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Abstract We consider the Cauchy problem for the one-dimensional Timoshenko
system coupled with the heat conduction, wherein the latter is described by the Gurtin—
Pipkin thermal law. We study the decay properties of the system using the energy
method in the Fourier space (to build an appropriate Lyapunov functional) accompa-
nied with some integral estimates. We show that the number «, (depending on the
parameters of the system) found in (Dell’Oro and Pata J Differ Equ 257(2):523-548,
2014), which rules the evolution in bounded domains, also plays arole in an unbounded
domain and controls the behavior of the solution. In fact, we prove that if o, = 0,
then the L2-norm of the solution decays with the rate (1 4 7)~1/12, The same decay
rate has been obtained for g # 0, but under some higher regularity assumption. This
high regularity requirement is known as regularity loss, which means that in order to
get the estimate for the H*-norm of the solution, we need our initial data to be in the
space HST50, 59 > 1.

1 Introduction

The purpose of this paper is to study the Cauchy problem of the Timoshenko system
with Gurtin—Pipkin heat conduction for the heat flux [3]:

O — (x —¥)x =0,
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Vit — @Yoy — (pr — ¥) + 86, =0,
6, - é/ 850 (t — 5) ds + 91 = 0, (LD)
0

where the time variable ¢ € (0, 00), the space variable x € R and a and § are strictly
positive fixed constants. The constant 8 > 0 is equal to 1/«, where « is the thermal
conductivity as defined below. The memory kernel g (s) is a convex summable function
on [0, co) with a total mass of:
(0.¢]
1= / g(s)ds.
0

The function ¢(x, t) is the transverse displacement of the beam from an equilibrium
state, ¥ (x,t) is the rotation angle of the filament of the beam and 6(x, t) is the
temperature difference.
System (1.1) is supplied with the following initial conditions:
[(ﬂ(x, 0)=wo(x), ¢x,0)=01(x), ¥(x,0)=1o(x), (12)
Vi (x, 0) = ¥1(x), 6, (x, 0) = 01 (x). '

Originally the Timoshenko system (without heat conduction) consists of two wave
equations describing the transverse vibration of a beam, which can be represented as:

(1.3)

tht - (@x - 1)lf))c = 07
Y — azl/fxx —(px —¥) =0.

System (1.3) is an undamped system and its energy

1
6(1) = 5/R [@ka? + @kvn? + @K ex —w)? + 2 @kvo?} (v, k=0,
(1.4)

remains constant when the time ¢ evolves. To stabilize system (1.3), many damping
terms have been considered by several authors. By considering a frictional damping
term of the form y1 v, (x, t) acting on the left-hand side of the second equation in (1.3),
the system (1.3), as well as its nonlinear version, have been recently studied. Results
concerning global existence and decay estimates of the solution have been established.
Here, we mention some previous work only related to our study, such as Ide et al. [4],
Ide and Kawashima [5] and Racke and Said-Houari [7]. In these papers, the authors
showed that the assumptions

a=1, or a#1
play decisive roles in showing whether or not the decay estimates of the solution are

of regularity-loss type. Indeed, in Ide et al. [4], it has been shown that the solution
V = (@1, ¥y, ary, x — )T of (1.3) satisfies the following decay estimates:
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(1.6)

where {

105V Il = ().
It has been proved recently in [11], that by considering an additional damping term
of the form yy¢; (x, t) acting on the left-hand side of the first equation in (1.3), then,
surprisingly, the decay rate becomes slower than the ones obtained in (1.5) and (1.6).
In fact, the authors proved, without any assumptions on «, the following estimate:

<CA+0)71BKA vl + Ce (1.7)

a,’;va)‘

oV

L? L2

On the other hand, they showed that by considering the damping term yp¢; (x, ¢) alone
and under the same assumption on a, similar estimates as in (1.5) and (1.6) hold with
the decay rate (1 + t)_l/g_k/4 instead of (1 + t)_1/4_k/2.

For the Cauchy problem of Timoshenko system in thermoelasticity, where the heat
conduction is described by the classical Fourier law in which the heat flux ¢ (x, 7) is
proportional to the gradient of the temperature 6 (x, t); i.e.,

q(x, 1) = —kbx(x, 1), (1.8)

where k > 0 is the thermal conductivity, the following system (after normalizing the
constants) is obtained:

Ptr — (§0x - W)x = 07
Vi — @ s — (9x — ¥) + 865 =0,
Or — Oxx + Sl/ftx =0. (1.9)

The initial value problem (1.9) was first studied by Said-Houari and Kasimov in
[8] and [9], where the authors proved in [9] that the solution W = (¢, ¥y, ary, ¢x —
¥, 0)T decays with the rate:

W () ll2 < C A+ 07O Wl 1+ Ce™ |9 Woll 2, (1.10)
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fora=1landk=1,2,...,s, and

1XW (1) 1,2 < C (14 0) V12RO Wl o+ € (1 + 072 185w 12,

(1.11)
fora # 1l and k = 1,2, ...,s — £. While, in [8], they showed that the same decay
estimates can be obtained with the optimal decay rate (1 + )~ "/4=%/2 instead of

(1 + 1)~1/127k/6 " provided that an additional frictional damping term of the form
AV (x, t) is considered in the second equation of (1.9).
It is well known that the use of the Cattaneo law

Tqi(x,t) +q(x,t) = —kbOx(x,t), (1.12)

instead of the Fourier law (1.8) of heat conduction removes the paradox of the infinite
speed of propagation in the Fourier law. The coupling between the Cattaneo law and
the Timoshenko system leads to the following system:

@i — (px — ¥) =0,

Vi — a2¢xx —(px —¥) + 86, =0,

O +gx + 8¢ =0,

79 +q + 6, =0. (1.13)

It was shown in [9] that the same decay rates as (1.10) and (1.11) hold for the
solution of (1.13), but the decay rate is controlled by a new number (found first in

[10D)
o= (-1 -a*—18 (1.14)

rather than by a. In fact, they proved that the estimate (1.10) is obtained under the
assumption o« = 0 which is exactly the assumption a = 1 for t = 0 (Timoshenko—
Fourier system).

In (1.12), one can directly express g (x, t) in terms of 6(x, t) from this equation,
but it becomes a nonlocal (in time) relationship

t
g (x,1) :_5/ 0, (s)e“™D/7gs. (1.15)
T

—00

A more general form of Eq. (1.15) was given by Gurtin and Pipkin [3]:

t
q(x,t)= —K/ gt —15)0y(s)ds, (1.16)

—00

where g (s) is the heat flux relaxation kernel.
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Many different constitutive models arise from different choices of g(s). Equation
(1.15) can easily be recovered from (1.16) by assuming that

1
g(s)=—e /7. (1.17)
T

Also, the Fourier law can be seen as the singular limit when e — 0 of the Gurtin—Pipkin
law (1.16) with the kernel

N

ge(s) = ég (g) e > 0.

Furthermore, the heat flux law of Jeffrey’s type

t
g (x,1) = —K1 6 (1) — K—2/ 0, (s)e“~D/7ds,
T

—00

can be obtained by letting
() =kid (s) + e
T

in (1.16), where k1 and > are two positive constants and § is the Dirac function. See
[6] for more details.

The main goal of this paper is to investigate the decay rate of problem (1.1). In fact,
we prove that the same number o

g o B
=——=1)(1 — — 85—, 1.18
% <g<0) )( =0 (1.18)

which controls the behavior of the solution in bounded domains ([2]), also plays a role
in unbounded situation and affects the decay rate of the solution (see Theorem 4.1).
More precisely, we prove that the energy

Ex(t) :(g’k(r)+l/wu(s)/ 1050 (x, 1, 5)|* dxds (1.19)
B Jo R

satisfies the estimates (4.1) and (4.2) below.

It is obvious that if we take g(s) as in (1.17) (Timoshenko—Cattaneo), then o
reduces to the same number « in (1.14).

By taking the kernel g(s) = g¢(s) and letting ¢ — 0, the assumption ag = 0
reduces to a = 1 in the Fourier model. See [2] for the details.

This paper is organized as follows: In Sect. 2, we state the problem. Section 3
is devoted to the energy method in the Fourier space and to the construction of the
Lyapunov functionals. In Sect. 4, we prove the main estimates of the solution in the
energy space.
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2 Statement of the Problem
First, we recall system (1.1) and write

0 — (ox —¥)x =0,
Yie — @ Yax — (9r — V) + 86, =0,

6, — % - 9(8)0xx(t — 5) ds + 8y = 0. @1
0

Following [1], we introduce the new variable

N t
n(x,t,s) =/ O(x,t —o)do =/ O(x,0)do s>0,1>0. 2.2)
0 t—s

Differentiating (2.2) with respect to ¢ yields that n satisfies the supplementary equation
ni(s) = —ns(s) +0@), n0)=0, Vr=0, 2.3)

which has to be added to system (2.1). Then, we define the operator 7n = —n’. From
(2.3), we get the following equation:

n=Tn+0. 2.4

Also, we define 1(s) = —g’(s) and assume that  satisfies the following two assump-
tions:

(M1) w is a nonnegative nonincreasing and absolutely continuous function on R
such that
#(0) = lim pu(s) € (0, 00).
s>

(M2) There exists v > 0 such that the differential inequality
W' (s) +vu(s) <0

holds for almost every s > 0.
With all these new variables, we rewrite system (2.1) as:

0t — (x —¥)x =0,
Vit — @* Py — (9 — ¥) + 86, =0,

1 o
6 — 5 () xx (s) ds + 8 =0,
0
n=Tn+6. 2.5

To rewrite the system as a first-order (with respect to ¢) differential system, we define
new variables, as follows:

V=@ — Y, u=g@, z=ay, y=1y.
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Hence, system (1.1) takes the form

vr—uy+y=0,
U — vy =0,
It — ayx :07
yi—azxy —v+686, =0,
1 o0
0, — 7 o m(S)nex(s) ds + 8yy =0,
n=Tn+0. (2.6)

Now, we define the solution
Ux,t) = (v,u,z,y,@,n)T. 2.7
Hence, the initial conditions can be written as
Uo(x) = U(x,0) = U (vo, uo, 20, 0. 60, 10" - 2.8)

Before closing this section, we introduce the following lemma, which will be used
later in the proof of our main result.

Lemma 2.1 Forall k > 0, ¢ > 0, there exists a constant C > 0 such that for all
t > 0 the following estimate holds:

/|s| ) Effe g < (1 41" *HV/6 g eR. (2.9)
<

Proof First, observe that

1
/ i 1Fe el gg = 2 / rke=er’l ar.
jg1<1 0

Thus, it is enough to prove that for given ¢ > 0 and k > 0, we have

1
/ rke=etqr < C(1 + 1)~ *FD/6 (2.10)
0

for all + > 0, where C is a positive constant independent of ¢. To see this, observe first
that, for 0 < r < 1, the estimate (2.10) is obvious. On the other hand, for r > 1, we
have

(14+1) < 2t. @2.11)
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Now, using (2.11) and the change of variables z = cr%z, we get
1 1
2= +D/6k+1D/6(1 4 t)(k+l)/6/ Phe=erSt g < C(k+1)/6t(k+1)/6/ Phe=ert g,
0 0

1
=/ (crﬁt)k/éefcr%(ct)lmdr
0

1 ct
.
0
1 00
< g/ Z(k—i—])/ﬁ—le—zdZ
0

1 k+1

r(E) <o,

6 6

where I' is the Gamma function. This yields (2.9). This completes the proof of Lemma
2.1. O

3 The Energy Method in the Fourier Space

Our goal in this section is to obtain some decay estimates of the Fourier image of the
energy of (2.6). To achieve this, we use the energy method in the Fourier space and
build some appropriate Lyapunov functionals, which lead eventually to our desired
estimates.

Applying the Fourier transform to (2.6), we get

U —iEli+3 =0, (3.1)
iy —iE0 =0, (3.2)
4 —ai&) =0, (3.3)
Y, —ai€: — 0+ 8ik0 =0, (3.4)
. 52 00

6 + ?/ w($)A(s)ds + 8iEH =0, (3.5)

0
h=ThH+6. (3.6)

Together with the initial data, written in terms of the solution vector U &,1) =
(0,0,2,9,0, )T, 1), as

U, 0) = Up(&). (3.7)

The energy functional E(s , 1) associated to the system (3.1)—(3.7) is defined as fol-
lows:

. . . . P i .
[|v|2+|u|2+|z|2+|y|2+|9|2+§ w()A, s)* dst .
0

(3.8)

| =

EE 1) =
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Lemma 3.1 Let 0,u,z,y, 0, n) be the solution of (3.1)—(3.7), then the energy
E (&, 1) given by (3.8) is a nonincreasing function and satisfies, for all t > 0,

dEgz)—gz ~ A, $)°d 3.9)
E(’ —ﬁOM(S)In,SI& 3.

Proof Multiplying Eq. (3.1) by 9, Eq. (3.1) by &, Eq. (3.2) by Z, Eq. (3.3) by 5 and
Eq. (3.4) by 6 adding the results and taking the real part, we get

d /. R . R A
(108 11 127 + 157 +167) = —Re[—e(r s)/ )i, s)ds]
(3.10)

N =

Taking the conjugate of Eq. (3.5), then multiplying the resulting equation by
()N (€, t, s) and taking the integration with respect to s, we obtain

/O W()TE, 1, )0, (5, 1, 5)ds

=—/0 u(s)ﬁ(é,r,s)fzs@,r,s)ds+/O W(AE. 1, 9B, 1) ds.

Hence, we have

2 e’} _
—Re[%/o WA 1. 9B 1) ds]

B
{ M(S)n(é 1, )05 (€, 1,5) ds]

2 o0 _
- —Re[E— /0 u(s)ﬁ(s,r,smt(s,z,s)ds]

—/0 u(s)lﬁ(s,t,s)lzds}

2 00 -
_Re<?/() M(S)ﬁ($7t’s)ﬁv(§9tvs) dS] (311)

Integrating the second term in the right-hand side of (3.11) by parts and using the
assumption (M1) and (2.2), we have

2 o] _ 2 oo
—E—Re[/ M(S)ﬁs(é,t,S)ﬁ(é,t,S)dSI=E—/ WOIAE 1, 5)Pds.
B 0 26 Jo
Hence, collecting (3.10) and (3.11), then (3.9) holds. O
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Now, let

2(0) :/0 [1(s) ds. (3.12)

Following [9], we define the functional

2 _
G(E,t):Re[—if); p aﬁ§+(l 2 4 ﬂ)séﬁ]

g0~ g0 82 82 g(0)
2 oo )
+18g(g) Re (ig/o w()A(5)? ds). (3.13)

Then, we have the following lemma.

Lemma 3.2 The functional G (&, t) satisfies

d B o B a0
d—tG(SJ) _g(0)|y| +—g(0)|vl
— % Re (5215/ u,(s)ﬁ(s)ds) + g Re(i£0i5)
B 0
n 1-a® e (ig/oo ()57 (s) ds) n l-a®pe (ig/oo "(5)7(s)D ds)
52(0) o T 52(0) o 1T ’
(3.14)
where
B 2 2 B
= (2 1) —a?) -2 3.15
% (mm )( 0 ©.15)

Proof Multiplying Eq. (3.1) by —§ and Eq. (3.3) by -9, adding the results and taking
the real part, we have

d AR A ~ v AR v AA o AR
- ZRe(uy) — 19> 4+ 19)> = —Re(i€iy) — Re(ai&02) + Re(8i00).  (3.16)

Multiplying Eq. (3.1) by —aZ and Eq. (3.2) by —ai, adding the results and taking the
real part, we find

d _ _ _
- Re(aiiz) = — Re(ai&03) — Re(a?i&nd). (3.17)
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Multiplying Eq. (3.1) by 85 and Eq. 3.4) by é i, adding the results and taking the real
part, we obtain

- - 2 _ poo .
%Re((Séﬁ) = Re(8i£00) — Re (%u/ u(s)ﬁ(s)ds) — Re(8%i£0y).
0
(3.18)

Now, computing %(3.16)4—

)(3 17)+( — 52 + g(o))(3 18), we obtain (after col-
lecting the similar terms)

8@

pen Bogay B oo
th(S,t) g(o)lyl +g(0)|v|
a2

1 B N -
— _(8_2 -t m) Re (714/0 M(S)T)(S)ds)

2

+ o Re(ii5) + ——“ Re(i£b?), (3.19)
where
_ B s B (L @ B\
e = Re[ oY w0t (75 o) 59”]
and

BB ool @ i)]
% = [g<0) 20) 5(52 27 50

= (i - 1)(1 —a?) — 2P
g(0) £(0)

Multiplying Eq. (3.1) by —i&u(s)A(s) and Eq. (3.5) by i&1(s)?, adding the results,
taking the integration with respect to s and taking the real part, we have

— Re (15/ ,u(s)n(s)v ds)
—Re (52 / H(s)iR(s) ds) 4 Re (z’s / HE)FA) ds)
0 0
+Re (is /oo w(s)THD ds) +Re (ig /oo ()00 ds). (3.20)
0 0
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Computing (3.19)+1=% 0] g(o) (3 20), we have

P e Lo
G0 =557+ 2510

s(1 da® B [ l—a® =
:—5(8—2—8—2+E)Re($2u/0 u(s)n(s)ds)-l— 5 Re(i§6v)

2 00
+ o, Re(iE0)) + —— L= Re ( / w(s)n(s) ds)
0

3g(0)
+ l-a e (ig/ ()97 (s) ds) 1_— (zg/ 1u()THD ds)
3g(0) 0 8g(0)
_1-a? (ig /oo 10(5)09 ds). 3.21)
3g(0) 0

Using (3.12), the last term of (3.21) can be written as

L= Re(zs/ ()60 d ) l_azRe(igéﬁ/oo (s)ds)
" 5500 a IO o ¥

1—a2 R
= - 5 Re(i&6v).

While, integration by parts leads to

1-a® e ('5 /Oo ()THD ds) 1-a® b (ig /oo '(5)7(s)D ds)
—_— i = .
52(0) ek 52(0) o K

Plugging the above estimates into (3.21), hence, Eq. (3.14) holds and this ends the
proof of Lemma 3.2. O

We define the functional:
K(@E 1) = Re{igéﬁ +ai§9§}. (3.22)

Thus, we have the following estimate.

Lemma 3.3 For any €1, € > 0, the estimate

d
SKED+ E2(1 —eaf® + &2 — )2

< CleN(1+EDF? + Cle)(1 + £ + Clen)E?10)?, (3.23)

is satisfied.
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Proof Multiplying Eq. (3.1) by i€ and Eq. (3.1) by —i£0, adding the results and
taking the real part, we obtain

%Re(iséﬁ) + £2104)> — £%0)> = —Re(iEi).
Applying Young’s inequality, we have, for any €; > 0,

|Re(i&a)| < e18%lal + C (D3I
Hence,

J Re(g0i) + (1 - eNEXA? < E2012 + ClenlPI*. (3.24)

Multiplying Eq. (3.2) by —ai§§ and Eq. (3.3) by ai&z, adding the results and taking
the real part, we obtain

d _ _ e
- Re(@ig§?) — a?82 |51 + a’E% 121> = Re(ai&D2) + Re(a&?803).
Applying Young’s inequality, we have, for any €3 > 0,
AR € N N
|Re(ai&d2)| < gszmz + C(e2)]d)?

and
Az € R ~
|Re(a&2863)| < §s2|z|2 + C(e)E216)%.

Consequently, we have from above

d = . . . ~

- Re(@igsd) + (@® — e)&%|21 < a®8251> + C(e) 0] + C(e2)E210)%.
(3.25)

Summing up Eqs. (3.24) and (3.25), then (3.23) holds. This ends the proof of Lemma
3.3.

Lemma 3.4 The following inequality holds true:

d = 49(0) [
£ Re0) + (6 — cpE5P = cm% /0 () 1Gs, D) Pds

A2 212
2|7 + e3§7v]%,

(3.26)

+Ce&)(1+£2)01> + &

1+¢2

where €3 and €4 are arbitrary positive constants.
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Proof Multiplying Eq. (3.3) by i.§9; and Eq. (3.4) by —i& );1 adding the results and
taking the real parts, we have

i Lo AA 20802 1412y _ l L 3% o0 N
7 Re(i§y0) + 8&°(IyI” —1017) Re|i&”y w(s)n(s)ds
t B 0

— —Re(a&263) + Re(i£6D). (3.27)

Applying Young’s inequality, we have, for any €3, €4 > 0,

_ 4
|Re(@g*02)| < & 7= 2 21> 4+ C(e3)(1 + E7)16)?, (3.28)
|Re(i£00)| < 362152 + C(e3)| (3.29)
and
%-3 _ roo €:4 00 2
‘mQﬁAummm)yﬁm%amﬁéﬁmmm

Now, using (3.12) together with the following inequality

2

2 oo
= ‘ /0 (() 2 (u(s)) 27 (s) ds

00 3 00 312
< (/0 M(S)ds) (/0 M(S)(ﬁ(S))zdS)
=( / M(S)dS) / w(s)1(s, 1) ds

0 0

= g(0) /0 w()|A(s, 0)1ds,

‘/0 p(s)n(s)ds

we obtain

53 _ oo
‘Re (igﬁ/o M(S)ﬁ(S)dS)

Hence, plugging this last estimate together with (3.28) and (3.29) into (3.27), we obtain
(3.26). This completes the proof of Lemma 3.4.

£42(0)
132

< &3 + Clea)

/0 W(s)[Gs, DPds.
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Lemma 3.5 The following inequality holds true:

~ 4 e £2 ” ($)N()8 ds ) + (g(0) — e6)&2(0)
dt 0 MAS)N 8 6

1 oo
= (C(es) + E)g(O)Ez(l +E2)/0 w()IAs, DI ds

£ 52 rone2 [ s 2
Tyl + Clep)g'(0)8 A w($)als, 0" ds, (3:30)

where €5 and €¢ are arbitrary positive constants.

Proof Multiplying equation (3.5) by —gz,u,(s)é and Eq. (3.4) by —Ezu(s) r:; (s), adding
the results and taking the integration with respect to s for the real parts, we have

o d 2 [ 2NA 2 [ 512
p Re (& u(s)n(s)o ds ) +§ w01~ ds
t 0 0

4 00 _ 00 00 =
=Re (S—/ M(S)ﬁ(S)/ w(s)n(s) ds dS) —Re (52/ w(s)0TH dS)
B Jo 0 0

+Re (5:‘53 /0 ST ds).

Now, integrating by parts the second term on the right-hand side of the above equality,
we get

_d 2 [ PRy 2 512
Re(s /0 M(S)n(S)BdS)JrEg(O)I@I

dt
54 %) 2 00 -
=Re (—(/ w(s)nis) dS) ) —Re (Ez/ W' ()n(s)0 dS)
B \Jo 0

+Re (5;‘53 /Ooo w($)H(s)H ds). (3.31)

Applying Young’s inequality, we have, for any €5, €6 > 0,

Re (51-53 / RS ds)
0
4

© ¢
/0 (i, HI? ds t &7

‘Re (52 / " )i ds)
0

/0 1 ()G, 1) ds

< C(es)E*(1 + £)g(0)

151

< €6£210)> 4 C(e6)E%8'(0)
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4 ) 2 4 0 00
Re (%(/O w(s$)A(s) ds) ) < %/0 (i, Hl*ds.

Hence, inserting the above estimates into (3.31), then (3.30) is fulfilled. Thus, the
proof of Lemma 3.5 is finished. O

and

Proposition 3.6 Let U (£, 1) = (0, 4, 2, 9, 0, ) be the solution of (3.1)~(3.6) and

B 2 B
(L _Na-r- L s 3.32
% (g(0> )( L0 (3-32)

Then, there exist two positive constants, C and c, such that for all t > 0:

E(, 1) < CE(§,0)e @), (3.33)
where
£° .
= i =0,
p(€) = (1*%?2)3 (3.34)
e A ek

Proof Case one: o, = 0. Substituting oy = 0 into Eq. (3.14), we obtain

d__ B o B
dtG(é,t) g(o)l)’| +g(0)|v|
_1-a Re(ig/oo (s)‘(s)nzs)Jrl_a2 Re(ig/oo /(s)A(s)ﬁds)
~ 55(0) g FITeN 52(0) o '

(3.35)
Now, applying Young’s inequality, we find, for any ¢y > O,

‘Re (is /0 ()N ()9 ds)

2

< el + C(Go)éz‘ /0 ()7 (s) ds

< l3I* + C(en)Eg(0) /0 w()|A(s, 1) ds

and

2

Re (ig/ W ($)7i(s)0 ds)
0

< eld* + C(eo)éz'/o w'()n(s) ds

< €l0]* + C(e0)&%g'(0) /0 1 ()| (s, ) ds.
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Hence, taking the above estimates into account, then (3.35) can be written as:
d B ~2
_G 1 - _
7 &, 0+ (g(o) €o)|v|
o o
< c<eo>(|y|2 — /0 £/ ()IA(s. O ds + /0 Euis)lics, I” ds).
(3.36)

Define the functional
%-2
1482

—y4Re ( / b £211(s)n(5)0 ds), (3.37)
0

2

ke +y Re(ié‘ﬁ@:)}

L&, 1) = [mszG@,n + 1

where y1, y2, y3 and y4 are positive constants to be fixed later. Taking the derivative
of L1(&,t) with respect to ¢t and using the estimates (3.9), (3.23), (3.26), (3.30) and
(3.36), we have

d 4,
ELl(S, 1)+ [(5 —e4)y3 — Cleg)y1 — Clepyr — 65)/4]m|y|

[ g(0) 1 2 [ .2 . 2
— | Cleom + 7355 Clea) + (Cles) + s Oya |1 +£7) | E2u(s)li(s, )1 ds

(B B B i ~2
+ _(@ 60)7/1 Cle)y2 63)/3} a +$2)|v|
+ [ (g(0) — €6)ya — Cle2)yn — C<e3)y3]52|é|2
+ya(l — él)ilﬁlz + [(02 —€)y) — 63%]%*6'2'2

(14£2)?2 "1 +£2)?
4 .

—[C(eom e +C<66)y4g’(0)} /0 " e I ds
<. (3.38)

In the above estimate, we have used some trivial inequalities, such as £*/(1+£2) <
£2,&%/(1+£%) < 1andsoon.
Now, using the assumption (M2), we may write

o0 1 o0
/0 E2 ()|, )% ds < - /0 (—i ($))E%1A(s, 1)|* ds. (3.39)

Consequently, taking into account the above estimate, we may rewrite (3.38) as:
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4

d
—Li(§, 1)+ |:(8 —eg)ys — Cleg)yr — Cle)yr — €5V4}(liﬁlﬁl2

dt

+ [(i — 60)1/1 —C(e2)y2 — 637/3}L|13|2
2(0) (1+£2)
+ [(g(m —e6)ys — C(€)yr — c&m}sﬂé 2

6

g6 g6
+ (1 — 61)m|u|2 + |:(Cl2 — €)Y — €3V3]m|2|2
—C( 48 /0 (=i (sNEAGs, O ds
<o, (3.40)

where C| is a generic positive constant that depends on ¢;, y; and v, yetis independent
ont andé&.

Now, we choose the constants in (3.40) very carefully in order to make all the
coefficients (except the last one) in (3.40) positive. Let us fix €g, €1, €2, €4, and €q
small enough such that

€ < € < 1, € <a’, €4 <8, €6 < g(0).

b
g(0)’

We take y» = 1 and choose y) large enough such that

’ (% - 60) —Cle) > 0.

Next, we choose y3 large enough such that
=y1C(e0) — C(€1) + y3(8 —€4) > 0.

Then, after fixing y1, y3, €o and €3, we choose €3 small enough such that

(nGh —e) —Cle) &2 g
€3 < min )
V3 V3

Now, we choose y4 large enough such that

(g(0) — €6)ys — C(e2) — y3C(e3) > 0.

Finally, we fix €5 small enough such that

—y1C(€0) — C(er) + y3(6 — €4)
€5 < .
V4
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Consequently, we deduce that there exists a positive constant n; > 0 such that

d o0
ELI("EJ)‘FTIIQI(SJ)§C1(1+§2)/0 (=W ($)EX (s, 0> ds, (3.41)

where

2 21912 4+ 2
01(€,1) = ey (1P + ) + 82107 + i (0P +15P). (3.42)
It is straightforward to see that
6 N N N N A
01(6.0) = iz (1 + 22 + 19 + 512+ 161%) . (3.43)
Now, we define the Lyapunov functional

LiE D =NA+EVEE D)+ LiE, 1), (3.44)

where N is a large positive number that will be chosen later on. Using (3.9) and (3.41),
the functional . (&, t) satisfies the estimate

d N o
SAED+mE N+ (55 -Cr)a +e§2>/ (= ©)E it ) ds < 0.
t 2p 0
(3.45)

By choosing N large enough such that
N > 28Cq,

and exploiting the estimate (3.39), we deduce from (3.8) and (3.43) that there exists a
positive constant 7, such that
d AE D+ §° E(E 1) < vVt >0 (3.46)
ar” U T e 0 v=0 '

Now, using (3.44) and (3.37), together with the definitions of all functionals involved
in (3.37), we deduce that there exist two positive constants 81 and B, such that, for
allr >0,

B +EHEE ) < L, 1) < (1 +EDEE, D). (3.47)
Combining (3.46) and (3.47), we find that for all # > 0, we have

é_—é

_"%(g n=- ﬂ 1+82p

£6E,n,  Ve=0. (3.48)
Applying Gronwall’s lemma and using (3.47) once again, then (3.33) holds.
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Case two: o, # 0. From Eq. (3.14), we estimate the following terms by applying
Young’s inequality, for any € > 0,

%-2

_(/)
2 1+¢2
/
)

lotg Re(i&a3)| < )2 4 C(eh)(1 + €232,

5§Re(s ”/o M(S)ﬁ(S)ds)’§ 5 1i52' ?

+ C(eh)g(0)(1 + &%) /0 E2 ()| (s, 1)|* ds.

Hence, taking the above estimates into account, (3.14) can be written as:

2
= G(E, z)+(i—eo)|v|2 & |i)? + C(eo. €))(1 + £)[$?

(0) 01 +¢2
+C (€0, €)) (1 + EH)g(0) /0 E2 ()| (s, )| ds

+C(€0)g'(0) /O 2 ()G, ) ds.  (3.49)

Also, we estimate Eq. (3.27) as follows

d x . 49(0
7 Re(i830) + (6 — &5 < Clen)® §§ )

/0 (), 1) ds
g £2 %

C 1 22152 2
+ C(e3)(1+&7)710| +€3(1+§2)2|Z| +631+g2|v

, (3.50)

where we used the inequalities

252 gt
|Re(a&702)| < (1+§2)2|Z| + C(e3) (1 +£H%6/2,
2

e 151> + C(e3)(1 + £9)10]%.

|Re(i£09)| < €3

On the other hand, we can estimate (3.31) as follows:

d o0 — A ~
——Re (sz /0 ()7 (s)0 ds) + (2(0) — €6)&%101

dt
&-4
(1+§2)2|y| +(C(e5>+E>g<0)<1+s )2/ E2(s)[A(s. O ds
+C(e6)g'(0) /0 E2u/ (9)1As. ) ds, (3.51)
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where we made use of the estimate:

‘Re (&'53 / h u(s)ﬁ(s)y) ds
0

< C(es)E*(1 +£%)%5(0) /0 w()|AGs, 1) ds

54

+€5m|§’|2~
Now, we define the functional
g2 g2 §2 nd
LD = 75 pp [M O N g aEKE D+ Re(zsye)}
—J4Re (52 /0 RCTY, ds), (3.52)

where A1, A2, Az and A4 are positive constants to be fixed later. Taking the derivative
of L, (&, t) with respect to ¢ and using the inequalities (3.23), (3.49), (3.50) and (3.51),
we have

dt

d /
—La(§, 1) + [— C(e, €g)r1 — Clera + (6 — €4)A3 — 65)»4]

g,
REYSE +§2)2|y|

i A 1 0o R
—| Cleo. €p)r1 + C(e4>ﬁ% +(Cles) + Em]g«))(l +82)? /0 E2 ()| (s, 1) ds
: "1+ A € e A (a? A e
+_—€0 1+ A2(l —€p) WM + [A2(@” —€2) — A3€3 mm
Jr_/\l(i - 60) — C(e2)An — Méz]gé‘lﬁlz
L \20) U114 £2)3
+| = 22C(e2) — Clez)r3 + (g(0) — 66))»4:|§2|é|2
r o0
+ xlc(eo>+A4C<e6)}g/<0) /O E2(—1 ()Iii(s, DI ds
<0. (3.53)
Now, using (3.39), we may write (3.53) as:
d ) 4
ELz(S, 1)+ | — C(eo, €g)r1 — Ce1)Aa + (8 — €4)A3 — €5A4 ml)’l
- €M+ ra(1 — m}iw + [/\2(612 —e)— A3e3}—6|2|2
L (14824 (1+&2)*
i B g4 "2
Ml— —e ) — r — M6 | ———
+ i l(g(O) Go) C(e2)22 363}(1 +§2)3|v|
+| = 22C(e2) — Ce3)r3 + (g(0) — eém}s%é B
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—C(+&%? /0 E2(— 1 (NIA(s, 1) ds
<o, (3.54)

where C is a generic positive constant that depends on ¢;, y; and v, yet is independent
ont andé&.
As we did in case one, we fix €y, €1, €3, €4 and €g as follows:

€@ < —, €1 <1, € < a2, €4 <6, €6 < g(0).

g(0)

Also, we choose A; as we did for y;. That is we fix > = 1 and choose 1| large enough

such that
A (% — 60) —C(er) > 0.

Furthermore, we choose e(’) small enough such that

, 1 —¢€;
€y <

A

Next, we choose A3 large enough such that
—C(eg, €g)r1 — C(€1) + (8 — €49)A3 > 0.

Then, we fix €3 small enough such that

(MG —e) = Cle) &2 g
€3 < min , .
A3 A3
Now, we choose A4 large enough such that
(8(0) — €6)ra — C(e2) — A3C(e3) > 0.

Finally, we pick €5 small enough such that

—21C(€0, €)) — C(e1) + 13(8 — €4)
Ag ’

€5 <
Consequently, we deduce that there exists a positive constant n3 > 0, such that
d 22 [T 2 2
7260 +m 026, 1) = CA+£7) / EX(—p/ (Ni(s, D" ds, (3.55)
0
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where
g6 A2 A2 g4 .12 g4 A2 L 221412
)= — a|-.
02, 1) 112 ™ + 12|17 ) + (1+52)3|U| + (1+52)2|)’| +£710]
(3.56)
It is straightforward to see that
(.1 > £ (|ﬁ|2+ 217 + 191 + 91> + |é|2). (3.57)
1+ 52)4
Now, we define the functional
L) =M1 +EDEE D)+ Lo, 1), (3.58)

where M is a large positive number that will be chosen later. Using (3.9) and (3.55),
the functional .% (&, t) satisfies the estimate

d M o0
TDED 102 0 + (— - c)(l +52)2/ E2(— 1 ()R, $)|* ds < 0.
t 28 0
(3.59)

By choosing M large enough such that
M > 2C8,

we deduce from (3.8) and (3.57) that for M large enough, there exists a positive
constant n4 such that

d 0 .
E"%(é’ 1)+ n4mE(§, 1) <0, Vi > 0. (3.60)

Now, using (3.58) and (3.52), together with the definitions of all functionals involved
in (3.52) for all £ € R, there exist two positive constants 83 and B4, such that, for all
t >0,

B+ ED2EE, 1) < L(E 1) < Ba(1 +ED?EE, D). (3.61)

Combining (3.60) and (3.61), we have

6
na &
—f ———— (1), Vt=0. 3.62
2(6.1) = — s (1120 26, 1) (3.62)
Applying Gronwall’s lemma and again using (3.59) give (3.33). O
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4 The Decay Estimate
In this section, we derive the decay rates of the energy of (2.5) together with (1.2).

Theorem 4.1 Let s be a nonnegative integer, g, = (% - 1)(1 —a%) — 82&% asin

(3.15), and assume that E;(0) and Suplé\fl{E(S’ 0)} are bounded. Then, the energy
E (1), defined in (1.19), satisfies the following decay estimates:

o ifa, =0

Ei(t) < C sup {E(E,0)}(1 + 1)~ /O7 3 4 Ce™ Ex(0), @.1)
[&1<1

o ifay, #0

Ex(1) < C sup (EE,0)}(1+0)7VK3 11 +1)" P Erie(0),  (4.2)

[§l=1

where k and £ are nonnegative integers satisfying k + £ < s and C and c are positive
constants.

Remark 4.2 In many situation like the Fourier model of the Cattaneo one, if we assume
that the initial data to belong to L IA(R), then we can easily see that (using the Hausdroff—
Young inequality) that supjz < { E(§, 0)} can be estimate by the L'-norm of the initial
data.

Proof of Theorem 4.1 Case One: a, = 0. In this case, using (3.34), we have

c&® for |E] <1,
c for |&]| > 1.

p(§) = (4.3)

Applying the Plancherel theorem together with inequality (3.33), we have:

Ex(r) = /R EPEEE. 1) de
<c / & PEe P E (e, 0) dE
R

=C / |&|e=PE E(E,0) dE + C / &P E (g, 0) dE
[E1=<1 [&]>1

=1L+ L(®).

Here, we split the integral into two parts, so that 7 (¢) is the low-frequency part where
|&] < 1 and I5(¢) is the high-frequency part where |£] > 1. Using the first inequality
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in (4.3), we can estimate /1 (¢) as:
hw=c / g[Pe=P© £ (g, 0) de
[§1<1
<c / £ e (€, 0) dt
[E1=1

< Csup(EE.0) [ |gPke" de. (4.4)
j61=1 j61=1

Finally, using Lemma 2.1, we obtain

1
/ &%= dg < C(1 4 1)~ V/6=K/3, (4.5)
0
Hence, we have:
Li(t) < C sup {E(&, 0)}(1 4 1)~ 1/O=k/3, (4.6)
[E1<1

Using the second inequality of (4.3), we can find the estimate for /> (¢) as follows:
L(t)=C / e PO EE,0) di
[§1=1

_ e /S | JPEE0 de

< Ce " E(0). 4.7

Now, adding estimates (4.6) and (4.7) shows that estimate (4.1) holds.
The second case o, # 0 can be proved as in [9] with slight modifications. We omit
the details. O

Acknowledgements The authors wish to thank the referees for their useful remarks and their careful
reading of the proofs presented in this paper.

References

1. Dafermos, C.M.: Asymptotic stability in viscoelasticity. Arch. Rational Mech. Anal. 37, 297-308
(1970)

2. Dell’Oro, F., Pata, V.: On the stability of Timoshenko systems with Gurtin-Pipkin thermal law. J. Differ.
Equ. 257(2), 523-548 (2014)

3. Gurtin, M.E., Pipkin, A.C.: A general theory of heat conduction with finite wave speeds. Arch. Rational
Mech. Anal. 31(2), 113-126 (1968)

4. Ide, K., Haramoto, K., Kawashima, S.: Decay property of regularity-loss type for dissipative Timo-
shenko system. Math. Model Method Appl. Sci. 18(5), 647-667 (2008)

5. Ide, K., Kawashima, S.: Decay property of regularity-loss type and nonlinear effects for dissipative
Timoshenko system. Math. Model Method Appl. Sci. 18(7), 1001-1025 (2008)

6. Joseph, L., Preziosi, D.D.: Heat waves. Rev. Mod. Phys. 61, 41-73 (1989)

@ Springer



428 Appl Math Optim (2017) 75:403-428

7. Racke, R., Said-Houari, B.: Decay rates and global existence for semilinear dissipative Timoshenko
systems. Q. Appl. Math. 72(2), 229-266 (2013)
8. Said-Houari, B., Kasimov, A.: Decay property of Timoshenko system in thermoelasticity. Math. Meth-
ods Appl. Sci. 35(3), 314-333 (2012)
9. Said-Houari, B., Kasimov, A.: Damping by heat conduction in the Timoshenko system: Fourier and
Cattaneo are the same. J. Differ. Equ. 255(4), 611-632 (2013)
10. Santos, M.L., Almeida Jinior, D.S., Muioz Rivera, J.E.: The stability number of the Timoshenko
system with second sound. J. Differ. Equ. 253(9), 2715-2733 (2012)
11. Soufyane, A., Said-Houari, B.: The effect of frictional damping terms on the decay rate of the Bresse
system. Evol. Equ. Control Theory 3(4), 713-738 (2014)

@ Springer



	Decay Rate of Solutions to Timoshenko System with Past History in Unbounded Domains
	Abstract
	1 Introduction
	2 Statement of the Problem
	3 The Energy Method in the Fourier Space
	4 The Decay Estimate
	Acknowledgements
	References




