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1 Introduction

This paper deals with a class of discrete-time controlled stochastic systems com-
posed of a large number of N interacting objects which share a common environment.
Denoting by XN

n (t) the state of the object n at time t , its evolution is determined by a
difference equation, homogeneous in N , of the form

XN
n (t + 1) = F

(
XN
n (t),CN (t), at , ξt

)
, t = 0, 1, ..., (1.1)

where F is a known function,CN (t) is the context of the environment, at is the control
or action selected by a central controller, and ξt is the randomdisturbance. It is assumed
that {ξt } is an observable sequence of independent and identically distributed random
variables with a density ρ which is unknown by the controller. In addition, at each
stage, a cost resulting from the movement of the objects and the selected control is
generated. In this sense, we propose a suitable Markov control model to study this
class of systems, in which the controller aims to select actions to minimize a given
discounted cost criterion.

The facts that N is too large (N ∼ ∞) as well as the lack of knowledge of density ρ,
lead to formulate an alternative scheme to analyze the corresponding optimal control
problem. Indeed, our approach to follow will be framed in the context of the mean
field theory, under which, instead of analyzing a single object, we focus on the number
or proportion of objects occupying certain state at each stage. This defines a control
modelMN whose states are precisely the proportions of objects evolving according to
a suitable stochastic difference equation, depending on N . Then, by taking limit as N
goes to infinity, we obtain the so-called mean field control modelM, whose states are
probability measures, resulting of the limit of the aforementioned proportions, which
in turn satisfy a deterministic difference equation. In this way M can be considered
as an approximating model for MN , in the sense that any optimal control policy π∗
associated toM can be used to control the original process (the N−system) onMN ,
and therefore the objective is to measure its optimality deviation. Clearly, the good
performance of π∗ onMN depends of the accuracy of the mean field limit ofMN to
M as N → ∞.

Because the dynamic of the objects depends on the unknown densityρ, we also have
the dependence on ρ of the mean field process. Thus, besides the analysis of the limit
behavior as N → ∞, the controller must implement a statistical estimation procedure
for ρ in order to get some information about the dynamic of the objects. To this
end, at each stage t, ρ is estimated from historical observations ξ0, ξ1, ...ξt , collected
during the evolution of the system. Such estimation procedure is then combined with
the minimization task for obtaining control policies. However, as is well-known, the
discounted criterion depends strongly on the decisions selected in the first stages,
preciselywhere the informationonρ is rather poor or deficient. This fact implies that, in
general, under discounted criteria, procedures of estimation and control do not provide
optimal policies (see, e.g., [10,11,13,19]). Thus, in this paper we seek optimality
results in a weaker sense: the so-named eventually asymptotically optimality.
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In the last years, mean field theory has become a useful tool to study systems
composed of a large number of objects (particles or agents) under several scenarios:
discrete- and continuous-time systems of interacting objects, mean field control prob-
lems, and mean field games; all of them according to different optimality criteria,
and with applications, for instance, in statistical physics, finance, operations research,
among others—see, e.g., [1–3,5–9,14–18,20] and the references therein.

In particular, the motivation of our results comes from the work [7], in which the
authors consider the dynamic of each object to be represented by means of a known
stochastic kernel K that depends on both, the environment and the actions selected
by the controller. The main purpose of that work is to study, among other things,
the speed of convergence of the N -system as N → ∞ as well as to obtain bounds
for the gap between the cost of the N -system and the corresponding one associated
to the mean field model. In contrast, in this paper we assume that the N -system is
modeled by the stochastic difference equation established in (1.1 ) where the density
of the random disturbances becomes unknown for the controller. This constitutes the
main feature of our model and the novelty of our paper. That is, our approach consists
in to analyze estimation and control schemes on the mean field model M, and then
study the optimality, on the model MN , of the resulting policies. Hence, through a
joint analysis of the mean field limit (N → ∞) as well as of the estimation process
(t → ∞), we construct control policies that are nearly optimal for the control model
MN , in a asymptotic sense as N goes to infinity. This class of policies are called
eventually asymptotically optimal policies.

The paper is organized as follows. In Sect. 2 we present the system of N objects
together with its corresponding Markov control model, whereas Sect. 3 is devoted
to study the mean field control model we are concerned with. In both sections we
provide optimality results ensuring the existence of minimizers based on the dynamic
programming method. In Sect. 4 we introduce the estimation and control procedure
in the mean field model to construct control policies. Finally, we conclude, in Sect. 5,
with the analysis of the mean field convergence, providing, among other facts, the so-
called eventually asymptotically optimal policies. Throughout the paper, we shall be
developing a class of consumption-investment problem to illustrate our assumptions
and results .
Notation As usual,N (respectivelyN0) denotes the set of positive (resp. nonnegative)
integers; R (resp. R+) denotes the set of real (resp. nonnegative real) numbers.

On the other hand, given a Borel space Z (that is, a Borel subset of a complete
and separable metric space) its Borel σ−algebra is denoted by B(Z), and the attribute
“ measurable”will be applied for either Borel measurable sets or Borel measurable
functions.

Let M(Z) be the set of finite signed measures on Z . If Z ⊂ R is finite, e.g. Z =
{1, 2, ..., z}, we will identify any p ∈ M(Z) by the vector p := (p(1), p(2), ..., p(z)).
In particular, considerP(Z) ⊂ M(Z) the set of probabilitymeasures on Z . In this case,
any p ∈ P(Z) can be expressed in terms of its probability distribution {p(i) : i ∈ Z}
where p(i) ≥ 0, i ∈ Z , and

∑z
i=1 p(i) = 1. Observe that, under the topology of R,

Z = {1, 2, · · · , z} becomes a Borel set, and so is P(Z). As usual, | · | will denote the
norm on R.
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We shall define the norm onM(Z) ×R
d , for Z finite under the corresponding L∞

norm; that is, for each vector (p, c) ∈ M(Z) × R
d :

‖(p, c)‖∞ := max
{
‖p‖1∞ , ‖c‖2∞

}
,

where ‖p‖1∞ := max {|p(1)|, ..., |p(z)|}, and ‖c‖2∞ := max {|c1| , ..., |cd |} , with
c := (c1, · · · , cd). Furthermore, for a given Borel space A, dA will represent its
associated metric. For all (p, c, a), (p′, c′, a′) ∈ P(Z) × R

d × A the corresponding
L∞−distance takes the form

∥∥(p, c, a) − (p′, c′, a′)
∥∥3∞ := max

{∥∥p − p′∥∥1∞ ,
∥∥c − c′∥∥2∞ , dA(a, a′)

}
,

whereas for a matrix An×n , we will denote its corresponding norm ‖ · ‖0∞ as

‖A‖0∞ := max
i, j

|Ai j |.

Let Z and A be Borel spaces. A stochastic kernel Q (·|·) is a function Q : B(Z) ×
A → [0, 1], such that Q (·|a) is a probability measure on B(Z) for each fixed a ∈ A,

and Q (B|·) is a measurable function on A for each fixed B ∈ B(Z). Finally, B(Z)

denotes the class of real-valued bounded functions on Z endowed with the supremum
norm ‖v‖ := supz∈Z |v(z)| , while Cb(Z) is the subspace of B(Z), consisting of all
real-valued bounded continuous functions defined on Z .

We assume the existence of a fixed probability space (�,F , P), and for the attribute
a.s. we mean almost sure with respect to P.

2 The N-Objects Markov Control Model

We consider a discrete-time controlled stochastic system composed by a large number
N of interacting objects defined as follows. Let XN

n (t), n = 1, 2, . . . , N , t ∈ N0 be the
state of the object n at time t taking values in a given set S = {1, 2, . . . , s} ⊆ N. There
is a controller (or decision-maker) who, at each stage, can influence the behavior of the
objects bymeans of actions or controls at selected from a given Borel set A. Moreover,
the objects are assumed to share a common environment which also influences the
behavior of the system. Let CN (t) ∈ R

d be the context of the environment at time
t ∈ N0. Once the environment is specified, the behavior as well as the evolution of the
objects are considered to be independent each other. More specifically, the evolution
of the process

{
XN
n (t)

}
t∈N0

is given according to the stochastic difference equation,
homogeneous in N , defined in (1.1); that is,

XN
n (t + 1) = F

(
XN
n (t),CN (t), at , ξt

)
, t = 0, 1, . . . , (2.1)

where F : S×R
d × A×R → S is a given (known) function and {ξt } is a sequence of

independent and identically distributed (i.i.d.) real random variables with a common

123



Appl Math Optim (2016) 74:197–227 201

density ρ which is unknown for the controller, and defined on the underlying prob-
ability space (�,F , P). As a consequence of the above definitions, it is possible to
define the transition law Kρ of each object in terms of the function F, as follows: For
all n = 1, 2, . . . , N

K ρ
i j (a, c) := P

[
XN
n (t + 1) = j |XN

n (t) = i, at = a,CN (t) = c
]

=
∫

R

I j [F(i, c, a, z)] ρ(z)dz, i, j ∈ S, (a, c) ∈ A × R
d . (2.2)

where IB stands for the indicator function of the set B. This relation defines the

transition law by means of the stochastic kernel Kρ = Kρ(a, c) =
[
K ρ
i j (a, c)

]
.

Notice that Kρ represents the common conditional distribution of the states.
Throughout this work it is assumed that the objects are observable through their

states, so that the controller can only determine the number of objects in each of the
states i ∈ S. In this sense, the behavior of the system can be reformulated by means
of the proportions of the objects at each state. Namely, let MN

i (t) be the proportion
of objects in state i ∈ S at time t defined as

MN
i (t) := 1

N

N∑
n=1

I{XN
n (t)=i}, i ∈ S.

Further, we denote by �MN (t) the vector whose components are the proportions; that
is,

�MN (t) =
(
MN

1 (t), MN
2 (t), . . . , MN

s (t)
)
.

Observe that �MN (t) ∈ PN (S) := {p ∈ P(S) : Np(i) ∈ N, ∀i ∈ S} ⊂ P(S), and it is
easy to see that PN (S) is a finite set.

In addition, we suppose that the context of the environment is a dynamical system
whose evolution is determined by the difference equation:

CN (t + 1) = g
(
CN (t), �MN (t + 1), at

)
, t ∈ N0, (2.3)

where g : Rd × P(S) × A → R
d is a known function.

Let us assume now the evolution of �MN (·) in a recursive way through a difference
equation. Clearly, such an evolution is strongly dependent on the transition law Kρ of
the objects, and as a consequence on the unknown density ρ. Hence, we assume the
existence of a measurable function GN

ρ : PN (S) ×R
d × A×R

N → PN (S) such that

�MN (t + 1) = GN
ρ

( �MN (t),CN (t), at , �wt

)
, (2.4)

where { �wt } is a sequence of i.i.d. random vectors on R
N , with common distribution

θ .
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For ease notation,wedenoteYN := PN (S)×R
d , and let HN

ρ : YN×A×R
N → YN

be the function defined as

HN
ρ (y, a, w) :=

(
GN

ρ (y, a, w), g
(
c,GN

ρ (y, a, w), a
))

. (2.5)

Then, denoting yN (t) :=
( �MN (t),CN (t)

)
, according to (2.3) and (2.4), HN

ρ defines

the dynamic of the process
{
yN (t)

} ; that is,

yN (t + 1) =
(
GN

ρ

(
yN (t), at , �wt

)
, g

(
CN (t), �MN (t + 1), at

))

=
(
GN

ρ

(
yN (t), at , �wt

)
, g

(
CN (t),GN

ρ (yN (t), at , �wt ), at
))

= HN
ρ

(
yN (t), at , �wt

)
. (2.6)

Finally, a cost depending on the proportion of the objects, on the environment, and
on the selected control, is generated at each stage. This cost will be represented by the
measurable function r : P(S) × R

d × A → R.
Let us consider the space Y := P(S) ×R

d . Observe that YN := PN (S) ×R
d ⊆ Y

and the one-stage cost can be then redefined as r : Y × A → R.

2.1 Formulation of the N-Markov Control Model (N-MCM)

We define the discrete-time Markov control model associated to the system of N
objects previously introduced (in short N -MCM) as follows:

MN :=
(
YN , A, HN

ρ , θ, r
)
. (2.7)

The model MN describes the performance of the system in the following sense:
at time t , the controller observes the state y = yN (t) = ( �MN (t),CN (t)) ∈ YN

which is composed by both the proportions of the objects and the context of the
environment, and then he/she selects a control a = at ∈ A. As consequence the
following happens: (1) a cost r(y, a) is incurred, and (2) the system moves to a new
state y′ = yN (t + 1) = ( �MN (t + 1),CN (t + 1)) according to the transition law

Qρ(B|y, a) := P
[
yN (t + 1) ∈ B|yN (t) = y, at = a

]

=
∫

RN
IB

[
HN

ρ (y, a, w)
]
θ(dw),

with HN
ρ as in (2.5). Once the transition to the state y′ occurs, the procedure is repeated.

In addition, we will assume that the one-stage costs are accumulated during the evo-
lution of the system in an infinite horizon by using a given discounted cost criterion,
and therefore the actions selected by the controller are directed to minimize the total
expected discounted cost introduced in (2.22) below.
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In order to ensure the existence of minimizers, we impose the following continuity
and compactness conditions on some elements ofMN .

Assumption 2.1 (a) The control space A is a compact metric Borel space, whose
metric is denoted by dA.

(b) The function g in (2.3) is a Lipschitz function with constant Lg; that is, for
c, c′ ∈ R

d , �m, �m′ ∈ P(S), a, a′ ∈ A,

∥∥g(c, �m, a) − g(c′, �m′, a′)
∥∥2∞ ≤ Lg max

{∥∥c − c′∥∥2∞ ,
∥∥ �m − �m′∥∥1∞ , dA(a, a′)

}
.

(2.8)
Without lost of generality, we assume that Lg ≥ 1.

(c) The mapping a �−→ HN
ρ (y, a, w) defined in (2.5) is continuous, for all y ∈ YN

and w ∈ R
N .

(d) The one-stage cost r is a bounded and uniformly Lipschitz function with constant
Lr ; that is, for some constant R > 0

|r(y, a)| ≤ R ∀(y, a) ∈ Y × A,

and for every a, a′ ∈ A, and y, y′ ∈ Y,

sup
(a,a′)∈A×A

|r(y, a) − r(y′, a′)| ≤ Lr
∥∥y − y′∥∥∞ .

2.2 A consumption-Investment Model with Controlled Subsidy/Fee

We consider a consumption-investment system composed by N “small” investors
(i.e., economic agents whose actions do not influence the market prices) which invest
among various assets with different return rates, but that also consume some specific
product. There is a central controller, for instance the government or a public body,
who provides a subsidy to assist the investors or imposes a fee that the investors must
pay. For simplicity, we shall consider only two assets for the investors: one of them
is a risk-free asset with fixed rate τ , and the other a risk asset with a stochastic return
rate ξt taking values in a bounded set Z ⊆ R. The fraction associated to the wealth
to be invested in the risky asset is a function ϕ1 : Rd → [0, 1] that depends on the
context of the environment; this environment might be, for example, uncertainty of
the investors, type of markets that investors are trading, frecuency of transactions, etc.
In an analogous way, the quantity (1 − ϕ1) will represent the fraction of wealth to be
invested in the risk-free asset. On the other hand, we will assume that each investor
consumes a quantity ϕ2 : Rd → R+ that is also a bounded function dependent on the
context of the environment.

In the spirit of our assumption, since the state space S is denumerable, we shall
assume that the use of cents is negligible. Hence, let at be the decision of the central
controller at time t which is assumed to satisfy at ∈ {0,±1, ... ± a∗} =: A for some
a∗ ≥ 0. That is

at = fee of size −at (if at < 0) or subsidy of size at (if at > 0), at time t.
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Denoting by XN
n (t) ∈ {0, 1, · · · , s} = S the wealth of the investor n at time t , we

can represent this process by means of the following difference equation

XN
n (t + 1) = int

{[
(1 − ϕ1(C

N (t)))(1 + τ) + ϕ1(C
N (t))ξt

]

×
[
XN
n (t) − ϕ2(C

N (t)) + at
]}

, (2.9)

where int{x} is the integer part of x . It is assumed that s ∈ N0 is sufficiently large,
and the functions ϕm , m = 1, 2, satisfy the Lipschitz conditions with constants Lϕm ,
m = 1, 2, respectively, taking values in appropriate sets such that the following holds
true

F(i, c, a, z) := int
{
[(1 − ϕ1(c))(1 + τ) + ϕ1(c)z] [i − ϕ2(c) − a]

}
∈ S. (2.10)

Furthermore, using the Lipschitz properties of ϕ1 and ϕ2, we can deduce that F is in
fact a Lipschitz function in the following sense:

∣∣F(i, c, a, z) − F(i, c′, a′, z)
∣∣ ≤ LF max

{
‖c − c′‖2∞, |a − a′|

}
, (2.11)

where

LF = 1 + (1 + τ + maxz∈Z |z|) (Lϕ1s + L̄ϕ1Lϕ2 + L̄ϕ2Lϕ1 + a∗Lϕ1 + Lϕ2

)

+(1 + τ)(1 + Lϕ2)

and L̄ϕm represents some (uniform) bound of ϕm , m = 1, 2.
Assuming that ρ is the density of the random rate ξt , the transition law turns out to

be

K ρ
i j (a, c) =

∫

R

I j [F(i, c, a, z)] ρ(z)dz, (2.12)

for each i, j ∈ S and (a, c) ∈ A × R
d . Further, since F is an S−valued function and

S := {0, 1, · · · , s} is finite, it is easy to see that, for all i, j ∈ S, a, a′ ∈ A, c, c′ ∈ R
d ,

the indicator function satisfies

∣∣I j [F(i, c, a, z)] − I j [F(i, c′, a′, z)]∣∣ ≤ ∣∣F(i, c, a, z) − F(i, c′, a′, z)
∣∣

≤ LF max
{∥∥c − c′∥∥2∞ , dA(a, a′)

}
,

where the last inequality is due to Lipschitz property of F given in (2.11). Hence, from
(2.2),

∣∣∣K ρ
i j (a, c) − K ρ

i j (a
′, c′)

∣∣∣ ≤
∫ ∣∣I j [F(i, c, a, z)] − I j [F(i, c′, a′, z)]∣∣ ρ(z)dz

≤ LF max
{∥∥c − c′∥∥2∞ , dA(a, a′)

}
, (2.13)
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which implies that Kρ is Lipschitz.
On the other hand, for each i ∈ S, the evolution of the proportions Mi (t) of the

investors can be seen in a recursive way as follows (see [7])

MN
i (t + 1) = 1

N

s∑
k=0

NMN
k (t)∑

n=1

I{Aρ
ki (at ,C

N (t))}(wk
n(t)), (2.14)

where wk
n(t) are i.i.d. random variables uniformly distributed on [0, 1],

Aρ
ki (a, c) := [



ρ
ki (a, c), 
ρ

ki+1(a, c)] ⊆ [0, 1], (2.15)

and



ρ
ki (a, c) :=

i−1∑
l=0

K ρ
kl(a, c), k, i ∈ S. (2.16)

For each i ∈ S and t ∈ N0, we denote

�wi (t) :=
(
wi
1(t), · · · , wi

NMN
i

(t)
)

and

�wt :=
(

�w0(t), · · · , �ws(t)
)
.

It is worth noting that
∑s

i=0 NMN
i (t) = N , thus �wt ∈ [0, 1]N . This assertion implies

that the number of (uniform) random variables involved in the dynamic (2.14) coin-
cides with the number N of small agents; a fact that is presented in a general way
through the dynamic (2.4).

Let us now rewrite the above expressions as in (2.6); namely, we define

GN
ρ,i

(
yN (t), at , �wt

)
:= 1

N

s∑
k=0

NMN
k (t)∑

n=1

I{Aρ
ki (C

N (t),at )}(w
k
n), i ∈ S.

This function GN
ρ takes the following vectorial form

GN
ρ (y, a, w) =

(
GN

ρ,0(y, a, w), . . . ,GN
ρ,s(y, a, w)

)
, (y, a, w) ∈ YN

× A × [0, 1]N , (2.17)

yielding to the following expression

�MN (t + 1) = GN
ρ

( �MN (t),CN (t), at , �wt

)
. (2.18)
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In addition, recalling that P(S) denotes the space of probability measures on S, we
assume that g : Rd × P(S) × A → R is an arbitrary function satisfying Assumption
2.1(b), such that the context of the environment satisfies

CN (t + 1) = g
(
CN (t), �MN (t + 1), at

)
, t ∈ N0. (2.19)

Then, (2.18) and (2.19) define the function

HN
ρ (y, a, w) :=

(
GN

ρ (y, a, w), g(c,GN
ρ (y, a, w), a)

)
, (2.20)

which determines the dynamic of the process
{
yN (t)

}
similar to (2.6).

Finally, since the action space A is denumerable, the continuity of a �−→
HN

ρ (·, a, ·), required in Assumption 2.1(c), trivially holds.

Remark 2.2 In the case when A ⊂ R is an arbitrary compact set, say A = [−a∗, a∗]
for some a∗ ≥ 0, the continuity of the function HN

ρ , can be verified as follows. For
i, j ∈ S, w ∈ [0, 1], c ∈ R

d , and a ∈ [−a∗, a∗], let δw(Aρ
i j (c, a)) be the Dirac

measure corresponding to the indicator function I{Aρ
i j (c,a)}(w) (see 2.15, 2.16). Now

take a sequence {ak} ∈ [−a∗, a∗] such that ak → a ∈ [−a∗, a∗], which is possible
because [−a∗, a∗] is a compact set. Sincea �−→ K ρ

i j (a, c) is continuous for all i, j ∈ S

and c ∈ R
d , so is the mapping a �−→ 


ρ
i j (a, c). Hence, Aρ

i j (c, ak) → Aρ
i j (c, a) as

k → ∞ in the set sense. Therefore, due to the fact that δw(·) is a probability measure
(so it is continuous), we conclude that δw(Aρ

i j (c, ak) → δw(Aρ
i j (c, a)), as k → ∞.

This fact and the continuity of the function g given in Assumption 2.1(b) yield the
continuity of the map a �−→ HN

ρ (·, a, ·).

2.3 Optimality in the N-MCM

In this subsection we introduce the elements that define the optimal control problem
as well as the results regarding existence of optimal policies respect to the discounted
criterion, associated to the N -MCM (2.7).
Control policies The actions applied by the controller are selected according to rules
known as control policies, which are defined as follows. Let HN

0 := YN and H
N
t :=(

YN × A × R × R
N
)t ×YN , t ≥ 1, be the space of histories up to time t . An element

hN
t of HN

t is written as

hN
t =

(
yN (0), a0, ξ0, �w0, . . . , y

N (t − 1), at−1, ξt−1, �wt−1, y
N (t)

)
,

where yN (t) =
( �MN (t),CN (t)

)
. A control policy is a sequence πN = {

πN
t

}
of

stochastic kernels πN
t on A given H

N
t such that πN

t

(
A|hN

t

) = 1 for all hN
t ∈ H

N
t ,

t ∈ N0. We denote by �N the set of all control policies.
Now, let F be the set consisting of all measurable functions f : Y → A and

F
N := F|YN be the restriction of F over YN . A policy πN ∈ �N is said to be a
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(deterministic) Markov policy if there exists a sequence
{
f Nt

} ⊆ F
N such that for all

t ∈ N0 and hN
t ∈ H

N
t , πN

t

(·|hN
t

) = δ f Nt (yN (t))(·). In this case πN takes the form

πN = {
f Nt

}
. In particular, if f Nt ≡ f N for some f N ∈ F and for all t ∈ N0, we say

that πN is a stationary policy. We denote by �N
M the set of all Markov policies, and

following a standard convention, we shall use the same notation of FN to denote the
set of stationary policies.

Remark 2.3 (a) We denote by �M the set of deterministic Markov policies when we
use F instead of FN in the above definition; that is,�M is the family of sequences
of functions { ft } ⊂ F. Observe that any policy π = { ft } ∈ �M whose elements
ft are restricted to YN turns out to be an element of �N .

(b) Under standard arguments (see, e.g., [12]), for each πN ∈ �N and initial state

yN (0) = y ∈ YN , there exists a probability space
(
�′,F ′, PπN

y

)
consisting in

�′ := (
YN × A × R × R

N
)∞

, F ′ its respective σ−algebra, and a probability

measure PπN

y satisfying the following properties: For each t ∈ N0

(i) PπN

y (yN (0) ∈ B) = δy(B), B ∈ B(YN ),

(ii) PπN

y (at ∈ C |hN
t ) = πN

t (C |hN
t ), C ∈ B(A),

(iii) (Like-Markov property):

PπN

y

[
yN (t + 1) ∈ B|hN

t , at
]

= Qρ

(
B|yN (t), at

)

=
∫

RN
IB

[
HN

ρ

(
yN (t), at , w

)]
θ(dw),

B ∈ B(YN ). (2.21)

The discounted optimality criterion For each control policy πN ∈ �N and initial
state yN (0) = y ∈ YN , we define the total expected discounted cost as

V N (πN , y) := EπN

y

∞∑
t=0

αt r
(
yN (t), at

)
, (2.22)

where α ∈ (0, 1) is the so-called discount factor and EπN

y denotes the expectation

operator with respect to the probability measure PπN

y induced by the policy πN given
yN (0) = y. We say that πN∗ is optimal for the N -MCM if and only if

V N∗ (y) := inf
πN∈�N

V N
(
πN , y

)
= V N

(
πN∗ , y

)
, y ∈ YN . (2.23)

In this case, V N∗ is said to be the N−value function.
Under the conditions imposed on the N -MCM MN , we can state the following

well known result that provides a characterization on the optimal policies and on the
N -value function in terms of the solution of a certain functional equation so-called
the N - optimality equation (see, e.g., [11,21]):
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Proposition 2.4 (a) The N−value function V N∗ satisfies the N−optimality equation

V N∗ (y) = min
a∈A

{
r(y, a) + α

∫

RN
V N∗

[
HN

ρ (y, a, w)
]
θ(dw)

}
, y ∈ YN . (2.24)

In addition,

∣∣∣V N∗ (y)
∣∣∣ ≤ R

1 − α
, y ∈ YN ,

with R being the (uniform) bound of the one-stage cost r defined in Assumption
2.1(d), and α the discount factor in (2.22).

(b) There exists f N∗ ∈ F
N such that f N∗ (y) ∈ A attains the minimum in (2.24), i.e.,

V N∗ (y) = r(y, f N∗ ) + α

∫

RN
V N∗

[
HN

ρ

(
y, f N∗ , w

)]
θ(dw), y ∈ YN , (2.25)

and furthermore, the stationary policy πN∗ = {
f N∗

} ∈ �N
M is optimal for the

control model MN .

Proposition 2.4 provides a flexible framework for the optimality analysis of the
interacting objects system. However, from the practical point of view, its usefulness is
seriously limited either because N is too large (N ∼ ∞) or for the lack of knowledge
of density ρ. Indeed, to analyze equations (2.24) and (2.25), we first need to deal with
a multiple integral of dimension N which could be considerably difficult to calculate,
besides that the dynamics of the system depends heavily on the unknown density ρ.
Both situations will be discussed in the following sections in order to overcome these
obstacles. Specifically, we first introduce a suitable control model M that represents
the “limit model” of MN as N → ∞; this new model is referred to as the mean
field control model, and of course also depends on the unknown density ρ. Hence,
we pose the mean field control problem which is independent of N , but dependent
on ρ. Then, in Sect. 4, an statistical estimation and control procedure is proposed to
construct nearly optimal policies for the control model MN in an asymptotic sense
when N → ∞. In other words, M is used as an approximating model for MN , and
the hope is that optimal policies in M have a good performance in MN , whenever
the model M gives a good approximation to the model MN .

3 The Mean Field Control Model

Recall the set Y = P(S) ×R
d . We consider a general controlled deterministic system

{( �m(t), c(t))} ∈ Y that depends implicitly on the distribution ρ in (2.2) and whose
dynamic is governed by means of the following difference equations

�m(t + 1) = Gρ

( �m(t), c(t), at
); (3.1)

c(t + 1) = g
(
c(t), �m(t + 1), at

)
, (3.2)
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where ( �m(0), c(0)) = ( �m, c) ∈ Y represents the initial condition, at ∈ A is the control
(or action) selected at time t, g : Rd × P(S) × A → R

d is the function defined in
(2.3), and Gρ : P(S) ×R

d × A → P(S) is a known Lipschitz function (dependent on
ρ) with constant LG ; that is, for �m, �m′ ∈ P(S), c, c′ ∈ R

d , and a, a′ ∈ A,

∥∥Gρ( �m, c, a)−Gρ( �m′, c′, a′)
∥∥1∞ ≤ LG max

{∥∥ �m− �m′∥∥1∞ ,
∥∥c − c′∥∥2∞ , dA(a, a′)

}
.

(3.3)

Due to the deterministic nature of the process (3.1)–(3.2), it is evident that the
dynamic is completely determined by the sequence of actions {at } ⊂ A and by the
initial condition ( �m, c) ∈ Y. Furthermore, wewill assume (see Assumption 5.1 below)
that the process y(t) := ( �m(t), c(t)) represents the mean field limit; that is, y(t) will
be the limit process of yN (t) := ( �MN (t),CN (t)) in (2.6) as N goes to infinity.

Let Hρ : Y × A → Y be the function that defines the dynamic of the process
{( �m(t), c(t))}; that is,

Hρ(y, a) := (
Gρ( �m, c, a), g(c,Gρ( �m, c, a), a)

)
, y = ( �m, c) ∈ Y, a ∈ A. (3.4)

From (3.1) and (3.2), we can write

y(t + 1) = (
Gρ( �m(t), c(t), at ), g(c(t), �m(t + 1), at )

)

=: Hρ(y(t), at ), t ≥ 0, (3.5)

with y(0) = ( �m, c) ∈ P(S)×R
d .Astraightforward calculation yields that the function

Hρ is a Lipschitz function (recall Gρ and g are Lipschitz functions). Specifically, for
(y, a), (y′, a′) ∈ Y × A,

∥∥Hρ(y, a) − Hρ(y′, a′)
∥∥∞ ≤ LHρ max

{∥∥y − y′∥∥∞ , dA(a, a′)
}
, (3.6)

where LHρ = max
{
Lg, LgLG

}
. Using the same one-stage cost r defined for the

N -MCM (2.7), we can then define the mean field control model as

M = (Y, A, Hρ, r),

which has a similar interpretation as the N−MCM MN .

Example 3.1 (Consumption-investment problem) Carrying on with our example,
we define the controlled deterministic system {( �m(t), c(t))} ∈ Y as (see [7])

�m(t + 1) = �m(t)Kρ(at , c(t)) (3.7)

c(t + 1) = g(c(t), �m(t + 1), at ). (3.8)

where Kρ becomes the matrix [K ρ
i j ], whose elements turn out to be stochastic kernels

defined in (2.12) and g : Rd × P(S) × A → R
d is the function defined in (2.19).

Observe that �m(t + 1) is the vector with components
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m j (t + 1) =
s∑

i=1

mi (t)K
ρ
i j (at , c(t)),

where �m(0) = m ∈ P(S). In this case the function Gρ in (3.1) takes the form

Gρ( �m, c, a) = �mKρ(a, c), ( �m, c) ∈ Y, a ∈ A, (3.9)

and, since the kernel Kρ is Lipschitz (see (2.13)), so is Gρ , as was stated in (3.3), with
some constant LG .

In Sect. 5 we will show that (3.7)-(3.8) are in fact the limit processes of (2.18)–
(2.19). ��

3.1 Optimality in the Mean Field

In this subsection we present a well-known theory regarding optimality results for
the controlled system (3.1)–(3.2) when using the deterministic discounted criterion
(3.10). Basically these results show characterizations on the optimal policies and on
the corresponding value function in the sense that these optimal quantities become
solutions of a given functional equation associated to the mean field control model.

As is well-known (see, e.g., [4]), for the deterministic controlled systems, a control
policy π is a sequence of decision rules (or selectors) π = { ft } ⊂ F. Therefore,
according to the Remark 2.3(a), we can naturally consider the set �M as the set of
all control policies for the modelM. Hence, given a control policy π ∈ �M together
with the initial condition y(0) = y ∈ Y, we define the total discounted cost for the
mean field model as

v(π, y) =
∞∑
t=0

αt r (y(t), at ). (3.10)

Then, the mean field optimal control problem is to find a policy π∗ ∈ �M such that

v∗(y) := inf
π∈�M

v(π, y) = v(π∗, y), y ∈ Y, (3.11)

where v∗ is the mean field value function and π∗ is said to be an optimal policy for the
mean field control model M.

Observe that from the continuity of the function Hρ [see (3.6)], the compactness
of the control space A, and the continuity of the one-stage cost r , we can state the
following result regarding the value function (see, e.g., [11,21]).

Proposition 3.2 (a) The value function v∗ satisfies the mean field optimality equation

v∗(y) = min
a∈A

{
r(y, a) + αv∗

[
Hρ (y, a)

]}
, y ∈ Y. (3.12)

Equivalently,

min
a∈A

�(y, a) = 0, y ∈ Y,
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where
�(y, a) := r(y, a) + αv∗

[
Hρ (y, a)

] − v∗(y), (3.13)

is the so-called discrepancy function. In addition,

|v∗(y)| ≤ R

1 − α
, y ∈ Y.

(b) There exists f ∗ ∈ F such that f ∗(y) ∈ A attains the minimum in (3.12), i.e.,

v∗(y) = r(y, f ∗) + αv∗
[
Hρ

(
y, f ∗)] , y ∈ Y, (3.14)

and furthermore, the stationary policy π∗ = { f ∗} ∈ �M is optimal for the control
model M.

Remark 3.3 Let {(yt , at )} be a sequence of state-action pairs corresponding to the
application of a stationary policy π∗ = { f ∗} ∈ �M . Observe that by the optimality
principle and dynamic programming arguments, π∗ is an optimal policy if, and only
if �(yt , f ∗(yt )) = 0, for all t ∈ N0.

Although the optimal value function and the optimal policy are well characterized
through Proposition 3.2 and Remark 3.3, the information about the density ρ plays
an important role in equations (3.12)–(3.14), and as a consequence, the optimality
equation and its minimizers are highly dependent on the density ρ. However, under
certain conditions, when this density is unknown, as is our case, suitable estimation-
control procedures can be applied in order to find optimal policies. This point is studied
in the next section.

4 Estimation and Control in the Mean Field

The main problem we address in this paper is to obtain optimality results under the
assumption that the density ρ in (2.2), and as consequence the function Hρ in (3.4)–
(3.5), are unknown. In this scenario, assumingobservability of the randomdisturbances
ξ0, ξ1, ..., the controller has to appeal to a combination of statistical estimationmethods
and control procedures on the mean field model M, in order to gain some insights
on the evolution of the system. That is, before choosing the action at at time t, the
controller gets an estimateρt ofρ —thus gets also an estimate Ht = Hρt of the function
Hρ—, then, the decisions of the controller are adapted to this estimate, obtaining a
control at = at (ρt ).

To fix ideas, let us consider ξ0, ξ1, ..., ξk−1 be independent realizations of a random
variable with the unknown density ρ observed up to time k − 1, and let ρk(·) :=
ρk(·; ξ0, ξ1, ..., ξk−1) be a density which is an estimator such that, as k → ∞

∫

R

|ρk(z) − ρ(z)| dz → 0 a.s (4.1)
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and
sup

(y,a)∈Y×A

∥∥Gρk (y, a) − Gρ(y, a)
∥∥1∞ → 0 a.s, (4.2)

where y = ( �m, c), and for each k ∈ N, Gρk is the function defining the dynamic of the
process { �m(t)} [see (3.1)] when the density ρk is used instead of ρ. Thus, Gρk defines
a new estimated process which is generated by the function [see (3.4), (3.5)]

Hk(y, a) := (
Gρk (y, a), g(c,Gρk (y, a), a)

)
, y = ( �m, c) ∈ Y, a ∈ A.

It is easy to see that

sup
(y,a)∈Y×A

∥∥Hk(y, a) − Hρ(y, a)
∥∥∞ → 0 a.s., as k → ∞. (4.3)

Indeed, since g is a Lipschitz function, we have that, for all y = ( �m, c) ∈ Y, a ∈ A,

∥∥g(c,Gρk (y, a), a) − g(c,Gρ(y, a), a)
∥∥2∞ ≤ Lg

∥∥Gρk (y, a) − Gρ(y, a)
∥∥1∞ .

(4.4)
Then, combining (4.2) and (4.4), we get

sup
(y,a)∈Y×A

∥∥g(c,Gρk (y, a), a) − g(c,Gρ(y, a), a)
∥∥2∞ → 0 a.s., as k → ∞.

Thus, we can easily see that (4.3) holds. Moreover, for each π ∈ �M and y ∈ Y,

from (4.3) together with a simple use of the dominated convergence theorem, we can
conclude

Eπ
y

[
sup

(x,a)∈Y×A

∥∥Hk(x, a) − Hρ(x, a)
∥∥∞

]
→ 0, as k → ∞, (4.5)

because ρk does not depend on π and y.
Let {vk} be a sequence of functions vk : Y → R in Cb(Y) to be defined as follows:

v0 ≡ 0;
vk(y) = min

a∈A

{
r(y, a) + αvk−1 [Hk (y, a)]

}
, k ∈ N, y ∈ Y. (4.6)

Then, noting that the function (y, a) → Hk (y, a) , k ∈ N, is continuous and that A is
compact, from standard measurable selection theorems (see, e.g., Proposition D5(a)
in [12]), for each k ∈ N, there exists f̂k ∈ F (dependent on ρk), such that

vk(y) = r(y, f̂k) + αvk−1

[
Hk

(
y, f̂k

)]
, y ∈ Y. (4.7)

We define the control policy π̂ =
{
f̂k
}

∈ �M . Observe that this policy is completely

computable for the controller, and therefore, according to our objective, we are inter-
ested in to study its optimality. However, it is worth noting that the discounted criterion
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strongly depends on the decisions selected in the early stages, rightwhere the statistical
estimation process yields poor information about the unknown dynamic. This leads
to thinking that, in general, it is not possible to ensure that π̂ is an optimal policy in
the usual sense for the mean field model. Hence, we need to use the following weaker
optimality criterion to analyze its optimality, which is motivated by the comment in
the Remark 3.3 (see, e.g., [10,11,13,19] for further information about this optimality
criterion).

Definition 4.1 We say that a policy π ∈ �M is eventually optimal for the mean field
control model (or simply eventually optimal) if and only if, for any initial condition
y(0) = y ∈ Y,

lim
t→∞ Eπ

y �(y(t), at ) = 0, y ∈ Y,

where � is the discrepancy function defined in (3.13).

Before establishing the result, we need to impose the following technical require-
ment.

Assumption 4.2 The constant LHρ defined in (3.6) satisfies αLHρ < 1.

Theorem 4.3 Under Assumptions 2.1, and 4.2, the policy π̂ obtained by means of the
iterative method described in (4.7), is eventually optimal.

The proof of this theorem is based on several lemmas, so it will be presented at the
end of the section.

Example 4.4 (Consumption-investment problem) For the estimator ρk, we define,

similarly as (2.12), the estimated transition kernel Kk(a, c) =
[
Kk
i j (a, c)

]
with com-

ponents [see (2.10)]

Kk
i j (a, c) =:

∫

R

I j [F(i, c, a, z)]ρk(z)dz, i, j ∈ S, (a, c) ∈ A × R.

Also, we define

Gρk ( �m, c, a) := �mKk(a, c), ( �m, c) ∈ Y, a ∈ A,

and

Hk(y, a) := ( �mKk(a, c), g(c, �mKk(a, c), a)) , y = ( �m, c) ∈ Y, a ∈ A.

Observe that for all i, j ∈ S, (a, c) ∈ A × R
d ,

∣∣∣Kk
i j (a, c) − K ρ

i j (a, c)
∣∣∣ ≤

∫

R

|ρk(z) − ρ(z)| dz.
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Therefore, according to (4.1)

sup
(a,c)∈A×Rd

∥∥Kk(a, c) − Kρ(a, c)
∥∥0∞ → 0 a.s, as t → ∞, (4.8)

which, in turn, implies (see (3.9))

sup
(y,a)∈Y×A

∥∥Gρk (y, a) − Gρ(y, a)
∥∥1∞ = sup

(y,a)∈Y×A

∥∥ �mKk(a, c) − �mKρ(a, c)
∥∥1∞

→ 0 a.s., as k → ∞.

��
The remainder of this section is focused in the proof of Theorem 4.3.
Let {ut } ⊂ Cb(Y) be the mean field value iteration functions defined as:

u0 ≡ 0; (4.9)

ut (y) = min
a∈A

{
r(y, a) + αut−1

[
Hρ (y, a)

]}
, t ∈ N, y ∈ Y. (4.10)

As shown in [4,11,21], our hypotheses lead to

v∗(y) = lim
t→∞ ut (y), y ∈ Y, (4.11)

where v∗ is the mean field value function satisfying (3.12).

Lemma 4.5 Suppose that Assumption 2.1 holds. Then:

(a) For each t ∈ N0, the functions ut generated bymeans of the iterations (4.9)–(4.10)
are Lipschitz continuous with constant

Lut := Lr

t−1∑
l=0

(
αLHρ

)l
. (4.12)

(b) In addition, if Assumption 4.2 holds, then the mean field value function v∗ is
Lipschitz continuous with constant

Lv∗ = Lr

1 − αLHρ

, (4.13)

where Lr and LHρ are the Lipschitz constants in Assumption 2.1(d) and (3.6),
respectively.

Proof (a) We proceed by induction. First, from (4.9), clearly part (a) holds for t = 0.
Now we assume that ut is a Lipschitz function with constant given in (4.12). Then,
for y, y′ ∈ Y, from (4.10) we have

∣∣ut+1(y)−ut+1(y
′)
∣∣≤ sup

a∈A

{∣∣r(y, a)−r(y′, a)
∣∣+α

∣∣ut
[
Hρ(y, a)

]−ut
[
Hρ(y′, a)

]∣∣} .
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Thus, since r and Hρ are Lipschitz functions (see Assumption 2.1(d) and (3.6)), as
long as (4.12) is used, we get

∣∣ut+1(y) − ut+1(y
′)
∣∣ ≤ Lr

∥∥y − y′∥∥∞ + αLut LHρ

∥∥y − y′∥∥∞

≤
(
Lr +αLHρ Lr

t−1∑
l=0

(
αLHρ

)l
)∥∥y − y′∥∥∞ ≤ Lr

(
1+

t−1∑
l=0

(
αLHρ

)l+1

)∥∥y − y′∥∥∞

= Lr

t∑
l=0

(
αLHρ

)l ∥∥y − y′∥∥∞ .

Therefore, ut+1 is a Lipschitz function with constant

Lut+1 := Lr

t∑
l=0

(
αLHρ

)l
.

This fact proves part (a).
(b) For y, y′ ∈ Y, adding and subtracting the terms ut (y) and ut (y′) to |v∗(y) −

v∗(y′)|, we obtain
∣∣v∗(y) − v∗(y′)

∣∣ ≤ |v∗(y) − ut (y)| + ∣∣ut (y) − ut (y
′)
∣∣ + ∣∣ut (y′) − v∗(y′)

∣∣
≤ |v∗(y) − ut (y)|+Lut

∥∥y − y′∥∥∞+∣∣ut (y′) − v∗(y′)
∣∣ , ∀t ∈ N0,

(4.14)

where the last inequality is due to part (a). Now observe that under Assumption 4.2

lim
t→∞ Lut = Lr

∞∑
l=0

(
αLHρ

)l = Lr

1 − αLHρ

. (4.15)

Therefore, letting t → ∞ in (4.14), we have that (4.11) together (4.15) yield

∣∣v∗(y) − v∗(y′)
∣∣ ≤ Lr

1 − αLHρ

∥∥y − y′∥∥∞ , y, y′ ∈ Y,

that is, v∗ is a Lipschitz continuous function. ��
Lemma 4.6 Let vk be the family of functions generated by the iterations (4.6) and
v∗ the value function in (3.11) (see (3.12)). Then, under Assumptions 2.1 and 4.2, for
each π ∈ �M and y ∈ Y, Eπ

y ‖v∗ − vk‖ → 0, as k → ∞.

Proof From (3.12) and (4.6), we have, for each k ∈ N and y ∈ Y,

|v∗(y) − vk(y)| ≤ α sup
a∈A

∣∣v∗
[
Hρ(y, a)

] − vk−1 [Hk(y, a)]
∣∣

≤ α sup
a∈A

∣∣v∗
[
Hρ(y, a)

] − v∗ [Hk(y, a)]
∣∣ + α sup

a∈A
|v∗ [Hk(y, a)] − vk−1 [Hk(y, a)]| ,
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where in the last inequality we have added and subtracted the term v∗ [Hk(y, a)] .
Hence, from Lemma 4.5 and the fact that v∗, vk ∈ B(Y) ∀k ∈ N,

0 ≤ ‖v∗ − vk‖ ≤ Lv∗ sup
(y,a)∈Y×A

∥∥Hρ(y, a) − Hk(y, a)
∥∥∞+α ‖v∗ − vk−1‖ , (4.16)

which implies

Eπ
y ‖v∗ − vk‖ ≤ Lv∗E

π
y

[
sup

(y,a)∈Y×A

∥∥Hρ(y, a) − Hk(y, a)
∥∥∞

]
+αEπ

y ‖v∗ − vk−1‖ ,

(4.17)
for each π ∈ �M and y ∈ Y. Let l := lim supk→∞ Eπ

y ‖v∗ −vk‖ < ∞. Hence, letting
k → ∞ in (4.17), and using the convergence in (4.5), we get l ≤ αl. Finally, since
α < 1, we can deduce that limk→∞ Eπ

y ‖v∞ − vk‖ = 0, which proves the result. ��

Proof of Theorem 4.3 We define, for each k ∈ N, the approximate discrepancy func-
tion �k : Y × A → R as

�k(y, a) := r(y, a) + αvk−1 [Hk (y, a)] − vk(y), (y, a) ∈ Y × A.

Now observe that, for each k ∈ N and (y, a) ∈ Y × A,

|�(y, a) − �k(y, a)| ≤ ∣∣v∗
[
Hρ(y, a)

] − vk−1 [Hk(y, a)]
∣∣ + |v∗(y) − vk(y)| .

Then, from Lemma 4.6, letting k → ∞ we get

E π̂
y

[
sup

(y,a)∈Y×A
|�(y, a) − �k(y, a)|

]
→ 0. (4.18)

On the other hand, observing that�k(y, f̂k(y)) = 0, y ∈ Ywhen using the control
policy generated by (4.7), we have

0 ≤ �(y(k), f̂k(y(k))) =
∣∣∣�(y(k), f̂k(y(k))) − �k(y(k), f̂k(y(k)))

∣∣∣
≤ sup

(y,a)∈Y×A
|�(y, a) − �k(y, a)| ,

Thus, from (4.18), we obtain

lim
k→∞ E π̂

y �(y(k), ak) = 0.

��
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5 Mean Field Convergence

In this section we study the performance of the eventually optimal policy π̂ obtained
in Sect. 4; that is, we are interested in to analyze the optimality deviation of π̂ when it
is used to control the process

{
yN (t)

}
. Clearly, such an optimality deviation must be

measured in terms of the difference between the corresponding optimal value functions
V N∗ and v∗ of the modelsMN andM respectively, and moreover, as was pointed out
in Sect. 2, it must be analyzed in an asymptotic sense as N goes to infinity. To this
end, we impose the following assumption which concerns with the convergence of the
trajectories yN (·) to the trajectories y(·) defined in (2.6) and (3.5), respectively, in the
sense of (5.1) below.

Observe that according to the Propositions 2.4 and 3.2, as well as the definition of
the policy π̂ , we can restrict our analysis to the class of Markov policies �M .

Assumption 5.1 We assume:

(a) ( �MN (0),CN (0)) = ( �m(0), c(0)) = ( �m0, c0) = y ∈ YN , for all N ∈ N.
(b) For any y ∈ YN , T ∈ N, and ε > 0, there exist positive constants K and λ such

that

sup
π∈�M

Pπ
y

{
sup

0≤t≤T

∥∥∥yN (t) − y(t)
∥∥∥∞ ≥ γT (ε)

}
≤ KTe−λNε2 , (5.1)

where γT (ε) → 0 as ε → 0.

Wewill use the following notation: for any fixed policyπ = { ft } ∈ �M ,we denote

aπ,N
t := ft (y

N (t)) and aπ
t := ft (y(t))

the actions at time t corresponding to the application of the policy π under the process{
yN (t)

}
and {y(t)}, respectively.

Now, following similar ideas to those of [7], we show that the example we have
been working satisfies Assumption 5.1(b).

Example 5.2 (Consumption-investment problem)Recall the relations (2.12)–(2.16).
Let π = { ft } ∈ �M be an arbitrary policy and y ∈ YN ⊂ Y be the initial state. We
denote

BNρ
in j (t) := I{

Aρ
i j

(
aπ,N
t ,CN (t)

)}(wi
n(t)), i, j ∈ S, n ∈ N,

where CN (t) is as in (2.3) and wi
n(t) are i.i.d. random variables uniformly distributed

on [0, 1]. Observe that, for each t ∈ N0,
{
BNρ
in j (t)

}
in j

are i.i.d. Bernoulli random

variables with mean

Eπ
y

[
BNρ
in j (t)|aπ,N

t = a,CN (t) = c
]

= K ρ
i j (a, c)

= I j [F(i, c, a, z)]ρ(z)dz, i, j ∈ S, (a, c) ∈ A × R
d .
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Then, for a fixed ε > 0, by Hoeffding’s inequality, we have

Pπ
y

⎡
⎣
∣∣∣∣∣∣

NMN
i (t)∑

n=1

BNρ
in j (t) − NMN

i (t)K ρ
i j

(
aπ,N
t ,CN (t)

)
∣∣∣∣∣∣
< Nε

⎤
⎦ > 1 − 2e−2Nε2 .

Consider the set �̄ =
{
ω ∈ �′

∣∣∣∣
∑NMN

i (t)
n=1 BNρ

in j (t) − NMN
i (t)K ρ

i j

(
aπ,N
t ,CN (t)

)∣∣∣∣
< Nε

}
⊂ �′ (see Remark 2.3(b)), and let εt be a positive number such that

∥∥yN (t) − y(t)
∥∥∞ ≤ εt ; that is,

∥∥∥ �MN (t) − �m(t)
∥∥∥
1

∞ ≤ εt and
∥∥∥CN (t) − c(t)

∥∥∥
2

∞ ≤ εt . (5.2)

Thus, from (2.14), (3.7), and (5.2), we have that the following relations hold true on
�̄:

∣∣∣MN
j (t + 1) − m j (t + 1)

∣∣∣ =
∣∣∣∣∣∣

s∑
i=0

1

N

⎡
⎣

NMN
i (t)∑

n=1

BNρ
in j (t) − Nmi (t)K

ρ
i j

(
aπ,N
t , c(t)

)⎤⎦
∣∣∣∣∣∣

≤
s∑

i=0

1

N

∣∣∣∣∣∣

NMN
i (t)∑

n=1

BNρ
in j (t)−Nmi (t)K

ρ
i j

(
aπ,N
t , c(t)

)
∣∣∣∣∣∣

≤
s∑

i=0

1

N

∣∣∣∣∣∣

NMN
i (t)∑

n=1

BNρ
in j (t) − NMN

i (t)K ρ
i j

(
aπ,N
t ,CN (t)

)
∣∣∣∣∣∣

+
s∑

i=0

∣∣∣MN
i (t) − mi (t)

∣∣∣ K ρ
i j

(
aπ,N
t ,CN (t)

)

+
s∑

i=0

mi (t)
∣∣∣K ρ

i j

(
aπ,N
t ,CN (t)

)
− K ρ

i j

(
aπ,N
t , c(t)

)∣∣∣

< (s + 1)ε + (s + 1)εt + LK εt . (5.3)

Hence, since the right-hand of this last inequality does not depend on j , we have

∥∥∥ �MN (t + 1) − �m(t + 1)
∥∥∥
1

∞ ≤ (s + 1)ε + (s + 1)εt + LK εt .

On the other hand, since g is a Lipschitz function (see Assumption 2.1), expressions
(2.19) and (3.2)) together with (5.2) and (5.3) lead to
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∥∥∥CN (t + 1) − c(t + 1)
∥∥∥
2

∞ ≤
∥∥∥g(CN (t), �MN (t + 1), aπ,N

t )

−g(c(t), �m(t + 1), aπ,N
t )

∥∥∥
2

∞
< Lg max {εt , (s + 1)ε + (s + 1)εt + LK εt } = Lg ((s + 1)ε + (s + 1)εt + LK εt ),

which implies that on the set �̄ (recall Lg ≥ 1)

∥∥∥yN (t + 1) − y(t + 1)
∥∥∥∞ < Lg ((s + 1)ε + (s + 1)εt + LK εt ) .

Considering now
∥∥yN (0) − y(0)

∥∥∞ = ε0 = 0 (see Assumption 5.1(a)) and applying
an inductive procedure, a straightforward calculation yields that, on the set �̄,

∥∥∥yN (t + 1) − y(t + 1)
∥∥∥∞ < Lg(s + 1)εβt , t ∈ N0,

where {βt } is a increasing sequence. Then, for a fixed T ∈ N,

∥∥∥yN (t + 1) − y(t + 1)
∥∥∥∞ < Lg(s + 1)εβT , ∀0 ≤ t ≤ T

on the set �̄. Therefore, under the policy π ∈ �M ,

Pπ
y

[
sup

0≤t≤T

∥∥∥yN (t + 1) − y(t + 1)
∥∥∥∞ < Lg(s + 1)εβT

]
≥ 1 − 2e−2Nε2 ,

which, letting γT (ε) := Lg(s + 1)εβT , K = λ = 2, implies

sup
π∈�M

Pπ
y

{
sup

0≤t≤T

∥∥∥yN (t) − y(t)
∥∥∥∞ ≥ γT (ε)

}
≤ KTe−λNε2 .

Finally, we observe that γT (ε) → 0 as ε → 0. ��
Now we introduce the following additional notation: For any T ∈ N we denote

YT := sup
0≤t≤T

‖yN (t) − y(t)‖∞ (5.4)

and
K(T ) := (Lg)

T max{Lg, diam(A)}, (5.5)

where Lg ≥ 1 is the Lipschitz constant in Assumption 2.1 (b) and diam(A) :=
sup(a,a′)∈A×A d(a, a′).

Recall that for any given t ∈ N0,

‖yN (t) − y(t)‖∞ = max
{
‖ �MN (t) − �m(t)‖1∞ , ‖CN (t) − c(t)‖2∞

}
. (5.6)
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We are now in conditions to set our main results. Firstly, we provide a bound for the
gap between the value functions V N∗ and v∗, which in turns defines an approximation
scheme as N → ∞. Next we show that the control policy π̂ is eventually optimal on
the control model MN in an asymptotic sense.

Theorem 5.3 Under the Assumptions 2.1, 4.2, and 5.1, the following statements hold
true:

(a) For each T ∈ N, 0 ≤ t ≤ T, and y ∈ YN ,

sup
ϕ∈�M

Eϕ
y

∣∣∣V N∗ (yN (t)) − v∗(y(t))
∣∣∣ ≤ 2RαT

1 − α
+ Lr

1 − αT

1 − α

×
[
KTe−λNε2(1 + K(T )) + γT (ε)

]
. (5.7)

(b) The control policy π̂ ∈ �M estimated in (4.7) is eventually asymptotically optimal
for the N Markov control model MN , as N → ∞; that is

lim
t→∞ lim

N→∞ E π̂
y �N (yN (t), f̂t ) = 0, (5.8)

where

�N (yN , a) := r(yN , a)+α

∫

RN
V N∗

[
HN

ρ

(
yN , a, w

)]
θ(dw)−V N∗ (yN ), yN ∈ YN

(5.9)
is the discrepancy function in the N−MCM MN (see also (3.13)).

In the remainder of this section we will assume that Assumptions 2.1, 4.2, and 5.1
hold true. Based in this fact, the proof of Theorem 5.3 will be a consequence of the
following propositions.

Proposition 5.4 (a) For each π ∈ �M and T ∈ N,

YT := sup
0≤t≤T

‖yN (t) − y(t)‖∞ ≤ K(T ). (5.10)

(b) For each y ∈ YN and T ∈ N,

supπ∈�M
Eπ
y

[
sup

0≤t≤T
‖yN (t) − y(t)‖∞

]
≤ KTe−λNε2(1 + K(T )) + γT (ε).

(5.11)

Proof (a) To obtain (5.10) it is sufficient to prove that for each t ∈ N0 and π ∈ �M

‖yN (t) − y(t)‖∞ ≤ (Lg)
t−1 max{Lg, diam(A)}. (5.12)

We then focus to get (5.12). Notice that under Assumption 5.1(a) we have aπ,N
0 =

aπ
0 =: a0 ∈ A and ‖yN (0) − y(0)‖∞ = 0. On the other hand, since �MN (t) and �m(t)
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are probability measures, it follows that ‖ �MN (t)− �m(t)‖1∞ ≤ 1, for all t ∈ N0. Hence,
because Lg ≥ 1, the proof reduces to analyze the norm ‖ · ‖2∞ in (5.6). In particular,
(5.12) will be proved if we show that

‖CN (t) − c(t)‖2∞ ≤ (Lg)
t−1 max{Lg, diam(A)}, ∀t ∈ N0. (5.13)

To this end, we proceed by induction. First, observe that from (2.3) and (3.2) we obtain

‖CN (1) − c(1)‖2∞ = ‖g(c0, �MN (1), a0) − g(c0, �m(1), a0)‖2∞
≤ Lg‖ �MN (1) − �m(1)‖1∞ ≤ Lg (by (2.8)).

Also,

‖CN (2) − c(2)‖2∞ = ‖g(CN (1), �MN (2), aπ,N
1 ) − g(c(1), �m(1), aπ

1 )‖2∞
≤ Lg max

{
‖CN (1) − c(1)‖2∞, ‖ �MN (2) − �m(2)‖1∞,

dA(aπ,N
1 , aπ

1 )
}

≤ Lg max
{
Lg, 1, diam(A)

} = Lg max
{
Lg, diam(A)

}
.

Now, assume that (5.13) holds for some t ∈ N. Then

‖CN (t + 1) − c(t + 1)‖2∞ = ‖g(CN (t), �MN (t + 1), aπ,N
t ) − g(c(t), �m(t + 1), aπ

t )‖2∞
≤ Lg max

{
‖CN (t) − c(t)‖2∞, ‖ �MN (t + 1) − m(t + 1)‖1∞, dA(aπ,N

t , aπ
t )
}

(by (2.8))

≤ Lg max
{
(Lg)

t−1 max{Lg, diam(A)}, 1, diam(A)
}

(by (5.13))

≤ (Lg)
t max{Lg, diam(A)}.

This proves (5.13), which in turns yields (5.12) and (5.10).
(b) Observe that for each y ∈ YN , π ∈ �M , T ∈ N, and ε > 0, the expectation in
(5.11) satisfies (see (5.4))

Eπ
y [YT ] = Eπ

y

[
YT I{YT ≥γT (ε)} + YT I{YT <γT (ε)}

]

≤ Eπ
y

[
YT I{YT ≥γT (ε)}

] + γT (ε)Pπ
y (YT < γT (ε)) ≤ Eπ

y

[
YT I{TT ≥γT (ε)}

] + γT (ε).

(5.14)

On the other hand, by (5.10) as well as the non negativeness of YT , we have

YT
1 + K(T )

≤ YT
1 + YT

≤ 1,

which implies

YT
1 + K(T )

I{YT ≥γT (ε)} ≤ I{YT ≥γT (ε)}.
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This fact together with the definition of YT and Assumption 5.1(b) give

1

1 + K(T )
Eπ
y [YT I{YT ≥γT (ε)}] ≤ Pπ

y (YT ≥ γT (ε)) ≤ KTe−λNε2 , π ∈ �M .

Finally, from (5.14) we get

Eπ
y [YT ] ≤ KTe−λNε2(1 + K(T )) + γT (ε), π ∈ �M , (5.15)

and by taking supremum over π ∈ �M in (5.15) we prove the part (b). ��
The next results are related with the finite horizon discounted cost criteria for

the N−MCM MN and for the mean field control model M. For any π ∈ �M ,
y ∈ YN ⊂ Y, and T ∈ N, we define

V N
T (π, y) := Eπ

y

[
T−1∑
k=0

αkr(yN (k), ak)

]
and vT (π, y) :=

T−1∑
k=0

αkr(yN (k), ak).

Proposition 5.5 Let Lr and R be the constants in Assumption 2.1(d). Then, for each
y ∈ YN , ε > 0, T ∈ N, and 0 ≤ t ≤ T , the following statements hold true:

(a)

sup
π∈�

Eπ
y

∣∣∣r(yN (t), aπ,N
t )−r(y(t), aπ

t )

∣∣∣ ≤ Lr

(
KTe−λNε2(1 + K(T ))+γT (ε)

)
;

(5.16)
(b)

sup
ϕ∈�

Eϕ
y

[
sup
π∈�

∣∣∣V N
T (π, yN (t)) − vT (π, y(t))

∣∣∣
]

≤ Lr
1 − αT

1 − α

×
[
KTe−λNε2(1 + K(T )) + γT (ε)

]
; (5.17)

(c)

sup
ϕ∈�

Eϕ
y

[
sup
π∈�

∣∣∣V N (π, yN (t)) − V N
T (π, yN (t))

∣∣∣
]

≤ RαT

1 − α
; (5.18)

(d)

sup
ϕ∈�

Eϕ
y

[
sup
π∈�

|v(π, y(t)) − vT (π, y(t))|
]

≤ RαT

1 − α
. (5.19)

Proof (a) Let us fix any π ∈ �M and T ∈ N. Then, Assumption 2.1(d) together with
Proposition 5.4, lead to the following relations

Eπ
y

∣∣∣r(yN (t), aπ,N
t ) − r(y(t), aπ

t )

∣∣∣ ≤ Lr E
π
y

[
‖yN (t) − y(t)‖∞

]
(5.20)

≤ Lr E
π
y

[
sup

0≤t≤T
‖yN (t) − y(t)‖∞

]
≤ Lr

(
KTe−λNε2(1 + K(T )) + γT (ε)

)
.
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This implies the part (a).
(b) For each π ∈ �M ,

|VT (π, yN (t)) − vT (π, y(t))| =
∣∣∣∣∣E

π
yN (t)

{
T−1∑
k=0

αkr(yN (k), aπ,N
k )

−
T−1∑
k=0

αkr(y(k), aπ
k )

}∣∣∣∣∣

≤
T−1∑
k=0

αk Eπ
yN (t)

∣∣∣r(yN (k), aπ,N
k ) − r(y(t), aπ

k )

∣∣∣

≤ Lr
1 − αT

1 − α

[
KTe−λNε2(1 + K(T )) + γT (ε)

]
,

where the last inequality follows from (5.20). This gives

sup
π∈�

∣∣∣V N
T (π, yN (t))−vT (π, y(t))

∣∣∣≤ Lr
1 − αT

1 − α

[
KTe−λNε2(1 + K(T )) + γT (ε)

]
,

∀t ∈ N0.

Taking expectation Eϕ
y in both sides of the above expression, and then taking supremum

over ϕ ∈ �M , we obtain (5.17).
(c) For each π ∈ �M , we have

∣∣∣V N (π, yN (t)) − V N
T (π, yN (t))

∣∣∣

≤
∣∣∣∣∣E

π
yN (t)

{ ∞∑
k=0

αkr(yN (k), aπ,N
k ) −

T−1∑
k=0

αkr(yN (k), aπ,N
k )

}∣∣∣∣∣

≤
∞∑
k=T

αk Eπ
yN (t)|r(yN (k), aπ,N

k )| ≤ R
∞∑
k=T

αk ≤ RαT

1 − α
.

Hence, easily we can see that (5.18) holds.
(d) It follows by using the same arguments of (c). ��

5.1 Proof of Theorem 5.3(a)

Let πN∗ = {
f N∗

} ∈ �N
M be an optimal stationary policy for the N−MCM MN (see

Proposition 2.4(b)), and for an arbitrary selector f̃ ∈ F,we define the stationary policy
π̄ = {

f̄
} ∈ �M , where f̄ : Y → A is given by

f̄ (y) = f N∗ (y)IYN (y) + f̃ (y)I[YN ]c (y).
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In addition, let ϕ ∈ �M be an arbitrary policy and let us denote yNϕ (t) = yN (t) ∈ YN

and yϕ(t) := y(t) ∈ Y. Observe that for each t ∈ N0,

V N∗ (yN (t)) = V N (πN∗ , yN (t)) = V N (π̄, yN (t)) ≤ sup
π∈�M

V N (π, yN (t)).

Hence,

V N∗ (yN (t)) − v∗(y(t)) ≤ sup
π∈�M

V N (π, yN (t)) − inf
π∈�M

v(π, y(t))

which, in turns implies

∣∣∣V N∗ (yN (t)) − v∗(y(t))
∣∣∣ ≤ sup

π∈�M

∣∣∣V N (π, yN (t)) − v(π, y(t))
∣∣∣ , t ∈ N0.

Therefore, for each y ∈ YN and 0 ≤ t ≤ T ,

Eϕ
y

∣∣∣V N∗ (yN (t)) − v∗(y(t))
∣∣∣ ≤ Eϕ

y

[
sup

π∈�M

∣∣∣V N (π, yN (t)) − v(π, y(t))
∣∣∣
]

≤ Eϕ
y

[
sup

π∈�M

{∣∣∣V N (π, yN (t)) − V N
T (π, yN (t))

∣∣∣ +
∣∣∣V N

T (π, yN (t)) − vT (π, y(t))
∣∣∣

+ |vT (π, y(t)) − v(π, y(t))|}]

≤ Eϕ
y

[
sup

π∈�M

∣∣∣V N (π, yN (t)) − V N
T (π, yN (t))

∣∣∣
]

+Eϕ
y

[
sup

π∈�M

∣∣∣V N
T (π, yN (t)) − vT (π, y(t))

∣∣∣
]

+Eϕ
y

[
sup

π∈�M

|vT (π, y(t)) − v(π, y(t))|
]

≤ 2RαT

1 − α
+ Lr

1 − αT

1 − α

[
KTe−λNε2(1 + K(T )) + γT (ε)

]
,

where the last inequality is due to Proposition 5.5. Finally, by taking supremum over
ϕ ∈ �M , we obtain (5.7). ��

5.2 Proof of Theorem 5.3(b)

For ease notation, we let âNt := aπ̂ ,N
t and ât := aπ̂

t . Then, consider
{
(yN (t), âNt )

} ∈
YN × A and

{
(y(t), ât )

} ∈ Y× A the sequences of state-action pairs corresponding to
application of the policy π̂ (see (4.7)). For each t ∈ N0,we define the random variable
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�N
t :=

∣∣∣�N (yN (t), âNt ) − �(y(t), ât )
∣∣∣ .

Then, from the definition of the discrepancy functions �N and � given in (5.9) and
(3.13), respectively, we have for each t ∈ N0,

�N
t ≤

∣∣∣r(yN (t), âNt ) − r(y(t), ât )
∣∣∣ +

∣∣∣V N∗ (yN (t)) − v∗(y(t))
∣∣∣

+ α

∣∣∣∣
∫

RN
V N∗

[
HN

ρ

(
yN (t), âNt , w

)]
θ(dw) − v∗(Hρ

(
y(t), ât

)
)

∣∣∣∣
≤
∣∣∣r(yN (t), âNt ) − r(y(t), ât )

∣∣∣ +
∣∣∣V N∗ (yN (t)) − v∗(y(t))

∣∣∣

+
∣∣∣∣
∫

RN

{
V N∗

[
HN

ρ

(
yN (t), âNt , w

)]
− v∗(y(t + 1))

}
θ(dw)

∣∣∣∣ (by (3.5))

=
∣∣∣r(yN (t), âNt ) − r(y(t), ât )

∣∣∣ +
∣∣∣V N∗ (yN (t)) − v∗(y(t))

∣∣∣
+
∣∣∣E π̂

y

[
V N∗ (yN (t + 1)) − v∗(y(t + 1)) | hN

t , âNt
]∣∣∣ (by (5.21))

≤
∣∣∣r(yN (t), âNt ) − r(y(t), ât )

∣∣∣ +
∣∣∣V N∗ (yN (t)) − v∗(y(t))

∣∣∣
+ E π̂

y

[∣∣∣V N∗ (yN (t + 1)) − v∗(y(t + 1))
∣∣∣ | hN

t , âNt
]
. (5.21)

Taking expectation E π̂
y in (5.21), and using properties of conditional expectation we

get

E π̂
y

[
�N

t

]
≤ E π̂

y

∣∣∣r(yN (t), âNt ) − r(y(t), ât )
∣∣∣ + E π̂

y

∣∣∣V N∗ (yN (t)) − v∗(y(t))
∣∣∣

+ E π̂
y

∣∣∣V N∗ (yN (t + 1)) − v∗(y(t + 1))
∣∣∣ .

Furthermore, Proposition 5.5 and Theorem 5.3 yield

E π̂
y

[
�N

t

]
≤ Lr

[
KTe−λNε2(1 + K(T ) + γT (ε))

]
+ 4RαT

1 − α

+ 2Lr
1 − αT

1 − α

[
KTe−λNε2(1 + K(T )) + γT (ε)

]
,

for any arbitrary ε > 0 and T > t.
Also, observe that

E π̂
y

[
�N (yN (t), âNt )

]
≤ E π̂

y

[
|�N (yN (t), âNt ) − �(y(t), ât )|

]
+ E π̂

y

[
�(y(t), ât )

]

= E π̂
y [�N

t ] + E π̂
y

[
�(y(t), ât )

] ≤ Lr

[
KTe−λNε2(1 + K(T )) + γT (ε)

]
+ 4RαT

1 − α

+ 2Lr
1 − αT

1 − α

[
KTe−λNε2(1 + K(T )) + γT (ε)

]
+ E π̂

y

[
�(y(t), ât )

]
.
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Thus, taking limit as N → ∞ we obtain

0 ≤ lim
N→∞ E π̂

y

[
�N (yN (t), âNt )

]
≤ LrγT (ε) + 4RαT

1 − α
+ 2Lr

1 − αT

1 − α
γT (ε)

+ E π̂
y

[
�(y(t), f̂t (y(t)))

]
. (5.22)

Finally, as ε and T are arbitrary, by letting t → ∞ in (5.22), a simple use of Theorem
4.3 shows that

lim
t→∞ lim

N→∞ E π̂
y

[
�N (yN (t), âNt )

]
= 0

which proves the desired result. ��
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