 a.e.
in Q. On the other hand, consider ζ = (σ − 1)+ = max(σ − 1, 0) in (3.2), which
yields

1

2

d

dt
‖(σ − 1)+‖2L2 +

∫

�

∣
∣∇(σ − 1)+

∣
∣2 + (Ch(φ) + B)

∣
∣(σ − 1)+

∣
∣2 dx

+
∫

�

Ch(φ)(σ − 1)+ + B (1 − σS) (σ − 1)+ dx = 0. (3.8)
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Using that h is nonnegative and σS ≤ 1 a.e. in Q, so that (1 − σS)(σ − 1)+ is
nonnegative, we find that the integrand is nonnegative. Thus, after integrating from 0
to t, we obtain

‖(σ − 1)+(t)‖2L2 ≤ ‖(σ − 1)+(0)‖2L2 = 0 ∀t ∈ (0, T ],

where we used that σ0 ≤ 1 a.e. in �. This implies that σ ≤ 1 a.e. in Q.

Continuous dependence let {σi }i=1,2 denote two functions satisfying (3.2) correspond-
ing to {φi }i=1,2 ⊂ L2(Q), respectively, and with the same initial condition σ0 and
nutrient supply σS . Then the difference σ := σ1 − σ2 satisfies

∫

�

∂tσζ + ∇σ · ∇ζ + (C (h (φ1) − h (φ2)) σ1 + Ch (φ2) σ ) ζ + Bσζ dx = 0,

(3.9)

for a.e. t ∈ (0, T ) and for all ζ ∈ H1. Substituting ζ = σ in (3.9), neglecting the
nonnegative term Ch(φ2) |σ |2 + B |σ |2 , and integrate over [0, s] for s ∈ (0, T ], we
obtain

1

2
‖σ(s)‖2L2 + ‖∇σ‖2L2(0,s;L2)

≤ (CLh)2

2
‖φ1 − φ2‖2L2(0,s;L2)

+ 1

2
‖σ‖2L2(0,s;L2)

,

where we have used the boundedness of σ1 and the Lipschitz property of h. Applying
Gronwall’s inequality (2.1) yields

‖σ(s)‖2L2 + 2‖∇σ‖2L2(0,s;L2)
≤ (CLh)2 ‖φ1 − φ2‖2L2(0,s;L2)

es for s ∈ (0, T ],
(3.10)

where we used that

∫ s

0
‖φ1 − φ2‖2L2(0,t;L2)

et dt ≤ ‖φ1 − φ2‖2L2(0,s;L2)

(
es − 1

)
.

Next, substituting ζ = ∂tσ in (3.9) and integrate over [0, s] leads to

‖∂tσ‖2L2(0,s;L2)
+ 1

2
‖∇σ(s)‖2L2 + B

2
‖σ(s)‖2L2

≤ (CLh)2 ‖φ1 − φ2‖2L2(0,s;L2)
+ C2‖σ‖2L2(0,s;L2)

+ 2

4
‖∂tσ‖2L2(0,s;L2)

.

From (3.10) we have

‖σ‖2L2(0,s;L2)
=

∫ s

0
‖σ(t)‖2L2 dt ≤ (CLh)2

∫ s

0
‖φ1 − φ2‖2L2(0,t;L2)

et dt

≤ (CLh)2
(
es − 1

) ‖φ1 − φ2‖2L2(0,s;L2)
, (3.11)
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and so this yields

‖∂tσ‖2L2(0,s;L2)
+ ‖∇σ(s)‖2L2 ≤ 2 (CLh)2

(
1 + C2 (

es − 1
)) ‖φ1 − φ2‖2L2(0,s;L2)

.

(3.12)

��
Remark 3.1 The main reason we do not employ a Galerkin approximation for the
state equation (1.1) is that the computations in the weak comparison principle seems
not to apply to the Galerkin solutions, in particular we cannot show that the Galerkin
solutions to σ is nonnegative and bounded above by 1. Indeed, for Galerkin solutions
ϕn and σn belong to some finite dimensional subspace Wn of H1 satisfying

0 =
∫

�

∂tσnv + ∇σn · ∇v + Ch (ϕn) σnv + B (σn − BσS) v dx,

for all v ∈ Wn, if we test with v = �n(σ−
n ) ∈ Wn where �n denotes the orthogonal

projection to Wn, we have

∫

�

∂tσn�n
(
σ−

n

)
dx =

∫

�

∂tσnσ−
n dx = − d

dt
‖σ−

n ‖2L2 ,

but we cannot deduce if
∫

�

h (ϕn) σn�n
(
σ−

n

)
dx =

∫

�

�n (h (ϕn) σn) σ−
n dx,

is nonpositive. There is also a similar issue with the nonnegativity of

∫

�

(Ch (ϕn) (σn − 1) + Ch (ϕn) + B (1 − σS)) �n
(
(σn − 1)+

)
dx,

as it is not guaranteed that the projection of a nonnegative function is nonnegative.

Due to the estimate (3.11), we can define a continuous mapping

M1: L2(Q) → L∞(Q) ∩ L2
(
0, T ; H2

)
∩ L∞ (

0, T ; H1
)

∩ H1
(
0, T ; L2

)

φ �→ σ given by Lemma 3.1.

Lemma 3.2 Let φ ∈ L2(Q) be given. Under Assumption 2.1, there exists a unique
solution pair

ϕ ∈ L∞ (
0, T ; H2

)
∩ L2

(
0, T ; H3

)
∩ H1

(
0, T ; L2

)
∩ C0(Q),

μ ∈ L2
(
0, T ; H2

)
∩ L∞ (

0, T ; L2
)

,
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to (AP2) such that ϕ(0) = ϕ0 and satisfy

0 =
∫

�

∂tϕζ + ∇μ · ∇ζ − (PM1(φ) − A − αu) h(ϕ)ζ dx, (3.13a)

0 =
∫

�

μζ − A	 ′(ϕ)ζ − B∇ϕ · ∇ζ dx, (3.13b)

for a.e. t ∈ (0, T ) and for all ζ ∈ H1. Furthermore, there exists a positive con-
stant CAP2 depending only on T, �, k0, k1, k2, k3, k4, A, B, P, A, α, ‖ϕ0‖H3

and CAP1, such that

‖ϕ‖L∞(0,T ;H2)∩L2(0,T ;H3)∩H1(0,T ;L2) + ‖μ‖L2(0,T ;H2)∩L∞(0,T ;L2) ≤ CAP2. (3.14)

That is, CAP2 does not depend on φ.

Proof Let {wi }i∈N denote the eigenfunctions of the Neumann–Laplacian with corre-
sponding eigenvalues {λi }i∈N:

−�wi = λiwi in �, ∂νwi = 0 on �.

Then, it iswell-known that {wi }i∈N forms anorthonormal basis of L2 and anorthogonal
basis of H1. As constant functions are eigenfunctions, we take w1 = 1 with λ1 = 0.
Let n ∈ N be fixed and we define Wn := span{w1, . . . , wn} as the finite dimensional
space spanned by the first n eigenfunctions, with the corresponding projection operator
�n . We consider sequences {φn}n∈N, {un}n∈N ⊂ C0([0, T ]; L2). such that φn → φ

and un → u strongly in L2(0, T ; L2) and look for functions of the form

ϕn(x, t) =
n∑

i=1

an,i (t)wi (x), μn(x, t) :=
n∑

i=1

bn,i (t)wi (x),

where the coefficients an := {an,i }n
i=1 and bn := {bn,i }n

i=1 satisfy the following
initial-value problem

a′
n = −Sbn + PMn − AHn − αUn, (3.15a)

bn = Aψn + BSan, (3.15b)

an(0) = (�nϕ0)
n
i=1 =

(∫

�

ϕ0wi dx

)n

i=1
, (3.15c)
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with prime denoting the time derivative and for 1 ≤ i, j ≤ n,

Si j :=
∫

�

∇wi · ∇w j dx, (Hn) j :=
∫

�

h (ϕn) w j dx,

(Un) j :=
∫

�

h (ϕn) unw j dx,
(
ψn

)
j :=

∫

�

	 ′ (ϕn) w j dx,

(Mn)i j :=
∫

�

h (ϕn)M1 (φn) w j dx . (3.16)

Without loss of generality, we assume that 0 ≤ un ≤ 1 a.e. in Q for all n ∈ N and from
Lemma 3.1 it holds that 0 ≤ M1(φn) ≤ 1 a.e. in Q and M1(φn) ∈ C0([0, T ]; L2)

for all n ∈ N. Substituting (3.15b) into (3.15a) leads to a system of ODEs in an with
right-hand side depending continuously on t and an . By the Cauchy–Peano theorem
[4, Chap. 1, Theorem 1.2], there exists a tn ∈ (0, T ] such that (3.15) has a local
solution an on [0, tn) with an ∈ C1([0, tn); Rn). Then, bn can be defined by the
relation (3.15b), and we obtain functions ϕn, μn ∈ C1([0, tn); Wn) satisfying

∂tϕn = �μn + �n (h (ϕn) (PM1 (φn) − A − αun)) , (3.17a)

μn = A�n
(
	 ′ (ϕn)

) − B�ϕn, (3.17b)

ϕn(0) = �n (ϕ0) . (3.17c)

In the following we will derive a series of a priori estimates leading to the uniform
boundedness (in n) of (ϕn, μn) in the following Bochner spaces:

(1) 	(ϕn) ∈ L∞(0, T ; L1), ϕn ∈ L∞(0, T ; H1), μn ∈ L2(0, T ; H1),

(2) ϕn ∈ L2(0, T ; H3),

(3) μn ∈ L∞(0, T ; L2) ∩ L2(0, T ; H2), ϕn ∈ L∞(0, T ; H2), ∂tϕn ∈ L2(0, T ;
L2).

In particular for the third estimate, we have to differentiate (3.17b) in time to obtain
a system of ODEs involving ∂tμn . Thus, we prescribe additional initial conditions,
namely we set

μ0 := A	 ′ (ϕ0) − B�ϕ0, μn(0) := �n (μ0) .

Note that by Assumption 2.1, there exists a positive constant Cini, not depending on
φ and n, such that

‖μn(0)‖L2 ≤ ‖μ0‖L2 ≤ Cini‖ϕ0‖H3 .

Furthermore, to approximate ϕ0 by a linear combination of eigenfunctions of the
Neumann–Laplacian in H2, we require that ϕ0 satisfies zero Neumann boundary
conditions.
First estimate multiplying (3.17a) with μn and (3.17b) with ∂tϕn, integrate over �

and integrate by parts, upon adding and using the boundedness of h, M1(φn) and un,

we obtain
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d
dt

(
A‖	 (ϕn)‖L1 + B

2 ‖∇ϕn‖2
L2

)
dx + ‖∇μn‖2

L2 ≤ (P + A + α)‖μn‖L1 .

(3.18)

Let Cu := P + A + α, then by the Poincaré inequality in L1 (with constant C p > 0
depending only on�), Hölder’s inequality and Young’s inequality, the right-hand side
of (3.18) can be estimated as follows,

Cu‖μn‖L1 ≤ Cu

∥
∥
∥
∥μn − 1

|�|
∫

�

μn dx

∥
∥
∥
∥

L1
+ Cu

∣
∣
∣
∣

∫

�

μn dx

∣
∣
∣
∣

≤ CuC p |�| 12 ‖∇μn‖L2 + Cu

∣
∣
∣
∣

∫

�

μn dx

∣
∣
∣
∣ ≤ 1

2
‖∇μn‖2L2

+C2
uC2

p |�|
2

+ Cu

∣
∣
∣
∣

∫

�

μn dx

∣
∣
∣
∣. (3.19)

From integrating (3.17b) over �, and (2.4), we find that

∣
∣
∣
∣

∫

�

μn dx

∣
∣
∣
∣ ≤ A‖	 ′ (ϕn)‖L1 ≤ Ak0

∫

�

	 (ϕn) dx + Ak1 |�| . (3.20)

Hence, we obtain the following differential inequality

d

dt

(

A‖	 (ϕn)‖L1 + B

2
‖∇ϕn‖2L2

)

− Ak0Cu‖	 (ϕn)‖L1 + 1

2
‖∇μn‖2L2

≤ Ak1 |�| Cu + C2
uC2

p |�|
2

=: d0.

By the Sobolev embedding H1 ⊂ L6 and the growth assumption (2.6), it holds
that ‖	(ϕ0)‖L1 ≤ C(1 + ‖ϕ0‖4L4) ≤ C(1 + ‖ϕ0‖4H1). Thus c0 := A‖	(ϕ0)‖L1 +
B
2 ‖∇ϕ0‖2L2 is bounded. Integrating over [0, s] for s ∈ (0, T ] yields

(

A‖	 (ϕn(s))‖L1 + B

2
‖∇ϕn(s)‖2L2

)

+ 1

2
‖∇μn‖2L2(0,s;L2)

≤ k0Cu

∫ s

0

(

A‖	 (ϕn)‖L1 + B

2
‖∇ϕn‖2L2

)

dt + (c0 + d0s) .

Applying the Gronwall inequality (2.1) gives

(

A‖	n(ϕ(s))‖L1 + B

2
‖∇ϕn(s)‖2L2

)

+ 1

2
‖∇μn‖2L2(0,s;L2)

≤ (c0 + d0T ) ek0Cus,

(3.21)

for all s ∈ (0, T ]. Taking supremum in s leads to

‖	 (ϕn)‖L∞(0,T ;L1) + ‖∇ϕn‖2L∞(0,T ;L2)
+ ‖∇μn‖2L2(0,T ;L2)

≤ C, (3.22)
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where the constant C depends only on T, Cu, C p, k0, k1, A, B, |�| , and ‖ϕ0‖H1 .

From (3.20) and (3.22), the mean of μn is bounded in L∞(0, T ), and the Poincaré
inequality gives that μn is bounded in L2(0, T ; L2). Meanwhile, by (2.5) we see that

∣
∣
∣
∣

∫

�

ϕn dx

∣
∣
∣
∣ ≤

∫

�

|ϕn| dx ≤ 1

k2
‖	 (ϕn)‖L1 + k3

k2
|�| , (3.23)

and thus by (3.22), the mean of ϕn is bounded in L∞(0, T ), and by the Poincaré
inequality we obtain that ϕn is also bounded in L∞(0, T ; L2). Thus, there exists a
positive constant C, not depending on φn and n such that

‖ϕn‖2L∞(0,T ;H1)
+ ‖μn‖2L2(0,T ;H1)

≤ C,

and as a result, this guarantees that the Galerkin solutions (ϕn, μn) can be extended
to the interval [0, T ], and thus tn = T for each n ∈ N.

Second estimate from (2.6) and the Sobolev embedding H1 ⊂ L6, we have that

‖	 ′ (ϕn)‖2L2 ≤ C (k4)
(
|�| + ‖ϕn‖6L6

)
≤ C

(
1 + ‖ϕn‖6H1

)
,

where C is a positive constant depending only on k4 and�. Since ‖�n(	 ′(ϕn))‖L2 ≤
‖	 ′(ϕn)‖L2 , applying elliptic regularity to (3.17b) yields that ϕn(t) ∈ H2 for a.e.
t ∈ (0, T ) and satisfies

‖ϕn‖2L2(0,T ;H2)
≤ C

(
‖μn‖2L2(0,T ;L2)

+ ‖ϕn‖2L2(0,T ;L2)
+ ‖	 ′ (ϕn)‖2L2(0,T ;L2)

)
,

with a positive constant C depending only on �, A and B. Then, by the Gagliardo–
Nirenburg inequality (2.3) with d = 3, p = 10, j = 0, r = 2, m = 2, q = 6 and
α = 1

5 , we have

‖ f ‖L10(Q) ≤ C‖ f ‖
1
5
L2(0,T ;H2)

‖ f ‖
4
5
L∞(0,T ;L6)

⇒ ϕn ∈ L2
(
0, T ; H2

)
∩ L∞ (

0, T ; H1
)

⊂ L10(Q),

and with d = 3, p = 10
3 , j = 0, r = 2, m = 1, q = 2, and α = 3

5 , we have

‖ f ‖
L

10
3 (Q)

≤ C‖ f ‖
3
5
L2(0,T ;H1)

‖ f ‖
2
5
L∞(0,T ;L2)

⇒ ∇ϕ ∈ L2
(
0, T ; H1

)
∩ L∞ (

0, T ; L2
)

⊂ L
10
3 (Q).
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Then, by (2.6) we have

‖∇ (
	 ′ (ϕn)

)‖L2(0,T ;L2) =
(∫ T

0

∫

�

∣
∣	 ′′ (ϕn)

∣
∣2 |∇ϕn|2 dx dt

) 1
2

≤ ‖	 ′′ (ϕn)‖L5(Q)‖∇ϕn‖
L

10
3 (Q)

≤ C (k4)
(
1 + ‖ϕn‖2L10(Q)

)
‖∇ϕn‖

L
10
3 (Q)

,

and so 	 ′(ϕn) ∈ L2(0, T ; H1). Application of elliptic regularity yields that ϕn(t) ∈
H3 for a.e. t ∈ (0, T ) and

‖ϕn‖2L2(0,T ;H3)
≤ C

(
‖μn‖2L2(0,T ;H1)

+ ‖ϕn‖2L2(0,T ;H1)
+ ‖	 ′ (ϕn)‖2L2(0,T ;H1)

)
,

for a positive constant C not depending on φn and n.

Third estimate differentiate (3.17b) in time and we obtain

∂tμn = A�n
(
	 ′′ (ϕn) ∂tϕn

) − B�∂tϕn . (3.24)

Multiplying (3.24) with μn and (3.17a) with B∂tϕn, integrating over � and we obtain
upon summing

1

2

d

dt
‖μn‖2L2 + B‖∂tϕn‖2L2

=
∫

�

Bh (ϕn) (PM1 (φn) − A − αun) ∂tϕn + A	 ′′ (ϕn) ∂tϕnμn dx . (3.25)

From (2.6), we find that

‖	 ′′ (ϕn)‖3L∞(0,T ;L3)
≤ C (k4)

(
|�| + ‖ϕn‖6L∞(0,T ;L6)

)
≤ C

(
1 + ‖ϕn‖6L∞(0,T ;H1)

)
,

and so 	 ′′(ϕn) is bounded in L∞(0, T ; L3). Applying Hölder’s inequality on the
right-hand side of (3.25) yields

1

2

d

dt
‖μn‖2L2 + B‖∂tϕn‖2L2 ≤ BCu‖∂tϕn‖L1 + A‖	 ′′ (ϕn)‖L3‖∂tϕn‖L2‖μn‖L6

≤ BC2
u |�| + 2B

4
‖∂tϕn‖2L2 + A2CSob

B
‖	 ′′ (ϕn)‖2L∞(0,T ;L3)

‖μn‖2H1 ,

where we recall Cu = P +A+ α and CSob is the positive constant from the Sobolev
embedding H1 ⊂ L6 depending only on �. Then, integrating in time and using that
μn is bounded in L2(0, T ; H1), and ‖μn(0)‖2

L2 ≤ Cini‖ϕ0‖2H3 , we have

‖μn‖2L∞(0,T ;L2)
+ ‖∂tϕn‖2L2(0,T ;L2)

≤ C,
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where the positive constant C depends only on �, Cu, A, B, ‖ϕn‖L∞(0,T ;H1),

‖μn‖L2(0,T ;H1), k4, and ‖ϕ0‖H3 . Furthermore, by (2.6) we have that

‖	 ′ (ϕn)‖2L∞(0,T ;L2)
≤ C (k4)

(
|�| + ‖ϕn‖6L∞(0,T ;L6)

)
.

Together with the improved regularity μn ∈ L∞(0, T ; L2), when we revisit the
elliptic equation (3.17b) we find that

‖ϕn‖2L∞(0,T ;H2)
≤ C

(
‖μn‖2L∞(0,T ;L2)

+ ‖ϕn‖2L∞(0,T ;L2)
+ ‖	 ′(ϕn)‖2L∞(0,T ;L2)

)
,

(3.26)

with a positive constant C not depending on φn and n. Similarly, viewing (3.17a) as an
elliptic problem for μn, and as ∂tϕn ∈ L2(0, T ; L2), we have by elliptic regularity

‖μn‖2L2(0,T ;H2)
≤ C

(
1 + ‖μn‖2L2(0,T ;L2)

+ ‖∂tϕn‖2L2(0,T ;L2)

)
,

where the positive constant C does not depend on φn or n.

Compactness from the above a priori estimates, we obtain for a non-relabelled subse-
quence,

ϕn → ϕ weakly∗ in L2
(
0, T ; H3

)
∩ L∞ (

0, T ; H2
)

∩ H1
(
0, T ; L2

)
,

μn → μ weakly∗ in L∞ (
0, T ; L2

)
∩ L2

(
0, T ; H2

)
,

and thanks to the compact embedding [1, Theorem 6.3 part III]

W j+m,p(�) ⊂⊂ C j (�) if mp > d,

where d is the space dimension, we find that H2(�) is compactly embedded into
C0(�). Hence, by [43, §8, Corollary 4] we have the following strong convergences

ϕn → ϕ strongly in L2
(
0, T ; W 2,r

)
∩ C0

(
[0, T ]; W 1,r

)
∩ C0(Q),

for any 1 ≤ r < 6. The initial condition ϕ0 is attained from that fact that ϕ ∈
C0([0, T ]; H1). It follows from standard arguments that the pair (ϕ, μ) satisfies
(3.13), see for instance [20,21]. Furthermore, by weak/weak* lower semicontinuity
of the norms, we obtain (3.14).
Continuous dependence let {(ϕi , μi )}i=1,2 denote two solution pairs satisfying (3.13)
with the same initial condition ϕ0 and corresponding data {(φi , ui )}i=1,2, respectively.
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Then, it holds that the difference ϕ := ϕ1 − ϕ2 and μ := μ1 − μ2 satisfy

0 =
∫

�

∂tϕζ + ∇μ · ∇ζ − h (ϕ2)
(PM1 − αu

)
ζ−h (PM1 (φ1) −A − αu1) ζ dx,

(3.27a)

0 =
∫

�

μζ − A
(
	 ′ (ϕ1) − 	 ′ (ϕ2)

)
ζ − B∇ϕ · ∇ζ dx, (3.27b)

where

M1 := M1 (φ1) − M1 (φ2) , u := u1 − u2, h := h (ϕ1) − h (ϕ2) .

Substituting ζ = Bϕ in (3.27a) and ζ = μ in (3.27b), integrating over [0, s] for
s ∈ (0, T ] and upon adding we obtain

B

2
‖ϕ(s)‖2L2 + ‖μ‖2L2(0,s;L2)

=
∫ s

0

∫

�

A
(
	 ′ (ϕ1) − 	 ′ (ϕ2)

)
μ + h (ϕ2)

(PM1 − αu
)

Bϕ dx dt

+
∫ s

0

∫

�

h (PM1 (φ1) − A − αu1) Bϕ dx dt. (3.28)

By the boundedness of M1(φ1) and u1, the Lipschitz continuity of h, we obtain

∣
∣
∣
∣

∫ s

0

∫

�

(h (ϕ2)−h (ϕ1)) (PM1 (φ1) −A−αu1) Bϕ dx dt

∣
∣
∣
∣ ≤ BLhCu‖ϕ‖2L2(0,s;L2)

,

while by Hölder’s inequality and Young’s inequality, and the boundedness of h, we
have

∣
∣
∣
∣

∫ s

0

∫

�

h (ϕ2)
(PM1 − αu

)
Bϕ dx dt

∣
∣
∣
∣

≤ 1

2
‖u‖2L2(0,s;L2)

+ 1

2
‖M1‖2L2(0,s;L2)

+ (Bα)2 + (BP)2

2
‖ϕ‖2L2(0,s;L2)

.

Using (2.7) and the fact that ϕi ∈ C0(Q), we find that

∣
∣
∣
∣

∫ s

0

∫

�

A
(
	 ′ (ϕ1) − 	 ′ (ϕ2)

)
μ dx dt

∣
∣
∣
∣

≤ Ak5

∫ s

0

∫

�

(
1 + |ϕ1|2 + |ϕ2|2

)
|ϕ| |μ| dx dt

≤ A2k25
2

(
1 + ‖ϕ1‖2L∞(Q) + ‖ϕ2‖2L∞(Q)

)2 ‖ϕ‖2L2(0,s;L2)
+ 1

2
‖μ‖2L2(0,s;L2)

.

(3.29)
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Then, substituting the above three estimates into (3.28) we obtain for s ∈ (0, T ],

B‖ϕ(s)‖2L2 + ‖μ‖2L2(0,s;L2)
≤ Q‖ϕ‖2L2(0,s;L2)

+ ‖u‖2L2(0,s;L2)
+ ‖M1‖2L2(0,s;L2)

,

(3.30)

where

Q := (Bα)2 + (BP)2 + A2k25

(
1 + ‖ϕ1‖2L∞(Q) + ‖ϕ2‖2L∞(Q)

)2
,

is a positive constant. Applying (2.1) yields for any s ∈ (0, T ],

B‖ϕ1(s) − ϕ2(s)‖2L2 + ‖μ1 − μ2‖2L2(0,s;L2)

≤
(
‖u1 − u2‖2L2(0,s;L2)

+ ‖M1 (φ1) − M1 (φ2)‖2L2(0,s;L2)

)
e
Q
B s,

where we used that W (t) := ‖u‖2
L2(0,t;L2)

+ ‖M1‖2L2(0,t;L2)
is a nondecreasing func-

tion of t, and thus

W (s) +
∫ s

0
W (t)

Q
B

e
Q
B t dt ≤ W (s)

(

1 +
∫ s

0

Q
B

e
Q
B t dt

)

= W (s)e
Q
B s .

��

We point out that although the source term in (1.1a) closely resembles that of
[21], we obtain a priori estimates for potentials 	 with quartic growth (see (2.6)),
which is in contrast to the quadratic potentials considered in [21]. The main difference
is that here we have the boundedness of the nutrient, and thus we only require a
bound on the mean of μ (see (3.19)). But in [21], the presence of the active transport
mechanism [modeled by the term div (n(ϕ)χ∇ϕ) in the nutrient equation] prevents us
from applying a weak comparison principle to deduce the boundedness of the nutrient.
Without the boundedness of the nutrient, we have to control the square of the mean of
μ in order to estimate the source term h(ϕn)(Pσn − A − αun)μn .

3.2 Existence by Schauder’s Fixed Point Theorem

Note that if {φn}n∈N is a bounded sequence in L2(Q), byLemma3.1 the corresponding
sequence {σn := M1(φn)}n∈N satisfies 0 ≤ σn ≤ 1 a.e. in Q, and by Lemma 3.2 we
have that the corresponding solution pair {ϕn, μn}n∈N is bounded uniformly in

(
L∞ (

0, T ; H2
)

∩ L2
(
0, T ; H3

)
∩ H1

(
0, T ; L2

))

×
(

L2
(
0, T ; H2

)
∩ L∞ (

0, T ; L2
))

,
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which yields a strongly convergent non-relabelled subsequence {ϕn}n∈N in L2(Q),

due to the compact embedding

L2
(
0, T ; H1

)
∩ H1

(
0, T ; L2

)
⊂⊂ L2(Q).

Thus, the mapping

M: L2(Q) → L2(Q),

φ �→ ϕ satisfying (3.13),

is compact. To apply Schauder’s fixed point theorem [23, Theorem 11.3] and deduce
the existence of a fixed point of the mappingM, we need to check that if there exists
a constant M such that

‖φ‖L2(Q) ≤ M for all φ ∈ L2(Q) and for all λ ∈ [0, 1] satisfying φ = λM(φ).

The problem ϕ = λM(ϕ) translates to

∂tϕ = �μ + (Pσ − A − αu)h(ϕ),

μ = A	 ′(ϕ) − B�ϕ,

∂tσ = �σ − Ch(λϕ)σ + B(σS − σ).

By Lemma 3.1 we have that 0 ≤ σ ≤ 1 a.e. in Q for all λ ∈ [0, 1], and thus we
can choose M to be the constant CAP2 in (3.14) which does not depend on ϕ and
λ ∈ [0, 1]. Thus Schauder’s fixed point theorem yields the existence of a strong
solution (ϕ, μ, σ ) to the state equations (1.1) with 0 ≤ σ ≤ 1 a.e. in Q and

‖ϕ‖L∞(0,T ;H2)∩L2(0,T ;H3)∩H1(0,T ;L2)

+‖μ‖L2(0,T ;H2)∩L∞(0,T ;L2) + ‖σ‖L2(0,T ;H2)∩L∞(0,T ;H1)∩H1(0,T ;L2) ≤ C,

(3.31)

for some positive constant C not depending on (ϕ, μ, σ, u).

3.3 Continuous Dependence

We now establish continuous dependence on the control u. For this purpose, let
u1, u2 ∈ Uad be given, along with the corresponding solution triplet (ϕ1, μ1, σ1) and
(ϕ2, μ2, σ2) satisfying the same initial data ϕ0 and σ0.Let ϕ = ϕ1−ϕ2, μ = μ1−μ2
and σ = σ1 − σ2, then from (3.11) we obtain

‖σ‖2L2(0,s;L2)
=

∫ s

0
‖σ(t)‖2L2 dt

≤ CLh

∫ s

0
‖ϕ‖2L2(0,t;L2)

et dt ≤ CLh
(
es − 1

) ‖ϕ‖2L2(0,s;L2)
.
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Substituting this into (3.30) leads to

B‖ϕ(s)‖2L2 + ‖μ‖2L2(0,s;L2)
≤ Q‖ϕ‖2L2(0,s;L2)

+ ‖u1 − u2‖2L2(0,s;L2)
+ ‖σ‖2L2(0,s;L2)

≤ (Q+CLh
(
es −1

)) ‖ϕ‖2L2(0,s;L2)
+‖u1−u2‖2L2(0,s;L2)

.

Setting

W (s) = ‖u1 − u2‖2L2(0,s;L2)
, X (t) = Q + CLh(es − 1)

B
,

Y (s) = B‖ϕ(s)‖2L2 , Z(t) = ‖μ‖2L2 ,

we obtain from (2.1) that

B‖ϕ(s)‖2L2 + ‖μ‖2L2(0,s;L2)

≤ ‖u1 − u2‖2L2(0,s;L2)
exp

(

s

(Q + CLh(es − 1)

B

))

for s ∈ (0, T ].

Combining with (3.10) and (3.12), we find that there exists a positive constant C1,

depending only on B, Q, C, Lh, T such that

‖ϕ(s)‖2L2 + ‖σ(s)‖2H1 + ‖μ‖2L2(0,s;L2)
+ ‖∂tσ‖2L2(0,s;L2)

≤ C1‖u1 − u2‖2L2(0,s;L2)
,

(3.32)

for s ∈ (0, T ]. Next, we find using (2.7) and the fact that ϕi ∈ C0(Q) for i = 1, 2,

‖	 ′ (ϕ1) − 	 ′ (ϕ2)‖2L2(0,s;L2)
≤ k25

(
1 + ‖ϕ1‖L∞(Q) + ‖ϕ2‖L∞(Q)

)4 ‖ϕ‖2L2(0,s;L2)
,

and so viewing (3.27b) as an elliptic problem for ϕ, we obtain by elliptic regularity

‖ϕ‖2L2(0,s;H2)
≤ C

(
‖ϕ‖2L2(0,s;L2)

+ ‖	 ′ (ϕ1) − 	 ′ (ϕ2)‖2L2(0,s;L2)
+ ‖μ‖2L2(0,s;L2)

)

≤ C2‖u1 − u2‖2L2(0,s;L2)
,

where C2 is a positive constant depending only on �, A, k5, ‖ϕi‖L∞(Q), T and C1.

4 Existence of a Minimizer

From (3.31) it holds that

1

r

∫ τ

τ−r

∫

�

ϕ dx dt ≥ −1

r
‖ϕ‖L1(0,T ;L1) ≥ −C,
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where C is a positive constant independent of (ϕ, μ, σ, u). Hence, we obtain that

Jr (ϕ, u, τ ) ≥ βS

2

1

r

∫ τ

τ−r

∫

�

ϕ dx dt ≥ −βS

2
C > −∞.

As Jr is bounded from below, we can consider a minimizing sequence (un, τn)n∈N
with un ∈ Uad, τn ∈ (0, T ) and corresponding solutions (ϕn, μn, σn)n∈N on the
interval [0, T ] with ϕn(0) = ϕ0 and σn(0) = σ0 for all n ∈ N, such that

lim
n→∞ Jr (ϕn, un, τn) = inf

(w, s) ∈ Uad×[0, T ]
s.t. φ = S1(w)

Jr (φ, w, s).

In particular, un ∈ Uad implies that 0 ≤ un ≤ 1 a.e. in Q for all n ∈ N. As {τn}n∈N is
a bounded sequence, there exists a non-relabelled subsequence such that

τn → τ∗ ∈ [0, T ] as n → ∞,

and

un → u∗ weakly∗ in L∞(Q),

ϕn → ϕ∗ weakly∗ in L∞ (
0, T ; H2

)
∩ L2

(
0, T ; H3

)
∩ H1

(
0, T ; L2

)
,

ϕn → ϕ∗ strongly in C0
(
[0, T ]; L2

)
∩ L2

(
0, T ; L2

)
,

μn → μ∗ weakly∗ in L2
(
0, T ; H2

)
∩ L∞ (

0, T ; L2
)

,

σn → σ∗ weakly∗ in L∞ (
0, T ; H1

)
∩ L2

(
0, T ; H2

)

∩ H1
(
0, T ; L2

)
∩ L∞(Q),

where (ϕ∗, μ∗, σ∗, u∗) satisfy (2.8) with 0 ≤ u∗, σ∗ ≤ 1 a.e. in Q. Note that by the
dominating convergence theorem, for all p ∈ [1, ∞),

χ[0,τn ](t) → χ[0,τ∗](t), χ[τn−r,τn ](t) → χ[τ∗−r,τ∗](t) strongly in L p(0, T ).

Then, by the strong convergence of ϕn − ϕQ to ϕ∗ − ϕQ in L2(Q) and the strong
convergence χ[0,τn ](t) to χ[0,τ∗](t) also in L2(Q), we have

∫ τn

0

∫

�

∣
∣ϕn − ϕQ

∣
∣2 dx dt =

∫ T

0
‖ϕn − ϕQ‖2L2χ[0,τn ](t) dt

−→
∫ T

0
‖ϕ∗ − ϕQ‖2L2χ[0,τ∗](t) dt =

∫ τ∗

0

∫

�

∣
∣ϕ∗ − ϕQ

∣
∣2 dx dt as n → ∞.

(4.1)
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A similar argument yields

1

r

∫ τn

τn−r

(
β�

2
‖ϕn − ϕ�‖2L2 + βS

2

∫

�

1 + ϕn dx

)

dt

−→ 1

r

∫ τ∗

τ∗−r

(
β�

2
‖ϕ∗ − ϕ�‖2L2 + βS

2

∫

�

1 + ϕ∗ dx

)

dt as n → ∞. (4.2)

Then, by passing to the limit n → ∞ in Jr (ϕn, un, τn) and using (4.1) and (4.2), we
have

inf
(w, s) ∈ Uad×[0, T ]

s.t. φ = S1(w)

Jr (φ, w, s) = lim
n→∞ Jr (ϕn, un, τn) ≥ Jr (ϕ∗, u∗, τ∗),

which implies that (u∗, τ∗) is a minimizer of (P).

5 Fréchet Differentiability of the Solution Operator

5.1 Unique Solvability of the Linearized State Equations

Recalling the set {wi }i∈N of eigenfunctions of the Neumann–Laplacian from the proof
of Lemma 3.2, we look for functions of the form

�n(x, t) :=
n∑

i=1

γn,i (t)wi (x), �n(x, t) :=
n∑

i=1

δn,i (t)wi (x),

�n(x, t) :=
n∑

i=1

ηn,i (t)wi (x),

satisfying

0 =
∫

�

∂t�nv + ∇�n · ∇v − h(ϕ) (P�n − αw) v − h′(ϕ)(Pσ − A − αu)�nv dx,

(5.1a)

0 =
∫

�

�nv − A	 ′′(ϕ)�nv − B∇�n · ∇v dx, (5.1b)

0 =
∫

�

∂t�nv + ∇�n · ∇v + B�nv + C (
h(ϕ)�n + h′(ϕ)�nσ

)
v dx, (5.1c)

for all v ∈ Wn . Substituting v = w j leads to

γ ′
n = −Sδn + Mh

nPηn − Jn + K nγ n, (5.2a)

δn = Aφn + BSγ n, (5.2b)

η′
n = −Sηn − Bηn − CMh

nηn − CLnγ n, (5.2c)
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where the matrix S has been defined in (3.16), and for 1 ≤ i, j ≤ n,

(
Mh

n

)

i j
:=

∫

�

h(ϕ)wiw j dx, (Jn) j :=
∫

�

h(ϕ)αww j dx,

(K n)i j :=
∫

�

h′(ϕ)(Pσ − A − αu)wiw j dx,
(
φn

)
j :=

∫

�

	 ′′(ϕ)�nw j dx,

(Ln)i j :=
∫

�

h′(ϕ)σwiw j dx .

Taking an approximating sequence in C0([0, T ]; L2) for u, which we will abuse
notation and reuse the variable u, and then supplementing (5.2) with the initial con-
ditions γ n(0) = 0 and ηn(0) = 0 leads to a system of ODEs with right-hand
sides depending continuously on (t, γ n, ηn). Thus, by the Cauchy–Peano theo-
rem, there exists tn ∈ (0, T ] such that (5.2) has a local solution (γ n, δn, ηn) on
[0, tn] with γ n, δn, ηn ∈ C1([0, tn); Rn). Then, we obtain functions �n, �n, �n ∈
C1([0, tn); Wn) satisfying (5.1).
First estimate substituting v = �n in (5.1a), v = ��n in (5.1b) and v = �n in
(5.1c), integrating over [0, t] for t ∈ (0, T ], and integrating by parts, we obtain after
summation

1

2

(
‖�n(t)‖2L2 + ‖�n(t)‖2L2

)
+ B‖��n‖2L2(0,t;L2)

+ ‖∇�n‖2L2(0,t;L2)

≤
∫ t

0

∫

�

h(ϕ) (P�n − αw)�n + h′(ϕ)(Pσ − A − αu) |�n|2

+ A	 ′′(ϕ)�n��n dx dt

−
∫ t

0

∫

�

Ch′(ϕ)σ�n�n dx dt

=: I1 + I2 + I3 + I4,

where we used that �n(0) = �n(0) = 0 and have neglected the nonnegative term
(B+Ch(ϕ)) |�n|2 . From Theorem 2.1, we have ϕ ∈ C0(Q), and as 	 ′′, 	 ′′′, h′ and
h′′ are continuous with respect to their arguments, it holds that there exists a constant
C∗ > 0 such that

sup
(x, t)∈Q

(
∣
∣h′(ϕ(x, t))

∣
∣ + ∣

∣h′′(ϕ(x, t))
∣
∣ + ∣

∣	 ′′(ϕ(x, t))
∣
∣ + ∣

∣	 ′′′(ϕ(x, t))
∣
∣) ≤ C∗.

(5.3)

Then, applying Hölder’s inequality and Young’s inequality we obtain

|I4| ≤ C2C2∗‖�n‖2L2(0,t;L2)
+ 1

4
‖�n‖2L2(0,t;L2)

,

|I3| ≤ B

2
‖��n‖2L2(0,t;L2)

+ (AC∗)2

2B
‖�n‖2L2(0,t;L2)

,
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|I2| ≤ C∗(P + A + α)‖�n‖2L2(0,t;L2)
,

|I1| ≤
(
P2 + 1

)
‖�n‖2L2(0,t;L2)

+ 1

4
‖�n‖2L2(0,t;L2)

+ α2

4
‖w‖2L2(0,t;L2)

.

Using the estimates for I1, I2, I3 and I4, we obtain

‖�n(t)‖2L2 − C5‖�n‖2L2(0,t;L2)
+ ‖�n(t)‖2L2 − C5‖�n‖2L2(0,t;L2)

+ ‖��n‖2L2(0,t;L2)
+ ‖∇�n‖2L2(0,t;L2)

≤ C6‖w‖2L2(0,t;L2)
,

where C5, C6 > 0 are positive constants depending only on C∗, A, B, P, A, C, and
α. Applying the integral form of Gronwall’s inequality we obtain that

‖�n‖2L∞(0,T ;L2)
+ ‖�n‖2L∞(0,T ;L2)

+‖�n‖2L2(0,T ;H1)
+ ‖��n‖2L2(Q)

≤ D1‖w‖2L2(Q)
, (5.4)

for some constant D1 not depending on n, which in turn implies that

{�n}n∈N is bounded uniformly in L∞ (
0, T ; L2

)
,

{��n}n∈N is bounded uniformly in L2
(
0, T ; L2

)
,

{�n}n∈N is bounded uniformly in L∞ (
0, T ; L2

)
∩ L2

(
0, T ; H1

)
.

Second estimate substituting v = ∂t�n in (5.1c), we obtain

1

2

d

dt
‖∇�n‖2L2 + ‖∂t�n‖2L2 = −

∫

�

B�n∂t�n+C (
h(ϕ)�n∂t�n+h′(ϕ)�n∂t�n

)
dx

≤ 3

4
‖∂t�n‖2L2 +

(
B2 + C2

)
‖�n‖2L2 + C2C2∗‖�n‖2L2 .

Applying Gronwall’s inequality yields that

‖�n‖2L∞(0,T ;H1)
+ ‖∂t�n‖2L2(Q)

≤ D2‖w‖2L2(Q)
, (5.5)

where D2 is a positive constant not depending on n. Hence,

{�n}n∈N is bounded uniformly in L∞ (
0, T ; H1

)
∩ H1

(
0, T ; L2

)
.

Furthermore, since C(h(ϕ)�n + h′(ϕ)�nσ) − ∂t�n ∈ L2 for a.e. t ∈ (0, T ), we
obtain from elliptic regularity theory that
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‖�n‖2L2(0,T ;H2)
≤ C

(
‖�n‖2L2(Q)

+ ‖∂t�n‖2L2(Q)
+ ‖�n‖2

L2(Q)

)
≤ D3‖w‖2

L2(Q)
,

(5.6)

where C and D3 are positive constants not depending on n. Thus,

{�n}n∈N is bounded uniformly in L2
(
0, T ; H2

)
.

Third estimate substituting v = 1 in (5.1b) yields

∣
∣
∣
∣

∫

�

�n dx

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

�

A	 ′′(ϕ)�n dx

∣
∣
∣
∣ ≤ AC∗‖�n‖L1 ≤ AC∗ |�| 12 ‖�n‖L2 .

Then, by the Poincaré inequality we find that

‖�n‖L2 ≤ C p‖∇�n‖L2 + 1

|�| 12

∣
∣
∣
∣

∫

�

�n dx

∣
∣
∣
∣ ≤ C p‖∇�n‖L2 + AC∗‖�n‖L2 ,

and thus

‖�n‖2L2(0,t;L2)
≤ 2C2

p‖∇�n‖2L2(0,t;L2)
+ 2A2C2∗‖�n‖2L2(0,t;L2)

. (5.7)

Substituting v = �n in (5.1a) and v = −∂t�n in (5.1b), and upon summing and
integrating over [0, t] for t ∈ (0, T ], we obtain

B

2
‖∇�n(t)‖2L2 + ‖∇�n‖2L2(0,t;L2)

=
∫ t

0

∫

�

−A	 ′′(ϕ)�n∂t�n + h(ϕ) (P�n − αw) �n dx dt

+
∫ t

0

∫

�

h′(ϕ)(Pσ − A − αu)�n�n dx dt

=: J1 + J2 + J3. (5.8)

Applying Hölder’s inequality and Young’s inequality and (5.7), we observe that

|J3| ≤ C∗(P + A + α)‖�n‖L2(0,t;L2)‖�n‖L2(0,t;L2)

≤ 1

4
‖∇�n‖2L2(0,t;L2)

+ C7‖�n‖2L2(0,t;L2)
,

|J2| ≤ 2C2
p

(P‖�n‖L2(0,t;L2) + α‖w‖L2(0,t;L2)

)2 + 1

8C2
p
‖�n‖2L2(0,t;L2)

≤ 1

4
‖∇�n‖2L2(0,t;L2)

+ C8

(
‖�n‖2L2(0,t;L2)

+ ‖�n‖2L2(0,t;L2)
+ ‖w‖2L2(0,t;L2)

)
,
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where C7, C8 > 0 are positive constants depending only on C∗, C p, P, A, and
α. To estimate J1 we first obtain an estimate for ‖∂t�n‖L2(0,t;(H1)∗) by considering
v ∈ L2(0, T ; H1) in (5.1a) and integrating over [0, t]. Then, we obtain that

‖∂t�n‖L2(0,t;(H1)∗) ≤ ‖∇�n‖L2(0,t;L2) + P‖�n‖L2(0,t;L2) + α‖w‖L2(0,t;L2)

+C∗(P + A + α)‖�n‖L2(0,t;L2). (5.9)

Thus, for J1 we have

|J1| ≤ AC∗
(‖�n‖L2(0,t;L2) + ‖∇�n‖L2(0,t;L2)

) ‖∂t�n‖L2(0,t;(H1)∗)

≤ C9

(
‖�n‖2L2(0,t;L2)

+ ‖∇�‖2L2(0,t;L2)

)
+ 1

4
‖∇�n‖2L2(0,t;L2)

+ C9

(
‖�n‖2L2(0,t;L2)

+ ‖w‖2L2(0,t;L2)
+ ‖�n‖2L2(0,t;L2)

)
,

whereC9 > 0 is a positive constant depending only in A, P, α, C∗, andA.Returning
to (5.8) we have

B‖∇�n(t)‖2L2 − C9‖∇�n‖2L2(0,t;L2)
+ 1

4
‖∇�n‖2L2(0,t;L2)

≤ C (C7, C8, C9)
(
‖�n‖2L2(0,t;L2)

+ ‖w‖2L2(0,t;L2)
+ ‖�n‖2L2(0,t;L2)

)
.

Applying the integral form of Gronwall’s inequality and recalling (5.7) and (5.9), we
find that

‖�n‖2L∞(0,T ;H1)
+ ‖�n‖2L2(0,T ;H1)

+ ‖∂t�n‖2L2(0,T ;(H1)∗) ≤ D4‖w‖2L2(Q)
,

(5.10)

where D4 is a positive constant not depending on n, and so

{�n}n∈N is bounded uniformly in L2
(
0, T ; H1

)
,

{�n}n∈N is bounded uniformly in L∞ (
0, T ; H1

)
∩ H1

(
0, T ;

(
H1

)∗)
.

Furthermore, as�n−A	 ′′(ϕ)�n ∈ H1 for a.e. t ∈ (0, T ), applying elliptic regularity
to (5.1b) yields that

‖�n‖2L2(0,T ;H3)
≤ C

(
‖�n‖2L2(0,T ;H1)

+ ‖�n‖2L2(0,T ;H1)

)
≤ D5‖w‖2L2(Q)

,

(5.11)

where C and D5 are positive constants not depending on n. This implies that

{�n}n∈N is bounded uniformly in L2
(
0, T ; H3

)
.
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The a priori estimates (5.4)–(5.6), (5.10) and (5.11) imply that (�n, �n, �n) can be
extended to the interval [0, T ], and thus tn = T for each n ∈ N. Furthermore, there
exists a non-relabelled subsequence such that

�n → � weakly∗ in L∞ (
0, T ; H1

)
∩ L2

(
0, T ; H3

)
∩ H1

(
0, T ;

(
H1

)∗)
,

�n → � weakly in L2
(
0, T ; H1

)
,

�n → � weakly∗ in L∞ (
0, T ; L2

)
∩ L2

(
0, T ; H2

)
∩ H1

(
0, T ; L2

)
,

and a standard argument shows that the limit functions (�, �, �) satisfy (2.11).
Uniqueness let (�i , �i , �i )i=1,2 denote two weak solution triplets to (2.10) with
the same data w ∈ L2(Q). Then, as (2.10) is linear in (�, �, �), the differences
� := �1 − �2, � := �1 − �2 and � := �1 − �2 satisfy (2.10) with w = 0. Due
to the regularity of the solutions, the derivation of (5.4)–(5.6) remain valid, which
implies that

‖�‖2L∞(0,T ;L2)
+ ‖�‖2L∞(0,T ;H1)∩H1(0,T ;L2)∩L2(0,T ;H2)

≤ 0,

and so � = � = 0. Substituting � = 0 in (2.11b) yields that � = 0.

5.2 Fréchet Differentiability with Respect to the Control

In this section we use the notation ϕw = ϕ̂, μw = μ̂, σw = σ̂ . The remainders
(θw, ρw, ξw) from (2.12) satisfy

0 = 〈∂tθ
w, ζ 〉H1 +

∫

�

∇ρw · ∇ζ − h
(
ϕw

) (Pσw − A − α(u + w)
)
ζ dx

+
∫

�

h(ϕ)
(P (

σ + �w
) − A − α(u + w)

)
ζ + h′(ϕ)�w(Pσ − A − αu)ζ dx,

0 =
∫

�

ρwζ − B∇θw · ∇ζ − A
(
	 ′ (ϕw

) − 	 ′(ϕ) − 	 ′′(ϕ)�w
)
ζ dx,

0 =
∫

�

∂tξ
wζ + ∇ξw · ∇ζ + Bξwζ + C (

h
(
ϕw

)
σw

−h(ϕ)
(
σ + �w

) − h′(ϕ)σ�w
)
ζ dx,

for a.e. t ∈ (0, T ) and for all ζ ∈ H1 with

θw(0) = 0, ξw(0) = 0.

Using the Taylor’s theorem with integral remainder (2.2) we see that

f
(
ϕw

) = f (ϕ) + f ′(ϕ)
(
ϕw − ϕ

) + (
ϕw − ϕ

)2
∫ 1

0
f ′′ (ϕ + z

(
ϕw − ϕ

))
dz,
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and so for ϕw − ϕ = �w + θw, we have

	 ′ (ϕw
) − 	 ′(ϕ) − 	 ′′(ϕ)�w = 	 ′′(ϕ)θw + (

ϕw − ϕ
)2

Rw
1 ,

h
(
ϕw

) − h(ϕ) − h′(ϕ)�w = h′(ϕ)θw + (
ϕw − ϕ

)2
Rw
2 ,

where

Rw
1 :=

∫ 1

0
	 ′′′ (ϕ + z

(
ϕw − ϕ

))
(1 − z) dz,

Rw
2 :=

∫ 1

0
h′′ (ϕ + z

(
ϕw − ϕ

))
(1 − z) dz.

Thanks to the fact that ϕ, ϕw ∈ C0(Q) and the continuity of 	 ′′′ and h′′, we see that
there exists a constant C∗∗ > 0 such that

‖Rw
1 ‖L∞(Q) + ‖Rw

2 ‖L∞(Q) ≤ C∗∗. (5.12)

Furthermore, we can express

h
(
ϕw

)
σw − h(ϕ)σ − h(ϕ)�w − h′(ϕ)�wσ

= (
h

(
ϕw

) − h(ϕ)
) (

σw − σ
)

+ σ
(
h

(
ϕw) − h(ϕ

) − h′(ϕ)�w
) + h(ϕ)

(
σw − σ − �w

)

= (
h

(
ϕw

) − h(ϕ)
) (

σw − σ
) + σ

(
h′(ϕ)θw + (

ϕw − ϕ
)2

Rw
2

)
+ h(ϕ)ξw.

(5.13)

Let Xw := Pσw − A − α(u + w) and X := Pσ − A − αu. Then, it holds similarly
that

h
(
ϕw

)
Xw − h(ϕ)X − h(ϕ)

(P�w − αw
) − h′(ϕ)�w X

= (
h

(
ϕw

) − h(ϕ)
) (

Xw − X
) + X

(
h

(
ϕw

) − h(ϕ) − h′(ϕ)�w
)

+ h(ϕ)
(
Xw − X − P� + αw

)

= (
h

(
ϕw

) − h(ϕ)
) (

Xw − X
) + X

(
h′(ϕ)θw + Rw

2

(
ϕw − ϕ

)2) + h(ϕ)Pξw,

(5.14)

and thus, we see that (θw, ρw, ξw) satisfy

0 = 〈∂tθ
w, ζ 〉H1 +

∫

�

∇ρw · ∇ζ − (
h

(
ϕw

) − h(ϕ)
) (

Xw − X
)
ζ dx (5.15a)

−
∫

�

(
X

(
h′(ϕ)θw + (

ϕw − ϕ
)2

Rw
2

)
+ h(ϕ)Pξw

)
ζ dx,

0 =
∫

�

ρwζ − B∇θw · ∇ζ − A
(
	 ′′(ϕ)θw + (

ϕw − ϕ
)2

Rw
1

)
ζ dx, (5.15b)
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0 =
∫

�

∂tξ
wζ + ∇ξw · ∇ζ + Bξwζ + C (

h
(
ϕw

) − h(ϕ)
) (

σw − σ
)
ζ dx (5.15c)

+
∫

�

C
(
σ

(
h′(ϕ)θw + (

ϕw − ϕ
)2

Rw
2

)
+ h(ϕ)ξw

)
ζ dx,

for a.e. t ∈ (0, T ) and for all ζ ∈ H1.

First estimate let us first compute the following preliminary estimates, using the con-
tinuous dependence estimate (2.9), the Lipschitz continuity of h, Hölder’s inequality,
Young’s inequality and the embedding L2(0, T ; H2) ⊂ L2(0, T ; L∞),we have that

∫ s

0

∫

�

C ∣
∣h

(
ϕw

) − h(ϕ)
∣
∣
∣
∣σw − σ

∣
∣
∣
∣ξw

∣
∣ dx dt

≤ CLh

∫ s

0
‖ξw‖L2‖σw − σ‖L2‖ϕw − ϕ‖L∞ dt

≤ CLhCSob‖ξw‖L2(0,s;L2)‖σw − σ‖L∞(0,s;L2)‖ϕw − ϕ‖L2(0,s;H2)

≤ C10‖w‖4L2(0,s;L2)
+ 1

4
‖ξw‖L2(0,s;L2),

where C10 is a positive constant depending only on Ccts, CSob and Lh . Meanwhile,
using the boundedness of σ , h′(ϕ) and Rw

2 in Q, we see that

∫ s

0

∫

�

C |σ |
∣
∣
∣h′(ϕ)θwξw + (

ϕw − ϕ
)2

Rw
2 ξw

∣
∣
∣ dx dt

≤ C
∫ s

0
C∗‖θw‖L2‖ξw‖L2 + C∗∗‖ϕw − ϕ‖L∞‖ϕw − ϕ‖L2‖ξw‖L2 dt

≤ 2C2C2∗‖θw‖2L2(0,s;L2)
+ 2

8
‖ξw‖2L2(0,s;L2)

+ 2C2C2∗∗‖ϕw − ϕ‖2L∞(0,s;L2)
‖ϕw − ϕ‖2L2(0,s;L∞)

≤ 2C2C2∗‖θw‖2L2(0,s;L2)
+ 1

4
‖ξw‖2L2(0,s;L2)

+ 2C2∗∗C2C2
cts‖w‖4L2(0,s;L2)

.

Thus, when we substitute ζ = ξw in (5.15c), integrating over [0, s] for s ∈ (0, T ],
and neglecting the nonnegative term B |ξw|2 + Ch(ϕ) |ξw|2 , we obtain

1

2
‖ξw(s)‖2L2 + ‖∇ξw‖2L2(0,s;L2)

≤ C
∫ s

0

∫

�

(
h(ϕ) − h

(
ϕw

)) (
σw − σ

)
ξw

+ σ
(

h′(ϕ)θwξw +
(
ϕw − ϕ2

)
Rw
2 ξw

)
dx dt

≤
(

C10 + 2C2∗∗C2C2
cts

)
‖w‖4L2(0,s;L2)

+ 2C2C2∗‖θw‖2L2(0,s;L2)
+ 1

2
‖ξw‖2L2(0,s;L2)

. (5.16)
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Next, substituting ζ = θw in (5.15a), ζ = θw in (5.15b) and ζ = 1
B ρw in (5.15b),

integrating by parts and integrating over [0, s] for s ∈ (0, T ], and upon adding leads
to

1

2
‖θw(s)‖2L2 + B‖∇θw‖2L2(0,s;L2)

+ 1

B
‖ρw‖2L2(0,s;L2)

≤
∫ s

0

∫

�

∣
∣
∣
(
	 ′′(ϕ)θw + (

ϕw − ϕ
)2

Rw
1

)∣
∣
∣

∣
∣
∣
∣Aθw + A

B
ρw

∣
∣
∣
∣ + ∣

∣ρwθw
∣
∣ dx dt

+
∫ s

0

∫

�

∣
∣(h

(
ϕw

) − h(ϕ)
) (

Xw − X
)
θw

∣
∣ dx dt

+
∫ s

0

∫

�

∣
∣
∣
(

X
(

h′(ϕ)θw + (
ϕw − ϕ

)2
Rw
2

)
+ h(ϕ)Pξw

)∣
∣
∣
∣
∣θw

∣
∣ dx dt

=: K1 + K2 + K3. (5.17)

Using (2.9), Hölder’s inequality, Young’s inequality, the boundedness of 	 ′′(ϕ) and
Rw
1 in Q, we have

K1 ≤ 1

4B
‖ρw‖2L2(0,s;L2)

+ B‖θw‖2L2(0,s;L2)

+
(

C∗‖θw‖L2(0,s;L2) + C∗∗C2
cts‖w‖2L2(0,s;L2)

)

(

A‖θw‖L2(0,s;L2) + A

B
‖ρw‖L2(0,s;L2)

)

≤ 1

2B
‖ρw‖2L2(0,s;L2)

+ C11

(
‖θw‖2L2(0,s;L2)

+ ‖w‖4L2(0,s;L2)

)
,

where C11 is a positive constant depending only on C∗, C∗∗, Ccts, A and B. Mean-
while, by the Lipschitz continuity of h, and the fact that

Xw − X = P (
σw − σ

) − αw,

we see that

K2 ≤
∫ s

0

∫

�

Lh
∣
∣ϕw − ϕ

∣
∣
∣
∣P (

σw − σ
) − αw

∣
∣
∣
∣θw

∣
∣ dx dt

≤ LhP‖ϕw − ϕ‖L2(0,s;L∞)‖σw − σ‖L∞(0,s;L2)‖θw‖L2(0,s;L2)

+ Lhα‖w‖L2(0,s;L2)‖ϕw − ϕ‖L∞(0,s;L3)‖θw‖L2(0,s;L6)

≤ C12‖w‖4L2(0,s;L2)
+ B

2

(
‖θw‖2L2(0,s;L2)

+ ‖∇θw‖2L2(0,s;L2)

)
,

for some positive constantC12 depending only on B, Lh, P andα.Furthermore, using
the boundedness of X , h′(ϕ), Rw

2 and h(ϕ) in Q, we have
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K3 ≤ (P + A + α)C∗‖θw‖2L2(0,s;L2)
+ P‖ξw‖L2(0,s;L2)‖θw‖L2(0,s;L2)

+ (P + A + α)C∗∗‖ϕw − ϕ‖L2(0,s;L∞)‖ϕw − ϕ‖L∞(0,s;L2)‖θw‖L2(0,s;L2)

≤
(

CuC∗ + 1

2

)

‖θw‖2L2(0,s;L2)
+ P2‖ξw‖2L2(0,s;L2)

+ C2
uC2∗∗C2

cts‖w‖4L2(0,s;L2)
,

where we recall Cu = (P + A + α). Substituting the above estimates into (5.17) we
obtain

1

2
‖θw(s)‖2L2 + B

2
‖∇θw‖2L2(0,s;L2)

+ 1

2B
‖ρw‖2L2(0,s;L2)

≤
(

C11 + CuC∗ + B + 1

2

)

‖θw‖2L2(0,s;L2)

+
(

C11 + C12 + C2
uC2∗∗C2

cts

)
‖w‖4L2(0,s;L2)

+P2‖ξw‖2L2(0,s;L2)
. (5.18)

Then, adding (5.16) and (5.18) we have for s ∈ (0, T ],

‖ξw(s)‖2L2 + ‖∇ξw‖2L2(0,s;L2)
+ ‖θw(s)‖2L2 + ‖∇θw‖2L2(0,s;L2)

+ ‖ρw‖2L2(0,s;L2)

≤ C13‖w‖4L2(0,s;L2)
+ C14

(
‖θw‖2L2(0,s;L2)

+ ‖ξw‖2L2(0,s;L2)

)
, (5.19)

where the positive constants C13, C14 depend only on C, Ccts, C∗, C∗∗, C10,

C11, C12, P, A, α, A and B.Applying Gronwall’s inequality to (5.19) we have that

‖ξw(s)‖2L2 + ‖θw(s)‖2L2

+‖∇θw‖2L2(0,s;L2)
+ ‖∇ξw‖2L2(0,s;L2)

+ ‖ρw‖2L2(0,s;L2)
≤ C15‖w‖4L2(0,s;L2)

,

(5.20)

for some positive constant C15 depending only on C13 and C14.

Second estimate substituting ζ = ∂tξ
w in (5.15c), integrating over [0, s] for s ∈ (0, T ]

leads to

‖∂tξ
w‖2L2(0,s;L2)

+ ‖∇ξw(s)‖2L2 + B‖ξw(s)‖2L2

≤
∫ s

0

∫

�

C ∣
∣h

(
ϕw

) − h(ϕ)
∣
∣
∣
∣σw − σ

∣
∣
∣
∣∂tξ

w
∣
∣ dx dt

+
∫ s

0

∫

�

C
∣
∣
∣σ

(
h′(ϕ)θw + (

ϕw − ϕ
)2

Rw
2

)
+ h(ϕ)ξw

∣
∣
∣
∣
∣∂tξ

w
∣
∣ dx dt.

Using the Lipschitz continuity of h, the boundedness of σ , h(ϕ), h′(ϕ), and Rw
2 in

Q, Hölder’s inequality, Young’s inequality and (5.20), we obtain
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1

2
‖∂tξ

w‖2L2(0,s;L2)
+ ‖∇ξw(s)‖2L2

≤
(
C2C2

ctsL
2
h + C2∗∗C2C2

cts

)
‖w‖4L2(0,s;L2)

+ C2C2∗‖θw‖2L2(0,s;L2)
+ ‖ξw‖2L2(0,s;L2)

≤ C16‖w‖4L2(0,s;L2)
, (5.21)

for some positive constant C16 depending only on T, Lh, C, Ccts, C∗, C∗∗ and C15.

Third estimate viewing (5.15b) as the weak formulation of an elliptic problem for θw,

by elliptic regularity we obtain

‖θw‖2L2(0,s;H2)
≤ C17

(
‖ρw‖2L2(0,s;L2)

+ ‖θw‖2L2(0,s;L2)

)

+ C17‖A
(
	 ′′(ϕ)θw + (

ϕw − ϕ
)2

Rw
1

)
‖2L2(0,s;L2)

,

for some positive constant C17 not depending on θw, ρw and w. Applying (5.20), the
boundedness of 	 ′′(ϕ) and Rw

1 in Q, we have

‖θw‖2L2(0,s;H2)
≤ C18‖w‖4L2(0,s;L2)

,

for some positive constant C18 depending only on C15, C17, C∗, C∗∗, Ccts, A and
B. Then, upon integrating (5.15a) over [0, s] for s ∈ (0, T ], integrating by parts then
yields

∫ s

0

∣
∣〈∂tθ

w, ζ 〉H1

∣
∣ dt ≤

∫ s

0

∫

�

∣
∣ρw

∣
∣ |�ζ | +Lh

∣
∣ϕw − ϕ

∣
∣
∣
∣P (

σw−σ
) + αw

∣
∣ |ζ | dx dt

+
∫ s

0

∫

�

∣
∣
∣X

(
h′(ϕ)θw + (

ϕw − ϕ
)2

Rw
2

)
+ h(ϕ)Pξw

∣
∣
∣ |ζ | dx dt

=: L1 + L2.

By Hölder’s inequality, the boundedness of X = Pσ −A−αu, h′(ϕ), Rw
2 , and h(ϕ)

in Q, (2.9), and (5.20) we have that

L2 ≤ Cu
(
C∗‖θw‖L2(0,s;L2) + C∗∗‖ϕw − ϕ‖L∞(0,s;L2)‖ϕw − ϕ‖L2(0,s;L∞)

)

‖ζ‖L2(0,s;L2) + P‖ξw‖L2(0,s;L2)‖ζ‖L2(0,s;L2)

≤ C19‖w‖2L2(0,s;L2)
‖ζ‖L2(0,s;L2),

for some positive constant C19 depending only on P, A, α, C∗, C∗∗, Ccts, T and
C15. Meanwhile,

L1 ≤ ‖ρw‖L2(0,s;L2)‖ζ‖L2(0,s;H2) + LhP‖ϕw − ϕ‖L2(0,s;L∞)‖σw − σ‖L∞(0,s;L2)

‖ζ‖L2(0,s;L2) + Lhα‖w‖L2(0,s;L2)‖ϕw − ϕ‖L∞(0,s;L3)‖ζ‖L2(0,s;L6)

≤ C20‖w‖2L2(0,s;L2)
‖ζ‖L2(0,s;H2),
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where C20 is a positive constant depending only on C15, Lh, P, α, Ccts and � (via
the Sobolev embedding H1 ⊂ L6). Hence, we see that

‖∂tθ
w‖L2(0,s;(H2)∗) ≤ (C19 + C20) ‖w‖2L2(0,s;L2)

.

By the continuous embedding L2(0, T ; H2)∩ H1(0, T ; (H2)∗) ⊂ C0([0, T ]; L2),

we find that there exists a positive constant C21 depending only on C18, C19 and C20
such that

‖θw‖L2(0,s;H2)∩H1(0,s;(H2)∗)∩C0([0,s];L2) ≤ C21‖w‖2L2(0,s;L2)
∀s ∈ (0, T ].

Combining this with (5.20) and (5.21) yields (2.13).

5.3 Fréchet Differentiability of the Objective Functional with Respect to Time

In this section, we assume that Assumption 2.2 holds. Using the relation
∫ τ

τ−r

∫

�

f (s) dx ds =
∫ τ

0

∫

�

f (s) − f (s − r) dx ds +
∫ 0

−r

∫

�

f (s) ds, (5.22)

for f ∈ L1(−r, T ; L1) and τ ∈ (0, T ), we can define

F(t, ϕ) := 1

2

∫

�

βQ
∣
∣(ϕ − ϕQ)(t)

∣
∣2

+ β�

r

(
|(ϕ − ϕ�)(t)|2 − |(ϕ − ϕ�) (t − r)|2

)
dx

+ 1

2

∫

�

βS

r
(ϕ(t) − ϕ(t − r)) dx,

and upon setting ϕ(t) = ϕ0 for t ≤ 0, we can express (1.2) as

Jr (ϕ, u, τ ) = βu

2
‖u‖2L2(Q)

+
∫ 0

−r

∫

�

β�

2r
|ϕ0 − ϕ�|2 + βS

2r
(1 + ϕ0) dx dt

+
∫ τ

0
F(t, ϕ) dt + βT τ.

Note that only the last two terms on the right-hand side are dependent on τ, and
thus the first three terms on the right-hand side will vanish when we compute the
Fréchet derivative of Jr with respect to τ . We now compute for any f ∈ H1(0, T ) ⊂
L∞(0, T ), and τ ∈ (0, T ), h > 0 such that τ + h ∈ (0, T ),

∣
∣
∣
∣

∫ τ+h

0
| f (t)|2 dt −

∫ τ

0
| f (t)|2 dt − h | f (τ )|2

∣
∣
∣
∣ =

∣
∣
∣
∣

∫ τ+h

τ

| f (t)|2 − | f (τ )|2 dt

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ τ+h

τ

| f (t) − f (τ )| | f (t)+ f (τ )| dt

∣
∣
∣
∣
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≤ 2‖ f ‖L∞(0,T )

∣
∣
∣
∣

∫ τ+h

τ

∣
∣
∣
∣

∫ t

τ

∂t f (s) ds

∣
∣
∣
∣ dt

∣
∣
∣
∣

≤ 2‖ f ‖L∞(0,T )

∫ τ+h

τ

‖∂t f ‖L2(τ,t)(t − τ)
1
2 dt ≤ 2h

3
2 ‖ f ‖L∞(0,T )‖∂t f ‖L2(0,T ).

This shows that

Dτ

(∫ τ

0
| f (t)|2 dt

)

= | f (τ )|2 ,

and a similar argument also yields

Dτ

(∫ τ

0
f (t) dt

)

= f (τ ).

Using the fact that ϕQ ∈ H1(0, T ; L2), ϕ∗, ϕ� ∈ H1(−r, T ; L2), we obtain that
the optimal control (u∗, τ∗) satisfies

DτJ (u∗, τ∗)(s − τ∗) ≥ 0 ∀s ∈ [0, T ], (5.23)

where

DτJ (u∗, τ∗) = βT + βQ

2
‖ϕ∗(τ∗) − ϕQ(τ∗)‖2L2 + βS

2r

∫

�

ϕ∗(τ∗) − ϕ∗(τ∗ − r) dx

+ β�

2r

(
‖(ϕ∗ − ϕ�) (τ∗)‖2L2 − ‖(ϕ∗ − ϕ�)(τ∗ − r)‖2L2

)
.

We can simplify (5.23) with the following argument. If τ∗ ∈ (0, T ), choose s = τ∗±h
for h > 0 to deduce that DτJ (u∗, τ∗) = 0. If τ∗ = 0, then from (5.23) we obtain
DτJ (u∗, τ∗) ≥ 0. Meanwhile, if τ∗ = T, then s − τ∗ ≤ 0 for any s ∈ [0, T ], and
thus DτJ (u∗, τ∗) ≤ 0.

6 First Order Necessary Optimality Conditions

6.1 Unique Solvability of the Adjoint System

Weapply aGalerkin approximation and consider a basis {wi }i∈N of H2 that is orthonor-
mal in L2, and we look for functions of the form

pn(x, t) :=
n∑

i=1

Pn,i (t)wi (x),

qn(x, t) :=
n∑

i=1

Qn,i (t)wi (x),

rn(x, t) :=
n∑

i=1

Rn,i (t)wi (x),
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which satisfy

0 =
∫

�

−∂t pnv − B∇qn · ∇v − A	 ′′(ϕ)qnv

+ h′(ϕ) (Cσrn − (Pσ − A − αu)pn) v dx (6.1a)

−
∫

�

(
βQ

(
ϕ − ϕQ

) + 1
2r χ(τ∗−r,τ∗)(t) (2β� (ϕ − ϕ�) + βS)

)
v dx,

0 =
∫

�

qnv + ∇ pn · ∇v dx, (6.1b)

0 =
∫

�

−∂t rnv + ∇rn · ∇v + (B + Ch(ϕ))rnv − Ph(ϕ)pnv dx, (6.1c)

for all v ∈ Wn := span{w1, . . . , wn}. Substituting v = w j leads to

P ′
n(t) = −BSQn(t) − Zn(t) − χ(τ∗−r,τ∗)(t)Gn(t), Qn(t) = −SPn(t), (6.2a)

R′
n(t) = SRn(t) + BRn(t) + Yn(t), (6.2b)

where S is defined in (3.16), and

(Gn) j :=
∫

�

1

2r
(2β� (ϕ − ϕ�) + βS) w j dx,

(Zn) j :=
∫

�

(
A	 ′′(ϕ)qn

−h′(ϕ) (Cσrn − (Pσ − A − αu)pn) + βQ
(
ϕ − ϕQ

))
w j dx,

(Yn) j :=
∫

�

Ch(ϕ)rnw j − Ph(ϕ)pnw j dx,

and we supplement the above backward-in-time system of ODEs with the conditions

rn(τ∗) = 0, pn(τ∗) = 0.

Once again, we consider approximating sequences in C0([0, T ]; L2) for u, ϕQ and
ϕ� and use the same variables to denote the approximating functions. Note that the
right-hand side of (6.2) depends continuously on (Pn, Qn, Rn) but due to the term
χ(τ∗−r,τ∗)(t)Gn in the equation for P ′

n, we cannot apply the Cauchy–Peano theorem
directly. However, we can consider first solving (6.2) on the interval (τ∗ − r, τ∗], that
is, Pn and Rn satisfy

P ′
n(t) = BS2Pn(t) − Zn(t) − Gn(t), Pn(τ∗) = 0,

R′
n(t) = SRn(t) + BRn(t) + Yn(t), Rn(τ∗) = 0, (6.3)

for t ∈ (τ∗ − r, τ∗], which would yield, via the Cauchy–Peano theorem, the existence
of tn ∈ [τ∗ − r, τ∗) and a local solution pair (Pn, Rn) ∈ (C1((tn, τ∗]; Rn))2 to (6.3).
The a priori estimates derived below will allow us to deduce that (Pn, Rn) can be

123



538 Appl Math Optim (2018) 78:495–544

extended to τ∗−r, that is, tn = τ∗−r for all n ∈ N. Then, we then extend the solutions
by solving the system

P ′
n(t) = BS2Pn(t) − Zn(t),

R′
n(t) = SRn(t) + BRn(t) + Yn(t), (6.4)

with terminal conditions at time τ∗ − r. Overall, this procedure yields functions
pn, qn, rn ∈ C1((tn, τ∗]; Wn) satisfying (6.3) for some tn ∈ [0, τ∗). We now derive
the a priori estimates.
First estimate substituting v = rn in (6.1c) and integrating over [s, τ∗] for s ∈ (0, τ∗)
leads to

1

2
‖rn(s)‖2L2 + ‖∇rn‖2L2(s,τ∗;L2)

≤ P‖pn‖L2(s,τ∗;L2)‖rn‖L2(s,τ∗;L2), (6.5)

where we neglected the nonnegative term B |rn|2 + Ch(ϕ) |rn|2 and used the bound-
edness of h, and rn(τ∗) = 0. Then, substituting v = pn in (6.1a) and v = Bqn in
(6.1b), integrating over [s, τ∗] for s ∈ (0, τ∗) and summing leads to

1

2
‖pn(s)‖2L2 + B‖qn‖2L2(s,τ∗;L2)

≤ AC∗‖qn‖L2(s,τ∗;L2)‖pn‖L2(s,τ∗;L2) + CC∗‖rn‖L2(s,τ∗;L2)‖pn‖L2(s,τ∗;L2)

+(P + A + α)C∗‖pn‖2L2(s,τ∗;L2)

+ (‖βQ(ϕ − ϕQ)‖L2(Q) + 1
2r ‖2β�(ϕ − ϕ�) + βS‖L2(Q)

) ‖pn‖L2(s,τ∗;L2),

(6.6)

where we used that h(ϕ) ≤ 1, σ ≤ 1, u ≤ 1 a.e. in Q, and (5.3). Combining (6.5)
and (6.6), and applying Young’s inequality and then Gronwall’s inequality, we see
that

‖pn(s)‖2L2 + ‖rn(s)‖2L2 + ‖qn‖2L2(s,τ∗;L2)
+ ‖∇rn‖2L2(s,τ∗;L2)

≤ C
(
‖βQ(ϕ − ϕQ)‖2L2(Q)

+ 1
2r ‖2β�(ϕ − ϕ�) + βS‖2L2(Q)

)
for s ∈ (0, τ∗),

(6.7)

for some positive constant C depending only on C, P, A, α, C∗, A, B, and T . This
implies that (pn, qn, rn) can be extended to the interval [0, τ∗], and thus tn = 0 for
each n ∈ N.

Second estimate viewing (6.1b) as the weak formulation of an elliptic problem for
pn, and using that qn is bounded uniformly in L2(0, τ∗; L2), we have by elliptic
regularity that

‖pn‖L2(0,τ∗;H2) ≤ C
(‖qn‖L2(0,τ∗;L2) + ‖pn‖L2(0,τ∗;L2)

)
,

for some positive constant C not depending on n.
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Third estimate substituting v = −∂t rn in (6.1c), integrating over [s, τ∗] for s ∈ (0, τ∗)
leads to

1

2

(
‖∇rn(s)‖2L2 + B‖rn(s)‖2L2

)
+ ‖∂t rn‖2L2(s,τ∗;L2)

≤ C‖rn‖L2(s,τ∗;L2)‖∂t rn‖L2(s,τ∗;L2) + P‖pn‖L2(s,τ∗;L2)‖∂t rn‖L2(s,τ∗;L2).

Thus, by (6.7) we have that

‖∇rn(s)‖2L2 + ‖∂t rn‖2L2(s,τ∗;L2)
≤ C for s ∈ (0, τ∗),

for some positive constant C not depending on n. Furthermore, viewing (6.1c) as a
weak formulation of an elliptic problem for rn and elliptic regularity yields that

‖rn‖L2(0,τ∗;H2) ≤ C
(‖∂t rn‖L2(0,τ∗;L2) + ‖rn‖L2(0,τ∗;L2) + ‖pn‖L2(0,τ∗;L2)

)
,

for some positive constant C not depending on n.

Fourth estimate integrating (6.1a) over [0, τ∗] and integrate by parts, by Hölder’s
inequality we obtain that

∣
∣
∣
∣

∫ τ∗

0

∫

�

∂t pnv dx dt

∣
∣
∣
∣ ≤ B‖qn‖L2(0,τ∗;L2)‖�v‖L2(0,τ∗;L2)

+ (
AC∗‖qn‖L2(0,τ∗;L2)+CC∗‖rn‖L2(0,τ∗;L2)+C∗Cu‖pn‖L2(0,τ∗;L2)

) ‖v‖L2(0,τ∗;L2)

+ (‖βQ(ϕ − ϕQ)‖L2(Q) + 1
2r ‖2β�(ϕ − ϕ�) + βS‖L2(Q)

) ‖v‖L2(0,τ∗;L2),

which yields that {∂t pn}n∈N is bounded uniformly in L2(0, τ∗; (H2)∗).
It follows from the a priori estimates that we obtain a non-relabelled subsequence

(pn, qn, rn) such that

pn → p weakly∗ in L2(0, τ∗; H2) ∩ H1(0, τ∗; (H2)∗) ∩ L∞(0, τ∗; L2),

qn → q weakly in L2(0, τ∗; L2),

rn → r weakly∗ in L∞(0, τ∗; H1) ∩ H1(0, τ∗; L2) ∩ L2(0, τ∗; H2),

and by standard arguments the triplet (p, q, r) satisfies (2.16) and is a solution to the
adjoint system (2.15).
Uniqueness let p := p1 − p2, q := q1 − q2 and r := r1 − r2 denote the difference
between two solutions to the adjoint system (2.15). Then, it holds that

0 = 〈−∂t p, ζ 〉H2 +
∫

�

Bq�ζ − A	 ′′(ϕ)qζ + h′(ϕ) (Cσr −(Pσ −A − αu)p) ζ dx,

(6.8a)
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0 =
∫

�

qη − η�p dx, (6.8b)

0 =
∫

�

−∂t rη + ∇r · ∇η + Brη + Ch(ϕ)rη − Ph(ϕ)pη dx, (6.8c)

for a.e. t ∈ (0, τ∗) and for all η ∈ H1 and ζ ∈ H2, with p(τ∗) = r(τ∗) = 0.
Substituting ζ = p ∈ L2(0, T ; H2) in (6.8a) and integrate by parts, substituting
η = Bq in (6.8b) and η = r in (6.8c), summing and then integrate over [s, τ∗] for
s ∈ (0, τ∗) leads to

1

2

(
‖p(s)‖2L2 + ‖r(s)‖2L2

)
+ B‖q‖2L2(s,τ∗;L2)

+ ‖∇r‖2L2(s,τ∗;L2)

≤ AC∗‖q‖L2(s,τ∗;L2)‖p‖L2(s,τ∗;L2) + CC∗‖r‖L2(s,τ∗;L2)‖p‖L2(s,τ∗;L2)

+ C∗(P + A + α)‖p‖2L2(s,τ∗;L2)
+ P‖p‖L2(s,τ∗;L2)‖r‖L2(s,τ∗;L2),

where we neglected the nonnegative term B |r |2 + Ch(ϕ) |r |2 and used that h(ϕ) ≤
1, σ ≤ 1, u ≤ 1 a.e. in Q, and (5.3). Estimating the right-hand side with Young’s
inequality and a Gronwall argument shows that

‖p(s)‖2L2 + ‖r(s)‖2L2 + ‖q‖2L2(s,τ∗;L2)
+ ‖∇r‖2L2(s,τ∗;L2)

≤ 0 for all s ∈ (0, τ∗),

which yields that p = q = r = 0.

6.2 Simplification of the First Order Necessary Optimality Condition for the
Control

Let (u∗, τ∗) denote the minimizer of (P) from Theorem 2.2, with corresponding
state variables (ϕ∗, μ∗, σ∗) = S(u∗) and adjoint variables (p, q, r) associated to
(ϕ∗, μ∗, σ∗). For any u ∈ Uad, let w := u − u∗ ∈ L2(Q) and let (�, �, �) denote
the linearized state variables associated to w. Then, from (2.14), the optimal control
u∗ satisfies the following first order necessary optimality condition,

(DuJ (u∗, τ∗)) (u − u∗) = (DuJ (u∗, τ∗)) w

= βQ

∫ τ∗

0

∫

�

(ϕ∗ − ϕQ)� dx dt + β�

r

∫ τ∗

τ∗−r

∫

�

(ϕ∗ − ϕ�)� dx dt

+βS

2r

∫ τ∗

τ∗−r

∫

�

� dx dt + βu

∫ T

0

∫

�

u∗(u − u∗) dx dt ≥ 0. (6.9)

Substituting ζ = � in (2.16a), η = � in (2.16b) and η = � in (2.16c), integrate over
[0, τ∗] leads to
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0 =
∫ τ∗

0

(

〈−∂t p,�〉H2 +
∫

�

Bq�� − A	 ′′(ϕ∗)q� + Ch′(ϕ∗)σ∗r� dx

)

dt

(6.10a)

−
∫ τ∗

0

∫

�

h′(ϕ∗)(Pσ∗ − A − αu∗)p� + βQ(ϕ∗ − ϕQ)� dx dt

−
∫ τ∗

τ∗−r

∫

�

1
2r (2β�(ϕ∗ − ϕ�) + βS)� dx dt,

0 =
∫ τ∗

0

∫

�

q� + ∇ p · ∇� dx dt, (6.10b)

0 =
∫ τ∗

0

∫

�

−∂t r� + ∇r · ∇� + Br� + Ch(ϕ∗)r� − Ph(ϕ∗)p� dx dt. (6.10c)

Meanwhile, substituting ζ = p in (2.11a), ζ = q in (2.11b) and ζ = r in (2.11c),
integrate over [0, τ∗] leads to

0 =
∫ τ∗

0

(

〈∂t�, p〉H1 +
∫

�

∇� · ∇ p dx

)

dt (6.11a)

−
∫ τ∗

0

∫

�

h(ϕ∗)(P� − α(u − u∗))p + h′(ϕ∗)(Pσ∗ − A − αu∗)�p dx dt,

0 =
∫ τ∗

0

∫

�

q� − A	 ′′(ϕ∗)q� + Bq�� dx dt, (6.11b)

0 =
∫ τ∗

0

∫

�

∂t�r + ∇r · ∇� + B�r + Ch(ϕ∗)�r + Ch′(ϕ∗)�σ∗r dx dt. (6.11c)

Using that r(τ∗) = 0, p(τ∗) = 0, �(0) = 0, �(0) = 0, ∂t� ∈ L2(0, T ; (H1)∗)
and p ∈ L2(0, T ; H2), we have that

∫ τ∗

0
〈−∂t p,�〉H2 dt =

∫ τ∗

0
〈p, ∂t�〉H2 dt =

∫ τ∗

0
〈p, ∂t�〉H1 dt, (6.12a)

∫ τ∗

0

∫

�

∂t r� dx dt = −
∫ τ∗

0

∫

�

∂t�r dx dt. (6.12b)

Substituting (6.12b) into (6.10c) and comparing with (6.11c) leads to

∫ τ∗

0

∫

�

Ch′(ϕ∗)σ∗�r + Ph(ϕ∗)p� dx dt = 0. (6.13)

Meanwhile, substituting (6.12a) and (6.11b) into (6.10a), and using (6.10b) and (6.13)
leads to

0 =
∫ τ∗

0

(

〈p, ∂t�〉H1 +
∫

�

∇ p · ∇� − Ph(ϕ∗)p� − h′(ϕ∗)(Pσ∗ − A − αu∗)p� dx

)

dt

−
∫ τ∗

0

∫

�

βQ(ϕ∗ − ϕQ) dx dt −
∫ τ∗

τ∗−r

∫

�

1
2r (2β�(ϕ∗ − ϕ�) + βS)� dx dt.
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Comparing the above equality with (6.11a) we obtain

∫ τ∗

0

∫

�

βQ(ϕ∗ − ϕQ)� dx dt +
∫ τ∗

τ∗−r

∫

�

1
2r (2β�(ϕ∗ − ϕ�) + βS)� dx dt

= −
∫ τ∗

0

∫

�

h(ϕ∗)αp(u − u∗) dx dt,

and upon substituting this into (6.9) leads to (2.17).
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