
Appl Math Optim (2018) 78:219–265
https://doi.org/10.1007/s00245-017-9405-5

Exponential Asymptotic Stability for the Klein Gordon
Equation on Non-compact Riemannian Manifolds

C. A. Bortot1 · M. M. Cavalcanti2 ·
V. N. Domingos Cavalcanti2 · P. Piccione3

Published online: 3 March 2017
© Springer Science+Business Media New York 2017

Abstract The Klein Gordon equation subject to a nonlinear and locally distributed
damping, posed in a complete and non compact n dimensional Riemannian manifold
(Mn, g)without boundary is considered. Let us assume that the dissipative effects are
effective in (M\�) ∪ (�\V ), where � is an arbitrary open bounded set with smooth
boundary. In the present article we introduce a new class of non compact Riemannian
manifolds, namely, manifolds which admit a smooth function f , such that the Hessian
of f satisfies the pinching conditions (locally in �), for those ones, there exist a finite
number of disjoint open subsets Vk free of dissipative effects such that

⋃
k Vk ⊂ V

and for all ε > 0, meas(V ) ≥ meas(�) − ε, or, in other words, the dissipative effect
inside � possesses measure arbitrarily small. It is important to be mentioned that if
the function f satisfies the pinching conditions everywhere, then it is not necessary
to consider dissipative effects inside �.

1 Introduction

This paper addresses the well-posedness as well as sharp uniform decay rate estimates
of the energy related to the Klein Gordon equation subject to a nonlinear and locally
distributed damping, posed in a complete and non compact n dimensional Riemannian
manifold (Mn, g) without boundary:
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Fig. 1 When g(s) = s, the
exponential decay is expected RN

{
utt − �u + u + a(x)g(ut ) = 0, inM × (0,+∞),

u(x, 0) = u0(x); ut (x, 0) = u1(x), x ∈ M,
(1.1)

where � denotes the Laplace–Beltrami operator. The non-negative and essentially
bounded function a = a(x), responsible by the nonlinear and localized dissipative
effect, lies properly in M\�, where � is an arbitrary open and bounded set in M
with smooth boundary ∂�, that is, a(x) ≥ a0 > 0 a.e. inM\�.

The counterpart of the aboveproblem (1.1) in theEuclidean setting is preciselywhen
M = R

n endowed with the usual Euclidean topology. In this case, it is sufficient to
consider dissipative effects in Rn\� as considered in the Fig. 1. See, for instance, the
following references [17,44].

This iswell-known since in theEuclidean setting the bicharacteristics (which are the
graphs of unit-speed geodesics) or also called rays of the geometric optics, are straight
lines so that, roughly speaking, every ray of the geometric optics that intercepts the
region � never remains in �. However, if one considers a non compact Riemannian
manifold (Rn, g), where g is a generic Riemannian metric, we have to be very careful
because of the existence of complete geodesics contained in�, which severely violates
the law of the geometric optics due to Bardos et al. [5,33,34], namely: there exists a
time T0 such that any geodesic of length ≤ T0 meets the open set {x; a(x) > 0}. In
this case it has been established by Rauch and Taylor [34] that the energy E(u, t) =
1
2

∫
M

(|∇xu|2 + |ut |2
)
dx associated to problem (1.1) (for g(s) = s and compact

manifolds without boundary) decays exponentially, and this result was extended to
the case of compact manifolds with boundary by Barbos, Lebeau and Rauch [5].
Consequently the existence of complete geodesics contained in � implies that no
exponential decay is expected. In other words: the existence of trapped geodesics
breaks the exponential stability (see Fig. 2).

From the above comments and in order to obtain the exponential stability to problem
(1.1) it is strongly necessary to consider dissipative effects inside the set �. The best
way of doing this is to introduce damping as little as possible. Indeed, the first main
goal of the present article is to show that there exists a region V ⊂ � free of dissipative
effects such that meas(V ) ≥ meas(�) − ε, for an arbitrary positive number ε. This
result can be considered sharp in the sense that the region with damping possesses
measure arbitrarily small, however totally distributed (see Fig. 3). We also show that
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Fig. 2 The existence of trapped
geodesics breaks the exponential
stability ( ), g

Fig. 3 The region in black inside � possesses dissipative effects and measure arbitrarily small, while the
white region contained in � does not have dissipative effects and measure arbitrarily large. However, both
regions are totally distributed

Fig. 4 No damping is necessary
in open subsets of � when the
sectional curvature of (M, g)
satisfies k1 ≤ secg ≤ k2 < 0

there are no geodesics trapped in the interior of each region free of dissipative effects
(see Appendix).

The second main task of the present paper is to prove that we can also avoid to put
damping in open subsets inside � for non compact manifolds (M, g) which satisfy
the condition k1 ≤ secg ≤ k2 < 0, for some negative constants k1 and k2, where secg
denotes the sectional curvature of (M, g), according to Fig. 4. In order to achieve our
goal, we combine ideas from the article [13] of the first and the third authors with new
tools we shall describe in the sequel. We proceed as follows:

(1) We prove that for every x ∈ �, there exist a neighborhood that can be left without
damping;

(2) We prove that a very precise portion of open subsets inside � can be left without
damping;

(3) Let ε > 0 and V1, . . . , Vk be open subsets inside � as in (1) and (2) which
closures are pairwise disjoint. We prove that there exist a V ⊃ ∪k

i=1Vi that can be
left without damping and such that meas(V ) ≥ meas(�) − ε.

For this purpose, wewill construct an intrinsic multiplier that will play an important
role when establishing the desired uniform decay rates of the energy, in this sense the
compactness of � is crucial. Fix ε > 0. This multiplier is given by 〈∇ f,∇u〉, where
f : � → R is a smooth function such that its Hessian, Hess( f ) (sometimes also

123



222 Appl Math Optim (2018) 78:219–265

denoted by ∇2 f ), is closely related to g on an open subset V ⊂ � that satisfies
meas(V ) ≥ meas(�) − ε, that is, assuming that k1 ≤ secg ≤ k2 < 0 we deduce that
the Hess( f ) satisfies the “pinching conditions’ in each component Vi of V or, in other
words, A ≤ Hess( f ) ≤ B in Vi for some positive positive constants 0 < A < B. It
is important to be mentioned that if f satisfies the pinching conditions everywhere,
then we can let � free of dissipative effects. This construction will be clarified during
the proof.

It is worth observing that the scenarios presented in Figs. 1 and 4 are distinct, i.é.,
the Fig. 1 refers to the Euclidean environment and Fig. 4 to a manifold with a generic
Riemannian metric.

While in [12,13] the authors work with compact manifolds here we have to deal
with non compact manifolds. Another technical difficulty found in the present work
was the following: while in [12,13] a regular solution u to problem (1.1) lies globally
in H2(M), in the present case, it simply exists locally in H2(�) for all � ⊂ M.
Fortunately it is enough for our purpose. However, the main technical difficulty found
in the present paper was to deal with the boundary terms (see the proof of Theorem
4.1). Indeed, in [12,13] the homogeneous Dirichlet boundary condition is assumed
so that the boundary terms that appear in the computations and that do not vanish
are easier to be handled, when compared with the present situation. Note that in the
present casewe do not have any control on the terms defined on the boundary ∂�. In the
Euclidean setting� is assumed to be a ball centered in the origin with radius R so that
its boundary possesses nice geometric properties as considered, for instance, in [44].
We employ a similar idea as considered in [44] to deal with boundary terms, however
our approach is much more delicate since � is an arbitrary open set contained inM.
Since we are interested in the impact of the geometry in the decay rate estimates we
shall assume that there exist positive constants k, K such that k|s|2 ≤ g(s)s ≤ K |s|2
for all s ∈ R, where the real function g is assumed to be monotone increasing. It is
worth mentioning that some ideas used in this work are based on works due to Yao,
see for example [42].

Wewould like to emphasize that themainnovelty in the present article is to introduce
a new class of non compact Riemannian manifolds, namely, manifolds which admit a
smooth function f, such that the Hessian ∇2 f satisfies the “pinching conditions”, for
those ones, there exist open disjoint subsets without damping as mentioned before.
In addition, analogously what has been proved in [13], for compact manifolds, it
is possible, as well, by using the present approach, to let free of damping radially
symmetric disjoint regions for non compact manifolds, assuming, as in [13], that
we are endowing (M, g) by a radial metric. As a consequence, the present work is
an expansion of [13]. It is worth mentioning that in the non compact case, we have
examples of existence of functions satisfying the pinching condition, see the class of
Warped Products (Sect. 5).

In the particular case when one has the non compact manifold (Rn, gϕ), endowed
with the radial metric described in polar coordinates (r, θ) ∈ [

0,+∞[ × S
n−1 by the

formula:

gϕ = dr2 + ϕ(r)2dθ2,
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where dθ2 is the standard round metric (of radius 1) of Sn−1 and ϕ : ]0,+∞[ → R
+

is a smooth function satisfying ϕ(2k)(0) = 0 for all k ≥ 0, ϕ′(0) = 1, we can avoid
to put damping in every open ball � of radius R > 0 (see Fig. 1) according to the
properties of the function ϕ. Indeed, if ϕ′(r) ≥ c > 0 for all r , then (Rn, gϕ) admits a
proper, strongly convex function which is bounded from below. This means that there
exists a positive constant c such that:

Hess( f )(X, X) ≥ c g(X, X), ∀ X ∈ T M. (1.2)

The above property plays an essential role when establishing the sharp decay rate
estimates above mentioned. Indeed, in a general setting, that is, for non compact
complete manifolds (Mn, g) we first prove that (1.2) is satisfied locally in � and
from the compactness of � we obtain the property globally in � by gluing all the
finite connected components Vk of V above mentioned and putting damping between
them in a region of measure arbitrary small. Note that connected components Vk can
be extremely small, however the measure of ∪Vk is arbitrarily large (see Figs. 3, 4).
Now, for the particular case when one has (Rn, gϕ) and assuming that ϕ has nice
properties, inequality (1.2) is now valid globally and we can avoid putting damping in
the whole set �. This recovers the previous results in the literature in the Euclidean
setting with the usual metric. Our result remains valid for the semi-linear problem
utt −�u + f (u)+ a(x)g(ut ) = 0, as well, provided that: (i) we assume that (Mn, g)
possesses bounded curvature and global injectivity radius (so that we can recover the
Sobolev imbedding); (ii) we assume that there exists a unique continuation property to
the linear problemwith potential vt t−�v+V (x, t)v = 0where V (x, t) ≡ f ′(u(x, t))
grows polynomially. The second condition is true for certain nonlinearities as proved
in Triggiani and Yao’s paper [37].

Another interesting case is the following: (Rn, gϕ) has finite volume if and only

if
∫ +∞

0
ϕ(r)n−1 dr < +∞. In this case, we can relax the assumptions imposed on

g, namely, it is sufficient to assume that ks2 ≤ g(s)s ≤ Ks2 for |s| > 1 and it is
possible obtain a wide assortment of decay rate estimates different of exponential.
For this purpose Jessen’s inequality combined with arguments of Lasiecka and Tataru
[27] play an essential role when establishing the above mentioned decay rates (see
also Cavalcanti et. al [11]).

Our paper is organized as follows. Section 2 we present the preliminaries in Rie-
mannian Geometry, in Sect. 3 is proven to well-posedness of the problem, in Sect. 4
is stated and proved the main result. The Sect. 5 is destined examples of manifolds
that admit open subsets without damping and finally the Appendix aims to justify the
application of unique continuation principle used in Sect. 4.

2 Preliminaries: Geometric Riemannian Tools

Let (Mn, g) be a n-dimensional complete Riemanniana manifold, n ≥ 2 orientable,
connect and without boundary, induced by the Riemannian metric g(·, ·) = 〈·, ·〉, of
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class C∞. We shall denote by (gi j )n×n the matrix n× n in connection with the metric
g. The tangent space at M em p ∈ M will be denoted by TpM ≡ R

n .
Let f ∈ C2(M), and let us define the Laplace–Beltrami operator of f , as

� f = div(∇ f ), (2.1)

where ∇ f denotes the gradient of f in the metric g, that is, for all vector field X in
M

〈∇ f, X〉 = X ( f ), (2.2)

and div denotes the divergent operator, namely, if X is a vector field inM, divX (p) :=
trace of the linear map Y (p) �→ ∇Y X (p), p ∈ M.

From the definitions and notations above we have the following lemma:

Lemma 2.1 Let p ∈ M. Let us consider f ∈ C1(M) and H a vector field in M.
Then, the following identity hold (see [28] p. 21):

〈∇ f,∇(H( f ))〉 = ∇H(∇ f,∇ f ) + 1

2

[
div(|∇ f |2H) − |∇ f |2divH

]
,

where∇H is the differential covariant derivative defined by∇H(X,Y ) = 〈∇X H,Y 〉.
Finally we shall define the Hessian of f ∈ C2(M) as the symmetric tensor of order

two inM, namely,

Hess( f )(X,Y ) = ∇2 f (X,Y ) := ∇(∇ f )(X,Y ) = 〈∇Y (∇ f ), X〉, (2.3)

for all X and Y vector fields inM.

Remark 1 In order to simplify the notation, we denote the L2-norm, without distin-
guishing whether the argument of the norm is a function or tensor field of type (0,m).

Let k ∈ N e p ≥ 1. We define the space C p
k (M) as

C p
k (M) =

{

u ∈ C∞(M);
∫

M
|∇ j u|p dM < ∞,∀ j = 0, 1, . . . , k

}

, (2.4)

where ∇ j u denotes the j th differential covariant derivative of u, (∇0u = u,∇1u =
∇u).

Thus, we define the Sobolev space H p
k (M) as the closure of C p

k (M) with respect
to the topology

‖u‖p
H p
k (M)

=
k∑

j=0

∫

M
|∇ j u|p dM. (2.5)

From the above, we deduce:

(i) L2(M) := H2
0 (M) is the closure of C2

0 (M) with respect to the tolopogy

‖u‖2L2(M)
=

∫

M
|u|2 dM. (2.6)
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(ii) H1(M) := H2
1 (M) is the closure of C2

1 (M) with respect to the topology

‖u‖2H1(M)
=

∫

M
|∇u|2 dM +

∫

M
|u|2 dM. (2.7)

(iii) H2(M) := H2
2 (M) is the closure of C2

2 (M) with respect to the topology

‖u‖2H2(M)
=

∫

M
|∇2u|2 dM +

∫

M
|∇u|2 dM +

∫

M
|u|2 dM. (2.8)

Remark 2 From the above definitions we have the following chain of continuous
embbeding

H2(M) ↪→ H1(M) ↪→ L2(M). (2.9)

Furthermore, by Hebey ([23], Theorem 2.7, p.13), it follows that H1
0 (M) =

H1(M), where H1
0 (M) := D(M)

H1(M)
, in other words, the space of infinitely

differentiable functions with compact support is dense in H1(M).

So, from the above and making use of density arguments we can extend the for-
mulas presented previously to Sobolev spaces. In the sequel, we shall announce three
theorems that will play an important rule in the present work.

Theorem 2.1 (Gauss Divergent Theorem) Let Mn a Riemannian manifold, ori-
entable, with smooth boundary ∂M , X ∈ [H1(M)]n a vector filed and ν the normal
unitary vector field point towards ∂M, thus

∫

M
divX dM =

∫

∂M
〈X, ν〉 d∂M. (2.10)

Theorem 2.2 (Green Theorem 1) Let Mn a Riemannian orientable manifold , with
smooth boundary ∂M , X ∈ [H1(M)]n a vector field, q ∈ H1(M) and ν the normal
unitary vector field point towards ∂M, then

∫

M
(divX)q dM = −

∫

M
〈X,∇q〉 dM +

∫

∂M
(〈X, ν〉)q d∂M. (2.11)

Theorem 2.3 (Green Theorem 2) Let Mn a orientable Riemannian Manifold, with
smooth boundary ∂M, f ∈ [H2(M)], q ∈ H1(M) and ν the normal unitary vector
field point towards ∂M, then

∫

M
(� f )q dM = −

∫

M
〈∇ f,∇q〉 dM +

∫

∂M
(∂ν f )q d∂M. (2.12)

3 Existence and Uniqueness of Solutions

In what follows we shall omit some variables in order to make easier the notation
and we will denote the Laplace–Beltrami operator simply by � . We shall study the
existence and uniqueness of the following damped problem:
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{
utt − �u + u + a(x)g(ut ) = 0 in M × (0,∞)

u(0) = u0 , ut (0) = u1 in M (3.1)

where (Mn, g) a n-dimensional Rimannian manifold, n ≥ 2, simply connected,
orientable and without boundary endowed by a Riemannian metric g(·, ·) = 〈·, ·〉
complete, of class C∞.

Assumption 3.1 Hypotheses on the function g : R → R :
(i) g(s) is continuous, monotone increasing;
(ii) g(s)s > 0 para s �= 0;
(iii) k|s| ≤ |g(s)| ≤ K |s|, ∀s ∈ R, where k e K are two positive constants.

Assumption 3.2 Hypotheses on the function a : M → R :
(i) a(x) ∈ L∞(M) is non negative function;
(ii) Let � ⊂ M be an open set and bounded with smooth boundary ∂�. We suppose

that a(x) ≥ a0 > 0 inM\� and on an open proper subset M∗ of M namely:

Let �∗ be an open and bounded set with smooth boundary such that � ⊂⊂ �∗.
For ε > 0 we shall ensure that there exist an open subset V ⊂ �∗ and smooth
functions α and f : �∗ → R such that meas(V ) ≥ meas(�∗)− ε, meas(V ∩ ∂�∗) ≥
meas(∂�∗) − ε, ∇α|V ≡ 0 and such that α and f satisfy

C
∫ T

0

∫

V
u2t + |∇u|2 dMdt ≤

∫ T

0

∫

V

(
� f

2
− α

)

u2t dMdt

+
∫ T

0

∫

V
∇2 f (∇u,∇u) +

(

α − � f

2

)

|∇u|2 dMdt,

for some positive constant C .
Moreover, if V1, . . . , Vk are radially symmetric or, more generally, for a wide class

as in the Sect. 8, with pairwise disjoint closures, we can choose V in such a way that
V ⊃ (

⋃k
i=1 Vi ).

The open subset M∗ is such that (�∗\V ) ⊂⊂ M∗.
Remark 3 The geometric idea related to M∗, is that, M∗ is an open subset of M
immediately larger than the black region that is inside the � as show the Fig. 3. It is
worth noting that the “net” is built on �∗ ⊃⊃ �, but out of � the dissipative effect is
effective everywhere, so the region of greatest importance is that in the interior of �.

The energy associated to problem (3.1) is defined by:

E(t):=1

2

∫

M
u2t (x, t) + |∇u(x, t)|2 + u2(x, t) dMdt. (3.2)

Denoting U =
(
u
ut

)

, U0 =
(
u0
u1

)

,H := H1(M) × L2(M),

F : H −→ H(
u
v

)

�−→
(

0
a(x)g(v)

)
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and,

A : D(A) ⊂ H −→ H
(
u
v

)

�−→ A

(
u
v

)

=
( −v

−�u + u

)

,

then problem (3.1) can be rewritten as

⎧
⎪⎨

⎪⎩

dU

dt
(t) + (A + F)U (t) = 0

U (0) = U0

(3.3)

It is possible to prove that A is a maximal monotone operator, F is monotone,
bounded and hemicontinuous. Employing Barbu ([4], Corol. 1.1, p. 39) it follows that
A+ F is maximal monotone inH, and making use of standard semigroup arguments
we have the following result:

Theorem 3.1 (i) Under the conditions above, the problem (3.1) is well posed in
the space D(A) = {u ∈ H1(M);�u ∈ L2(M)} × H1(M), that is, for any
initial data {u0, u1} ∈ D(A) = {u ∈ H1(M);�u ∈ L2(M)} × H1(M) exists
a unique map u : [0,∞) −→ H1(M), which is regular solution to problem
(3.1), belonging to the class

u ∈ C1([0,∞); L2(M)) ∩ C([0,∞); H1(M)); (3.4)

ut ∈ W 1,∞(0,∞; L2(M)) ∩ L∞(0,∞); H1(M)). (3.5)

(ii) Under the conditions above, the problem (3.1) is well posed in the space
H1(M) × L2(M), that is, for any initial data {u0, u1} ∈ H1(M) × L2(M)

exists a map u : [0,∞) −→ H1(M) which is the unique weak solution to
problem (3.1) belonging to the class

u ∈ C1([0,∞); L2(M)) ∩ C([0,∞); H1(M)). (3.6)

In addition u satisfies the additional local regularity:

Proposition 3.1 Let � ⊂ M be an open and bounded set with smooth boundary.
Then u(t) ∈ H2(�), ∀ t ≥ 0, where u is the regular solution to problem (3.1).

Proof Let us fix t ≥ 0.Defining v := u(t) and f := −utt (t)−a(·)g(ut (t)) ∈ L2(M),
we deduce the following identity which is valid in L2(M)

− �v + v = f. (3.7)

Let �∗ ⊂ M, be an open and bounded set with smooth boundary such that � ⊂⊂
�∗ e ψ ∈ D(M) satisfying:
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(i) ψ ≡ 1 in �

(ii) ψ ≡ 0 in �∗\�
(iii) 0 ≤ ψ ≤ 1

Multiplying equation (3.7) by ψ we infer

−�vψ + vψ = f ψ.

We observe that

�(vψ) = v�ψ + ψ�v + 2〈∇v,∇ψ〉, (3.8)

thus

−�(vψ) + vψ = f ψ − v�ψ − 2〈∇v,∇ψ〉 in L2(M).

In particular,

−�(vψ) + vψ = f ψ − v�ψ − 2〈∇v,∇ψ〉 in L2(�∗).

Furthermore,

vψ |∂�∗= v |∂�∗ ψ |∂�∗= 0.

From standard elliptic regularity results we deduce that vψ ∈ H2(�∗), from which
we obtain vψ ∈ H2(�). Since ψ ≡ 1 in � we deduce that v = u(t) ∈ H2(�). ��

4 Stability Result

Before stating the main theorem of stability we shall consider an useful identity called
identity of energy that reads as follows. Let u be a regular solution to problem (3.1),
then multiplying the equation by ut and performing an integration by parts, we infer:

E(t2) − E(t1) = −
∫ t2

t1

∫

M
a(x)g(ut )ut dMdt, (4.1)

for all t2 > t1 ≥ 0.
It is worth mentioning that the identity of energy (4.1) remains true for every weak

solution to problem (3.1) by using standard arguments of density.

Theorem 4.1 Let u be a weak solution to problem (3.1), with the energy defined as in
(3.2). Then, under Assumption 3.1 and Assumption 3.2 there exist positive constants
T0, C0 and λ0 such that

E(t) ≤ C0e
−λ0t E(0); ∀t ≥ T0.
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Our main task is to prove the following inequality inequality:

∫ T

0
E(t)dt ≤ C1E(T ) + C2

∫ T

0

∫

M
a(x)[u2t (x, t) + g2(ut (x, t))] dMdt, (4.2)

where C1 and C2 are positive constants and C1 doe not depend on T . As we have
already mentioned, it is sufficient to work with regular solutions to problem (3.1),
since the exponential decay rate can be recovered for weak solutions by using density
approach.

4.1 Recovering the Energy Outside the Region �∗

Let �∗ ⊂ M be an open and bounded set with smooth boundary ∂�∗, such that
� ⊂⊂ �∗. Let us consider ϕ ∈ C∞(M) satisfying:

(i) ϕ ≡ 1 inM\�∗;
(ii) ϕ ≡ 0 in �;
(iii) 0 ≤ ϕ ≤ 1 inM.

Multiplying equation (3.1) by ϕu and integrating over [0, T ] × M, we obtain

∫ T

0

∫

M
[utt − �u + a(x)g(ut ) + u]ϕu dMdt = 0. (4.3)

We observe that

d

dt

[∫

M
utϕu dM

]

=
∫

M
uttϕu dM +

∫

M
utϕut dM

=
∫

M
uttϕu dM +

∫

M
u2t ϕ dM.

Integrating over [0, T ] we conclude that
∫ T

0

∫

M
uttϕu dMdt =

[∫

M
utϕu dM

]T

0
−

∫

M
u2t ϕ dMdt. (4.4)

In addition,

∫ T

0

∫

M
−�u(ϕu) dMdt =

∫ T

0

∫

M
〈∇u,∇(ϕu)〉 dMdt

=
∫ T

0

∫

M
〈∇u,∇ϕ〉u + ϕ|∇u|2 dMdt. (4.5)
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Combining (4.3), (4.4) and (4.5), we deduce

0 =
[∫

M
utϕu dM

]T

0
−

∫

M
u2t ϕ dMdt

+
∫ T

0

∫

M
〈∇u,∇ϕ〉u + ϕ|∇u|2 dMdt

+
∫ T

0

∫

M
ϕu2 dMdt +

∫ T

0

∫

M
a(x)g(ut )ϕu dMdt. (4.6)

Taking into account the properties of function ϕ, we can write

∫ T

0

∫

�∗\�
ϕ[u2 + |∇u|2] dMdt +

∫ T

0

∫

M\�∗
u2 + |∇u|2 dMdt

= −
[∫

M
utϕu dM

]T

0
+

∫

�∗\�
ϕu2t dMdt +

∫

M\�∗
u2t dMdt

−
∫ T

0

∫

M
〈∇u,∇ϕ〉u dMdt −

∫ T

0

∫

M\�
a(x)g(ut )ϕu dMdt. (4.7)

Observing that a(x) ≥ a0 > 0 inM \ �, it holds that

∫ T

0

∫

M\�∗
u2 + |∇u|2 dMdt ≤ −

[∫

M
utϕu dM

]T

0

+ a−1
0

∫ T

0

∫

�∗\�
a(x)ϕu2t dMdt + a−1

0

∫ T

0

∫

M\�∗
a(x)u2t dMdt

−
∫ T

0

∫

M
〈∇u,∇ϕ〉u dMdt −

∫ T

0

∫

M\�
a(x)g(ut )ϕu dMdt. (4.8)

Adding
∫ T
0

∫
M\�∗ u2t dMdt in the previous inequality and using the fact that

0 ≤ ϕ ≤ 1, we obtain

∫ T

0

∫

M\�∗
u2 + |∇u|2 + u2t dMdt ≤ −

[∫

M
utϕu dM

]T

0

+ a−1
0

∫ T

0

∫

M
a(x)u2t dMdt −

∫ T

0

∫

M
〈∇u,∇ϕ〉u dMdt

−
∫ T

0

∫

M\�
a(x)g(ut )ϕu dMdt +

∫ T

0

∫

M\�∗
u2t dMdt (4.9)

Next, we shall estimate the term
∫ T
0

∫
M〈∇u,∇ϕ〉u dMdt .

Observe that 〈∇u,∇ϕ〉 = 0 inM\�∗.
We shall make use of a generalized Green’s identity, that makes sense in our case,

because u ∈ H1(�∗), then u2 ∈ W 1,1(�∗), thus u2
∣
∣
∂�∗ ∈ L1(∂�∗) (see [6]) and
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therefore by using the dense and continuous immersion D(�∗) ↪→ W 1,1(�∗) we can
show the desired. Note that in our case ϕ ∈ C∞(�∗) and ϕ ≡ 1 in ∂�∗.

So we can write

∫

M
〈∇u,∇ϕ〉u dM =

∫

�∗
〈∇u,∇ϕ〉u dM

= 1

2

∫

�∗
〈∇(u2),∇ϕ〉 dM

= −1

2

∫

�∗
�ϕ u2 dM +

∫

∂�∗
∂νϕ u2 d

= −1

2

∫

�∗
�ϕ u2 dM (4.10)

Therefore,

∣
∣
∣
∣

∫ T

0

∫

M
〈∇u,∇ϕ〉u dMdt

∣
∣
∣
∣ ≤ c

2

∫ T

0

∫

�∗
u2 dMdt, (4.11)

where c := maxx∈�∗ |�ϕ(x)|.
We conclude so, from (4.9) and (4.11) that

∫ T

0

∫

M\ �∗
u2 + |∇u|2 + u2t dMdt ≤ −

[∫

M
utϕu dM

]T

0

+ 3a−1
0

∫ T

0

∫

M
a(x)u2t dMdt + c

2

∫ T

0

∫

�∗\�
u2 dMdt

−
∫ T

0

∫

M\ �

a(x)g(ut )ϕu dMdt. (4.12)

From (4.12), it remains to estimate
∫ T
0

∫
�∗ u2 + |∇u|2 + u2t dMdt in terms of

“good terms”. Indeed, we observe that �∗ is a submanifold with smooth boundary
∂�∗.

4.2 Recovering the Energy Inside �∗

Let q be a vector field in �∗ of class C1. Multiplying equation (3.1) by 〈∇u, q〉 and
integrating over [0, T ] × �∗ we infer

0 =
∫ T

0

∫

�∗
(utt − �u + u + a(x)g(ut ))〈∇u, q〉dMdt. (4.13)

• Estimate for I1 := ∫ T
0

∫
�∗ utt 〈∇u, q〉dMdt.
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We note that

d

dt

∫

�∗
ut 〈∇u, q〉dM =

∫

�∗
utt 〈∇u, q〉dM +

∫

�∗
ut 〈∇ut , q〉dM.

Thus

I1 =
[∫

�∗
ut 〈∇u, q〉dM

]T

0
−

∫ T

0

∫

�∗
ut 〈∇ut , q〉dMdt.

Recall that

ut 〈q,∇ut 〉 = 1

2
〈q,∇u2t 〉. (4.14)

Then, taking (4.14) into account and making use of Theorem 2.2, we can write

I1 =
[∫

�∗
ut 〈∇u, q〉dM

]T

0
−

∫ T

0

∫

�∗
1

2
〈q,∇u2t 〉 dMdt

=
[∫

�∗
ut 〈∇u, q〉dM

]T

0
+ 1

2

∫ T

0

∫

�∗
div(q)u2t dMdt

−1

2

∫ T

0

∫

∂�∗
〈q, ν〉u2t ddt. (4.15)

• Estimate for I2 := ∫ T
0

∫
�∗ −�u〈q,∇u〉 dMdt.

Employing Green’s theorem before mentioned and from Lemma 2.1, we deduce

I2 =
∫ T

0

∫

�∗
〈∇u,∇(〈q,∇u〉)〉 dMdt −

∫ T

0

∫

∂�∗
∂νu〈q,∇u〉 ddt

=
∫ T

0

∫

�∗
∇q(∇u,∇u) dMdt

+
∫ T

0

∫

�∗
1

2

[
div(|∇u|2q) − div(q)|∇u|2

]
dMdt

−
∫ T

0

∫

∂�∗
∂νu〈q,∇u〉 ddt

=
∫ T

0

∫

�∗
∇q(∇u,∇u) dMdt +

∫ T

0

∫

�∗
1

2
〈q,∇(|∇u|2)〉 dMdt

−
∫ T

0

∫

∂�∗
∂νu〈q,∇u〉 ddt

=
∫ T

0

∫

�∗
∇q(∇u,∇u) dMdt − 1

2

∫ T

0

∫

�∗
div(q)|∇u|2 dMdt

+1

2

∫ T

0

∫

∂�∗
〈q, ν〉|∇u|2 ddt −

∫ T

0

∫

∂�∗
∂νu〈q,∇u〉 ddt. (4.16)
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• Estimate for I3 := ∫ T
0

∫
�∗ u〈q,∇u〉 dMdt.

I3 = 1

2

∫ T

0

∫

�∗
〈q,∇u2〉 dMdt

= −1

2

∫ T

0

∫

�∗
div(q)u2 dMdt + 1

2

∫ T

0

∫

∂�∗
〈q, ν〉u2 ddt (4.17)

Combining (4.13), (4.15), (4.16) and (4.17), we can state the following lemma:

Lemma 4.1 Let q be a vector field of class C1 in �∗. For all regular solution u to
problem (3.1), we have the following identity:

[∫

�∗
ut 〈∇u, q〉dM

]T

0
+ 1

2

∫ T

0

∫

�∗
div(q)[u2t − |∇u|2 − u2] dMdt

+
∫ T

0

∫

�∗
∇q(∇u,∇u) dMdt +

∫ T

0

∫

�∗
a(x)g(ut )〈q,∇u〉 dMdt

=
∫ T

0

∫

∂�∗
∂νu〈q,∇u〉 ddt + 1

2

∫ T

0

∫

∂�∗
〈q, ν〉[u2t − |∇u|2 − u2] ddt.

Exploiting Lemma 4.1 com q = ∇ f , where f : �∗ −→ R is a C∞ map to be
determined later on, we obtain

[∫

�∗
ut 〈∇u,∇ f 〉dM

]T

0
+ 1

2

∫ T

0

∫

�∗
� f [u2t − |∇u|2 − u2] dMdt

+
∫ T

0

∫

�∗
∇2 f (∇u,∇u) dMdt +

∫ T

0

∫

�∗
a(x)g(ut )〈∇ f,∇u〉 dMdt

= 1

2

∫ T

0

∫

∂�∗
〈∇ f, ν〉[u2t − |∇u|2 − u2] ddt

+
∫ T

0

∫

∂�∗
∂νu〈∇ f,∇u〉 ddt. (4.18)

Lemma 4.2 Let u be a regular solution to problem (3.1) and α ∈ C1(�∗). Thus

[∫

�∗
utαu dM

]T

0
=

∫ T

0

∫

�∗
α[u2t − |∇u|2 − u2] dMdt −

∫ T

0

∫

�∗
〈∇u,∇α〉u dMdt

−
∫ T

0

∫

�∗
a(x)g(ut )αu dMdt +

∫ T

0

∫

∂�∗
∂νuαu ddt.

Proof Multiplying equation (3.1) by αu and performing an integration by parts we
obtain the desired result. ��
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Adding (4.18) and the identity given in Lemma 4.2 we deduce

∫ T

0

∫

�∗

(
� f

2
− α

)

u2t dMdt +
∫ T

0

∫

�∗
∇2 f (∇u,∇u) dMdt

+
∫ T

0

∫

�∗

(

α − � f

2

)

|∇u|2 dMdt =
∫ T

0

∫

�∗

(
� f

2
− α

)

u2 dMdt

−
[∫

�∗
ut 〈∇ f,∇u〉 dM

]T

0
−

[∫

�∗
utαu dM

]T

0

−
∫ T

0

∫

�∗
a(x)g(ut )αu dMdt −

∫ T

0

∫

�∗
a(x)g(ut )〈∇ f,∇u〉 dMdt

+
∫ T

0

∫

∂�∗
∂νu〈∇ f,∇u〉 ddt

+1

2

∫ T

0

∫

∂�∗
〈∇ f, ν〉

[
u2t − |∇u|2 − u2

]
ddt

−
∫ T

0

∫

�∗
〈∇u,∇α〉u dMdt +

∫ T

0

∫

∂�∗
∂νuαu ddt. (4.19)

• Cut-off :
Let ε > 0 be sufficiently small such that the tubular neighbourhood

ωε =
{
x ∈ M; d(x, ∂�∗) ≤ ε

2

}

is contained inM\�. Let us consider ψ ∈ D(M) such that (see Fig. 5)

(i) ψ = 1 in ωε
2

:= ωε\�∗;
(ii) ψ = 0 in �∗\int (ω′

ε
2
), where ω′

ε
2

:= ωε\ωε
2
;

(iii) 0 ≤ ψ ≤ 1 in M.

Taking q = ψ∇ f in Lemma 4.1, we infer,

[∫

�∗
utψ〈∇u,∇ f 〉dM

]T

0
+ 1

2

∫ T

0

∫

�∗
div(ψ∇ f )

[
u2t − |∇u|2 − u2

]
dMdt

+
∫ T

0

∫

�∗
∇(ψ∇ f )(∇u,∇u) dMdt +

∫ T

0

∫

�∗
a(x)g(ut )〈ψ∇ f,∇u〉 dMdt

=
∫ T

0

∫

∂�∗
∂νu〈ψ∇ f,∇u〉 ddt + 1

2

∫ T

0

∫

∂�∗
〈ψ∇ f, ν〉 [u2t − |∇u|2 − u2

]
ddt,
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Fig. 5 Properties of function ψ

that is,

⎡

⎣
∫

ω′
ε
2

utψ〈∇u,∇ f 〉dM
⎤

⎦

T

0

+ 1

2

∫ T

0

∫

ω′
ε
2

ψ� f [u2t − |∇u|2 − u2] dMdt

+1

2

∫ T

0

∫

ω′
ε
2

〈∇ f,∇ψ〉
[
u2t − |∇u|2 − u2

]
dMdt

+
∫ T

0

∫

ω′
ε
2

ψ∇2 f (∇u,∇u) dMdt +
∫ T

0

∫

ω′
ε
2

〈∇u,∇ψ〉〈∇ f,∇u〉 dMdt

+
∫ T

0

∫

ω′
ε
2

a(x)g(ut )ψ〈∇ f,∇u〉 dMdt

= 1

2

∫ T

0

∫

∂�∗
〈∇ f, ν〉

[
u2t − |∇u|2 − u2

]
ddt

+
∫ T

0

∫

∂�∗
∂νu〈∇ f,∇u〉 ddt. (4.20)

Substituting (4.20) in (4.19) it results that

∫ T

0

∫

�∗

(
� f

2
− α

)

u2t dMdt +
∫ T

0

∫

�∗ ∇2 f (∇u,∇u) dMdt +
∫ T

0

∫

�∗

(

α − � f

2

)

|∇u|2 dMdt

=
∫ T

0

∫

�∗

(
� f

2
− α

)

u2 dMdt −
[∫

�∗ ut 〈∇ f,∇u〉 dM
]T

0
−

[∫

�∗ utαu dM
]T

0

−
∫ T

0

∫

�∗ a(x)g(ut )αu dMdt −
∫ T

0

∫

�∗ a(x)g(ut )〈∇ f,∇u〉 dMdt

−
∫ T

0

∫

�∗ 〈∇u, ∇α〉u dMdt + 1

2

∫ T

0

∫

ω′
ε
2

ψ� f
[
u2t − |∇u|2 − u2

]
dMdt
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+ 1

2

∫ T

0

∫

ω′
ε
2

〈∇ f,∇ψ〉
[
u2t − |∇u|2 − u2

]
dMdt +

⎡

⎣
∫

ω′
ε
2

utψ〈∇u, ∇ f 〉dM
⎤

⎦

T

0

+
∫ T

0

∫

ω′
ε
2

ψ∇2 f (∇u, ∇u) dMdt +
∫ T

0

∫

ω′
ε
2

〈∇u,∇ψ〉〈∇ f,∇u〉 dMdt

+
∫ T

0

∫

ω′
ε
2

a(x)g(ut )ψ〈∇ f,∇u〉 dMdt +
∫ T

0

∫

∂�∗ ∂νu α u ddt. (4.21)

Remark 4 This is the precise moment when the properties of the function f will be
essential. Note that we need to find a subset V ⊂ �∗ with regular smooth boundary
∂1V which intercepts ∂�∗ transversally, in such way that meas(V ) ≥ meas(�∗) − ε

and meas(V ∩ ∂�∗) ≥ meas(∂�∗) − ε, for all ε > 0. In addition, we need to find
regular functions α, f : �∗ −→ R, α ≥ 0 and ∇α |V≡ 0 such that

C
∫ T

0

∫

V
u2t + |∇u|2 dMdt ≤

∫ T

0

∫

V
(
� f

2
− α)u2t dMdt

+
∫ T

0

∫

V
∇2 f (∇u,∇u) + (α − � f

2
)|∇u|2 dMdt,

(4.22)

for some positive constant C.

The construction of a smooth function f satisfying the Remark 4 can be found in
[13]. The general idea is construct this function locally. Afterwards we glue them. The
compactness of �∗ is a crucial ingredient. We can put radially symmetric open sets
satisfying some conditions inside V (and outside the damping region), remembering
that we say that an open set V ⊂ �∗ is radially symmetric with respect to p ∈ V if the
expression of the metric in polar coordinates (r, θ) = (r, θ1, θ2, . . . , θn−1) centered
in p is given by ds2 = dr2 + Q2(r)dθ2.

Thus we will omit the construction and quote the present theorem that guarantees
the existence of such a function whose proof is given in detail in [13].

Theorem 4.2 Let (Mn, g) be a n-dimensional Riemannianmanifold and let�∗ ⊂ M
the compact subset mentioned before. Fix ε > 0. Then there exist an open subset
V ⊂ �∗ and smooth functions α, f : �∗ → R such that meas(V ) ≥ meas(�∗) − ε,
meas(V ∩ ∂�∗) ≥ meas(∂�∗) − ε, α ≥ 0, ∇α |V≡ 0 and

C
∫ T

0

∫

V

[
u2t + |∇u|2

]
dMdt ≤

∫ T

0

∫

V

(
� f

2
− α

)

u2t dMdt

+
∫ T

0

∫

V

[

∇2 f (∇u,∇u) +
(

α − � f

2

)

|∇u|2
]

dMdt,

for some positive constant C.
Moreover if �∗ contains radially symmetric subsets, then we can choose V in

such a way that a precise part of these radially symmetric subsets is contained in V ,
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namely, the radially symmetric regions that can get rid of dissipative effects are those
that satisfy the following condition

Q′(r) ∈
[
2

n
(α + C) ,

α − C
n
2 − 1

]

(4.23)

(if n = 2, Q′(r) does not need to satisfy any upper bound), where Q is function at the
metric expression ds2 = dr2 + Q2(r)dθ2.

Once established that theRemark 4 is valid, we are able to complete the stabilization
energy.

Taking into account that 0 ≤ ψ ≤ 1, we conclude, from (4.21), that

C
∫ T

0

∫

�∗
u2t + |∇u|2 dMdt ≤ C∗

∫ T

0

∫

�∗\V
u2t + |∇u|2 dMdt

+
∣
∣
∣
∣
∣

[∫

�∗
ut 〈∇ f,∇u〉dM

]T

0

∣
∣
∣
∣
∣
+ C2

∣
∣
∣
∣
∣

[∫

�∗
utu dM

]T

0

∣
∣
∣
∣
∣

+C1

∫ T

0

∫

�∗
u2 dMdt + C2

∫ T

0

∫

�∗
a(x)|g(ut )||u| dMdt

+
∫ T

0

∫

�∗
a(x)|g(ut )||∇ f ||∇u| dMdt +

∫ T

0

∫

�∗\V
|〈∇u,∇α〉||u| dMdt

+

∣
∣
∣
∣
∣
∣
∣

⎡

⎣
∫

ω′
ε
2

ut 〈∇ f,∇u〉 dM
⎤

⎦

T

0

∣
∣
∣
∣
∣
∣
∣
+ C3

∫ T

0

∫

ω′
ε
2

u2t + |∇u|2 + u2 dMdt

+C4

∫ T

0

∫

ω′
ε
2

|∇u|2 dMdt

+C5

∫ T

0

∫

ω′
ε
2

|∇u|2 dMdt + C4

2

∫ T

0

∫

ω′
ε
2

u2t + |∇u|2 + u2 dMdt

+
∫ T

0

∫

ω′
ε
2

a(x)|g(ut )||∇u||∇ f | dMdt + C6

∣
∣
∣
∣

∫ T

0

∫

∂�∗
∂νu u ddt

∣
∣
∣
∣ , (4.24)

where C1 := max
x∈�∗

∣
∣
∣
∣

(

α − � f

2

)

(x)

∣
∣
∣
∣, C2 := max

x∈�∗
α(x), C3 := max

x∈�∗
|� f (x)|,

C4 := max
x∈�∗

(|∇ f (x)||∇ψ(x)|), C5 is such that |∇2 f (∇u,∇u)(x)| ≤ C5|∇u(x)|2,

∀ x ∈ �∗, C6 := max
x∈∂�∗

α(x).
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Adding C
∫ T
0

∫
�∗ u2 dMdt in (4.24), we conclude that

C
∫ T

0

∫

�∗
u2t + |∇u|2 + u2 dMdt ≤ C∗

∫ T

0

∫

�∗\V
u2t + |∇u|2 dMdt

+
∫ T

0

∫

�∗\V
|〈∇u,∇α〉||u| dMdt + C̃a−1

0

∫ T

0

∫

ω′
ε
2

a(x)u2t dMdt

+ C̃
∫ T

0

∫

ω′
ε
2

|∇u|2 dMdt +
∣
∣
∣
∣
∣

[∫

�∗
ut 〈∇ f, ∇u〉 dM

]T

0

∣
∣
∣
∣
∣

+ C̃

∣
∣
∣
∣
∣

[∫

�∗
ut u dM

]T

0

∣
∣
∣
∣
∣
+ C̃

∫ T

0

∫

�∗
u2 dMdt + C̃

∫ T

0

∫

�∗
a(x)|g(ut )||u| dMdt

+ C̃
∫ T

0

∫

�∗
a(x)|g(ut )||∇u| dMdt + C̃

2

∫ T

0

∫

ω′
ε
2

u2 dMdt

+

∣
∣
∣
∣
∣
∣
∣

⎡

⎣
∫

ω′
ε
2

ut 〈∇ f, ∇u〉 dM
⎤

⎦

T

0

∣
∣
∣
∣
∣
∣
∣

+ C̃
∫ T

0

∫

ω′
ε
2

a(x)|g(ut )||∇u| dMdt + C̃

∣
∣
∣
∣
∣

∫ T

0

∫

∂�∗
∂νu u ddt

∣
∣
∣
∣
∣
. (4.25)

In the sequel, let us analyze some terms in (4.25). We shall use Hölder inequality
as well as the inequality ab ≤ a2

4β + βb2, where β is an arbitrary positive number.

• Analysis of J1 := ∫ T
0

∫
�∗ a(x)|g(ut )||u| dMdt.

J1 ≤
∫ T

0

(∫

�∗
a(x)|g(ut )|2 dM

) 1
2
(∫

�∗
a(x)|u|2 dM

) 1
2

dt

≤
∫ T

0

[
1

4β

∫

�∗
a(x)|g(ut )|2 dM + β

∫

�∗
a(x)|u|2 dM

]

dt

≤ 1

4β

∫ T

0

∫

�∗
a(x)|g(ut )|2 dMdt + ‖a‖∞2β

∫ T

0

∫

�∗
1

2
|u|2 dMdt

≤ 1

4β

∫ T

0

∫

M
a(x)|g(ut )|2 dMdt + Ĉβ

∫ T

0
E(t) dt, (4.26)

where E(t) is the energy defined in (3.2).
• Analysis of J2 := ∫ T

0

∫
ω′

ε
2

a(x)|ut |2 dMdt.

J2 ≤
∫ T

0

∫

M
a(x)|ut |2 dMdt (4.27)

• Analysis of J3 := ∫ T
0

∫
�∗ a(x)|g(ut )||∇u| dMdt + ∫ T

0

∫
ω′

ε
2

a(x)|g(ut )||∇u|
dMdt.
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J3 ≤ 2
∫ T

0

∫

�∗
a(x)|g(ut )||∇u| dMdt

≤ 1

2β

∫ T

0

∫

M
a(x)|g(ut )|2 dMdt + Ĉβ

∫ T

0
E(t) dt (4.28)

• Analysis of J4 :=
∣
∣
∣
∫ T
0

∫
∂�∗ ∂νu u ddt

∣
∣
∣ .

Taking α = ψ in Lemma 4.2 we obtain

⎡

⎣
∫

ω′
ε
2

utψu dM
⎤

⎦

T

0

=
∫ T

0

∫

ω′
ε
2

ψ
[
u2t − |∇u|2 − u2

]
dMdt

−
∫ T

0

∫

ω′
ε
2

〈∇u,∇ψ〉u dMdt

−
∫ T

0

∫

ω′
ε
2

a(x)g(ut )ψu dMdt +
∫ T

0

∫

∂�∗
∂νu u ddt.

(4.29)

Thus,

J4 ≤

∣
∣
∣
∣
∣
∣
∣

⎡

⎣
∫

ω′
ε
2

utu dM
⎤

⎦

T

0

∣
∣
∣
∣
∣
∣
∣

+
∫ T

0

∫

ω′
ε
2

u2t + |∇u|2 dMdt

+C̃
∫ T

0

∫

ω′
ε
2

|∇u|2
2

+ u2

2
dMdt +

∫ T

0

∫

ω′
ε
2

a(x)|g(ut )||u| dMdt

+
∫ T

0

∫

ω′
ε
2

u2 dMdt. (4.30)

Employing the same procedure we have followed in (4.26) yields:

J4 ≤

∣
∣
∣
∣
∣
∣
∣

⎡

⎣
∫

ω′
ε
2

utu dM
⎤

⎦

T

0

∣
∣
∣
∣
∣
∣
∣
+ a−1

0

∫ T

0

∫

�∗
a(x)u2t dMdt

+Ĉ
∫ T

0

∫

ω′
ε
2

|∇u|2 dMdt + Ĉ
∫ T

0

∫

�∗
u2 dMdt

+ 1

4β

∫ T

0

∫

M
a(x)|g(ut )|2 dMdt + Ĉβ

∫ T

0
E(t) dt (4.31)
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Therefore, from (4.25), (4.26), (4.27), (4.28) and (4.31), setting

χ :=
∣
∣
∣
∣
∣

[∫

�∗
ut 〈∇ f,∇u〉 dM

]T

0

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

[∫

�∗
utu dM

]T

0

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣

⎡

⎣
∫

ω′
ε
2

ut 〈∇ f,∇u〉 dM
⎤

⎦

T

0

∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣

⎡

⎣
∫

ω′
ε
2

utu dM
⎤

⎦

T

0

∣
∣
∣
∣
∣
∣
∣

, (4.32)

we conclude that

C
∫ T

0

∫

�∗
u2t + |∇u|2 + u2 dMdt ≤ C ′|χ | + C ′β

∫ T

0
E(t)dt

+ C ′
∫ T

0

∫

�∗\V
|∇u|2 + u2 dMdt + C∗

∫ T

0

∫

�∗\V
u2t + |∇u|2 dMdt

+ C ′
∫ T

0

∫

M
a(x)[|g(ut )|2 + u2t ] dMdt + C ′

∫ T

0

∫

ω′
ε
2

|∇u|2 dMdt

+C ′
∫ T

0

∫

�∗
u2 dMdt, (4.33)

where C ′ = C ′(‖a‖∞, f, ψ, α, a−1
0 ).

In the sequel, we shall estimate the term
∫ T
0

∫
ω′

ε
2

|∇u|2 dMdt . For this purpose,

we shall construct a “cut-off ” ηδ defined in an specific neighborhood of ω′
ε
2
[see [13],

Sect. 7, p. 955].
Initially let �∗∗ ⊂ M be an open bounded set with smooth boundary ∂�∗∗ such

that � ⊂⊂ �∗ ⊂⊂ �∗∗ and η̃ : R −→ R satisfying

η̃(x) =
⎧
⎨

⎩

1 i f x ≤ 0
(x − 1)2 i f x ∈ [1/2, 1]

0 i f x > 1

and it is defined on (0, 1/2) in such way that η̃ is a non-increasing function of class

C1. For δ > 0, we set, η̃δ(x) := η̃(
x

δ
). We observe that exists a constant M which

does not depend on δ, such that

|η̃′
δ(x)|2
η̃δ(x)

≤ M

δ2
para todo x < δ

Now, let δ > 0 sufficiently small such that

ω̃δ := {
x ∈ �∗∗ ; d(x, ∂ω′

ε
2

)
< δ

}
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Fig. 6 Properties of function ηδ

is totally contained in �∗∗\�, that is, ω̃δ is a tubular neighborhood of ω′
ε
2
totally

contained in �∗∗\�.
We define ηδ : �∗∗ −→ R where (see Fig. 6)

ηδ(x) =

⎧
⎪⎨

⎪⎩

1 if x ∈ ω′
ε
2

η̃δ(d(x, ω′
ε
2
)) if x ∈ ω̃δ

0 otherwise,

We have that ηδ is a C1 function defined in �∗∗, because ∂ω′
ε
2
and ∂(ω̃δ ∪ ω′

ε
2
) are

regular. We note also, that

∇ηδ(x) = ∇(η̃′
δ(d(x, ω′

ε
2
))) = η̃′

δ(d(x, ω′
ε
2
))∇d(x, ω′

ε
2
), (4.34)

soon

|∇ηδ(x)|
ηδ(x)

2

=
|η̃′

δ(d(x, ω′
ε
2
)|2

η̃δ(d(x, ω′
ε
2
))

≤ M

δ2
(4.35)

for all x ∈ ω̃δ . Particularly,
|∇ηδ(x)|

ηδ(x)

2

∈ L∞(ω̃δ ∪ ω′
ε
2
).

Using Lemma 4.2 with ηδ = α and �∗ = �∗∗, we infer,

[∫

�∗∗ utηδu dM
]T

0
=

∫ T

0

∫

�∗∗ ηδ[u2t − |∇u|2 − u2] dMdt −
∫ T

0

∫

�∗∗ 〈∇u,∇ηδ〉u dMdt

−
∫ T

0

∫

�∗∗ a(x)g(ut )ηδu dMdt +
∫ T

0

∫

∂�∗∗ ∂νuηδu ddt.
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Thus, defining, Vδ := ω̃δ ∪ ω′
ε
2
it holds that

[∫

Vδ

utηδu dM
]T

0

=
∫ T

0

∫

Vδ

ηδ[u2t − |∇u|2 − u2] dMdt −
∫ T

0

∫

Vδ

〈∇u,∇ηδ〉u dMdt

−
∫ T

0

∫

Vδ

a(x)g(ut )ηδu dMdt. (4.36)

• Estimate for K1 := ∫ T
0

∫
Vδ

ηδ|ut |2 dMdt

|K1| ≤ a−1
0

∫ T

0

∫

Vδ

a(x)|ut |2 dMdt ≤ a−1
0

∫ T

0

∫

M
a(x)|ut |2 dMdt. (4.37)

• Estimate for K2 := ∫ T
0

∫
Vδ
a(x)g(ut )ηδu dMdt

|K2| ≤ C

4β

∫ T

0

∫

M
a(x)|g(ut )|2 dMdt + 2β

∫ T

0
E(t)dt. (4.38)

• Estimate for K3 := ∫ T
0

∫
Vδ
u〈∇u,∇ηδ〉 dMdt

|K3| ≤
∫ T

0

∫

Vδ

|u||∇u||∇ηδ| dMdt

≤
∫ T

0

∫

Vδ

1

2
ηδ|∇u|2 dMdt +

∫ T

0

∫

Vδ

1

2

|∇ηδ|2
ηδ

|u|2| dMdt

≤ 1

2

∫ T

0

∫

Vδ

ηδ|∇u|2 dMdt + M

2δ2

∫ T

0

∫

Vδ

|u|2 dMdt. (4.39)

Denoting χ1 := −
[∫

Vδ
utηδu dM

]T

0
it results that, according to (4.36), (4.37),

(4.38) and (4.39), that

1

2

∫ T

0

∫

Vδ

ηδ|∇u|2 dMdt ≤ |χ1| + C̃
∫ T

0

∫

M
a(x)u2t dMdt

+ C̃

4β

∫ T

0

∫

M
a(x)|g(ut )|2 dM + C̃

∫ T

0

∫

�∗∗
|u|2 dMdt + 2β

∫ T

0
E(t)dt.

(4.40)

We observe that

∫ T

0

∫

ω′
ε
2

|∇u| dMdt ≤
∫ T

0

∫

Vδ

ηδ|∇u|2 dMdt, (4.41)

remembering that Vδ := ω̃δ ∪ ω′
ε
2
.
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Consequently, substituting (4.40) in (4.33), taking (4.41) into account, grouping
some terms and noting that

∫ T

0

∫

�∗\V
u2 dMdt ≤

∫ T

0

∫

�∗∗
u2 dMdt

we conclude that

C
∫ T

0

∫

�∗
u2t + |∇u|2 + u2 dMdt ≤ C ′|χ | + Ĉ |χ1|

+ Ĉ
∫ T

0

∫

M
a(x)[g(ut )|2 + u2t ] dMdt + Ĉ

∫ T

0

∫

�∗∗
u2 dMdt

+C∗
1

∫ T

0

∫

�∗\V
|∇u|2 + u2t dMdt + Ĉβ

∫ T

0
E(t)dt. (4.42)

where Ĉ = Ĉ(‖a‖∞, a−1
0 ,C ′, M

δ2
, ψ, f, α).

We will now estimate the term
∫ T
0

∫
�∗\V |∇u|2 dMdt .

Let M∗ ⊂ M a open subset, so that �∗\V ⊂ M∗ ⊂⊂ �∗∗. Note that by
hypothesis a(x) ≥ a0 > 0 inM∗.

Consider θ > 0 sufficiently small such that

ω̃θ := {x ∈ �∗∗; d(x, ∂V ) < θ} ⊂ M∗,

ω̃θ is a tubular neighborhood of ∂V that has only one connected component.
Proceeding similarly towhatwas done for estimating the term

∫ T
0

∫
ω′

ε
2

|∇u|2 dMdt ,

we conclude that

1

2

∫ T

0

∫

�∗\V
|∇u|2 dMdt ≤ |χ2| + C2

∫ T

0

∫

M
a(x)u2t dMdt

+ C2

4β

∫ T

0

∫

M
a(x)|g(ut )|2 dM + C2

∫ T

0

∫

�∗∗
|u|2 dMdt + 2β

∫ T

0
E(t)dt.

(4.43)

where ωθ := ω̃θ ∪ �∗\V ⊂ M∗ and χ2 := −
[∫

ωθ
utηθu dM

]T

0
.

Therefore, from (4.43) and (4.42), we can write

C
∫ T

0

∫

�∗
u2t + |∇u|2 + u2 dMdt ≤ C ′|χ | + Ĉ |χ1| + C3|χ2|

+ C3

∫ T

0

∫

M
a(x)[g(ut )|2 + u2t ] dMdt + C3

∫ T

0

∫

�∗∗
u2 dMdt

+ C3β

∫ T

0
E(t)dt. (4.44)
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The estimate (4.44) is almost what we want. It is necessary to estimate the term
∫ T
0

∫
�∗∗ u2 dMdt as a function of “good terms”, this is the next step, already with the

total energy of the system recovered.

4.3 Recovering the Total Energy

Multiplying (4.12) by C and adding with (4.44), we obtain the following inequality:

C
∫ T

0

∫

M
u2t + |∇u|2 + u2 dMdt ≤ C

∣
∣
∣
∣
∣

[∫

M
utϕu dM

]T

0

∣
∣
∣
∣
∣

+C ′|χ | + Ĉ |χ1| + C3|χ2| + C4

∫ T

0

∫

M
a(x)(|g(ut )|2 + u2t ) dMdt

+ C
∫ T

0

∫

M\�
a(x)|g(ut )||u|ϕ dMdt + C4

∫ T

0

∫

�∗∗
u2 dMdt

+ C3β

∫ T

0
E(t)dt. (4.45)

• Estimate for the term
∫ T
0

∫
M\� a(x)|g(ut )||u|ϕ dMdt.

∫ T

0

∫

M\�
a(x)|g(ut )||u|ϕ dMdt ≤

∫ T

0

(∫

M
a(x)|g(ut )|2 dM

) 1
2
(∫

M
a(x)|u|2 dM

) 1
2
dt

≤ 1

4β

∫ T

0

∫

M
a(x)|g(ut )|2 dMdt + C1β

∫ T

0
E(t)dt

(4.46)

Thus by (4.45) it follows that

2C
∫ T

0
E(t)dt ≤ C

∣
∣
∣
∣
∣

[∫

M
utϕu dM

]T

0

∣
∣
∣
∣
∣
+ C ′|χ | + Ĉ |χ1| + C3|χ2|

+ C̃
∫ T

0

∫

M
a(x)(|g(ut )|2 + u2t ) dMdt + C̃

∫ T

0

∫

�∗∗
u2 dMdt

+ C̃β

∫ T

0
E(t)dt. (4.47)

where C̃ = C̃(‖a‖∞, a−1
0 ,C,C ′,C3,C4,

M
δ2

, ψ, f, α, ϕ).

Next, we shall estimate |χ |, |χ1|, |χ2| and
∣
∣
∣
[∫

M utϕu dM]T
0

∣
∣
∣.
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Using the identity (4.1), we have that

|χ1| =
∣
∣
∣
∣
∣

[∫

Vδ

utηδu dM
]T

0

∣
∣
∣
∣
∣

≤ C1

[∫

M
|ut (T, x)||u(T, x)| dM +

∫

M
|ut (0, x)||u(0, x)| dM

]

≤ C1(E(T ) + E(0))

= C1

(

2E(T ) +
∫ T

0

∫

M
a(x)g(ut )ut dMdt

)

≤ 2C1E(T ) + C2

∫ T

0

∫

M
a(x)

[
|g(ut )|2 + |ut |2

]
dMdt.

Making use of analogous arguments we conclude that

C ′|χ | + Ĉ |χ1| + C3|χ2| + C

∣
∣
∣
∣
∣

[∫

M
utϕu dM

]T

0

∣
∣
∣
∣
∣
≤ C0E(T )

+C0

∫ T

0

∫

M
a(x)

[
|g(ut )|2 + |ut |2

]
dMdt. (4.48)

where C0 does not depend on T .
It remains in (4.47), to estimate the term

∫ T
0

∫
�∗∗ u2 dMdt . For this purpose, we

need the following lemma:

Lemma 4.3 Let u be a regular solution to problem (3.1). Thus, for all T > T0, where
T0 is a positive constant large enough, there exists a positive constant C(T0, E(0))
such that the following inequality holds

∫ T

0

∫

�∗∗
u2 dMdt ≤ C(T0, E(0))

{∫ T

0

∫

M
a(x)

[
|g(ut )|2 + |ut |2

]
dMdt

}

.

(4.49)

Proof We argue by contradiction. To ease notations, we will set u′ := ut . Assume that
(4.49) is not verified. Then there exists a sequence of initial data {uk(0), u′

k(0)}, such
that the corresponding regular solutions {uk} of (3.1) with Ek(0) assumed uniformly
bounded in k, verifies

lim
k→+∞

∫ T
0

∫
�∗∗ u2k dMdt

∫ T
0

∫
M a(x)(g2(u′

k) + u′2
k) dMdt

= +∞, (4.50)

this is,

lim
k→+∞

∫ T
0

∫
M a(x)(g2(u′

k) + u′2
k) dMdt

∫ T
0

∫
�∗∗ u2k dMdt

= 0 (4.51)
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Since the energy is a non-increasing function, it holds that Ek(t) ≤ Ek(0) ≤ L ,
consequently,

∫

M
u′2

k(x, t) + |∇uk(x, t)|2 + u2k(x, t) dM ≤ 2L ,

that is,

∫ T

0

∫

M
u′2

k(x, t) + |∇uk(x, t)|2 + u2k(x, t) dMdt ≤ 2LT,

thus,
‖uk‖2H1(�T )

≤ 2LT, (4.52)

where �T = (0, T ) × M.

In addition,

∫

M
|∇uk(x, t)|2 + u2k(x, t) dM ≤ 2L and

∫

M
u′2

k(x, t)dM ≤ 2L ,

consequently

‖uk‖2L∞(0,T ;H1(M))
≤ 2L; (4.53)

‖u′
k‖2L∞(0,T ;L2(M))

≤ 2L . (4.54)

Thus, there exists a subsequence of {uk}, still denote by the same index, which
verifies the following convergence

uk ⇀ u in H1(�T ); (4.55)

uk
�
⇀ u in L∞(0, T ; H1(M)); (4.56)

u′
k

�
⇀ u′ in L∞(0, T ; L2(M)). (4.57)

From the fact that H1(�∗∗) c
↪→ L2(�∗∗) and both spaces are reflexive, it holds

from (4.53), (4.54) and employing Aubin–Lions Theorem, that

uk −→ u in L2(0, T ; L2(�∗∗)). (4.58)

We note that u does not depend on �∗∗ in view of (4.55).
At this point we shall divide the proof into two cases, namely: u �= 0 e u = 0.
(i) u �= 0 em (0, T ) × M.
We observe that taking (4.58) into account, we have

‖uk‖2L2(0,T ;L2(�∗∗)) ≤ C.
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Thus, considering (4.51) we obtain

lim
k→+∞

∫ T

0

∫

M
a(x)(g2(u′

k) + u′2
k) dMdt = 0 (4.59)

and from (4.59) we conclude that

lim
k→+∞

∫ T

0

∫

M
|a(x)g(u′

k)|2 dMdt

≤ ‖a‖∞ lim
k→+∞

∫ T

0

∫

M
a(x)(g2(u′

k) + u′2
k) dMdt = 0,

that is

ag(u′
k) −→ 0 in L2(0, T ; L2(M)). (4.60)

Our aim is taking limit in the equation

{
u

′′
k − �uk + uk + a(x)g(u

′
k) = 0 in M × (0,∞)

uk(0) = u0,k , u
′
k(0) = u1,k in M (4.61)

We observe that according to (4.59) we infer

∫ T

0

∫

(M\�)∪M∗
u′2

k dMdt ≤ a−1
0

∫ T

0

∫

(M\�)∪M∗
a(x)u′2

k dMdt

≤ a−1
0

∫ T

0

∫

M
a(x)u′2

k dMdt → 0,

when k → ∞.
Thus, from (4.57) it follows, for a. e. t ∈ [0, T ], u′(t) satisfies

u′(t) =
{
u′(t) in �

0 in (M\�) ∪ M∗
(4.62)

Passing to the limit, we deduce

{
u

′′ − �u + u = 0 in L∞(0, T ; H−1(M))

u′ = 0 in (M\�) ∪ M∗
(4.63)

with u ∈ L∞(0, T ; H1(M)) e u′ ∈ L∞(0, T ; L2(M)).
Considering �∗ ⊃⊃ � satisfying the conditions mentioned before and setting

v = u′, from (4.63) we obtain the following problem

{
v

′′ − �v + v = 0 in �∗ × (0, T )

v = 0 in (�∗\�) ∪ M∗ × (0, T )
(4.64)
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in the distributional sense, with v ∈ L∞(0, T ; L2(M)) e v′ ∈ L∞(0, T ; H−1(M)).
In addition, employing Lions-Magenes ([30], Chap. 3, Theor. 9.3, p. 288), we have

v ∈ C([0, T ]; L2(M)) ∩ C1([0, T ]; H−1(M)).

From Appendix, we deduce that v = u′ = 0 em M.
It follows that (4.63) can be written as

{−�u + u = 0 in M × (0,∞)

u′ = 0 in M (4.65)

Since u ∈ L∞(0, T ; H1(M)) we conclude that �u ∈ L∞(0, T ; H1(M)), then
u(t) ∈ H1(M) and �u(t) ∈ H1(M) ↪→ L2(M). Multiplying (4.65) by u(t) and
integrating over M, we deduce

∫

M
−�u(t)u(t) dM +

∫

M
|u(t)|2 dM = 0,

that is,

∫

M
|∇u(t)|2 dM +

∫

M
|u(t)|2 dM = 0,

Consequently u(t) = 0 in H1(M) for a. e. t ∈ [0, T ], that is u = 0, which is a
contradiction.

(ii) u = 0 em (0, T ) × M.
We define

ck :=
[∫ T

0

∫

�∗∗
|uk |2 dMdt

] 1
2

(4.66)

ūk := 1

ck
uk (4.67)

Thus, we deduce

‖ūk‖2L2(0,T ;L2(�∗∗)) = 1 (4.68)

If one considers

Ek(t) := 1

2

∫

M

∣
∣ū′

k

∣
∣2 + |ūk |2 + |∇ūk |2 dM, (4.69)

then

Ek(t) = Ek(t)

c2k
(4.70)
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According to (4.47) and (4.48) it holds, for T sufficiently large that

E(T ) ≤ Ĉ

[∫ T

0

∫

M
a(x)(g2(u′) + u′2) dMdt +

∫ T

0

∫

�∗∗
u2 dMdt

]

, (4.71)

and according to the identity of energy that follows

E(0) = E(T ) +
∫ T

0

∫

M
a(x)g(u′)u′ dMdt

≤ E(T ) +
∫ T

0

∫

M
a(x)(g2(u′) + u′2) dMdt.

Thus,

E(t) ≤ E(0) ≤ C̃

[∫ T

0

∫

M
(
a(x)g2(u′) + a(x)u′2) dMdt +

∫ T

0

∫

�∗∗
|u|2dMdt

]

for all t ∈ (0, T ), with T sufficiently large.
From the last inequality and taking (4.70) into account, we obtain,

Ek(t) = Ek(t)

c2k
≤

[∫ T
0

∫
M

(
a(x)g2(u′

k) + a(x)u′2
k

)
dMdt

∫ T
0

∫
�∗∗ |uk |2dMdt

+ 1

]

(4.72)

Then, from (4.51) and (4.72), we can guarantee the existence of a constant L1 > 0
such that

Ek(t) ≤ L1 , ∀t ∈ [0, T ], ∀k ∈ N

Analogously we have done to the case (i), we obtain a subsequence such that

ūk ⇀ ū in H1(�T ); (4.73)

ūk
�
⇀ ū in L∞(0, T ; H1(M)); (4.74)

ū′
k

�
⇀ ū′ in L∞(0, T ; L2(M)), (4.75)

and, therefore, making use of compactness arguments, it holds that

ūk −→ ū in L2(0, T ; L2(�∗∗)) (4.76)

Furthermore, we observe that from (4.51)

lim
k→+∞

∫ T
0

∫
M a(x)g2(u′

k) dMdt

c2k
= 0 (4.77)
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and

∫ T

0

∫

(M\�)∪M∗
ū′2
k dMdt ≤ a−1

0

∫ T

0

∫

(M\�)∪M∗
a(x)ū′2

k dMdt

≤ a−1
0

∫ T

0

∫

M
a(x)ū′2

k dMdt −→ 0 (4.78)

We have that ūk satisfies

ū′′
k − �ūk + ūk + a(x)

g(u′
k)

ck
= 0 in M × (0, T ) (4.79)

Thus, passing to the limit in (4.79) when k → ∞ we obtain, from (4.73), (4.74),
(4.75), (4.76), (4.77) and (4.78), that

⎧
⎨

⎩

ū′′ − �ū + ū = 0 inM × (0, T )

ū′ = 0 in (M\�) ∪ M∗ × (0, T ).

(4.80)

Using the same arguments employed in the first case (i),we conclude that ū = 0 in
M × (0, T ), which is a contradiction having in mind (4.68) and (4.76).

This is finishes the proof of the lemma. ��

Thus, from (4.47), (4.48) and Lemma 4.3 we obtain the following

2C
∫ T

0
E(t)dt ≤ C0E(T ) + C̃1

∫ T

0

∫

M
a(x)(|g(ut )|2 + u2t ) dMdt

+C̃β

∫ T

0
E(t)dt. (4.81)

for all T ≥ T0, T0 sufficiently large such that T0(2C − C̃β) − C0 > 0. Note that C0
not depend on T .

Considering β sufficiently small so that C̃2 := 2C − C̃β > 0 we obtain

C̃2

∫ T

0
E(t)dt ≤ C0E(T ) + C̃1

∫ T

0

∫

M
a(x)(|g(ut )|2 + u2t ) dMdt, (4.82)

for all T ≥ T0.
Observe that, for all T ≥ T0 and t ∈ [0, T0] we have

E(T ) ≤ E(T0) ≤ E(t) �⇒ T0E(T ) ≤
∫ T0

0
E(t)dt ≤

∫ T

0
E(t)dt
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Then

C̃2T0E(T ) ≤ C̃2

∫ T

0
E(t)dt

≤ C0E(T ) + C̃1

∫ T

0

∫

M
a(x)(|g(ut )|2 + u2t )dMdt (4.83)

Therefore

E(T ) ≤ C̃1

C̃2T0 − C0

∫ T

0

∫

M
a(x)(|g(ut )|2 + u2t ) dMdt,

which leads us to the following result:

Proposition 4.1 For T ≥ T0, T0 sufficiently large, the solution u to problem (3.1)
satisfies

E(T ) ≤ C
∫ T

0

∫

M
[
a(x)|ut |2 + a(x)|g(ut )|2

]
dMdt (4.84)

where the constant C = C
(
T0, E(0), ‖a‖L∞(M), α, f, ψ, a0, M/δ2

)
.

Proof of Theorem 4.1 Let us suppose initially that u is a regular solution to problem
(3.1). By hypotheses, we have that |g(s)| ≥ k|s|, ∀s ∈ R.

From the identity of the energy it holds that

E(0) = E(T ) +
∫ T

0

∫

M
a(x)g(ut )ut dMdt

≥ E(T ) + k
∫ T

0

∫

M
a(x)u2t dMdt,

that is,

E(T ) − E(0) ≤ −k
∫ T

0

∫

M
a(x)u2t dMdt (4.85)

In addition, from Proposition (4.1) and from the fact that |g(s)| ≤ K |s|, ∀s ∈ R

we obtain

E(T ) ≤ C
∫ T

0

∫

M
a(x)(g2(ut ) + u2t ) dMdt

≤ C1

∫ T

0

∫

M
a(x)u2t dMdt, ∀ T ≥ T0.

123



252 Appl Math Optim (2018) 78:219–265

Consequently,

− E(T ) ≥ −C1

∫ T

0

∫

M
a(x)u2t dMdt, ∀ T ≥ T0. (4.86)

Multiplying (4.85) by C1 and considering (4.86) we obtain

C1 [E(T ) − E(0)] ≤ −kC1

∫ T

0

∫

M
a(x)u2t dMdt

≤ −kE(T ), ∀ T ≥ T0,

that is,

E(T ) ≤ C1

C1 + k
E(0) = 1

1 + C
E(0), ∀ T ≥ T0,

where C = k
C1
.

Repeating the process for 2T , we arrive at

E(2T ) ≤ 1

1 + C
E(T ) ≤ 1

(1 + C)2
E(0), ∀ T ≥ T0.

In general, we conclude that

E(nT ) ≤ 1

(1 + C)n
E(0), ∀ T ≥ T0. (4.87)

Now, let t ≥ T0, then t = nT0+r , 0 ≤ r < T0. Since the energy is a non-increasing
function, we obtain

E(t) ≤ E(t − r) = E(nT0) ≤ 1

(1 + C)n
E(0) = 1

(1 + C)
t−r
T0

E(0)

Considering C0 = e
r
T0

ln(1+C)
and λ0 = ln(1+C)

T0
> 0 it follows the desired for

regular solutions, or still,

E(t) ≤ C0e
−λ0t E(0); ∀t ≥ T0. (4.88)

By density arguments the exponential decay is recovered for weak solutions. ��
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5 Manifolds that Admit Open Subsets Without Damping

5.1 The Manifold (Rn, gϕ)

Consider the manifold M = R
n , n ≥ 2, endowed with the radial metric described in

polar coordinates (r, θ) ∈ [
0,+∞[ × S

n−1 by the formula:

gϕ = dr2 + ϕ(r)2dθ2, (5.1)

where dθ2 is the standard round metric (of radius 1) of Sn−1 and ϕ : ]0,+∞[ → R
+

is a smooth function satisfying:

• ϕ(2k)(0) = 0 for all k ≥ 0;
• ϕ′(0) = 1.

The metric gϕ is complete. Discreteness, existence of strongly convex functions, as
well as many other spectral and geometric properties of the manifold R

n endowed
with the metric (5.1) can be given in terms of (asymptotic) properties of the function
ϕ. For instance:

Lemma 5.1 The following statements hold true.

(1) (Rn, gϕ) has finite volume if and only if
∫ +∞

0
ϕ(r)n−1 dr < +∞.

(2) If lim
r→+∞

∣
∣
∣
∣
ϕ′(r)
ϕ(r)

∣
∣
∣
∣ = +∞, then (Rn, gϕ) is discrete.

(3) If ϕ′(r) ≥ c > 0 for all r , then (Rn, gϕ) admits a proper, strongly convex function
which is bounded from below.

(4) (Rn, gϕ) is stochastically complete1 if and only if

∫ +∞

a

∫ r
0 ϕn−1(s) ds

ϕn−1(r)
dr = +∞.

(5) (Rn, gϕ) is parabolic2 if and only if
∫ +∞

a
ϕ(r)−n+1 dr = +∞ for some a ≥ 0.

Proof The volume of (Rn, gϕ) is easily computed as

cn−1

∫ +∞

0
ϕ(r)n−1 dr,

1 Recall that a Riemannian manifold (M, g) is said to be stochastically complete if for all (x, t) ∈
M × ]

0, +∞[
,
∫
M p(x, y, t) dM = 1, where p is the heat kernel of the Laplacian �g . It is well known

(see [32]), that stochastic completeness is equivalent to the weak maximum principle at infinity. The weak
maximum principles says that, given a function u : M → R of class C2 with sup u = u∗ < +∞, then
there exists a sequence (xk )k in M such that u(xk ) ≥ u∗ − 1

k and �gu(xk ) < 1
k for all k ≥ 1.

2 A complete Riemannian manifold is said to be parabolic if it does not admit a global positive Green
function.
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where cn−1 is the volume of the unit sphere of dimension n − 1. This settles (1).
For part (3), set f (r) = ∫ r

0 ϕ(t) dt . The Hessian of f is computed as:

Hess( f ) = f ′′(r) dr ⊗ dr + f ′(r)Hess(r)
= ϕ′(r) dr ⊗ dr + ϕ(ϕ′/ϕ)(gϕ − dr ⊗ dr) = ϕ′(r)gϕ.

Thus, f is strongly convex when ϕ′ ≥ c > 0. In this situation, such a function is
proper, and positive.

For part (2), (4) and (5), see for instance [32]. ��
Let us assume that Rn is endowed by the metric gϕ described in the example (5.1),

so that ϕ′(r) ≥ c > 0, ∀r . According to Lemma 5.1, item (3), it holds that (Rn, gϕ)

admits a regular function f : Rn → R proper, strongly convex and bounded from
below.

In addition, let us assume that the set � ⊂ R
n , is an open bounded set with smooth

boundary, and ϕ satisfies

ϕ′(r) ∈
[
2

n
(α + C),

α − C
n
2 − 1

]

,

where C ∈ (0, 1
2 ] and α ∈ [ n

2 − 1 + C, n
2 − C

]
, n > 2. If n = 2, it is not necessary

to have an upper bound to ϕ′.
According to the proof of item (3), f (r, θ) = ∫ t

0 ϕ(t)dt . Consequently, we deduce

∇2 f

(
∂

∂r
,

∂

∂r

)

= ∂2 f

∂r2
= ϕ′(r),

∇2 f

(
∂

∂r
,

∂

∂θ

)

= 0,

∇2 f

(
∂

∂θi
,

∂

∂θ j

)

= 0, (5.2)

if i �= j and

∇2 f

(
∂

∂θi
,

∂

∂θi

)

= ∂ f

∂r
ϕ(r) ϕ′(r) = ϕ2(r) ϕ′(r), (5.3)

thus ∇2 f is proportional to the metric gϕ .
Thus, from the Theorem 4.2 remains true in the whole �, which allow us to avoid

putting dissipative effects totally in �.

Remark 5 From Lemma 5.1, item (1), the manifold (Rn, gϕ) has finite volume if
and only if

∫ ∞
0 ϕ(r)n−1dr < ∞. Then, assuming this can occur, we can consider a

nonlinear dissipation g satisfying

ks2 ≤ g(s)s ≤ Ks2
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for |s| > 1. In other words, it is not necessary to consider the previous property for ∀s,
since, in this case, we can prove analogously what we have done before: the existence
of solutions as well as very general decay rate estimates by employing the method
developed in Lasiecka-Tataru (ver[27]) (see also Cavalcanti et. al. [11]).

5.2 Manifolds with Curvature Conditions

Let �∗ ⊂ M be as defined before. We denote K = �∗.
The main goal of the present subsection is to determine an important class of

Riemannian manifolds, namely, Riemannian manifolds (M, g) with sectional cur-
vature verifying k1 ≤ secg ≤ k2 < 0, such that it is possible to guarantee the
existence of open and disjoint subsets, V1, …, Vk , with

⋃k
i=1 Vi ⊂ V , where

V ⊂ K can be free of dissipative effects and, in addition, meas(V ) > meas(K ) − ε,
meas(V ∩ ∂K ) > meas(∂K ) − ε, for all ε > 0, more precisely, Remark 4 occurs for
such class of Riemannian manifolds with V ⊃ ⋃k

i=1 Vi .
We shall determine precisely an open subset Vi ⊂ K and function αi , fi : Vi → R,

where the inequality (4.22) holds, and consequently such an open can stay free of
dissipative effects.

Initially we start with the following result:

Theorem 5.1 Let α, C ∈ R such that α > (n − 1)C, n ∈ N and n ≥ 2. Let us
consider W ⊂ Mn and f : M → R verifying

2

n
(α + C)|v|2p ≤ ∇2 f (v, v) ≤

[
4

n2
(α + C) + 2

n
(α − C)

]

|v|2p,

∀ p ∈ W e ∀ v ∈ TpM. Then, the following inequality holds

C
∫ T

0

∫

W
u2t + |∇u|2 dMdt ≤

∫ T

0

∫

W
(
� f

2
− α)u2t dMdt

+
∫ T

0

∫

W
∇2 f (∇u,∇u) + (α − � f

2
)|∇u|2 dMdt,

(5.4)

for all regular solution u to problem (3.1)

Proof Initially we observe that

� f (p) =
n∑

i=1

∇2 f (ei , ei ),

where {e1, . . . , en} is an orthonormal basis in TpM. Thus, we obtain,

2(α + C) ≤ � f (p) ≤ 4

n
(α + C) + 2(α − C), ∀p ∈ W.
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Therefore,

1

2
� f (p)|∇u|2 ≤

[
2

n
(α + C) + (α − C)

]

|∇u|2,

for all p ∈ W .
Consequently

∇2 f (p)(∇u,∇u) +
(

α − 1

2
� f (p)

)

|∇u|2 ≥ 2

n
(α + C)|∇u|2

+ α|∇u|2 −
[
2

n
(α + C) + (α − C)

]

|∇u|2

= C |∇u|2 (5.5)

for all p ∈ W .
On the other hand,

(
1

2
� f (p) − α

)

u2t ≥ (α + C) − α = Cu2t (5.6)

for all p ∈ W . Integrating the inequalities (5.5) and (5.6) over W × (0, T ) we deduce
the desired. ��

5.2.1 Manifolds Admitting Smooth Functions with Bounds on the Hessian

Given a smooth function f : (M, g) → R on a Riemannian manifold, let us denote
by Hess( f ) its Hessian, which is the tensor field of symmetric (0, 2)-tensors on M
defined by:

Hess( f )(v,w) = g(∇v(∇ f ), w),

for all p ∈ M and all v,w ∈ TpM. Given a function h : M → R, we write
Hess( f ) ≥ h (resp., Hess( f ) ≤ h) if Hess( f )p(v, v) ≥ h(p)gp(v, v) (resp.,
Hess( f )p(v, v) ≤ h(p)gp(v, v)) for all p ∈ M and all v ∈ TpM.

We would like to describe a class of manifolds admitting smooth functions f that
satisfy an inequality of the form:

A ≤ Hess( f ) ≤ B (5.7)

for some prescribed constants B > A > 0. Our motivation is to satisfy (5.4), which
amounts to determining positive constants α, C and a smooth function f such that the
following inequalities:

Hess( f ) ≥ C + 1
2� f − α and 1

2� f − α ≥ C (5.8)
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are satisfied in some open subset W ⊂ M. Observe that, taking traces in (5.7), one
obtains immediately the following inequalities for the Laplacian � f :

1
2nA ≤ 1

2
� f ≤ 1

2nB, (5.9)

where n = dim(M).
Using (5.7) and (5.9), we see that (5.8) are satisfied, provided that A and B satisfy:

A − 1
2nB ≥ C − α, and 1

2nA ≥ C + α.

Equalities in the above expressions are obtained by setting:

A = 2
n (C + α), B = 2

n

[ 2−n
n C + 2+n

n α
] = 4

n2
(C + α) − 2

n
(C − α).

The condition B > A gives:

C + α < 2−n
n C + 2+n

n α,

i.e.,

α > (n − 1)C. (5.10)

5.2.2 Warped Products

The class of warped products offers many examples of Riemannian manifolds (M, g)
that admit smooth functions f satisfying the pinching condition (5.7). It is not hard
to show that a complete n-dimensional Riemannian manifold admitting a smooth
function with Hessian bounded from below by a positive constant and having a (nec-
essarily unique and minimal) critical point, must be diffeomorphic to Rn . However, if
one requires the existence of smooth strongly convex functions, without the assump-
tion of admitting a minimum, then one has no topological obstruction. Note that for
our purposes, it is not necessary to assume the existence of critical points for functions
satisfying the pinching conditions (5.7) on the Hessian, as we will explain below.

A basic examples of manifolds admitting a globally defined function satisfying the
pinching condition (5.7) is given as follows: Let (M̃, g̃), and consider the product
manifold M = R × M̃ . Let M be endowed with the warped product metric:

g = dt2 + w(t)2 g̃, (5.11)

where t is the coordinate inR. One could consider, more generally, metrics onR× M̃
of the form g = α(t)2 dt2 + w(t)2 g̃. However, by a standard change of coordinates,
one could rewrite such metric as dρ2 + w

(
t (ρ)

)2
g̃, where r = ∫

α(t).
Given the metric (5.11), consider the radial function f : M → R defined by

f (t, x) = ∫ t
0 w(s) ds. An easy computation shows that Hess( f ) at any point p is a

multiple of the metric g:
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Hess( f ) = w′(t) g.

In particular, if w : R → R is a smooth diffeomorphism satisfying:

A ≤ w′(t) ≤ B, ∀ t ∈ R,

then the corresponding function f satisfies (5.7).
It is also interesting to observe that, by a characterization of Cheeger and Colding

in [14], Riemannian manifolds admitting functions whose Hessian is a multiple of the
metric are basically warped products of the type described here.

5.2.3 The Hessian Comparison Theorem

We will now change our point of view, and try to determine regions of a Riemannian
manifold that are domains of smooth functions that satisfy the pinching condition on
the Hessian (5.7) using curvature conditions.

Let us recall that, given a Riemannian manifold (M, g) and a point p ∈ M, the
injectivity radius at p, denoted by inj(p) is the supremum of the set

{
r > 0 : expp

∣
∣
Bp(0,r)

is a diffeomorphism
}
.

Here, Bp(0, r) is the open ball of radius r and center 0 in TpM. Equivalently, inj(p)
is the distance between p and its cut locus. A point p ∈ M is said to be a pole if
inj(p) = +∞. Given p ∈ M and v,w ∈ TpM linearly independent, we will denote
by secg(v ∧ w) the sectional curvature of the plane spanned by v and w.

Let us recall the following result on the Hessian of the distance function.

Theorem 5.2 Let (Mn
i , gi ), i = 1, 2, be complete Riemannian manifolds, and let

γi : [0, L] → Mi be geodesics parameterized by arc-length, such that γi does not
intersect the cut locus of γi (0). Denote by ri = dist

(·, γi (0)
)
, i = 1, 2. Assume that

for all t ∈ [0, L], one has:

secg1
(
v1 ∧ γ̇1(t)

) ≥ secg2
(
v2 ∧ γ̇2(t)

)

for all vi ∈ γ̇i (t)⊥. Then:

Hess(r1)(v1, v1) ≤ Hess(r2)(v2, v2),

for all vi ∈ γ̇i (t)⊥ and all t ∈ [0, L].
Remark 6 In the above statement, ri

(
γi (t)

) = t for all t ∈ [0, L] (because γi is
parameterized by arc-length, hence Hess(ri )

(
γ̇i (t), γ̇i (t)

) = 0 for all t . In order to
have a function with control on the Hessian in all directions, one should consider the
squared distance function. An easy computation shows that, for all smooth function
f : M → R:

Hess( 12 f 2)(v, v) = g(∇ f, v)2 + f · Hess( f )(v, v).
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In particular, since ∇ri
(
γi (t)

) = γ̇i (t), then:

Hess( 12r
2
i )(γ̇i , γ̇i ) = 1.

More generally, if F : R → R and r : M → R are smooth functions, then:

Hess(F ◦ r)(X, X) = F ′′(r)g(∇r, X)2 + F ′(r)Hess(r)(X, X). (5.12)

Thus, in computing the Hessian of a distance function, one has to distinguish radial
directions, i.e., parallel to the tangent field γ̇ (t), and spherical directions, i.e., orthog-
onal to γ̇ (t).

5.2.4 Space Forms

Let gSn be the standard round metric on the unit sphere Sn . For k ∈ R, consider the
manifold Mn = R

+ × S
n−1 endowed with the metric

gk = dr2 + Sk(r) gSn−1,

where:

Sk(r) =

⎧
⎪⎪⎨

⎪⎪⎩

1√
k
sin

(√
k r

)
, if k > 0,

r, if k = 0,
1√|k| sinh

(√|k| r), if k < 0.

The (completion of the) Riemannian manifold (Mn, gk) is the3 n-dimensional space
form of curvature k. An explicit calculation of the Hessian of the distance function
for spaceforms yields the following immediate corollary of the Hessian comparison
theorem.

Proposition 5.1 (Special case of the Hessian comparison theorem) Given a Rieman-
nian manifold (Mn, g) and a point p ∈ M, set r = dist(·, p). If secg ≥ k, then, in
the spherical directions, Hess(r) ≤ 1

n−1Hk(r), where:

Hk(r) =

⎧
⎪⎪⎨

⎪⎪⎩

(n − 1)
√
k · cot (√k · r), if k > 0;

n − 1

r
, if k = 0;

(n − 1)
√−k · coth (√−k · r), if k < 0.

Similarly, secg ≤ k, then Hess(r) ≥ 1
n−1Hk( f ) in the spherical directions.

3 Actually, for k > 0, Mn = ]
0, π

[ × S
n−1.
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Remark 7 One can consider more generally a metric onMn of the form:

g = dr2 + φ(r)2 gSn−1, (5.13)

whereφ : ]0,+∞[ → R
+ is a smooth functionwith lim

r→0
φ(r) = 0 and lim

r→0
φ′(r) = 1.

The following formulas for the sectional curvature of these metrics hold:

secrad = φ′′

φ
, secsph = 1 − (φ′)2

φ2 , (5.14)

where secrad is the sectional curvature of planes containing the radial vector, and secsph
is the curvature of planes perpendicular to the radial vector.

5.2.5 Conclusion

Let us consider a simply connected complete Riemannian manifold (Mn, g) satisfy-
ing:

k1 ≤ secg ≤ k2 < 0,

for some (negative) constants k1, k2. It is well known that every point p of such a
manifold, which is necessarily diffeomorphic to R

n , is a pole. Let us fix positive
constants 0 < A < B; for computational convenience, let us choose4 B > n − 1 and
A < n − 1. We will exhibit a smooth function f : M → [

0,+∞[
and a non empty

open subset W ⊂ M such that (5.7) holds in W .
Let us fix p0 ∈ M, set r = dist(·, p0), choose γ ∈ ]

A, B
[
, and let f = γ

2 r
2.

Using (5.12), the Hessian of f is given by:

Hess( f )(X, X) = γ · g(∇r, X)2 + γ r Hess(r)(X, X).

If X is a radial vector, then Hess(r)(X, X) = 0, and since g(∇r,∇r) = 1, then
Hess( f )(X, X) = γ g(X, X), i.e., inequality (5.7) is always satisfied for radial vectors.
As to spherical directions X , since g(∇r, X) = 0, then

Hess( f )(X, X) = γ r Hess(r)(X, X),

and by the Hessian comparison theorem we then get:

γ r
√−k2 coth

(
r
√−k2

) ≤ Hess( f )(X, X) ≤ γ r
√−k1 coth

(
r
√−k1

)
.

Thus, inequality (5.7) is satisfied in the region:

r1 ≤ r ≤ r2,

4 Note that, when imposing the pinching condition (5.7), the relevant quantity is simply the quotient B/A.
Namely, a function f satisfies (5.7) if and only if the function f̃ = 1

A f satisfies 1 ≤ Hess( f̃ ) ≤ B/A.
This implies, in particular, that there is no loss of generality in assuming A < α < B for any α > 0.
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where r1 and r2 are defined by:

r1
√−k2 coth

(
r1
√−k2

) = A

γ
, r2

√−k1 coth
(
r2
√−k1

) = B

γ
.

By elementary arguments, one can determine a large class of examples of smooth
functions satisfying pinching conditions on the Hessian, using wisely formulas (5.12)
for the Hessian of composite functions and formulas (5.14) for the radial curvature of
warped metrics of the type (5.13) in the Hessian comparison theorem.
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300631/2003-0. Research of Valéria N. Domingos Cavalcanti partially supported by the CNPq Grant
304895/2003-2. Research of Paolo Piccione partially supported by CNPq and Fapesp.

6 Appendix

We start this section by considering a uniqueness result due to Bur and Gérard [10]
(see p. 80, Sect. 6) or Lasiecka et. al. [26]. Let us consider the wave equation posed in
a compact Riemannian manifold (M, g) with boundary. If (ω, T0) controls M , then
the following observability inequality holds for ultra weak solutions to problem

⎧
⎪⎨

⎪⎩

vt t − �gv = 0 in M × (0, T ),

v = 0 on ∂M × (0, T ),

v(0) = v0 ∈ L2(M); vt (0) = v1 ∈ H−1(M),

(6.1)

holds:

||v0||2L2(M)
+ ||v1||H−1(M) ≤ C

∫ T

0

∫

ω

|v(x, t)|2 dMdt, (6.2)

for a certain constant C and for all T ≥ T0 and for all {v0, v1} ∈ L2(M) × H−1(M).
Following we will show that if the Riemannian manifold M admits a function with

positive defined Hessian in some subset U ⊂ intM , then any geodesic on U hits ∂U .
We consider a Riemannian manifold M Riemannian metricG = 〈·, ·〉 and Rieman-

nian connection ∇̃. We denote its Laplace–Beltrami operator by �. Fix a coordinate
system (x1, . . . , xn) on M , denote Gi j = 〈

∂/∂xi , ∂/∂x j
〉
, let Gi j be the inverse matrix

of Gi j . The Laplace–Beltrami operator in this coordinate system is given by

�u = 1
√
detGi j

n∑

i, j=1

∂

∂xi

(
√
det Gi jG

i j ∂u

∂x j

)

,

where ∇ is the usual gradient correspondent to the Euclidean metric on the domain
(x1, . . . , xn).
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The Hessian of a smooth function φ : M → R is a symmetric 2-form on M defined
as

∇2φ(X,Y ) = XY (φ) − ∇̃XY (φ), (6.3)

where X and Y are vector fields on M . Here X (φ) denotes the directional derivative of
φ in the direction of the vector field X . It is well known that the value of ∇2(X,Y )(p)
depends only on the values of X and Y on p. It means that the right-hand side of (6.3)
does not depend on the smooth extension we take for X (p) and Y (p).

A curve γ : (−ε, ε) → M is a geodesic if ∇̃γ ′(t)γ ′(t) ≡ 0.

Lemma 6.1 Let M be a complete Riemannian manifold, eventually with boundary,
and let φ : intM → R be a smooth function. Suppose that φ is bounded and
∇2φ(v, v) ≥ c‖v‖2 on an open subset U ⊂ intM, where c > 0 is a constant.
Then any geodesic on U hits ∂U.

Proof Let γ be a geodesic on U . Then

d2

dt2
φ(γ (t)) = γ ′(t)γ ′(t)φ = ∇2φ(γ ′(t), γ ′(t)) + (∇γ ′(t)γ

′(t))(φ)

= ∇̃2φ(γ ′(t), γ ′(t)) ≥ c‖γ ′(t)‖2

where the last equality holds because γ is a geodesic. Observe that the last term is a
positive real constant because ‖γ ′(t)‖ does not depend on t .

Then φ(γ (t)) is a smooth real valued function which second derivative is bounded
below by a strictly positive constant. Then it is not difficult to prove that if γ is defined
on a interval (a,∞), then limt→∞ φ(γ (t)) = ∞. Analogously limt→−∞ φ(γ (t)) =
∞ whenever γ is defined on a interval (−∞, a). But neither of the cases are possible
if γ remain forever in U because φ is bounded there. Therefore γ must hit ∂U . ��

According to the construction of the function f give in [13] and mentioned in
Remark 4 we have that ∇2 f (v, v) ≥ C‖v‖2g in V , where V = ⋃k

i=1 Vi . Thus, we

ensure that the geodesics find the effective dissipation region, namely (M\�) ∪ M∗,
That is, there are no geodesic “trapped” within the free sets of dissipative effects Vi ,
for all i = 1, . . . , k. It is worth remembering that � ⊂⊂ �∗.

Now we can show that, in fact, the function v given in (4.64) is null in all �∗. For
this we have to show that v = 0 in Vi , for all i = 1, . . . , k, since (�∗\V ) ⊂ M∗ and
v = 0 inM∗.

By (4.64), we have

⎧
⎨

⎩

v
′′ − �v + v = 0 in �∗ × (0, T )

v = 0 in ∂�∗ × (0, T )

v(0) = v0 ∈ L2(�∗); v′(0) = v1 ∈ H−1(�∗),
(6.4)

with v = 0 in (�∗\�) ∪ M∗.
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Now, consider the problems

⎧
⎨

⎩

ϕ
′′ − �ϕ = 0 in �∗ × (0, T )

ϕ = 0 in ∂�∗ × (0, T )

ϕ(0) = v0 ∈ L2(�∗); ϕ′(0) = v1 ∈ H−1(�∗),
(6.5)

and, ⎧
⎨

⎩

z
′′ − �z = −v in �∗ × (0, T )

z = 0 in ∂�∗ × (0, T )

z(0) = z′(0) = 0.
(6.6)

Defining w = ϕ + z, we have that w is solution of

⎧
⎨

⎩

w
′′ − �w = −v in �∗ × (0, T )

w = 0 in ∂�∗ × (0, T )

w(0) = v0 ∈ L2(�∗); w′(0) = v1 ∈ H−1(�∗),
(6.7)

and, if y = v − w then y is solution of

⎧
⎨

⎩

y
′′ − �y = 0 in �∗ × (0, T )

y = 0 in ∂�∗ × (0, T )

y(0) = y′(0) = 0.
(6.8)

By uniqueness of solution, we conclude that y = 0, that is, v = w = ϕ + z. Note
that z′′ − �v = −v = 0 is (�∗\�) ∪ M∗ with z(0) = 0 = z′(0), where it follows
that z = 0 in (�∗\�) ∪ M∗, and consequently, ϕ = 0 in (�∗\�) ∪ M∗.

As ϕ = 0 in M∗ ⊃⊃ �∗\V we have that exists an open neighborhood ωi of ∂Vi ,
with ωi ⊂ Vi , such that ϕ = 0 in ωi .

Restricting the problem (6.5) to Vi , follows by (6.2) that

||v0||2L2(Vi )
+ ||v1||H−1(Vi ) ≤ C

∫ T

0

∫

ωi

|ϕ(x, t)|2 dMdt, (6.9)

where it follows that v0 = v1 = 0 em Vi , for all i = 1, . . . , k, and therefore, by the
problem (6.8), we conclude that v = 0 in Vi , for all i = 1, . . . , k, as we wanted to
show. ��
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