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Abstract In this paper we study the optimal control problem for a class of general
mean-field stochastic differential equations, in which the coefficients depend, nonlin-
early, on both the state process as well as of its law. In particular, we assume that the
control set is a general open set that is not necessary convex, and the coefficients are
only continuous on the control variable without any further regularity or convexity.
We validate the approach of Peng (SIAM J Control Optim 2(4):966–979, 1990) by
considering the second order variational equations and the corresponding second order
adjoint process in this setting, and we extend the Stochastic Maximum Principle of
Buckdahn et al. (Appl Math Optim 64(2):197–216, 2011) to this general case.
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1 Introduction

In this paper we are interested in the Pontryagin Maximum Principle for a class of
general stochastic control problem with McKean–Vlasov dynamics:

{
dXu

t = b(t, ·, Xu
t , PXu

t
, ut )dt + σ(t, ·, Xu

t , PXu
t
, ut )dWt ,

Xu
0 = x0,

t ∈ [0, T ], (1.1)

where W = {Wt }t≥0 is a one dimensional Brownian motion, defined on a complete
probability space (�,F , P), Pξ := P ◦ ξ−1 denotes the law of the random variable ξ ,
T > 0 is a given time horizon, and the coefficients b, σ : [0, T ]×�×R

d ×P2(R
d)×

U �→ R are measurable functions with appropriate dimensions. Here P2(R
d) is the

space of all probability measures onR
d , endowedwith 2-Wasserstein metric (see Sect.

2 for details).
The stochastic control problems with dynamics (1.1) have been used in the study

of mean-field control/potential games, to describe the (Nash) equilibrium state of the
symmetric game, or the limiting state of large number of interacting players. We refer
to [16] for the main ideas of the mean-field games, and [1–4,11–13] and the references
cited therein for the history and recent developments of stochastic control problem
with controlled McKean–Vlasov dynamics and related mean-field games.

It is worth noting that the system (1.1) is very general, in that the dependence of the
coefficient on the law of the solution PXt could be genuinely nonlinear as an element
of the space of probability measures. In fact, while all existing works can be put into
a general framework of (1.1), many of them often fall into one of the following two
types:

(a) ϕ(t, ω, Xt , PXt , ut ) = ϕ̃(t, ω, Xt , E[Xt ], ut )
= ϕ̃

(
t, ω, Xt ,

∫
R

ψ(y)PXt (dy), ut

)
,

whereψ is a given function,ϕ = b, σ , and ϕ̃ denotes a different function corresponding
to b or σ in an obvious way. Such a case resembles themean-field interaction of scalar
type in mean-field theory, and was used as the controlled dynamics in [4]. We note
that in this case the role of the measure PXt would be averaged out and therefore less
essential in the analysis.

(b) ϕ(t, ω, Xt , PXt , ut ) = E[ϕ̃(t, x, Xt , z)]
∣∣
y=Xt ,z=ut

=
∫
R

ϕ̃(t, x, y, z)PXt (dy)
∣∣
x=Xt ,z=ut

, ϕ = b, σ.

This is the most common case in the literature, known as the mean-field interaction
of order 1, which comes often as a consequences of law of large numbers, and as the
limit of mean-field games (see, for example, [3,11–13], among the aforementioned
references). We note that in this case, the dependence on PXt is actually linear(!).
Clearly, the SDE (1.1) would cover higher order interactions as well.
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We should note that the optimal control problem with general McKean–Vlasov
dynamics has been studied along the lines of dynamic programming (see, e.g., [1,2,4]),
under various conditions. In particular, either the convexity of the control set or that
of the Hamiltonian, or the existence of optimal control is assumed so as to facilitate
the discussion of the dynamic programming principle. On the other hand, most of the
works mentioned above focused on the necessary condition of the optimal, known as
the Pontryagin’s Maximum principle. Again, the convexity of either the control region
or the Hamiltonian (or the coefficients) played an important role in the discussion. In
fact, to the best of our knowledge, the Stochastic Maximum Principle (SMP for short)
for a general controlled McKean–Vlasov dynamics with non-convex control region
remains an open problem to date, which is the main objective of this paper.

Themain technical issue in dealingwith the StochasticMaximumPrinciple without
the convexity assumption on either the control region or the Hamiltonian, especially in
the case when the control enters the diffusion coefficient σ (often referred to as Peng’s
SMP due to his seminal work [18]), is the need to consider a second order variational
equation, or equivalently, a second order Taylor expansion (see [18]), which naturally
involves the second order derivatives of all spatial variables in the coefficients. This
immediately leads to, among other things, the subtle difficulty in treating the desired
second order derivatives with respect to the measures in the spaceP2(R

d), along with
some appropriate estimates.

An interesting observation is that by adding the tool of the derivatives with respect
to measures, we can now treat more general mean-field cases for which the method
of our previous work [4] would fail. A not-so-subtle example is the case where the
coefficients are of the form

φ(t, Xt , PXt , ut ) = φ(t, Xt , E[ψ(Xt )], ut ), φ = b, σ, f,

where ψ is some general nonlinear function (see, e.g., [8]). The method of [4] would
only work for the case ψ(y) = y, but now it is clearly one of the simplest forms under
our setting.

The main result of this paper is to prove the following Stochastic Maximum Prin-
ciple (SMP), along the by now well-known scheme of [18]. More precisely, consider
the following Hamiltonian:

H(t, x, μ, u, p, q)
	= b(t, x, μ, u) · p + σ(t, x, μ, u) · q − f (x, μ, u), (1.2)

where (t, x, μ, u, p, q) ∈ [0, T ] × R
d × P2(R

d) × U × R
d × R. We are to show

that, if (u∗, X∗) is an optimal solution of the stochastic control problem, then there
are two pairs of adapted processes (p, q) and (P, Q) known as the first and second
order adjoint processes, respectively, such that for all u ∈ U and a.e. t ∈ [0, T ], it
holds P-almost surely that

H(t, X∗
t , PX∗

t
, u; pt , qt ) − H(t, X∗

t , PX∗
t
, u∗

t ; pt , qt )
+ 1

2
[	σ ∗,u(t, ·)]T Pt [	σ ∗,u(t, ·)] ≤ 0,
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where 	σ ∗,u(t, ·) := σ(t, X∗
t , PX∗

t
, u) − σ(t, X∗

t , PX∗
t
, u∗

t ). Furthermore, the
processes (p, q) and (P, Q) are the solutions of the first and second order adjoint
equations that are in the form of mean-field backward SDEs similar to those in [3], but
the parts involving second order derivatives require special attention. The key point,
however, would be to prove the following estimate:

E

[
sup

t∈[0,T ]
|Xε(t) − (

X∗(t) + Y ε(t) + Z ε(t)
) |2k

]
≤ ε2kρk(ε), (1.3)

Xε 	= Xuε
denotes the state process corresponding to the spike variation of u∗: uε

t :=
ut1Eε (t) + u∗

t 1Ec
ε
, where Eε ⊂ [0, T ] is a Borel set with |Eε| = ε; Y ε, Z ε are the

solutions to the first and second order variational equations, respectively; and ρk > 0
is some positive function such that ρk(ε) ↓ 0 as ε ↓ 0.

It is worth noting that, while our analysis follows idea of [17], there are some tech-
nical difficulties due to the presence of the second derivatives with respect to measures
in the Taylor expansion. In particular, as it is noted in [7], the second order Fréchet
derivative with respect to L2-random variables may fail to exist. It turns out, however,
that such difficulty can be overcome by some careful analysis and estimates on the
first and second order variational processes, so as to show that the term that potentially
involves the second order derivative with respect to measure is a higher order term,
and consequently only the mixed second order derivatives are relevant, as we observed
in [7]. To the best of our knowledge, these estimates, especially those in Propositions
4.3 and 5.3 of this paper, have never been established before. Consequently, albeit
technical, we show the scheme of [18] can still be validated, and that 1 ≤ k ≤ 3

2 will
be the desired order in (1.3).

The rest of the paper is organized as follows. In Sect. 2 we give all the necessary
preparations on the technical tools, including the precise definition of the second order
Fréchet derivative with respect to the measures PXt in the coefficients. In Sect. 3 we
formulate the problem and state the main theorem (SMP), and in Sect. 4 we study the
(first and second order) variational equations. Finally in Sects. 5 and 6 we establish
the main estimates and prove the main theorem.

2 Preliminaries

Throughout this paper we consider a complete, filtered probability space (�,F , P; F),
on which is defined a 1-dimensional F-Brownian motion W = {Wt }t∈[0,T ], where
T > 0 denotes an arbitrarily fixed time horizon, and F = {Ft }t≥0. For a generic
Euclidean space X, we denote its inner product by (·, ·) (or simply “ · ”), its norm by
| · |, and its Borel σ -field byB(X). Also, for any sub-σ -field G ⊆ F and 1 ≤ p < ∞,
we denote

• L p(G; X) to be all X-valued, G-measurable random variables ξ with ‖ξ‖p
	=

E[|ξ |p]1/p < ∞. In particular, L2(G; R
d) is the Hilbert space with inner product

(ξ, η)2
	= E[ξ · η], ξ , η ∈ L2(F; R

d), and the norm ‖ξ‖2 = √
(ξ, ξ)2.
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• L2
F
([0, T ]; X) to be all X-valued, F-adapted process η on [0, T ], such that

‖η‖p,T
	= E

[∫ T

0
|ηt |pdt

]1/p
< ∞;

• P2(X) to be the space of all probability measures μ on (X,B(X)) with finite
second moment (i.e.,

∫
X

|x |2μ(dx) < ∞). In particular, we endow the space
P2(R

d) with the following 2-Wasserstein metric: for μ, ν ∈ P2(R
d),

W2(μ, ν)
	= inf

{[ ∫
R2d

|x − y|2ρ(dx, dy)

] 1
2

: ρ ∈ P2(R
2d),

ρ(·, R
d) = μ, ρ(Rd , ·) = ν

}
. (2.1)

Furthermore, for an X-valued random variable ξ defined on (�,F , P), we denote

Pξ
	= P ◦ ξ−1, the law introduced by ξ on (X,B(X)).

We now recall briefly an important notion in mean-field theory: the differentiability
with respect to probability measures. We shall follow the approach introduced in [15]
and later detailed in [9] (see also [7] and [13] for more discussions). The main idea
is to identify a distribution μ ∈ P2(R

d) with a random variables ϑ ∈ L2(F; R
d) so

that μ = Pϑ . To be more precise, let us assume that the probability space (�,F , P)

is rich enough in the sense that for every μ ∈ P2(R
d), there is a random vari-

able ϑ ∈ L2(F; R
d) such that Pϑ = μ. It is well-known that the probability space

([0, 1],B([0, 1]), dx), where “dx” is the Borel measure, has this property.
Next, for any function f : P2(R

d) → R, we induce a function f � : L2(F; R
d) →

R, such that f �(ϑ) := f (Pϑ), ϑ ∈ L2(F; R
d). Clearly, the function f �, often called

the “lift” of f in the literature, depends only on the law of ϑ ∈ L2(F; R
d), and is

independent of the choice of the representative ϑ . Recall now from [9] (see also [10]),
a function f : P2(R

d) �→ R is said to be differentiable atμ0 ∈ P2(R
d) if there exists

ϑ0 ∈ L2(F , R
d) with Pϑ0 = μ0, such that its lift f � is Fréchet differentiable at ϑ0. In

other words, there exists a continuous linear functional Df �(ϑ0) : L2(F; R
d) → R

such that

f �(ϑ0 + η) − f �(ϑ0) = 〈 Df �(ϑ0), η 〉 +o(‖η‖2) 	= Dη f (μ0) + o(‖η‖2), (2.2)

where 〈 ·, · 〉 is the “dual product” on L2(F; R
d), and we will refer to Dη f (μ0) as the

Fréchet derivative of f at μ0, in the direction η. Clearly, in this case we have

Dη f (μ0) = 〈Df �(ϑ0), η 〉 	= d

dt
f �(ϑ0 + tη)|t=0, μ0 = Pϑ0 . (2.3)

The second order derivative, however, is a much more subtle issue. For example,

it is tempting to define D2
ηη f (ϑ0) := d2

dt2
f �(ϑ0 + tη)

∣∣∣
t=0

. But it turns out that with

such a definition even a function that is infinitely differentiable in usual sense becomes
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nowhere twice differentiable(!). (See [7] for a counterexample). The more reasonable
definition of the second order derivative have been given recently in [7] and [13],
which we now briefly describe.

First note that by Riesz’ Representation Theorem, there is a (unique) random
variable �0 ∈ L2(F; R

d) such that 〈 Df �(ϑ0), η 〉 = (�0, η)2 = E[(�0, η)],
η ∈ L2(F; R

d). It was shown (see [15] or [9]) that there exists a Borel function
h[μ0] : R

d → R
d , depending only on the law μ0 = Pϑ0 but not on the particular

choice of the representative ϑ0, such that �0 = h[μ0](ϑ0). Thus we can write (2.2)
as

f (Pϑ) − f (Pϑ0) = (h[μ0](ϑ0), ϑ − ϑ0)2 + o(‖ϑ − ϑ0‖2), ∀ϑ ∈ L2(F; R
d).

(2.4)

We shall denote ∂μ f (Pϑ0 , y)
	= h[μ0](y), y ∈ R

d . Namely, we have the following
identities:

Df �(ϑ0) = �0 = h[Pϑ0 ](ϑ0) = ∂μ f (Pϑ0 , ϑ0), (2.5)

and Dη f (Pϑ0) = 〈 ∂μ f (Pϑ0 , ϑ0), η 〉, where η = ϑ − ϑ0. We note that for each
μ ∈ P2(R

d), ∂μ f (Pϑ , ·) = h[Pϑ ](·) is only defined in a Pϑ(dy)-a.e. sense, where
μ = Pϑ .

Let us now assume that the function f : P2(P
d) �→ R is differentiable on the

whole space P2(R
d), and consider the derivative ∂μ f (Pϑ , y). It can be shown (see,

e.g. [13, Lemma 3.2]) that if the mapping ϑ �→ Df �(ϑ) = h[Pϑ ](ϑ) is Lipschitz
continuous with a Lipschitz constant K > 0, then for all ϑ ∈ L2(F; R

d) there is
a Pϑ -version of ∂μ f (Pϑ , ·) such that the mapping y �→ ∂μ f (Pϑ , y) = h[Pϑ ](y) is
Lipschitz continuous, with the same uniform Lipschitz constant. In what follows we
shall always refer to such a version, without further specification. It is worth noting
that while the law of Df �(ϑ) = ∂μ f (Pϑ , ϑ) does not depend on the choice of ϑ (cf.
[9, Theorem 6.2]), but as an L2(F , R

d) random vector, Df �(ϑ) does(!).

Definition 2.1 We say that f ∈ C
1,1
b (P2(R

d)) if for allϑ ∈ L2(F; R
d), there exists a

Pϑ -modification of ∂μ f (Pϑ , ·), denoted by itself, such that ∂μ f : P2(R
d)×R

d �→ R
d

is bounded and Lipschitz continuous. That is, for some C > 0, it holds that

(i) |∂μ f (μ, x)| ≤ C , ∀μ ∈ P2(R
d), x ∈ R

d ;
(ii) |∂μ f (μ, y)− ∂μ f (μ′, y′)| ≤ K (W2(μ,μ′)+ |y − y′|), μ,μ′ ∈ P2(R

d), y, y′ ∈
R
d .

Remark 2.2 We would like to point out that, if f ∈ C
1,1
b (P2(R

d)), the version of
∂μ f (Pϑ , .), ϑ ∈ L2(F; R

d), indicated in Definition 2.1 is unique. Indeed, given
ϑ ∈ L2(F; R

d), let η be a d-dimensional vector of independent standard normal ran-
dom variables, independent of ϑ . Then, since ∂μ f (Pϑ+εη, ϑ + εη) is P-a.s. defined,
∂μ f (Pϑ+εη, y) is defined dy-a.e. From the Lipschitz continuity (ii) of ∂μ f in Defini-
tion 2.1 it then follows that ∂μ f (Pϑ+εη, y) is well-defined for all y ∈ R

d . Taking the
limit 0 < ε ↓ 0 then yields that ∂μ f (Pϑ , y) is uniquely defined for all y ∈ R

d .
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Now let f ∈ C
1,1
b (P(Rd), and consider the mapping ∂μ f = ([∂μ f ]1, · · ·

[∂μ f ]d)T : P2(R
d) × R

d �→ R
d . We are now ready to define the second order

derivatives of f .

Definition 2.3 We say that f ∈ C
2,1
b (P2(R

d)) if f ∈ C
1,1
b (P2(R

d)), and such that

(i) [∂μ f ]i (·, y) ∈ C
1,1
b (P2(R

d)), for all y ∈ R
d , 1 ≤ i ≤ d;

(ii) ∂μ f (μ, ·) : R
d → R

d is differentiable, for every μ ∈ P2(R
d);

(iii) ∂y∂μ f : P2(R
d)×R

d →R
d⊗R

d and ∂2μ f (Pϑ0 , y, z) := ∂μ[∂μ f (·, y)](Pϑ0 , z) :
P2(R

d) × R
d × R

d → R
d ⊗ R

d are bounded and Lipschitz-continuous.

To end this section we present a second order Taylor expansion that plays an essen-
tial role in our discussion. Let f ∈ C

2,1
b (P2(R

d)), then for 1 ≤ i ≤ d we have

Df �
i (ϑ0 + η) − Df �

i (ϑ0) = [∂μ f ]i (Pϑ0+η, ϑ0 + η) − [∂μ f ]i (Pϑ0 , ϑ0)

= [[∂μ f ]i (Pϑ0+η, y) − [∂μ f ]i (Pϑ0 , y)
] ∣∣

y=ϑ0+η

+ [[∂μ f ]i (Pϑ0 , y)
∣∣
y=ϑ0+η

− [∂μ f ]i (Pϑ0 , y)]
∣∣
y=ϑ0

=
∫ 1

0
〈 D[∂μ f ]�i (ϑ0 + λη, y), η 〉 dλ

∣∣
y=ϑ0

+ (∂y[∂μ f ]i (Pϑ0 , ϑ0), η) + o(‖η‖2). (2.6)

Here, again 〈 ·, · 〉 is the dual product in L2(F; R
d), (·, ·) is the inner product of R

d ,
and as due to (2.5),

D[∂μ f ]�i (ϑ0, y) = ∂μ[[∂μ f ]i (·, y)](Pϑ0 , ϑ0) =: [∂2μ f ]i (Pϑ0 , y, z)
∣∣
z=ϑ0

∈ R
d ,

(2.7)

the latter line of (2.6) follows from the Lipschitz continuity of [∂2μ f ]i and ∂y[∂μ f ]i
(see Definition 2.3).

We should note that, similar to our previous work [7], in this paper we actually
do not need ∂2μ f for the formulation of our main result, Theorem 3.5, but rather the
derivative ∂2μy f defined in Definition 2.3. But the following discussion is necessary
for the second order Taylor expansion, and therefore interesting in its own right.
Let (�̃, F̃ , P̃) be a copy of the probability space (�,F , P). For any pair of random
variables (ϑ, η) ∈ [L2(F , R

d)]2, we let (ϑ̃0, η̃) be an independent copy of (ϑ0, η)

defined on (�̃, F̃ , P̃). Now, we consider the product space (� × �̃,F ⊗ F̃ , P ⊗ P̃)

and setting (ϑ̃0, η̃)(ω̃, ω)
	=(ϑ(ω̃), η(ω̃)), ∀(ω̃, ω) ∈ �̃ × �.

For any μ0 ∈ P2(R
d) with μ0 = Pϑ0 , and η ∈ L2(F; R

d), we can define the
“second order derivative of f at μ0 ∈ P(Rd), in the direction η” via (2.6):

D2
η f (μ0) := 〈 〈 D[∂μ f ]�(·, y)(Pϑ0 , z)

∣∣
z=ϑ̃0

, η̃ 〉 ∣∣y=ϑ0
, η 〉+ 〈 ∂y∂μ f (Pϑ0 , ϑ0)η, η 〉

= E{Ẽ{tr[∂2μ f (Pϑ0 , ϑ0, ϑ̃0)̃η ⊗ η]}} + E{tr[∂y∂μ f (Pϑ0 , ϑ0)η ⊗ η]}.
(2.8)
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where for x ∈ R
d , x ⊗ x

	= xxT ∈ R
d ⊗ R

d ; and the expectation Ẽ[·] acts only on
random variables marked with a “̃ ”. It is now easy to check, with the notation Dη f
and D2

η f defined by (2.3) and (2.8 ), we have the following simple form of the Taylor
expansion (cf. [7, Lemma 2.1])

f (Pϑ0+η) − f (Pϑ0) = Dη f (Pϑ0) + 1

2
D2

η f (Pϑ0) + R(η), (2.9)

where |R(η)| ≤ CE(|η|3 ∧ |η|2) = O(‖η‖22).
We should remark that the fact that the remainder R(η) is only of order O(‖η‖22),

rather than o((‖η‖22) as one would hope, is the main reason that the f (Pϑ) may not be
twice differentiable even though its lift f � is(!), which is supported by the example in
[7].

3 Problem Formulation

Let us consider a complete probability space (�,F , P) on which is defined a m-
dimensional Brownian motion W = {Wt }t≥0, and let T > 0 be a given time horizon.
We shall assume that there exists a sub-σ -field F0 ⊂ F that is independent of F

W ,
the filtration generated by W , and is “rich enough” in the sense described in the
previous section. To wit, P2(R

�) = {Pϑ , ϑ ∈ L2(F0; R
�)}, � ≥ 1. We denote

F = {FW
t ∨ F0}t∈[0,T ] in the sequel, with the standard augmentation.

We are interested in the following general controlled mean-field stochastic system:

{
dXu

t = b(t, Xu
t , PXu

t
, ut )dt + σ(t, Xu

t , PXu
t
, ut )dWt ,

Xu
0 = x0,

t ∈ [0, T ], (3.1)

where the coefficients (b, σ ): [0, T ] × R
d × P2(R) × R

k �→ R × R
d×m are deter-

ministic functions with appropriate dimensions, and u ∈ L2
F
([0, T ]; R

k) is the given
“control” process.

Remark 3.1 In order not to over complicate the already notational heavy presentation
of this paper, in what follows we shall assume all processes are 1-dimensional (i.e.,
d = k = m = 1). We should note that the higher dimensional cases can be argued
along the same lines without substantial difficulties, except for even heavier notations.
We leave it for interested reader.

Let U ⊆ R be a non-empty subset. We say that a process u ∈ L2
F
([0, T ]; R)

is an admissible control if ut ∈ U for all t ∈ [0, T ], P-a.s. We denote the set of all
admissible controls byUad , and the goal of the optimal control problem is tominimize
the following cost functional over Uad :

J (u) = E

[∫ T

0
f (t, Xu

t , PXu
t
, ut ) dt + h(Xu

T , PXu
T
)

]
, (3.2)

where f : [0, T ] × R × P2(R) × U → R, h : R × P2(R) �→ R are deterministic
functions.
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A control u∗ ∈ Uad satisfying

J (u∗) = infu∈Uad J (u) (3.3)

is called an optimal control. We denote X∗ := Xu∗
to be the corresponding (optimal)

state process, namely, the solution of (3.1) with u = u∗. The main objective of this
paper is to prove the necessary conditions, also known as Pontryagin’s Maximum
Principle, of the optimal control without the convexity assumption on the control set
U .

We note that the temporal variable t in the coefficients b, σ , f can be easily absorbed
into the state process X by expanding its dimension, so in what follows we consider
only the time-homogeneous coefficients for notational simplicity. We shall make use
of the following Standing Assumptions.

Assumption 3.2 The coefficients b, σ, f, h are measurable in all variables. More-
over, for all u ∈ U, b(·, ·, u), σ (·, ·, u), f (·, ·, u) ∈ C

1,1
b (R × P2(R

d); R), h(·, ·) ∈
C
1,1
b (R×P2(R); R). More precisely, for each u ∈ U, denoting φ(x, μ) = b(x, μ, u),

σ(x, μ, u), f (x, μ, u), h(x, μ), the function φ(·, ·) enjoys the following properties:

(i) for fixed x ∈ R, φ(x, ·) ∈ C
1,1
b (P2(R

d));
(ii) for fixed μ ∈ P2(R), φ(·, μ) ∈ C1

b(R);
(iii) all the derivatives ∂xφ and ∂μφ, φ = b, σ , f , h, are bounded and Lipschitz

continuous, with Lipschitz constants independent of u ∈ U.

Assumption 3.3 The coefficients b, σ, f, h satisfy Assumption 3.2. Furthermore, for
all u ∈ U, b(·, ·, u), σ (·, ·, u), f (·, ·, u) ∈ C

2,1
b (R × P2(R); R), h(·, ·) ∈ C

2,1
b (R ×

P2(R); R). More precisely, for each u ∈ U, the derivatives of b, σ , f , h, denoted by
a generic function φ(x, μ), enjoy the following properties:

(i) ∂xφ(·, ·) ∈ C
1,1
b (R × P2(R)) ;

(ii) ∂μφ(·, ·) ∈ C
1,1
b (R × P2(R) × R);

(iii) all the second order derivatives of b, σ, f, h, are bounded and Lipschitz contin-
uous, with Lipschitz constants independent of u ∈ U.

Remark 3.4 We should emphasize that, as one of the main features of Peng’s SMP,
we do not require any differentiability of the coefficient on the control variable u.

Clearly, under Assumption 3.2, for each u ∈ Uad , SDE (3.1) admits a unique strong
solution Xu . Now let u∗ ∈ Uad is an optimal control, we denote the optimal state by
X∗ = Xu∗

. To facilitate our presentation, we shall introduce some notations for the
coefficients and their derivatives. These notations are slightly unusual especially when
they involve the derivatives defined in the previous section, we shall describe them
more carefully.

To begin with, we again let φ(x, μ, v), (x, μ, v) ∈ R ×P2(R)×U , be an generic
function representing b, σ, f, h, respectively. For any u ∈ Uad , we denote φu(t) =
φ(Xu

t , PXu
t
, ut ), t ∈ [0, T ]; and define φ(t) := φ(X∗

t , PX∗
t
, u∗

t ), where u∗ is an
optimal control. We denote
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⎧⎪⎪⎨
⎪⎪⎩

δφ(t) := φ(X∗
t , PX∗

t
, ut ) − φ(X∗

t , PX∗
t
, u∗

t );
(φx (t), φxx (t)) :=

(∂φ

∂x
,
∂2φ

∂x2

)
(X∗

t , PX∗
t
, u∗

t );
φμ(t, y) = ∂μφ(X∗

t , PX∗
t
, u∗

t ; y).
(3.4)

Clearly, φx (·), φxx (·) and φμ(·, y), y ∈ R, are progressively measurable processes
defined on (�,F , P). Nowwe recall the product probability space (�×�̃,F⊗F̃ , P⊗
P̃) and denote all the processes defined on the space (�̃, F̃ , P̃) with “̃ ”. Let (̃u∗, X̃∗)
be an independent copy of (u∗, X∗), so that PX∗

t
= P̃X̃∗

t
, t ∈ [0, T ]. We denote

φ̃μ(t) := ∂μφ(X∗
t , PX∗

t
, u∗

t ; X̃∗
t ); φ̃∗

μ(t) := ∂μφ(X̃∗
t , PX∗

t
, ũ∗

t ; X∗
t ), t ∈ [0, T ].

(3.5)

Similarly, we can define the second derivative processes:

⎧⎨
⎩

φ̃μμ(t) := ∂2μφ(X∗
t , PX∗

t
, u∗

t ; X∗
t , X̃

∗
t );

φxμ(t) := ∂x∂μφ(X∗
t , PX∗

t
, u∗

t ; X∗
t );

φ̃∗
yμ(t) := ∂y∂μφ(X̃∗

t , PX∗
t
, ũ∗

t ; X∗
t ),

t ∈ [0, T ], (3.6)

where ∂2μφ(X∗
t , PX∗

t
, u∗

t ; ·, ·) : R × R → R is the second order derivative, given
(X∗

t , PX∗
t
, u∗

t ). We note that all the derivative processes φ̃μ, φ̃∗
μ, φ̃

∗
yμ, and φ̃μμ should

all be understood as progressively measurable processes defined on the product space
� × �̃. Finally, we define

⎧⎪⎨
⎪⎩
Lxx (t, φ, y) := 1

2
∂xxφ(X∗

t , PX∗
t
, u∗

t )y
2,

Lyμ(t, φ̃, y) := 1

2
∂y∂μφ(X∗

t , PX∗
t
, u∗

t ; X̃∗
t )y

2,
t ∈ [0, T ]. (3.7)

The HamiltonianWe recall the Hamiltonian defined in (1.2) which, under our time-
homogeneous assumption, now takes the following form: for any (x, μ, u, p, q) ∈
R × P2(R) × R × R × R,

H(x, μ, u, p, q) := b(x, μ, u)p + σ(x, μ, u)q − f (x, μ, u). (3.8)

Now let (u∗, X∗) be the optimal control-state pair, and let (p, q) be a pair of adapted
processes taking values in R × R

d×d , respectively. We denote

H p,q(t) := H (X∗
t , u

∗
t , pt , qt ) := H(X∗

t , PX∗
t
, u∗

t , pt , qt ). (3.9)

In particular, if (p, q) is the solution to the so-called “adjoint equation” (to be defined
by (3.11) below), we shall simply denote H(t) := H p,q(t).

Now using the notations of (3.4) for coefficients b, σ, f , we define

⎧⎨
⎩

δH(t) := δb(t)pt + δσ (t) · qt − δ f (t);
Hx (t) := bx (t)pt + σx (t)qt − ∂x f (t);
Hxx (t) := bxx (t)pt + σxx (t) ⊗ qt − fxx (t).

(3.10)
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First order adjoint equation We are now ready to introduce two adjoint equations
that will be the building blocks of the stochastic maximum principle. We first consider
the first order adjoint equation, which is the followingmean-field-type linear backward
SDE:

⎧⎪⎪⎨
⎪⎪⎩
dpt = −

{
bx (t)pt + Ẽ

[̃
b∗
μ(t) · p̃t

]+ σx (t)qt + Ẽ
[
σ̃ ∗

μ(t)q̃t
]− fx (t)

−Ẽ
[
f̃ ∗
μ(t)

]}
dt + qtdWt ,

pT = −hx (T ) − Ẽ
[̃
h∗

μ(T )
]
.

(3.11)

Here, we recall from (3.5) that Ẽ[∂μφ∗(t)] := Ẽ[∂μφ(X̃∗
t , PX∗

t
, ũ∗

t : y)]∣∣y=X∗
t
, for

φ = b, σ, f, h.
It is readily seen that the mean-field nature of BSDE (3.11) comes from the terms

involving Fréchet derivatives ∂μb, ∂μσ , and ∂μ f , which will reduce to a standard
BSDE if the coefficients do not explicitly depend on law of the solution. The well-
posedness of BSDE (3.11) follows from [6, Theorem 3.1]. To be more precise, under
the Assumption 3.2, the BSDE (3.11) admits a unique F-adapted solution (p, q) such
that

E

[
sup

t∈[0,T ]
|pt |2 +

∫ T

0
|qt |2 dt

]
< +∞. (3.12)

Second order adjoint equationWe note that one of the main features of this paper,
which distinguishes it from the previous one [4], is that we neither assume that the
control set U is convex, nor that the coefficients have any differentiability on the
control variable u. An important device in such a situation is to introduce a second
order adjoint equation, initiated by Peng [18], which we now describe.

Consider the following R ⊗ R-valued linear backward SDE:

⎧⎪⎨
⎪⎩
dPt = −{2(bx (t) + Ẽ[̃b∗

μ(t)])Pt + (
σx (t) + Ẽ[̃σ ∗

μ(t)])2Pt
+2

(
σx (t) + Ẽ[̃σ ∗

μ(t)])Qt + (
Hxx (t) + Ẽ[H̃∗

μy(t)]
)}
dt + Qt dWt ,

PT = −(hxx (T ) + Ẽ[̃h∗
μy(T )]).

(3.13)

We note that (3.13) is a standard linear BSDE, and it is well-known that it has a unique
F-adapted solution (P, Q) which satisfies the following estimate:

E

[
sup

t∈[0,T ]
|Pt |2 +

∫ T

0
|Qt |2dt

]
< +∞. (3.14)

We are now ready to state the main theorem of the paper.

Theorem 3.5 (StochasticMaximum Principle) Suppose that the Assumptions 3.2 and
3.3 are in force. Let (u∗, X∗) be an optimal solution of the control problem (3.1)–(3.3),
then there are two pairs of F-adapted processes (p, q) and (P, Q) that satisfy the first
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and second order adjoint equations (3.11) and (3.13), respectively, such that (3.12)
and (3.14), respectively, and that for all u ∈ U and a.e. t ∈ [0, T ], it holds P-almost
surely that

H (X∗
t , u, pt , qt ) − H (X∗

t , u
∗
t , pt , qt )

+ 1

2
Pt
[
σ(X∗

t , PX∗
t
, u) − σ(X∗

t , PX∗
t
, u∗

t )
]2 ≤ 0. (3.15)

Remark 3.6 (i) Note that, unlike the usual maximum principle, there is an extra term
on the left-hand side of (3.15). This means that the inequality would generally be strict.
(ii) Theorem 3.5 can be extended to the higher dimensional cases without substantial
difficulties. More precisely, if we consider the original system (3.1) with Xt ∈ R

d ,
Wt ∈ R

m , and ut ∈ R
k , then in Theorem 3.5 the first order adjoint process (pt , qt ) ∈

(Rd , R
d×m), the second order adjoint process (Pt , Qt ) ∈ (Rd×d , R

d×d ⊗ R
m), and

the variational inequality (3.15) will read:

H (X∗
t , u, pt , qt ) − H (X∗

t , u
∗
t , pt , qt ) + 1

2
[	σ ∗,u(t, ·)]T Pt [	σ ∗,u(t, ·)] ≤ 0,

(3.16)

where 	σ ∗,u(t, ·) := σ(t, X∗
t , PX∗

t
, u) − σ(t, X∗

t , PX∗
t
, u∗

t ).

4 Variational Equations

In this section we study an important ingredient of the stochastic maximum principle,
that is, the “differentiation” of the state process by a perturbation of the optimal
control. Since the control set U is not necessarily convex, we shall use the so-called
spike variation, which we now describe.

Still denote u∗ ∈ Uad to be an optimal control. For any ε > 0, we choose a Borel
subset Eε ⊂ [0, T ] such that |Eε| = ε, where |A| denotes the Lebesgue measure of
set A ⊆ [0, T ]. Now for any u ∈ Uad we consider the following “spike variation” of
u∗: for t ∈ [0, T ],

uε
t

	=
{
ut , t ∈ Eε,

u∗
t t ∈ Ec

ε ,
(4.1)

We denote by Xε 	= Xuε
the corresponding state process which satisfies (3.1) corre-

sponding to the control uε, and consider the following two processes:

	Xε
t

	= Xε
t − X∗

t ; δXε
t

	= 1

ε
	Xε

t = 1

ε
[Xε

t − X∗
t ], t ∈ [0, T ]. (4.2)

We will investigate the behavior of 	Xε and δXε as ε → 0. Obviously, we expect
that, as ε → 0, 	Xε → 0; and hope that δXε → Y for some continuous process
Y , which satisfies the so-called first order variational equation. However, in the case
when the diffusion term contains the control, and the control set is not convex, the
aforementioned convergence and its speed are by no means obvious. In fact, the main
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idea of Peng [18] is to argue that, for each ε > 0, there exists a process Y ε, such that
δXε − 1

ε
Y ε = O(1), as ε → 0, i.e., 	Xε − Y ε = O(ε), and the process Y ε satisfies,

for each ε > 0, the following SDE:

⎧⎨
⎩
dY ε

t = {
bx (t)Y ε

t + Ẽ
[̃
bμ(t)Ỹ ε

t

]+ δb(t)1Eε (t)
}
dt

+{σx (t)Y ε
t + Ẽ

[
σ̃μ(t)Ỹ ε

t

]+ δσ (t)1Eε (t)
}
dWt ,

Y ε
0 = 0.

(4.3)

In what followswe shall refer to equation (4.3) as the “first order variational equation”,
and the process Y ε is called the first order variational process.

A very important step in [18] is, in light of the Taylor expansion, to find a process
Z ε so that 	Xε − Y ε − Z ε = o(ε), as ε → 0, and that the convergence is of an
appropriate order. The process Z ε is called the second order variational process, and
we shall argue that in our case it satisfies the following SDE:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dZ ε
t = {

bx (t)Z ε
t + Ẽ

[̃
bμ(t)Z̃ ε

t

]+ Lxx (t, b,Y ε) + Lμy(t, b̃, Ỹ ε)
}
dt

+ {
σx (t)Z ε

t + Ẽ
[
σ̃μ(t)Z̃ ε

t

]+ Lxx (t, σ,Y ε) + Lμy(t, σ̃ , Ỹ ε)
}
dWt

+ {
δbx (t)Y ε

t + Ẽ
[
δb̃μ(t)Ỹ ε

t

]}
1Eε (t)dt + {

δσx (t)Y ε(t)
+ Ẽ

[
δσ̃μ(t)Ỹ ε

t

]}
1Eε (t)dWt ,

Z ε
0 = 0.

(4.4)
The equation (4.4) will be referred to as the second order variational equation. As
expected, the adjoint processes (p, q) and the variational processes (Y ε, Z ε) are related
by the following “duality relationship”, which is essential for the proof of the SMP.

Lemma 4.1 Let (p, q) be the solution to the adjoint equation (3.11) satisfying (3.12),
and Y ε and Z ε are the solutions to the first and second order variational equations
(4.3) and (4.4), respectively. Then the following duality relations hold:

E[pT Y ε
T ] = E

[ ∫ T

0
Y ε
t

(
fx (t) + Ẽ[ f̃ ∗

μ(t)])dt]

+ E

[ ∫ T

0
(δb(t) · pt + δσ (t) · qt )1Eε (t)dt

]
, (4.5)

E[pT Z ε
T ] = E

[ ∫ T

0
Z ε
t ( fx (t) + Ẽ[ f̃ ∗

μ(t)])dt
]

+ E

[ ∫ T

0
(p(t)δbx (t) + qtδσx (t))Y

ε
t 1Eε (t)dt

]

+ E

[ ∫ T

0
pt
(
Lxx (t, b,Y

ε) + Ẽ[Lμy(t, b̃, Ỹ
ε)]
)
dt
]

+ E

[ ∫ T

0
qt
(
Lxx (t, σ,Y ε) + Ẽ[Lμy(t, σ̃ , Ỹ ε)]

)
dt
]

+ E

[ ∫ T

0

(
pt Ẽ

[
δb̃μ(t)Ỹ ε

t

]+ qt Ẽ
[
δσ̃μ(t)Ỹ ε

t

])
1Eε (t)dt

]
. (4.6)

123



520 Appl Math Optim (2016) 74:507–534

Proof The proof of this lemma follows directly from a simple application of Itô’s
formula and some direct computation using Fubini’s theorem (see, e.g., [5]), we leave
it to the interested reader. ��

Our main task of this section is to substantiate the variational SDEs (4.3) and (4.4),
and prove the desired convergence.

To this end, we first note that the processes Xε := Xuε
and X∗ := Xu∗

satisfy the
SDEs:

{
dXε

t = b(Xε
t , PXε

t
, uε

t )dt + σ(Xε
t , PXε

t
, uε

t )dWt , Xε
0 = x0;

dX∗
t = b(X∗

t , PX∗
t
, u∗

t )dt + σ(X∗
t , PX∗

t
, u∗

t )dWt , X∗
0 = x0,

(4.7)

respectively. We shall establish some fundamental estimates that will play the crucial
roles in our discussion. We note that unless specified, for each p ∈ R+ we will denote
byCp > 0 a generic positive constant depending only on p and the constants appearing
in Assumptions 3.2 and 3.3, which may vary from line to line.

Proposition 4.2 Assume that Assumption 3.2 is in force. Then, for any k ≥ 1, and
ε > 0, the following estimates hold:

E

[
sup

t∈[0,T ]
|Xε

t − X∗
t |2k

]
≤ Ckε

k, (4.8)

E

[
sup

t∈[0,T ]
|Y ε

t |2k
]

≤ Ckε
k, (4.9)

E

[
sup

t∈[0,T ]
|Z ε

t |2k
]

≤ Ckε
2k, (4.10)

E

[
sup

t∈[0,T ]
|Xε

t − (X∗
t + Y ε

t )|2k
]

≤ Ckε
2k . (4.11)

Proof The estimates (4.8)–(4.10) are obvious, in particular we remark that, thanks

to Assumption 3.2, E[ sup
t∈[0,T ]

|X∗
t |2k] ≤ Ck and E[ sup

t∈[0,T ]
|
∫ t

0
δσ (s)IEε (s)dWs |2k] ≤

Ckε
k . A boundedness assumption on δσ (s) and δb(s) is not needed here. We shall

only check (4.11). Without loss of generality we will assume b = 0. Define K ε
t :=

Xε
t − X∗

t − Y ε
t , then from equations (4.7) and (4.3) we get

dK ε
t = {

σ(Xε
t , PXε

t
, uε

t ) − σ(X∗
t , PX∗

t
, u∗

t )

− (σx (t)Y
ε
t + Ẽ

[
σ̃μ(t)Ỹ ε

t

]+ δσ (t)1Eε
(t))

}
dWt

= {
βε
t + σx (t)K

ε
t + Ẽ

[
σ̃μ(t)K̃ ε

t

]}
dWt , (4.12)
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where, recalling the notation 	Xε
t := Xε

t − X∗
t introduced in (4.2),

βε
t := σ(Xε

t , PXε
t
, uε

t ) − σ(X∗
t , PX∗

t
, u∗

t )

− (
σx (t)	Xε

t + Ẽ[̃σμ(t)	X̃ε
t ] + δσ (t)1Eε (t)

)
.

Now recall (3.4) and definition of uε. We see that for the given u ∈ Uad and ε > 0,
δσ (t)1Eε (t) ≡ σ(X∗

t , PX∗
t
, uε

t ) − σ(X∗
t , PX∗

t
, u∗

t ), t ∈ [0, T ]. Thus we can write

βε
t = σ(Xε

t , PXε
t
, uε

t ) − σ(X∗
t , PX∗

t
, uε

t ) − (
σx (t)	Xε

t + Ẽ[̃σμ(t)	X̃ε
t ]
)

=
∫ 1

0
{σx (X∗

t + θ	Xε
t , PX∗

t +θ	Xε
t
, uε

t ) − σx (t)}dθ · 	Xε
t

+
∫ 1

0
Ẽ[(σμ(X∗

t + θ	Xε
t , PX∗

t +θ	Xε
t
, X̃∗

t + θ	X̃ε
t , u

ε
t ) − σ̃μ(t))	X̃ε

t ]dθ.

We recall that by Assumption 3.2 σx and σμ are bounded. Hence, we obtain that

|βε
t | ≤ C

{|	Xε
t |2 + E[|	Xε

t |2] + 1Eε (t)
(|	Xε

t | + (E[|	Xε
t |2])

1
2
)}

. (4.13)

Estimate (4.11) now follows easily from the Gronwall inequality and the estimates
(4.8), (4.12), and (4.13). ��

To end this section, we give an important estimate involving the solution Y ε, the first
order variational equation, and the first order derivatives of the coefficients. This esti-
mate reflects some of the main technicalities when the derivatives of the measures are
present. We recall from (3.4) that for a function φ(x, μ), φμ(x, μ, y) = ∂μφ(x, μ; y),
and φ̃μ(t) = ∂μφ(X∗

t , PX∗
t
; X̃∗

t ). Thus, Ẽ[φ̃μ(t)] = Ẽ[φ(x, μ; X̃∗
t )]
∣∣
x=X∗

t ,μ=PX∗
t

is a

random variable on (�,F , P).

Proposition 4.3 Assume that Assumption 3.2 is in force. Let Y ε, ε > 0, be the solution
to (4.3), and ∂μb̃, ∂μσ̃ , and ∂μh̃ be defined by (3.4). Then, for any ε > 0, the following
estimates hold:

∫ T

0
E

[∣∣Ẽ[∂μb̃(t)Ỹ
ε
t ]∣∣4 + ∣∣Ẽ[∂μσ̃ (t)Ỹ ε

t ]∣∣4]dt ≤ Cε2ρ(ε), (4.14)

E

[∣∣Ẽ[∂μh̃(T )Ỹ ε
T ]∣∣4] ≤ Cε2ρ(ε), (4.15)

where ρ(·) is a positive function defined on (0,∞), such that ρ(ε) → 0 as ε ↓ 0.

Proof We first prove (4.14). Since the functions b and σ have the same properties, we
shall prove only the estimate for the term involving σμ. The term involving bμ can be
argued similarly.

To begin with, we recall the dynamics of Y ε(·) (4.3). Since the SDE (4.3) is almost
linear, we consider the stochastic exponential

ηt := exp

{
−
∫ t

0
σx (s)dWs −

∫ t

0

(
bx (s) − 1

2
|σx (s)|2

)
ds

}
, t ∈ [0, T ],
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and its inverse

ρ(t) := η−1
t := exp

{∫ t

0
σx (s)dWs +

∫ t

0

(
bx (s) − 1

2
|σx (s)|2

)
ds

}
, t ∈ [0, T ].

Since bx , σx are bounded, for all p ≥ 1 there exists a positive constant Cp, such that

E

[
sup

t∈[0,T ]
(|ηt |p + |ρt |p)

]
≤ Cp. (4.16)

Furthermore, by applying Itô’s formula to ηt Y ε(t), we can express Y ε explicitly as

Y ε(t) = ρt

∫ t

0
ηs
{
Ẽ[∂μσ̃ (s)Ỹ ε

s ] + δσ (s)1Eε (s)
}
dWs

+ρt

∫ t

0
ηs
{
Ẽ[∂μb̃(s)Ỹ

ε
s ] + δb(s)1Eε (s)

}
ds (4.17)

−ρt

∫ t

0
ηs
{
σx (s)Ẽ[∂μσ̃ (s)Ỹ ε

s ] + σx (s)δσ (s)1Eε (s)
}
dWs .

To facilitate our discussion let us now introduce an intermediate space (�̂, F̂ , P̂)

on which we can carry out some generic analysis without specifying the space � or
�̃. All process η defined on � will have a copy η̂ on space �̂. Using (4.17) we now
write

Ê[∂μσ̂ (t)Ŷ ε
t ] := Ê[∂μσ̂ (t)(ρ̂t Ĵ

ε
1 (t) + Ĵ ε

2 (t))] := I σ,ε
1 (t) + I σ,ε

2 (t), t ∈ [0, T ],
(4.18)

where

J ε
1 (t) :=

∫ t

0

(
ηsẼ[∂μσ̃ (s)Ỹ ε

s ] + ηsδσ (s)1Eε (s)
)
dWs,

J ε
2 (t) := ρt

∫ t

0

(
ηsẼ[∂μb̃(s)Ỹ

ε
s ] + ηsδb(s)IEε (s)

)
ds;

−ρt

∫ t

0

(
ηsσx (s)Ẽ[∂μσ̃ (s)Ỹ ε

s ] + ηsσx (s)δσ (s)IEε (s)
)
ds;

I σ,ε
1 (t) := Ê[∂μσ̂ (t)ρ̂t Ĵ

ε
1 (t)], I σ,ε

2 (t) := Ê[∂μσ̂ (t) Ĵ ε
2 (t)]. (4.19)

We shall estimate I σ,ε
1 and I σ,ε

2 separately. First, for any (x̄, u) ∈ R ×U , we consider
the process ρtσμ(t) := ρtσμ(x̄, PX∗

t
, u; X∗

t ). Since F = F0 ∨ F
W , applying Itô’s

(Martingale) Representation Theorem, for each t ∈ [0, T ], there exists a unique γ̂·,t ∈
L2
F
[0, t] such that

ρ̂t∂μσ̂ (t) = ρ̂t∂μσ(X∗
t , PX∗

t
, u∗

t ; X̂∗
t ) = Ê[ρ̂t∂μσ̂ (t)] +

∫ t

0
γ̂s,t dŴs, P-a.s.

(4.20)
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We note that, for p > 1, by virtue of (4.16), it follows from the Burkholder-Davis-
Gundy and Hölder’s inequalities that

Ê

[(∫ t

0
|γ̂s,t |2 ds

)p/2
]

≤ CpÊ

[
sup

s∈[0,t]

∣∣∣
∫ s

0
γ̂r,t dŴr

∣∣∣p
]

≤ Cp

(
p

p − 1

)p

Ê

[∣∣∣
∫ t

0
γ̂s,t dŴs

∣∣∣p]

≤ CpÊ

[
|ρ̂t∂μσ̂ (t) − Ê[ρ̂t∂μσ̂ (t)]|p

]

≤ CpÊ

[
|ρ̂t∂μσ̂ (t)|p

]
≤ CpÊ

[
sup

t∈[0,T ]
|ρ̂t∂μσ̂ (t)|p

]
≤ Cp.

(4.21)

It is clear that (4.21) also holds for p = 1, by simply applying Hölder’s inequality.
We note that the constant Cp > 0 is independent of t .

Now, by combining (4.19) and (4.20) we have

I σ,ε
1 (t) = Ê

[∫ t

0
γ̂ (t, s)

(̂
ηsẼ[∂μσ(X̂∗

s , PX∗
s
, û∗

s ; X̃∗
s )Ỹ

ε
s ] + η̂sδσ̂ (s)1Eε (s)

)
ds

]
.

(4.22)

Hence, for t ∈ [0, T ] we have, for some generic constant C > 0, which may vary
from line to line,

|I σ,ε
1 (t)|2 ≤ CÊ

[ ∫ t

0
|γ̂ (t, s)|2ds · sup

s∈[0,T ]
|̂ηs |2

×
∫ t

0

(
Ẽ[∂μσ(X̂∗

s , PX∗
s
, û∗

s , ; X̃∗
s )Ỹ

ε
s ]
)2
ds

]

+ CÊ

[∫
Eε

|γ̂ (t, s)|2ds · sup
s∈[0,T ]

|η̂s |2 ·
∫ t

0
12Eε

(s)ds

]

≤ C

(
Ê

[(∫ t

0
|γ̂ (t, s)|2ds

)3
]) 1

3

×
(

Ê

[∫ t

0

(
Ẽ
[
∂μσ(X̂∗

s , PX∗
s
, û∗

s ; X̃∗
s )Ỹ

ε
s

])4
ds

]) 1
2

+ Cε

(
Ê

[(∫
Eε

|γ̂ (t, s)|2ds
)2
]) 1

2

.
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This, together with (4.21), yields that, for t ∈ [0, T ],

|I σ,ε
1 (t)|4 ≤ C

∫ t

0
Ê

[(
Ẽ
[
∂μσ(X̂∗

s , PX∗
s
, û∗

s , X̃
∗
s )Ỹ

ε
s

])4]
ds

+Cε2Ê

[(∫
Eε

|γ̂ (t, s)|2ds
)2
]

.

Therefore, for any r ∈ [0, T ], we have
∫ r

0
E

[
|I σ,ε
1 (t)|4

]
dt ≤ C

∫ r

0

∫ t

0
Ê

[(
Ẽ[∂μσ(X̂∗

s , PX∗
s
, û∗

s , X̃
∗
s )Ỹ

ε
s ]
)4]

dsdt

+Cε2EÊ

[∫ T

0

( ∫
Eε

|γ̂ (t, s)|2ds
)2
dt

]
, (4.23)

≤ C
∫ r

0

∫ t

0
Ê

[(
Ẽ[∂μσ(X̂∗

s , PX∗
s
, û∗

s , X̃
∗
s )Ỹ

ε
s ]
)4]

dsdt

+ ε2ρ1(ε),

where ρ1(ε) := E
[
Ê
[ ∫ T

0

( ∫
Eε

|γ̂ (t, s)|2ds)2dt]]. Since E
[
Ê
[ ∫ T

0

( ∫ t
0 |γ̂ (t, s)|2ds)2

dt
]]

< ∞, it follows from the Dominated Convergence Theorem that ρ1(ε) → 0, as
ε → 0.

We now estimate I σ,ε
2 . First we notice that

E[|J ε
2 (t)|] ≤ Cε + C

(∫ t

0
E
[|Ẽ[∂μb̃(s)Ỹ

ε
s ]∣∣2]ds

) 1
2

+C

(∫ t

0
E

[∣∣∣Ẽ[∂μσ̃ (s)Ỹ ε
s

]∣∣∣2]ds
) 1

2

.

Thus,

|Ê[(∂μσ̂ )(t) Ĵ ε
2 (t)]|4 ≤C

(
Ê[| Ĵ ε

2 (t)|])4
≤Cε4+C

∫ t

0

(
E[|Ẽ[(∂μσ̃ )(s)Ỹ ε

s ]|4]+E[|Ẽ[(∂μb̃)(s)Ỹ
ε
s ]|4]

)
ds.

This, combined with (4.18) and (4.23), yields that for any t ∈ [0, T ],
∫ t

0
E

[
|Ẽ[∂μσ̃ (r)Ỹ ε

r ]|4
]
dr

≤ Cε2ρ1(ε)
2 + C

∫ t

0

(∫ r

0

(
E[|Ẽ[∂μσ̃ (s)Ỹ ε

s ]|4] + E[|Ẽ[∂μb̃(s)Ỹ
ε
s ]|4]

)
ds

)
dr.

(4.24)

Analogously, we can have a similar estimate for ∂μb̃.
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Estimate (4.14) then follows from an application of Gronwall’s inequality.
We now prove (4.15). We shall argue that , for any ξ ∈ L∞−(�× �̃,FT ⊗F

W̃ ) :=⋂
p>1 L

p(� × �̃,FT ⊗ F
W̃ ), it holds that

E[|Ẽ[ξ Ỹ ε
T ]|4] ≤ Cε2ρ(ε). (4.25)

We again use (4.18) to write

Ẽ[ξ Ỹ ε
T ] = Ẽ[ξ ρ̃T J̃

ε
1 (T )] + Ẽ[ξ J̃ ε

2 (T )]. (4.26)

Following the previous argument, we first apply the Martingale Representation The-
orem to get, for every t ∈ [0, T ], a unique γ̃ ∈ L2

FT ⊗FW̃
[0, T ] such that

ξ ρ̃T = Ẽ[ξ ρ̃T ] +
∫ T

0
γ̃sdW̃s, (4.27)

with Ẽ
[( ∫ T

0 ‖γ̃s‖2ds
)p] ≤ Cp, whenever Ẽ[|ξ |2p] ≤ Cp, P-a.s., for all p.

Then, by definition (4.19) we have

|Ẽ[ξ ρ̃T J̃
ε
1 (T )]|2 =

∣∣∣∣Ê
[ ∫ T

0
γ̂s

(
η̂sẼ

[
∂μσ(X̂∗

s , PX∗
s
, û∗

s ; X̃∗
s )Ỹ

ε
s

]

+η̂s δ̂σ (s)1Eε (s)
)
ds

]∣∣∣∣
2

≤ Ê

[
‖γ̂ ‖2L2([0,T ])‖η̂‖2C[0,T ]

∫ T

0

∣∣∣Ẽ[∂μσ(X̂∗
s , PX∗

s
, û∗

s ; X̃∗
s )Ỹ

ε
s

]∣∣∣2ds
]

+CεÊ

[(∫
Eε

|γ̂s |2ds
)

‖η̂‖2C[0,T ]
]

(4.28)

≤Cε

(
Ê

[(∫
Eε

|γ̂s |2ds
)2
]) 1

2

+CÊ

(∫ T

0

∣∣∣Ẽ [∂μσ(X̂∗
s , PX∗

s
, û∗

s ; X̃∗
s )Ỹ

ε
s

] ∣∣∣4ds
) 1

2

.

It then follow from (4.14) that

E

[∣∣Ẽ[ξ ρ̃T J̃
ε
1 (T )]∣∣4] ≤ Cε2E

[
Ê

[(∫
Eε

|γ̂s |2ds
)2
]]

+C
∫ T

0
E

[∣∣∣Ẽ[∂μσ̃ (s)Ỹ ε
s

]∣∣∣4
]
ds

≤ Cε2ρ2(ε).

Similarly, one can argue that E[|Ẽ[ξ J̃ ε
2 (T )]|4] ≤ Cε2ρ2(ε) as well, proving (4.15).��
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5 Main Estimates

In this section we establish the main estimate of this paper: a second order “Taylor
expansion” in the following sense:

Xε
t = X∗

t + Y ε
t + Z ε

t + o(ε), t ∈ [0, T ], (5.1)

where the convergence is in L p(F ,C[0, T ]) sense for p ∈ [2, p0), p0 > 2. In other
words, the first-second order variational processes (Y ε, Z ε) can be considered as the
first-second order approximations of Xε − X∗ corresponding to the perturbed control
uε.

Our main result of this section is the following proposition.

Proposition 5.1 Assume that Assumptions 3.2 and 3.3 are in force. Then, for any
1 ≤ k ≤ 3

2 ,

E

[
sup

t∈[0,T ]
|Xε(t) − (X∗(t) + Y ε(t) + Z ε(t))|2k

]
≤ ε2kρk(ε), (5.2)

where, ρk : (0,∞) → (0,∞) is such that ρk(ε) ↓ 0 as ε ↓ 0.

Before we prove the proposition, let us make some simple observations. For nota-
tional convenience let us denote

ηε
t := Xε

t − (X∗
t + Y ε

t + Z ε
t ), t ∈ [0, T ]. (5.3)

Then, by the estimates (4.10) and (4.11), it is readily seen that the following estimate
holds:

E

[
sup

t∈[0,T ]
|ηε

t |2k
]

≤ Ckε
2k, k ≥ 1. (5.4)

Comparing this to our desired estimate (5.1), we see that ourmain task is to sharpen the
estimate by replacing the constantCk by a function ρk(ε) that satisfies limε ↓ 0 ρk(ε) =
0. We shall argue that this can be done for 1 ≤ k ≤ 3

2 .
Our next observation is that the process ηε has the following dynamics:

dηε
t = αε

t (b)dt + αε
t (σ )dWt , (5.5)

where, for φ = b, σ, f , respectively,

αε
t (φ) := φ(Xε

t , PXε
t
, uε

t ) − {φ(X∗
t , PX∗

t
, u∗

t ) + φx (t)(Y
ε
t + Z ε

t )}
−{Ẽ[φ̃μ(t)(Ỹ ε

t + Z̃ ε
t )] + Lxx (t, φ, Y ε

t ) + Ẽ[Lμy(t, φ̃, Ỹ ε
t )]} (5.6)

−{(Ẽ[δφ̃μ(t)Ỹ ε
t ] + δφ(t) + δφx (t)Y

ε
t

)
1Eε (t)

}
.

A key element in the proof of Proposition 5.1 is the following estimate of αε
t (φ).
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Lemma 5.2 Assume that the Assumptions 3.2 and 3.3 are in force. Then there exists
a constant C > 0, such that for any ε > 0 and any t ∈ [0, T ], the following estimate
holds: for :

E

[ ∫ t

0
|αε

s (φ)|3ds
]

≤ Cε3ρ(ε) + C
∫ t

0
E[|ηε

s |3]ds, t ∈ [0, T ], (5.7)

where φ = b, σ, f , respectively, and ρ(·) is a positive function satisfying
limε ↓ 0 ρ(ε) = 0.

Proof As before, let us denote 	Xε = Xε − X∗. Then, for each t ∈ [0, T ], we can
write, for φ = b, σ, f ,

φ(Xε
t , PXε

t
, uε

t ) − φ(X∗
t , PX∗

t
, uε

t ) =
∫ 1

0
{φθ

x (t)	Xε
t + Ẽ[φ̃θ

μ(t)	X̃ε
t ]}dθ, (5.8)

where, for λ ∈ [0, 1],
{

φλ
x (t) := ∂xφ(X∗

t + λ	Xε
t , PX∗

t +λ	Xε
t
, uε

t );
φ̃λ

μ(t) := ∂μφ(X∗
t + λ	Xε

t , PX∗
t +λ	Xε

t
, uε

t ; X̃∗
t + λ	X̃ε

t ).
(5.9)

Recall from (3.4) thatφx (t)=φx (X∗
t , PX∗

t
, u∗

t ) and φ̃μ(t)=∂μφ(X∗
t , PX∗

t
, u∗

t ; X̃∗
t ),

we derive from (5.8) and (5.9) that, for all θ ∈ [0, 1],

φ(Xε
t , PXε

t
, uε

t ) − {φ(X∗
t , PX∗

t
, uε

t ) + φx (t)(Y
ε
t + Z ε

t ) + Ẽ[φ̃μ(t)(Ỹ ε
t + Z̃ ε

t )]}
=
∫ 1

0
{φθ

x (t)η
ε
t + Ẽ[φ̃θ

μ(t )̃ηε
t ] + 	φθ

x (t)(Y
ε
t + Z ε

t ) + Ẽ[	φ̃θ
μ(t)(Ỹ ε

t + Z̃ ε
t )]}dθ,

(5.10)
where 	φθ

x (t) := φθ
x (t) − φx (t),	φ̃θ

μ(t) := φ̃θ
μ(t) − φ̃μ(t). Similarly, we can further

write

	φθ
x (t) = φθ

x (t) − φx (t) = θ

∫ 1

0
{φθγ

xx (t)	Xε
t + Ẽ[φ̃θγ

xμ(t)	X̃ε
t ]}dγ + δφx (t)1Eε (t)

= θ

∫ 1

0
{φθγ

xx (t)ηε
t + Ẽ[φ̃θγ

xμ(t )̃ηε
t ]}dγ + θ

∫ 1

0
φ

θγ
xx (t)(Y ε

t + Z ε
t )dγ (5.11)

+θ

∫ 1

0
Ẽ[φ̃θγ

xμ(t)(Ỹ ε
t + Z̃ ε

t )]dγ + δφx (t)1Eε (t),

where φ
θγ
xx and φ̃

θγ
μx are the second order derivative processes defined by (3.6). The

expression of 	φ̃θ
x (t), however, needs a little more attention, as it involves the second

derivative φμμ which requires a third probability space, denote it again by �̂. Next,
we define

̂
φ̃

θγ
μμ(t) := ∂2μφ(X̂∗

t + θγ	X̂ε
t , PX∗

t +θγ	Xε
t
, ûε

t ; X̃∗
t + θγ	X̃ε

t ); (5.12)

δφ̃μ(t) := ∂μφ(X∗
t , PX∗

t
, uε

t ; X̃∗
t ) − ∂μφ(X∗

t , PX∗
t
, u∗

t , X̃
∗
t ).
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Then, recalling the definition of ηε we have

	φ̃θ
μ(t) = φ̃θ

μ(t) − φ̃μ(t)

= θ

∫ 1

0

{
φ̃

θγ
μx (t)	Xε

t +Ê

[̂
φ̃

θγ
μμ(t)	X̂ε

t

]
+φ̃

θγ
μy (t)	X̃ε

t

}
dγ + δφ̃μ(t)1Eε (t)

= θ

∫ 1

0

{
φ̃

θγ
μx (t)(Y

ε
t + Z ε

t ) + Ê

[̂
φ̃

θγ
μμ(t)(Ŷ ε

t + Ẑ ε
t )

]}
dγ

+ θ

∫ 1

0

{
φ̃

θγ
μx (t)η

ε
t + Ê

[̂
φ̃

θγ
μμ(t )̂ηε

t

]}
dγ

+ θ

∫ 1

0

{
φ̃

θγ
μy (t)(Ỹ

ε
t + Z̃ ε

t ) + φ̃
θγ
μy (t )̃η

ε
t

}
dγ + δφ̃μ(t)1Eε (t). (5.13)

Now by definition (5.6), along with the expansions (5.8), (5.10), and (5.13), we
have the following decomposition of αε(φ):

αε
t (φ)= int10

{
φθ
x (t)η

ε
t +Ẽ[φ̃θ

μ(t )̃ηε
t ]
}
dθ+x1,εt (φ)+x2,εt (φ)+x3,εt (φ)+x4,εt (φ),

(5.14)

where

x1,εt (φ) =
∫ 1

0

∫ 1

0
θ

{
φ

θγ
xx (t)ηε

t (Y
ε
t + Z ε

t ) + Ẽ

[
φ̃

θγ
xμ(t )̃ηε

t

]
(Y ε

t + Z ε
t )

+ Ẽ

[
φ̃

θγ
μx (t)(Ỹ

ε
t + Z̃ ε

t )
]
ηε
t + Ê

[
Ẽ

[̂
φ̃

θγ
μμ(t )̃ηε

t (Ŷ ε
t + Ẑ ε

t )

]]

+ Ẽ

[
φ̃

θγ
μy (t)(Ỹ

ε
t + Z̃ ε

t )̃η
ε
t

] }
dγ dθ;

x2,εt (φ) =
∫ 1

0

∫ 1

0

{
φ

θγ
xx (t)

(
(Y ε

t + Z ε
t )

2 − (Y ε
t )2
)

+ 2Ẽ

[
φ̃

θγ
xμ(t)(Ỹ ε

t + Z̃ ε
t )
]
(Y ε

t + Z ε
t )

+ Ê
[
Ẽ
[
φ̃μμθγ (t)(Ỹ ε

t + Z̃ ε
t )(Ŷ

ε
t + Ẑ ε

t )
]]+Ẽ

[
φ̃

θγ
μy (t)(Ỹ

ε
t + Z̃ ε

t )
2
] }

dγ dθ;

x3,εt (φ) =
∫ 1

0

∫ 1

0
θ
(
φ

θγ
xx (t) − φxx (t)

)
(Y ε

t )2dγ dθ;
x4,εt (φ) = {

δφx (t)Z
ε
t + Ẽ[δφ̃μ(t)Z̃ ε

t ]
}
1Eε (t).

We now estimate Xi,ε, i = 1, · · · , 4, one by one. First, using the fact (5.4), as well
as the estimates (4.9) and (4.10), one can easily derive

E

[
sup

t∈[0,T ]
|x1,εt (φ)|2k

]
≤ Ckε

3k, k ≥ 1. (5.15)
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Next, using (4.9) and (4.10) again, we also have

E

[
sup

t∈[0,T ]
|(Y ε

t + Z ε
t )

2 − (Y ε
t )2|2k

]
≤ Ckε

3k, k ≥ 1. (5.16)

Note that by the definitions of φ̃
θγ
xμ(t) and φ̃xμ(t) we have (recall 	Xε = Xε

t − X∗
t )

|φ̃θγ
xμ(t) − φ̃xμ(t)| ≤ C

[
|	Xε| + |	X̃ε| + (

E[|	Xε|2]) 12 + 1Eε (t)
]

≤ C[|	Xε| + |	X̃ε
t | + ε

1
2 + 1Eε (t)]. (5.17)

It then follows that

E

[
|Ẽ[φ̃θγ

xμ(t)Ỹ ε
t ] − Ẽ[φ̃xμ(t)Ỹ ε

t ]|4
]

≤ E

[
Ẽ
[|φ̃θγ

xμ(t) − φ̃xμ(t)|2]2Ẽ[|Ỹ ε
t |2]2]

≤ Cε2E
[
Ẽ[|φ̃θγ

xμ(t) − φ̃xμ(t)|4]] (5.18)

≤ Cε2E
[
Ẽ

(
|	Xε| + |	X̃ε

t | + ε
1
2 + 1Eε (t)

)4]

≤ Cε2
(
ε2 + 1Eε (t)

)
.

Consequently, following Proposition 4.3, especially estimate (4.25) for any ξ ∈
L∞(FW,W̃

T ; R), we have

E

[∫ T

0

(
Ẽ[φ̃θγ

xμ(t)Ỹ ε
t ]|Y ε

t |
)3

dt

]

≤ C

(∫ T

0
E

[
|Ẽ[φ̃xμ(t)Ỹ ε

t ]|4
]
dt

) 3
4
(
E

[
sup

t∈[0,T ]
|Y ε

t |12
]) 1

4

(5.19)

+ C

(∫ T

0
E
[|Ẽ[φ̃θγ

xμ(t)Ỹ ε
t ] − Ẽ[φ̃xμ(t)Ỹ ε

t ]|4]dt
) 3

4
(

E

[
sup

t∈[0,T ]
|Y ε

t |12
]) 1

4

≤ Cε3ρ(ε) + Cε3
(∫ T

0
1Eε (t)dt

) 3
4

≤ Cε3ρ(ε),

where ρ(ε) → 0 as ε ↓ 0. The same argument allows to show that

E

[∫ T

0

(∣∣Ẽ[φ̃θγ
xμ(t)(Ỹ ε

t + Z̃ ε
t )]
∣∣|Ỹ ε

t + Z̃ ε
t |
)3
dt

]
≤ Cε3ρ(ε). (5.20)

Similar to (5.19) we can show that

⎧⎪⎪⎨
⎪⎪⎩

E

[ ∫ T

0

∣∣Ê[Ẽ[̂φ̃θγ
μμ(t)(Ỹ ε

t + Z̃ ε
t )](Ŷ ε

t + Ẑ ε
t )
]∣∣3dt] ≤ Cε3ρ(ε);

E

[ ∫ T

0

∣∣∣Ẽ[φ̃θ,γ
μy (t)(Ỹ ε

t + Z̃ ε
t )

2]
∣∣∣dt] ≤ Cε3ρ(ε).

(5.21)

123



530 Appl Math Optim (2016) 74:507–534

Combining (5.16), (5.19), (5.20), and (5.21) we get

E

[ ∫ T

0
|x2,εt (φ)|3dt

]
≤ ε3ρ(ε). (5.22)

Furthermore, applying Hölder’s inequality, we get

E

[∫ T

0
|x3,εt (φ)|3 dt

]
≤ CE

[
sup

t∈[0,T ]
|Y ε

t |6
∫ T

0

∫ 1

0

∫ 1

0
|φθγ

xx (t) − φxx (t)|3 dγ dθ dt

]

≤ C

(
E

[
sup

t∈[0,T ]
|Y ε

t |12
]) 1

2
⎛
⎝E

[
sup

t∈[0,T ]
|Xε

t − X∗
t |6
] 1

2

+|Eε|
⎞
⎠

≤ Cε3
(
ε

3
2 + ε

)
≤ Cε3ρ(ε). (5.23)

Similarly, one shows that

E

[∫ T

0
|x4,εt (φ)|3 dt

]
≤ CE

[
sup

t∈[0,T ]
|Z ε

t |3
]

|Eε| ≤ Cε4. (5.24)

Finally, in light of (5.14), we see that (5.15), (5.22), (5.23) and (5.24) imply (5.7),
proving the lemma. ��
Proof of Proposition 5.1 Recalling the dynamics (5.5) of ηε and using (5.7), for φ =
b, σ, f , respectively, one can follow a standard argument via Gronwall’s inequality to
obtain the following estimate:

E

[
sup

t∈[0,T ]
|ηε

t |3
]

≤ ε3ρ(ε), (5.25)

which is (5.2). ��
A direct consequence of Lemma 5.2 and Proposition 5.1 is the following corollary.

Corollary 5.3 Assume the same assumptions of Lemma 5.2. Then the following esti-
mates hold.

E
[|αε

T (h)|3] ≤ ε3ρ(ε), ε > 0, (5.26)

where ρ(ε) → 0 as ε ↓ 0. Recall that αε
T (h) is defined by (5.14) for φ = h.

6 Proof of Theorem 3.5

We are now ready to prove Theorem 3.5. It is worth emphasizing that, while our
analysis more or less follow the well-understood scheme, initiated in [18], there are
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some hidden “road-blocks” in the argument in the general mean-field case, due to
the presence of the second derivatives with respect to measures, especially the fact
that the second order “Fréchet” derivative with respect to L2-random variables may
fail to exist. It turns out, however, that such difficulty can be naturally resolved by
the special structure of the first and second order variational processes Y ε and Z ε,
as well as the estimates we established in Propositions 4.3 and 5.3, we can argue
that the term that potentially involves the second order derivative with respect to
measure [∂2μμ, see (2.8)] is actually of higher order o(ε). As a consequence only the
mixed second order derivatives ∂μy will be effectively in use. Such a phenomenon
has already displayed in an earlier work [7], regarding the relationship between the
mean-field SDE (of type a)) and the PDE, and it again turns out to be essential in our
analysis.

Let (u∗, X∗) be a pair of optimal control and state. Then, for any ε > 0, we consider
the spike variation, uε, of u∗, defined by (4.1). Then by combining the usual Taylor
expansion with the one with respect to measures (2.9)

0 ≤ J (uε) − J (u∗) = E

[ ∫ T

0

(
f (t, Xε

t , PXε
t
, uε

t ) − f (t, X∗
t , PX∗

t
, u∗

t )
)
dt
]

+ E

[
h(Xε

T , PXε
T
) − h(X∗

t , PX∗
t
)
]

= E

[∫ T

0

(
fx (t)(Y

ε
t + Z ε

t ) + Ẽ[ f̃μ(t)(Ỹ ε
t + Z̃ ε

t )]
)
dt

]

+ E
[
hx (T )(Y ε

T + Z ε
T )
]+ E

[
Ẽ
[̃
hμ(T )(Ỹ ε

T + Z̃ ε
T )
]]

+ E

[ ∫ T

0

(
δ f (t)1Eε (t) + Lxx (t, f,Y ε

t )

+Ẽ[Lμy(t, f̃ , Ỹ ε
t )]) dt

]
+ E[Lxx (T, h,Y ε

T )] (6.1)

+ E
[
Ẽ[Lμy(T, h̃, Ỹ ε

T )]]+ o(ε).

We should remark that in (6.1) the terms involving the second order derivative ∂2μ f or
∂2μh do not appear, which we briefly argue as follows. Note that in Taylor expansion
(2.9), or more precisely (2.8), the term involve ∂2μ f reads

�ε :=
∫ T

0
E

[
Ẽ

[
∂2μ f (· · · )(Y ε

t + Z ε
t )(Ỹ

ε
t + Z̃ ε

t )
]]

dt.

But by estimate (4.10) we see that

�ε =
∫ T

0
E

[
Ẽ

[
∂2μ f (· · · )Y ε

t Ỹ
ε
t

]]
dt + o(ε),
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and as from (4.25) (with T = t) combined with (4.9) we get

∫ T

0

∣∣∣E[Ẽ[∂2μ f (· · · )Y ε
t Ỹ

ε
t ]]
∣∣∣dt

≤
∫ T

0

(
E[|Y ε

t |2]
) 1

2
(
E

[
|Ẽ[∂2μ f (· · · )Ỹ ε

t ]|4
]) 1

4
dt

≤ Cερ(ε), for some positive function ρ : R+ → R+ with ρ(ε) → 0 as ε ↓ 0,

we obtain that �ε = o(ε). For this we observe that the function ρ constructed for
(4.25) does not depend on T .

Now using the expression (4.17), and applying (4.9), Propositions 4.3 and 5.3 we
conclude that �ε = o(ε), proving our claim. Now, reorganizing (6.1) to get

0 ≤ J (uε) − J (u∗)

= E

[ ∫ T

0

(
δ f (t)1Eε (t) + Lxx (t, f,Y ε

t ) + Ẽ[Lμy(t, f̃ , Ỹ ε
t )])dt]

+ E[Lxx (T, h,Y ε
T )] + E

[
Ẽ[Lμy(T, h̃, Ỹ ε

T )]]

+ E

[ ∫ T

0
(Y ε

t + Z ε
t )( fx (t) + Ẽ[ f̃ ∗

μ(t)]) dt
]

− E
[
(−hx (T ) − Ẽ[̃h∗

μ(T )])(Y ε
T + Z ε

T )
]+ o(ε).

Note that, by using Proposition 4.2 and the duality relations (4.5)–(4.6), we have

E[pT (Y ε
T + Z ε

T )] = E

[ ∫ T

0
(Y ε

t + Z ε
t )( fx (t) + Ẽ[ f̃ ∗

μ(t)])dt
]

+E

[ ∫ T

0

(
pt (Lxx (t, b,Y

ε
t ) + Ẽ[Lμy(t, b̃, Ỹ

ε
t )]) (6.2)

+qt
(
Lxx (t, σ,Y ε

t ) + Ẽ[Lμy(t, σ̃ , Ỹ ε
t )]))dt]

+E

[ ∫ T

0
(ptδb(t) + qtδσ (t))1Eε (t) dt

]
+ Rε,

where

Rε := E

[ ∫ T

0

(
ptδbx (t) + qtδσx (t)

)
Y ε
t 1Eε (t)dt

]

+E

[ ∫ T

0

(
pt Ẽ[δb̃μ(t)Ỹ ε

t ] + qt Ẽ[δσ̃μ(t)Ỹ ε
t ])1Eε (t)dt

]
.
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We claim that |Rε| ≤ Cερ(ε), and ρ(ε) → 0 as ε ↓ 0. Indeed, notice in particular,

∣∣∣E[
∫ T

0
qtδσx (t)Y

ε
t 1Eε (t)dt

]∣∣∣ ≤ CE

[
|Eε| 12

( ∫
Eε

|qt |2dt
) 1
2 sup
0≤t≤T

|Y ε
t |
]

≤ Cε
1
2

(
E

[ ∫
Eε

|qt |2dt
]) 1

2
(

E

[
sup

0≤t≤T
‖Y ε

t ‖2
]) 1

2

≤ Cε

(
E

[ ∫
Eε

|qt |2dt
]) 1

2 = Cερ(ε).

The other terms can be estimated similarly. Now applying (6.2) we can write (6.1) as

0 ≤ J (uε) − J (u∗)

= E

[ ∫ T

0

(
δ f (t)1Eε (t) + Lxx (t, f,Y ε

t ) + Ẽ[Lμy(t, f̃ , Ỹ ε
t )])dt]

+E[Lxx (T, h,Y ε
T )] + E

[
Ẽ[Lμy(T, h̃, Ỹ ε

T )]]

−E
[ ∫ T

0

(
pt
(
Lxx (t, b,Y

ε
t ) + Ẽ

[
Lμy(t, b̃, Ỹ

ε
t )
])

(6.3)

+qt
(
Lxx (t, σ,Y ε

t ) + Ẽ
[
Lμy(t, σ̃ , Ỹ ε

t )
]))

dt
]

−E

[ ∫ T

0

(
ptδb(t) + qtδσ (t)

)
1Eε (t)dt

]
+ o(ε).

Now, in view of (3.10), we have

0 ≤ J (uε) − J (u∗)

= −E

[ ∫ T

0
δH(t)1Eε (t) dt

]
+ 1

2
E

[(
hxx (T ) + Ẽ

[̃
h∗

μy(T )
])

(Y ε
T )2

−1

2

∫ T

0

(
Hxx (t) + Ẽ[H̃∗

μy(t)]
)
(Y ε

t )2dt
]

+ o(ε). (6.4)

Applying Itô’s formula to Pt (Y ε
t )2 and then taking expectation, we get from (4.9)

and Proposition 4.3 that

E[PT (Y ε
T )2] = −E

[∫ T

0

(
Hxx (t) + Ẽ[H̃∗

μy(t)]
)
(Y ε

t )2dt

]

+ E

[∫ T

0
Pt (δσ (t))21Eε (t)dt

]
+ o(ε).

Notice now the terminal condition of the adjoint process: PT = −(hxx (T ) +
Ẽ[̃h∗

μy(T )]) (see, (3.13)), we obtain from (6.2) that

0 ≤ J (uε) − J (u∗) = −E

[∫ T

0

(
δH(t) + 1

2
Pt (δσ (t))2

)
1Eε (t)dt

]
+ o(ε). (6.5)
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We can now apply the Lebesgue differentiation theorem to deduce from (6.5) that, for
all u ∈ U , a.e t ∈ [0, T ], it holds P-almost surely,

H (X∗
t , u, pt , qt ) − H (X∗

t , u
∗
t , pt , qt )

+ 1

2
Pt
(
σ(X∗

t , PX∗
t
, u) − σ(X∗

t , PX∗
t
, u∗

t )
)2 ≤ 0, (6.6)

proving the theorem.
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