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1 Introduction

This paper deals with the following variational problem. Let ρ ∈ P(Rd) be a proba-
bility measure, let N > 1 be an integer and let

c(x1, . . . , xN ) =
∑

1≤i< j≤N

φ(|xi − x j |),

with φ : (0,+∞) → R satisfying the assumptions which will be described in the
next section; in particular for φ(t) = 1/t we have the usual Coulomb repulsive cost.
Consider the set of probabilities on R

Nd

�(ρ) = {
P ∈ P(RdN ) : π i

�P = ρ for all i
}
,

where π i denotes the projection on the i th copy of Rd and π i
�P is the push-forward

measure. We aim to minimize the total transportation cost

C(ρ) = min
P∈�(ρ)

∫

RNd
c(x1, . . . , xN ) dP(x1, . . . , xN ). (1.1)

This problem is called amultimarginal optimal transportation problem and elements of
�(ρ) are called transportation plans for ρ. Some general results about multimarginal
optimal transportation problems are available in [3,17,22–24]. Results for particular
cost functions are available, for example in [11] for the quadratic cost, with some
generalization in [15], and in [4] for the determinant cost function.

Optimization problems for the cost functionC(ρ) in (1.1) intervene in the so-called
Density Functional Theory (DFT), we refer to [16,18] for the basic theory of DFT
and to [13,14,25–27] for recent development which are of interest for us. Some new
applications are emerging for example in [12]. In the particular case of the Coulomb
cost there are alsomany other open questions related to the applications. Recent results
on the topic are contained in [2,5–7,10,20] and some of them will be better described
in the subsequent sections. For more general repulsive costs we refer to the recent
survey [9]. The literature quoted so far is not at all exhaustive and we refer the reader
to the bibliographies of the cited papers for a more detailed picture.

Since the functions φ we consider are lower semicontinuous, the functional ρ �→
C(ρ) above is naturally lower semicontinuous on the space of probability measures
equipped with the tight convergence. In general it is not continuous as the following
example shows. Take N = 2, φ(t) = t−s for some s > 0, and

ρ = 1

2
δx + 1

2
δy , ρn =

(
1

2
+ 1

n

)
δx +

(
1

2
− 1

n

)
δy for n ≥ 2,

with x �= y, which gives

C(ρ) = 1

|x − y|s , C(ρn) = +∞ for n ≥ 1.
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In the last section of the paper we show that the functional C(ρ) is continuous or even
Lipschitz on suitable subsets of P(Rd) which are relevant for the applications.

Problem (1.1) admits the following Kantorovich dual formulation.

Theorem 1.1 (Proposition 2.6 in [17]) The equality

min
P∈�(ρ)

∫

RNd
c(x1, . . . , xN ) dP(x1, . . . , xN ) = sup

u∈Iρ

{
N

∫
u dρ :

u(x1) + · · · + u(xN ) ≤ c(x1, . . . , xN )

} (1.2)

holds, where Iρ denotes the set of ρ-integrable functions and the pointwise inequality
is satisfied everywhere.

Thanks to the symmetries of the problem we also have that the right-hand side of
(1.2) coincides with

sup
ui∈Iρ

{ N∑

i=1

∫
ui dρ : u1(x1) + · · · + uN (xN ) ≤ c(x1, . . . , xN )

}
. (1.3)

In fact, the supremum in (1.3) is a priori larger than the one in (1.2); however, since
for any admissible N -tuple (u1, . . . , uN ) the function

u(x) = 1

N

N∑

i=1

ui (x)

is admissible in (1.2), equality holds.

Definition 1.2 A function u will be called a Kantorovich potential if it is a maximizer
for the right-hand-side of (1.2).

The paper [17] contains a general approach to the duality theory for multimarginal
optimal transportation problems. A different approach which make use of a weaker
definition of the dual problem (two marginals case) is introduced in [1] and may be
applied to this situation too [2]. Existence of Kantorovich potentials is the topic of
Theorem 2.21 of [17]. That theorem requires that there exist h1, . . . , hN ∈ L1

ρ such
that

c(x1, . . . , xN ) ≤ h1(x1) + · · · + hN (xN ),

and so it does not apply to the costs we consider in this paper, as for example the costs
of Coulomb type. For Coulomb type costs, the existence of a Kantorovich potential
is proved in [8] under the additional assumption that ρ is absolutely continuous with
respect to the Lebesgue measure in R

d . As a consequence of our main estimate, here
we extend the existence result to a larger class of probability measures ρ. We then use
the Kantorovich potentials as a tool.
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We adopt the notation x = (x1, . . . , xN ) ∈ R
Nd so that xi ∈ R

d for each i ∈
{1, . . . , N }. Also, we denote the cost of a transport plan P ∈ �(ρ) by

C(P) :=
∫

RNd
c(x1, . . . , xN ) dP(x1, . . . , xN ).

Finally, for α > 0 we may also introduce the natural truncation of the cost

cα(x1, . . . , xN ) =
∑

1≤i< j≤N

min
{
φ(|xi − x j |), φ(α)

} =
∑

1≤i< j≤N

φα(|xi − x j |),

with the natural notation φα(t) := min
{
φ(t), φ(α)

}
and the corresponding trans-

portation costs Cα(ρ) and Cα(P).

2 Results

We assume that φ satisfies the following properties:

(1) φ is continuous from (0,+∞) to [0,+∞).
(2) limt→0+ φ(t) = +∞;
(3) φ is strictly decreasing;

Remark 2.1 A careful attention to the present work shows that all our results also hold
when (3) is replaced by the weaker hypothesis :

(3′) φ is bounded at +∞, that is sup{|φ(t)| : t ≥ 1} < +∞;
Under this assumption, one has to replace φ and φ−1 in the statements respectively

by 	(t) = sup{φ(s) : s ≥ t} and 	−1(t) = inf{s : φ(s) = t}. For example in

Theorem 2.4 the number α should be chosen lower than 	−1
( N2(N−1)

2 	(β)
)
. Even if

less general, we believe that the present form and stronger hypothesis (3) makes our
approach and arguments more clear.

Definition 2.2 For every ρ ∈ P(Rd) the measure of concentration of ρ at scale r is
defined as

μρ(r) = sup
x∈Rd

ρ
(
B(x, r)

)
.

In particular, if ρ ∈ L1(Rd) we have μρ(r) = o(1) as r → 0, and more generally

ρ ∈ L p(Rd) 
⇒ μρ(r) = o(rd(p−1)/p) as r → 0.

The main role of the measures of concentration is played in the following assumption.

Assumption (A) We say that ρ has small concentration with respect to N if

lim
r→0

μρ(r) <
1

N (N − 1)2
.
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For α > 0 we denote by

Dα := {
x = (x1, . . . , xN ) : |xi − x j | < α for some i �= j

}

the open strip around the singular set where at least two of the xi coincide. Finally,
we denote by Rd(N−1) ⊗i A the Cartesian product on N factors the i th of which is A
while all the others are copies of Rd .

Lemma 2.3 Assume that ρ satisfies assumption (A). Let x := x1 ∈ R
dN and let β be

such that

μρ(β) <
1

N (N − 1)2
.

Then for every P ∈ �(ρ) there exist x2, . . . , xN ∈ spt P such that

β < |xij − xkσ | for all j, σ whenever k �= i . (2.1)

Proof By definition of marginals and by the choice of β we have

P
(
R
d(N−1) ⊗α B(xki , β)

)
<

1

N (N − 1)2

for all indices α, i, k. Then for any j ∈ {2, . . . , N }

P
( ∪ j−1

k=1 ∪N
i=1 ∪α �=i R

d(N−1) ⊗α B(xki , β)
)

<
j − 1

N − 1
,

and, since P is a probability measure, this allows us to choose

x j ∈ spt P \
(

∪ j−1
k=1 ∪N

i=1 ∪α �=i R
d(N−1) ⊗α B(xki , β)

)
.

It is easy to verify that the x j above satisfy the desired property (2.1). ��

2.1 Estimates for the Optimal Transport Plans

Theorem 2.4 Let ρ ∈ P(Rd) and assume that ρ satisfies assumption (A). Let P ∈
�(ρ) be a minimizer for the transportation cost C(ρ) (or Cα(ρ)) and let β be such
that

μρ(β) <
1

N (N − 1)2
.

Then

spt P ⊂ R
Nd \ Dα whenever α < φ−1

(
N 2(N − 1)

2
φ(β)

)
.
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Proof Wemake the proof for the case where P is a minimizer for C(ρ), the argument
being the same for Cα(ρ). Take α as in the statement and δ ∈ (0, α). Note from the
hypotheses on φ that α < β. Assume that x1 = (x11 , . . . , x

1
N ) ∈ Dδ ∩ spt P and

choose points x2, . . . , xN in spt P as in Lemma 2.3. Let k be large enough so that
δ + 2β/k < α. Since all the chosen points belong to spt P , we have

P
(
Q(xi , β/k)

)
> 0

where Q(xi , β/k) = �N
j=1B(xij , β/k). Denote by Pi = P∣∣Q(xi , β

k )
and choose con-

stants λi ∈ (0, 1] such that

λ1|P1| = · · · = λN |PN | := ε,

where |Pi | denotes the mass of the measure Pi . We then write

P = λ1P1 + · · · + λN PN + PR (PR is the remainder),

and we estimate from below the cost of P as follows:

C(P) = C(PR) +
∑

i≥1

C(λi Pi ) ≥ C(PR) + εφ(α)

wherewe used the fact that x1 ∈ Dδ and δ+2β/k < α.We consider now themarginals
νi1, . . . , ν

i
N of λi Pi and build the new local plans

P̃1 = ν11 × ν22 × · · · νN
N , P̃2 = ν21 × ν32 × · · · ν1N , · · · , P̃N = νN

1 × ν12 × · · · νN−1
N .

To write the estimates from above it is convenient to remark that we may also write

P̃i = νi1 × · · · νi+k−1
k × · · · νi+N−1

N

where we consider the upper index (mod N ). Consider now the transport plan

P̃ := PR + P̃1 + · · · + P̃N ;

it is straightforward to check that the marginals of P̃ are the same as the marginals of
P . Moreover |P̃i | = λi |Pi |. So we can estimate the cost of P̃ from above using the
distance between the coordinates of the centers of the cubes established in Lemma
2.3, and we obtain

C(P̃) = C(PR) +
N∑

i=1

C(P̃i ) ≤ C(PR) + N
N (N − 1)

2
φ(β − 2β/k)ε.
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Then if

α < φ−1
(
N 2(N − 1)

2
φ(β − 2β

k
)

)

we have that

C(P̃) < C(P),

thus contradicting the minimality of P . It follows that the strip Dα1 and spt P do not
intersect if α satisfies the inequality above and since k may be arbitrarily large and
φ is continuous we obtain the conclusion for any α1 ∈ (0, α), which concludes the
proof. ��

The Theorem above allows us to estimate the costs in term of β.

Proposition 2.5 Let ρ ∈ P(Rd) and assume that ρ satisfies assumption (A). Then if
β is such that

μρ(β) <
1

N (N − 1)2

we have

C(ρ) ≤ N 3(N − 1)2

4
φ(β).

Moreover,

C(ρ) = Cα(ρ) whenever α ≤ φ−1
(N 2(N − 1)

2
φ(β)

)
.

Proof Let P be an optimal transport plan for the cost C . According to Theorem 2.4,
if α is as in the statement then the support of P may intersect only the boundary of
Dα and this means that c ≤ N (N−1)

2 φ(α) on the support of P . Then

C(ρ) ≤
∫

N (N − 1)

2
φ(α) dP = N (N − 1)

2
φ(α)

and, taking the largest admissible α we obtain

C(ρ) ≤ N 3(N − 1)2

4
φ(β),

which is the desired estimate. Let now Pα be an optimal plan for the cost Cα , then
also spt Pα ⊂ R

Nd \ Dα so that c = cα on spt Pα . It follows that

C(ρ) ≤
∫

c dPα =
∫

cα dPα = Cα(ρ),
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and since the opposite inequality is always true we conclude the proof. ��
As a consequence of Proposition 2.5 above, Proposition 2.6 of [17] and Theorem

2.21 of [17] we also obtain an extension of the duality theorem of [8] to a wider set of
ρ.

Theorem 2.6 Let ρ ∈ P(Rd) and assume that ρ satisfies assumption (A). Then

C(ρ) = max
u∈Iρ

{
N

∫
u dρ : u(x1) + · · · + u(xN ) ≤ c(x1, . . . , xN )

}
. (2.2)

Moreover, whenever α ≤ φ−1
(
N2(N−1)

2 φ(β)
)
, any Kantorovich potential uα for Cα

is also a Kantorovich potential for C.

Proof By monotonicity of the integral the left-hand side of (2.2) is always larger than
the right-hand side. Proposition 2.6 and Theorem 2.21 of [17] may be applied to the
cost cα to obtain

Cα(ρ) = max
u∈Iρ

{
N

∫
u dρ : u(x1) + · · · + u(xN ) ≤ cα(x1, . . . , xN )

}
.

Since ρ satisfies assumption (A), by Proposition 2.5 for α sufficiently small we have
that there exists uα ∈ Iρ such that

uα(x1) + · · · + uα(xN ) ≤ cα(x1, . . . , xN ) ≤ c(x1, . . . , xN ),

and

C(ρ) = Cα(ρ) = N
∫

uα dρ ,

as required. ��
Remark 2.7 Note that if u is a Kantorovich potential for C and P is optimal for C
then u(x1) + . . . + u(xN ) = c(x1, . . . , xN ) holds P-almost everywhere.

3 Applications

3.1 Estimates for the Cost

Since the parameter β in the previous section is naturally related to the summability
of ρ, we can obtain some estimate of the cost C(ρ) in term of the available norms of
ρ.
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Proposition 3.1 Let ρ ∈ P(Rd) ∩ L p(Rd) for some p > 1. Then, if P ∈ �(ρ) is
optimal for the transportation cost C(ρ), we have

P(Dα) = 0 whenever α < φ−1
(
N 2(N − 1)

2
φ

((
1

ωd
(
N (N − 1)2

)p′ ‖ρ‖p′
p

)1/d))
,

where ωd denotes the Lebesgue measure of the ball of radius 1 in R
d and p′ the

conjugate exponent of p. It follows that

C(ρ) ≤ N 3(N − 1)2

4
φ

((
1

ωd
(
N (N − 1)2

)p′ ‖ρ‖p′
p

)1/d)
. (3.1)

Proof Let

β ≤
(

1

ωd
(
N (N − 1)2

)p′ ‖ρ‖p′
p

)1/d

.

By Hölder inequality we have

∫

B(x,β)

ρ(y) dy ≤ ‖ρ‖p(ωdβ
d)1/p

′ ≤ 1

N (N − 1)2
,

so that

μρ(β) ≤ 1

N (N − 1)2
.

The desired inequality (3.1) now follows by Theorem 2.5. ��
Remark 3.2 The Coulomb type costs φ(t) = t−s for s > 0 play a relevant role in
several applications.

1. For φ(t) = t−s estimate (3.1) above takes the form

C(ρ) ≤ N 3(N − 1)2

4

(
ωd

(
N (N − 1)2

)p′ ‖ρ‖p′
p

)s/d

.

2. In dimension d = 3 and for s = 1 the set

H :=
{
ρ ∈ L1(R3) : ρ ≥ 0,

√
ρ ∈ H1(R3),

∫
ρ dx = 1

}

plays an important role in the Density Functionals Theory. In fact, Lieb in [19]
proved that ρ ∈ H if and only if there exists a wave function ψ ∈ H1(R3N ) such
that

π i
� |ψ |2dx = ρ, for i = 1, . . . , N .
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Taking s = 1, d = 3, p = 3 in Proposition 3.1 gives

C(ρ) ≤ CN7/2(N − 1)3‖ρ‖1/23 = CN7/2(N − 1)3‖√ρ‖6 ≤ CN7/2(N − 1)3‖√ρ‖H1 .

3.2 Estimates for Kantorovich Potentials

In general, a Kantorovich potential u is a ρ-integrable function which can be more or
less freely modified outside a relevant set. In this section we show the existence of
Kantorovich potentials which are more regular.

Lemma 3.3 Let u beaKantorovichpotential; then there exists aKantorovichpotential
ũ which satisfies

u ≤ ũ,

and

ũ(x) = inf

{
c(x, y2, . . . , yN ) −

∑

j≥2

ũ(y j ) : y j ∈ R
d
}

∀x ∈ R
d . (3.2)

Proof We first define

u(x) := inf

{
c(x, y2, . . . , yN ) −

∑

j≥2

u(y j ) : y j ∈ R
d
}
;

then we consider

û(x) = u(x) + (N − 1)u(x)

N
.

Since u(x) ≤ u(x)we have also u(x) ≤ û(x) ; moreover it is straightforward to check
that

û(x1) + · · · + û(xN ) ≤ c(x1, . . . , xN ) ∀xi ∈ R
d .

Notice that if u does not satisfy (3.2) at some x then u(x) < û(x). We then consider

A(u) = {
v : u ≤ v and v(x1) + · · · + v(xn) ≤ c(x1, . . . , xN )

}

with the partial ordering v1 ≤ v2 if v1(x) ≤ v2(x) for all x . With this partial ordering,
every chain (totally ordered subset) ofA admits an upper bound, given by the pointwise
sup. As in the proof of Theorem 1.4 in [21], we conclude from Zorn’s Lemma that A
contains at least one maximal element ũ, which satisfies all the required properties :
otherwise, by the discussion above, wewould have ũ ≤ ˆ̃u and ũ �= ˆ̃u which contradicts
maximality. ��
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Taking some constant α1, . . . , αN such that
∑

αi = 0 we may define ui (x) =
ũ(x) + αi and we obtain an N -tuple of functions which is optimal for problem (1.3)
and satisfies

ui (x) = inf

{
c(y1, . . . , yi−1, x, yi+1, . . . , yN ) −

∑

j �=i

u j (y j ) : y j ∈ R
d
}
.

The choice of the constants αi can be made so that the functions ui take specific and
admissible values at some points. A final, elementary, remark is that ũ is the arithmetic
mean of the ui s.

Theorem 3.4 Let ρ ∈ P(Rd). Assume that ρ satisfies assumption (A), and let β be
such that μρ(β) ≤ 1

N (N−1)2
. Let u be a Kantorovich potential which satisfies

u(x) = inf

{
c(x, y2, . . . , yN ) −

∑

j≥2

u(y j ) : y j ∈ R
d
}
.

Then for any choice of α as in Theorem 2.4 it holds

sup
Rd

|u| ≤ N (N − 1)2φ
(α

2

)
. (3.3)

Proof Let P be an optimal transport plan for C , let α be as in Theorem 2.4 and take
x ∈ spt P , then |xi − x j | ≥ α for i �= j . From Remark 2.7 we can assume that
u(x1) + . . . + u(xN ) = c(x1, . . . , xN ). From the above discussion we may consider
a Kantorovich N -tuple (u1, . . . , uN ) obtained from u which is optimal for (1.3) and
satisfies

ui (x) = inf

{
c(y1, . . . , yi−1, x, yi+1, . . . , yN ) −

∑

j �=i

u j (y j ) : y j ∈ R
d
}

for all x

and ui (xi ) = 1
N c(x1, . . . , xN ) ≥ 0 for all i . If x /∈ ∪N

i=2B(xi , α
2 ) it holds:

u1(x) ≤ c(x, x2, . . . , xN ) −
∑

j≥2

u j (x j ) ≤ c(x, x2, . . . , xN ) ≤ N (N − 1)

2
φ
(α

2

)
.

Taking x1 = x, we apply Lemma 2.3 and obtain a point x2 ∈ spt P \ Dα such that
|x2j − xσ | ≥ β ≥ α for all j and σ , and from Remark 2.7 we may assume that

−
N∑

j=2

u j (x2j ) = u1(x21) − c(x21, . . . , x
2
N ) ≤ u1(x2i ) ≤ N (N − 1)

2
φ
(α

2

)
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where we used x21 /∈ ∪ j≥2B(x j , α). Fix i ≥ 2, it follows that if x ∈ B(xi , α
2 ) then

|x − x2j | ≥ α
2 for all j ≥ 2 so that

u1(x) ≤ c
(
x, x22, . . . , x

2
N

) −
N∑

j=2

u j
(
x2j

) ≤ N (N − 1)φ
(α

2

)

This concludes the estimate from above for u1 on Rd , and analogously for all ui . The
formula above now allows us to find an estimate from below which, again, we write
for u1 as

u1(x) = inf

{
c(x, y2, . . . , yN ) −

∑

j≥2

u j (y j ) : y j ∈ R
d
}

≥ −N (N − 1)2φ(
α

2
).

Then for all i one has

‖ui‖∞ ≤ N (N − 1)2φ(
α

2
) ,

and analogously for u = 1
N

∑
i ui the same estimate holds. ��

Remark 3.5 Theorem 3.4 above applies to all costs considered in this paper including
cα obtained replacing the function φ by its truncation φα .

The next theorem shows that under the usual assumptions on ρ and some additional
assumptions on φ there exists a Kantorovich potential which is Lipschitz and semi-
concave with Lipschitz and semiconcavity constants depending on the concentration
of ρ. In the next statement we denote by Sc(u) the semiconcavity constant, that is the
lowest nonnegative constant K such that u − K | · |2 is concave.
Theorem 3.6 Let ρ ∈ P(Rd). Assume that ρ satisfies assumption (A), and let β be
such that μρ(β) ≤ 1

N (N−1)2
.

• If φ is of class C1 and for all t > 0 there exists a constant k (t) such that

|φ′(s)| < k (t) for all s > t (3.4)

then there exists a Kantorovich potential u for problem (1.2) such that

Lip(u) ≤ k
(

φ−1
(N 2(N − 1)

2
φ(β)

))
.

• If φ is of class C2 and for all t > 0 there exists a constantK (t) such that

φ′′(s) − φ′(s)
s

< K (t) for all s > t
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then there exists a Kantorovich potential u for problem (1.2) such that

Sc(u) ≤ K
(

φ−1
(N 2(N − 1)

2
φ(β)

))
.

Proof According to Proposition 2.5 and Theorem 2.6 for α ≤ φ−1
(
N2(N−1)

2 φ(β)
)

any Kantorovich potential uα for the cost Cα is also a potential for C. According to
Lemma 3.3 above we choose a potential uα satisfying

∀x, uα(x) = inf

{
cα(x, y2, . . . , yN ) −

∑

j≥2

uα(y j ) : y j ∈ R
d
}
.

Since the infimum of uniformly Lipschitz (resp. uniformly semiconcave) functions is
still Lipschitz (resp. semiconcave) with the same constant, it is enough to show that
the functions

x �→ cα(x, y2, . . . , yN ) + C

are uniformly Lipschitz and semiconcave. To check that it is enough to compute the
gradient and the Hessian matrix of these functions and use the respective properties
of the pointwise cost φ. ��
Remark 3.7 The above Theorem 3.6 applies to the Coulomb cost φ(t) = 1/t and
more generally to the costs φ(t) = t−s for s > 0.

3.3 Continuity Properties of the Cost

In this subsection we study some conditions that imply the continuity of the trans-
portation cost C(ρ) with respect to the tight convergence on the marginal variable
ρ.

Lemma 3.8 Let {ρn} ⊂ P(Rd) be such that ρn
∗
⇀ ρ and assume that ρ satisfies

assumption (A). Let β be such that

μρ(β) <
1

N (N − 1)2
.

Then for all δ ∈ (0, 1) there exists k ∈ N such that for all n > k

μρn (δβ) <
1

N (N − 1)2
.

Proof We argue by contradiction assuming that there exists a sequence {xn} such that
1

N (N − 1)2
≤ ρn

(
B(xn, δβ)

)
.
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Since the sequence {ρn} is uniformly tight there exists K such that |xn| < K . Up to
subsequences we may assume that xn → x̃ for a suitable x̃ . Let δ′ ∈ (δ, 1). Then, for
n large enough, B(xn, δβ) ⊂ B(x̃, δ′β) and since

ρn
(
B(xn, δβ)

) ≤ ρn
(
B(xn, δβ)

) ≤ ρn
(
B(x, δ′β)

)
,

and

lim sup ρn
(
B(x, δ′β)

) ≤ ρ
(
B(x, δ′β)

) ≤ ρ
(
B(x, β)

)

we obtain

lim sup ρn
(
B(x, δβ)

)
<

1

N (N − 1)2
,

which is a contradiction. ��
Theorem 3.9 Let {ρn} ⊂ P(Rd) be such that ρn

∗
⇀ ρ with ρ satisfying assumption

(A). Assume that the cost function φ satisfies assumption (3.4). Then

C(ρn) → C(ρ) as n → +∞.

Proof We first note that the theorem above holds for the costs cα since they are
continuous and bounded in R

d , and from the fact that whenever P ∈ �(ρ) there

exists Pn ∈ �(ρn) such that Pn
∗
⇀ P , so that Cα is continuous with respect to weak

convergence.
Thanks to Lemma 3.8 and Theorem 2.4 we infer that there exists k > 0 and α > 0

such that the optimal transport plans for C(ρ) and C(ρn) all supported in R
Nd \ Dα

for n ≥ k. But then the functionals C and Cα coincide on {ρ}∪ {ρn}n≥k and the thesis
follows form the continuity of Cα . ��
Remark 3.10 Under the hypothesis (3.4) on φ we may propose the following alterna-
tive proof for Theorem 3.9 above. Since the pointwise cost c is lower semicontinuous,
by the dual formulation (1.2) the functional C is lower semicontinuous too. Then we
only need to prove the inequality lim supn→∞ C(ρn) ≤ C(ρ). By Theorems 3.4 and
3.6 and Lemma 3.8 above, there exists a constant K and an integer ν such that for
n ≥ ν we can choose a Kantorovich potential un for ρn and the cost C which is
K -Lipschitz and bounded by K . Up to subsequences we may assume that un → u
uniformly on compact sets, so u is K -Lipschitz and satisfies

u(x1) + · · · + u(xN ) ≤ c(x1, . . . , xN ).

It follows that

N
∫

u dρ ≤ C(ρ) ≤ lim
n→∞C(ρn) = lim

n→∞ N
∫

un dρn = N
∫

u dρ

as required.
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Theorem 3.11 Let ρ1, ρ2 ∈ P(Rd) be such that

μρi (β) <
1

N (N − 1)2
i = 1, 2,

for a suitable β > 0. Then for every α as in Theorem 2.4 we have

|C(ρ1) − C(ρ2)| ≤ N 2(N − 1)2φ(
α

2
)‖ρ1 − ρ2‖L1 .

Proof Without loss of generality we may assume that C(ρ2) ≤ C(ρ1). Let u1 and u2
be Kantorovich potentials which satisfy the estimate of Theorem 3.4 respectively for
ρ1 and ρ2 . We have

C(ρ1) − C(ρ2) = N
∫

u1dρ1 − N
∫

u2dρ2.

By the optimality of u1 and u2

N
∫

u2 d(ρ1 − ρ2) ≤ N
∫

u1 dρ1 − N
∫

u2 dρ2 ≤ N
∫

u1 d(ρ1 − ρ2)

and the conclusion now follows by estimate (3.3). ��
Corollary 3.12 The functional C(ρ) is Lipschitz continuous on any bounded subset
of L p(Rd) for p > 1 and in particular on any bounded subset of the space H.
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