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Abstract In this paper, we investigate an optimization problem for continuous-time
Markov decision processes with both impulsive and continuous controls. We consider
the so-called constrained problemwhere the objective of the controller is tominimize a
total expected discounted optimality criterion associatedwith a cost rate functionwhile
keeping other performance criteria of the same form, but associated with different cost
rate functions, below some given bounds. Our model allows multiple impulses at the
same time moment. The main objective of this work is to study the associated linear
program defined on a space of measures including the occupation measures of the
controlled process and to provide sufficient conditions to ensure the existence of an
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1 Introduction

The objective of this work is to study continuous-time Markov decision processes
(CTMDP’s) with constraints for the infinite horizon discounted cost with both impul-
sive and continuous controls. CTMDP’s is a general family of controlled stochastic
processes suitable for the modeling of sequential decision-making problems. They
appear in many fields such as engineering, computer science, economics and opera-
tional research among others. Our goal is to study the two types of control for CTMDPs
as described by Davis in his book [6]: continuous control acting at all times on the
process through the transition rate, and impulsive control, used to describe control
actions that move the process to a new point of the state space at some specific times.
Continuous control for CTMDP’s has been extensively studied in the literature, see for
example the recent books [9,10,27] and the references therein. Meanwhile, impulsive
control for CTMDP’s has received less attention andwas studied in [6,8,15,16,25,29–
32]; see also the recent work [4], where a general Markov model was considered with
application to financial mathematics. We do not attempt to present here an exhaustive
panorama on this topic, but refer the interested reader to [8] for a brief survey of
CTMDP with impulsive control.

It is important to emphasize that in the frameworkof impulsive control forCTMDPs,
there exist two rather distinct families of problems. The first class is related to models
allowing only one impulsive action at a time. The second family is more general
and studies models with possibly multiple impulses at the same time moment. This
latter set of problems is much more delicate for the analysis. Indeed, if the process
may take different values at the same time moment then it leads to non standard
paths for the controlled process. Most of the works in the literature are concerned
with the first class of problems. The second family of problems have been addressed
mainly by Yushkevich in [29–32]. Yushkevich has introduced a new class of stochastic
models, the so called T-processes where roughly speaking the processes are indexed
by a parameter representing the natural current time and the number of the impulsive
actions at that time moment. In [8], another approach has been developed by the
authors in order to use the standard theory of marked point processes [17,23]. Roughly
speaking, the model discussed in [8] is defined by the following components: the
state space X, the set of continuous actions Ag , the space of impulsive actions Ai , a
transition rate q on X given X × Ag and a stochastic kernel Q on X given X × Ai .
The model is given by a marked point process (�n,Yn)n∈N where �n represents
the sojourn time between two consecutive epochs induced either by a natural jump
or by an intervention of the decision-maker. The natural jumps are generated by the
transition rate q. The state vector Yn represents the successive jumps of the process
and the associated impulsive actions at the n-th epoch. More precisely, Yn is of the
form (x0, a0, x1, a1, . . . , xk, ak, xk+1,�,�, . . .) where x0 corresponds to a possibly
natural jump or to the value of the process just before the intervention. The triple
(x j , a j , x j+1) indicates that the impulsive action a j has been applied to the system
at state x j leading to a new jump x j+1 having distribution Q(·|x j , a j ). The special
impulsive action � means that the impulses are over and the artificial state � means
the same.
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The necessity of an immediate sequence of impulses appears naturally in many
mathematical models describing real-life problems. For example, in heavy traffic con-
trol problems, the approximation of the real physical system may lead to control
problems with simultaneous multiple impulses in the limit model. For the original
physical system, the impulses are separated in time but for the limit model, impulses
can occur at the same time moment due to the fact that the time is rescaled and
compressed. For a detailed exposition of such phenomenon, the reader is referred for
example to Sect. 8 of the book [21] (and the references therein) where an example of
a production system in heavy traffic with impulsive control is discussed.

From a theoretical point of view, constrained CTMDPs are substantially different
and more difficult to study than unconstrained CTMDPs. The linear programming
technique has proved to be a very efficient method for solving such problems. The
key idea is to reformulate the original sequential decision-making problem as an
infinite dimensional static optimization problem over a space of measures where the
admissible solutions are the so-called occupation measures of the controlled process.
This technique has been extensively studied in the recent decades for continuous time
processes in the context of continuous (gradual) control. We do not pretend to present
here an exhaustive panorama of this approach but the interested reader may consult the
following works and the references therein: [11,21,24,26] for CTMDPs, [1,3,22] for
diffusion processes and [2,12,20,28] for controlled martingale problems. However,
the linear programming approach has been considerably less studied for impulsive
control for unconstrained and constrained problems. To the best of our knowledge,
this paper seems to be the first attempt to tackle such problems. By using the Lagrange
multiplier approach, impulsive control problemwith constraints has been addressed in
[25] for a model with no continuous control, finite state and action spaces and where
a single impulsive action is allowed at a time.

In this paper, we investigate a constrained optimization problem for a CTMDP
with general state and action spaces, and with both impulsive and continuous controls
where the performance and the constraint criteria are given in terms of infinite-horizon
discounted functionals. Our model allowsmultiple impulses at the same timemoment.
To the best of our knowledge, this paper can be seen as the first attempt to solve such
general CTMDP’s. A distinguished feature of this work with respect to [8] is that
in the present paper we consider the constrained control problem while in [8], the
unconstrained case has been studied by using the dynamic programming technique.
The main objective of the present work is to provide sufficient conditions to ensure
the existence of an optimal control. First, we study the properties of the occupation
measures. It is shown in Theorem 4.5 that for any admissible control strategy, the
corresponding occupation measure satisfies a specific linear equation. It is then proved
that this linear equation characterizes the optimal control problemunder consideration,
in the sense that, from any measure η satisfying such linear equation one can construct
a control strategy u such that the corresponding occupation measure ηu is smaller than
η (for a precise mathematical statement, see Theorem 4.9). Based on these properties,
one can introduce a linear program, labeled PLP and prove that the solvability of the
constrained optimization problem is equivalent to the solvability of the PLP and that
these two optimization problems give the same value. By introducing a set of weak
hypotheses, the solvability of the PLP is proved in Theorem 5.5. Finally, it is shown
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in Theorem 5.6 the existence of an optimal randomized control strategy and that the
class of such strategies is a sufficient set for the constrained optimization problem
under consideration.

The rest of the paper is organized as follows. In Sect. 2, the CTMDP under con-
sideration is discussed. Section 3 is devoted to the presentation of the performance
criteria and the introduction of the main assumptions. The properties of the occupation
measures are derived in Sect. 4. Finally, the linear program is studied in Sect. 5 where
the existence of an optimal control strategy is shown. Several auxiliary results are
presented in the Appendices 1 and 2 to streamline the presentation.

2 The Continuous-Time Markov Control Process

The main goal of this section is to introduce the notations, as well as the parameters
defining the model, and to present the construction of the controlled process. In par-
ticular, having defined the class of admissible strategies, we introduce a probability
measurePu

x0 with respect to which the controlled process (�n,Yn)n∈N has the required
conditional distributions.

The following basic notation will be used in this paper: N is the set of natural
numbers including 0, N∗ = N \ {0}, R denotes the set of real numbers, R+ the set of
non-negative real numbers,R∗+ = R+\{0},�R+ = R+ ∪{+∞} and�R∗+ = R

∗+ ∪{+∞}.
For any p ∈ N,Np is the set {0, 1, . . . , p} and for any p ∈ N

∗,N∗
p is the set {1, . . . , p}.

The termmeasurewill always refer to a countably additive,�R+-valued set function. A
finite (respectively, signed) measure is a countably additive, R+-valued (respectively,
R-valued) set function. LetX be a Borel space and denote byB(X) its associated Borel
σ -algebra. For any set A, IA denotes the indicator function of the set A. The set of
measures (respectively, signed measures) defined on (X,B(X)) is denoted by M(X)

(respectively,Ms(X)). The set of finite measures on (X,B(X)) is denoted byM f (X)

andP(X) is the set of probabilitymeasures defined on (X,B(X)). For any point x ∈ X,
δx denotes the Dirac measure defined by δx (�) = I�(x) for any � ∈ B(X). The set
of bounded real-valued measurable functions defined on X is denoted by B(X) and
the set of R-valued (respectively, �R+-valued, and �R∗+-valued) measurable functions
defined on X is denoted by M(X) (respectively, �M+(X), and �M∗+(X)). The set of
continuous functions in B(X) is denoted by Cb(X).

Let X and Z be two Borel spaces. A kernel (respectively, signed kernel) T (·|·) on
Z given X is an �R+-valued (respectively, R-valued) mapping defined on B(Z) × X
such that for any A ∈ B(Z), T (A|·) ∈ �M+(X) (respectively, T (A|·) ∈ M(X)) and
for any x ∈ X, T (·|x) ∈ M(Z) (respectively, T (·|x) ∈ Ms(Z)). A kernel T (·|·) on
Z given X is called stochastic (respectively, finite) if for any x ∈ X, T (·|x) ∈ P(Z)

(respectively, T (·|x) ∈ M f (Z)). P(Z|X) denotes the set of stochastic kernels on
Z given X. A transition rate q on X given X × Z is a signed kernel on X given
X × Z satisfying q(X|x, z) = 0 and q(� \ {x}|x, z) ≥ 0 for any � ∈ B(X) and any
(x, z) ∈ X × Z. To any transition rate q on X given X × Z, we associate a kernel �q
on X given X × Z defined by�q(�|x, z) = q(� \ {x}|x, z) for any � ∈ B(X) and any
(x, z) ∈ X × Z.
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Let η ∈ M(X), f ∈ �M(Z)+ and a kernel T on Z given X, then ηT denotes

the measure on Z defined by ηT (�) =
∫
X
T (�|x)η(dx) for any � ∈ B(Z) and T f

denotes the function defined on X by T f (x) =
∫
Z
f (z)T (dz|x) for any x ∈ X.

Moreover, if R is a kernel on Y given Z then T R is the kernel on Y given X defined

by T R(�|x) =
∫
Z
R(�|z)T (dz|x) for any � ∈ B(Y) and x ∈ X.

Finally, the infimum over an empty set is understood to be equal to +∞.

2.1 Parameters of the Model

We deal with a control model defined through the following elements:

• X is the state space, assumed to be a Borel space (i.e., a measurable subset of a
complete and separable metric space).

• A is the action space, assumed to be also a Borel space. Ai ∈ B(A) (respectively
Ag ∈ B(A)) is the set of impulsive (respectively continuous) actions satisfying
A = Ai ∪ Ag with Ai ∩ Ag = ∅.

• The set of feasible actions in state x ∈ X isA(x), which is a nonempty measurable
subset of A. Admissible impulsive and continuous actions in the state x ∈ X are
denoted by Ai (x) = A(x) ∩ Ai and Ag(x) = A(x) ∩ Ag . It is supposed that
K

g = {(x, a) ∈ X × A : a ∈ Ag(x)} ∈ B(X × Ag) and this set contains the
graph of a measurable function from X to Ag (necessarily Ag(x) 
= ∅ for all
x ∈ X) and that Ki = {(x, a) ∈ X × Ai : a ∈ Ai (x)} ∈ B(Xi × Ai ) where
X
i = {x ∈ X : Ai (x) 
= ∅} ∈ B(X) and K

i contains the graph of a measurable
function from X

i to A.
• The stochastic kernel Q onX givenKi describes the result of an impulsive action.
In other words, if x ∈ X

i and an impulsive action a ∈ Ai (x) is applied then the
state of the process changes instantly according to the stochastic kernel Q.

• The signed kernel q onX givenKg is the intensity of jumps governing the dynamic
of the process between interventions. For notational convenience, let us denote
q(�\{x}|x, a)by�q(�|x, a) for� ∈ B(X) and (x, a) ∈ K

g . It satisfiesq(X|x, a) =
0,�q(X|x, a) ≥ 0 and supa∈A(x) �q(X|x, a) < ∞ for any (x, a) ∈ K

g .

In our model, an intervention consists only of a finite sequence of pairs of impulsive
action and associated jump.Actually, this finite sequence can be equivalently described
by an infinite sequenceof pairs of state and action,where the pairs are set to thefictitious
action and state after a finite step. As a result, an intervention is an element of the set

Y =
⋃
k∈N

Yk with Yk = (X × Ai )k × (X × {�}) × ({�} × {�})∞,

where � will play the role of the fictitious state and action. The dynamic of such
sequences is governed by the Markov Decision Process (MDP)Mi defined byMi =(
X�,Ai

�, (Ai
�(x))x∈X�, Q�

)
whereX�,Ai

� and
(
Ai

�(x))x∈X� are the new state and
actions spaces augmented by the fictitious state �: X� = X∪{�}, Ai

� = Ai ∪{�}
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and Ai
�(x) = Ai (x)∪{�} for x ∈ X and Ai

�(�) = {�}. The dynamic is given by
Q�(.|x, a) = Q(.|x, a) for any (x, a) ∈ K

i and Q�({�}|x, a) = 1 otherwise. For
the model Mi , according to the Ionescu Tulcea’s Theorem (see Proposition C.10 in
[13]), there exists a unique strategic measure Pβ(·|x) on (X� × Ai

�)∞ associated
with the policy β and the initial distribution δx . Here and below, we use the standard
terminology for MDP: see for example [13]. A policy is a sequence of past-dependent
distributions on the action space. A randomized (non-randomized, respectively) policy
is a control policy consisting in choosing randomly (deterministically, respectively)
the actions along the time according to a probability law depending on the past history
of the state and action processes. A Markov non-randomized policy is a sequence
(ϕi

j ) j∈N of Ai
�-valued mappings on X�, and so on. Observe that Pβ is in fact a

stochastic kernel on (X� × Ai
�)∞ given X, see Proposition C.10 in [13]. Since we

only consider intervention as an element of Y, we introduce 
 as the set of policies β

satisfying Pβ(Y|x) = 1. We consider randomized interventions and consequently an
intervention is an element of

PY = {γ ∈ P(Y|X) : γ (·|·) = Pβ(·|·) for some β ∈ 
},
and

PY(x) = {ρ ∈ P(Y) : ρ(·) = Pβ(·|x) for some β ∈ 
}
is the set of feasible interventions in state x ∈ X. Observe that if an intervention is
chosen in Y0, it means actually that the controller has not intervened on the process
through impulsive actions. For technical reasons, it appears necessary to introduce
the set Y∗ of real interventions given by Y∗ = ⋃∞

k=1 Yk . The associated sets of real
randomized interventions are defined by

PY∗ = {γ ∈ P(Y|X) : γ (·|·) = Pβ(·|·) for some β ∈ 


and Pβ(Y∗|x) = 1, for any x ∈ X
i }

and

PY∗
(x) = {ρ ∈ P(Y) : ρ(·) = Pβ(·|x) for some β ∈ 
 and Pβ(Y∗|x) = 1}

for x ∈ X. Note that PY∗
(x) = ∅ if x /∈ X

i .
Let us denote by Pg(Ag|X), the set of stochastic kernels π ∈ P(Ag|X) such that

for any x ∈ X, π(Ag(x)|x) = 1 and by P i (Ai
�|X�), the set of stochastic kernels

ϕ ∈ P(Ai
�|X�) such that for any x ∈ X�, ϕ(Ai

�(x)|x) = 1. For π ∈ Pg(Ag|X),�qπ

denotes the kernel onX givenX defined by
∫
Ag

�q(�|x, a)π(da|x) and qπ denotes the

transition rate on X given X defined by
∫
Ag

q(�|x, a)π(da|x) for any � ∈ B(X) and

x ∈ X. Similarly, for ϕ ∈ P i (Ai
�|X�), Qϕ

� denotes the stochastic kernel onX� given

X� defined by
∫
Ai

�

Q�(�|x, a)ϕ(da|x) for any � ∈ B(X�) and x ∈ X�.
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At some point, we need to consider strategic measures for the model Mi gen-
erated by arbitrary randomized stationary policies not necessarily belonging to 
.
Consequently, let us introduce the space

K
i
� = {(x, a) ∈ X� × Ai

� : a ∈ Ai
�(x)} ∈ B(X� × Ai

�).

Let ϕ ∈ P i (Ai
�|X�), by a slight abuse of notation, let us denote by ϕ the randomized

stationary policy induced by the stochastic kernel ϕ and by Pϕ the strategic measure
for the model Mi generated by the policy ϕ. Clearly, Pϕ ∈ P((Ki

�)∞|X).
Finally, we end this subsection by introducing a projection mapping that will be

used repeatedly in the paper. If y ∈ Y then there exists a unique k ∈ N such that
y ∈ Yk . The X-valued mapping x̄ on Y is defined by

x̄(y) = xk+1. (1)

2.2 Construction of the Process

Having introduced the parameters of themodel, we are now in position to construct the
Markov controlled process. Let Y∞ = Y ∪ {y∞} where y∞ is an artificial (isolated)
point and �n = Y × (R∗+ × Y)n × ({∞} × {y∞})∞, for n ∈ N. The canonical space
� is defined as � = ⋃∞

n=1 �n
⋃ (

Y × (R∗+ × Y)∞
)
and is endowed with its Borel

σ -algebra denoted by F . For notational convenience, ω ∈ � will be represented as

ω = (y0, θ1, y1, θ2, y2, . . .).

Here, y0 = (x0,�,�, . . .) is the initial state of the controlled point process ξ with
values in Y, defined below; θ1 = 0 and y1 ∈ Y is the result of the initial intervention.
The components θn > 0 for n ≥ 2 mean the sojourn times; yn denotes the result of an
intervention (if yn ∈ Y∗) or corresponds to a natural jump (if yn ∈ Y \ Y∗)). In case
θn < ∞ and θn+1 = ∞, the trajectory has only n jumps and we put ym = y∞ for all
m ≥ n + 1.

The path up to n ∈ N is denoted by hn = (y0, θ1, y1, θ2, y2, . . . θn, yn) and the
collection of all such paths is denoted by Hn . For n ∈ N, introduce the mappings
Yn : � → Y∞ by Yn(ω) = yn and, for n ≥ 2, the mappings �n : � → R

∗
+

by �n(ω) = θn ; �1(ω) = 0. The sequence (Tn)n∈N∗ of R
∗
+-valued mappings is

defined on � by Tn(ω) = ∑n
i=1 �i (ω) = ∑n

i=1 θi and T∞(ω) = limn→∞ Tn(ω).
For notational convenience, we denote by Hn = (Y0,�1,Y1, . . . , �n,Yn) the n-term
history process taking values in Hn for n ∈ N.

The randommeasureμ associatedwith (�n,Yn)n∈N is ameasure defined onR∗+×Y
by

μ(ω; dt, dy) =
∑
n≥2

I{Tn(ω)<∞}δ(Tn(ω),Yn(ω))(dt, dy).
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For notational convenience the dependence on ω will be ignored and instead of
μ(ω; dt, dy) it will be written μ(dt, dy). For t ∈ R+, define Ft = σ {H1} ∨
σ {μ(]0, s] × B) : s ≤ t, B ∈ B(Y)}. Finally, we define the controlled process{
ξt

}
t∈R+ :

ξt (ω) =
{
Yn(ω), if Tn ≤ t < Tn+1 for n ∈ N

∗;
y∞, if T∞ ≤ t,

and ξ0−(ω) = Y0 = y0 with y0 = (x0,�,�, . . .). Obviously, the controlled process
{ξt }t∈R+ can be equivalently described by the sequence (�n,Yn)n∈N. The sequence
(Tn)n∈N∗ describes the times of jumps of {ξt }t∈R+ : Tn is the n-th jump moment.
The state ξt is constant between the jump times Tn and Tn+1 and represents the suc-
cessive jumps of the process and the associated impulsive actions at time Tn . This
choice for the process {ξt }t∈R+ is motivated by the fact we consider models with pos-
sibly multiple impulses at the same time moment. In such a framework, we extend
the state space from X to Y in order to include the sequence of successive instan-
taneous jumps and corresponding impulsive actions. The extended state is of the
form (x0, a0, x1, a1, . . . , xk, ak, xk+1,�,�, . . .) where x0 corresponds to a possibly
natural jump or to the value of the process just before the intervention. The triple
(x j , a j , x j+1) indicates that the impulsive action a j has been applied to the system
at state x j leading to a new state x j+1 having distribution Q(·|x j , a j ). The special
impulsive action � means that the impulses are over and the artificial state � means
the same. Observe that the last component different from � in ξt corresponds to the
last position of the process after a sequence of successive instantaneous jumps and
impulses. It is given by x(ξt ). It may appear odd to have included the impulsive actions
(associated to the successive jumps) in the state process ξt . However, this choice was
made to simplify the model describing the dynamic of the process. Other approaches
would have been possible as for example, a model where {ξt }t∈R+ would have been
only constituted of the successive jumps but it would have induced a much more
complicated mathematical description for the dynamic with heavy notation.

2.3 Admissible Strategies and Conditional Distribution of the Controlled
Process

An admissible (randomized) control strategy is a sequence u = (un)n∈N such that
u0 ∈ PY(x0) and, for any n ∈ N

∗, un is given by

un = (
ψn, πn, γ

0
n , γ 1

n

)
,

where ψn is a stochastic kernel on R
∗
+ given Hn satisfying ψn(·|hn) = δ+∞(·) for

any hn = (y0, θ1, . . . θn, yn) ∈ Hn with x(yn) /∈ X
i , πn is a stochastic kernel

on Ag given Hn × R
∗+ satisfying πn(Ag(x(yn))|hn, t) = 1 for any t ∈ R

∗+ and
hn = (y0, θ1, . . . θn, yn) ∈ Hn , γ 0

n is a stochastic kernel on Y given Hn × R
∗+ × X

satisfying γ 0
n (·|hn, t, x) ∈ PY(x) for any hn ∈ Hn , t ∈ R

∗+ and x ∈ X, and γ 1
n

is a stochastic kernel on Y given Hn satisfying γ 1
n (·|hn) ∈ PY∗

(x(yn)) for any
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hn = (y0, θ1, . . . θn, yn) ∈ Hn with x(yn) ∈ X
i ; if x(yn) /∈ X

i then γ 1
n (·|hn) =

δ(x(yn),�,�,...)(·).
The above conditions apply when yn 
= y∞; otherwise, all the values of ψn(·|hn),

πn(·|hn, t), γ 0
n (·|hn, t, ·) and γ 1

n (·|hn) may be arbitrary.
The set of admissible control strategies is denoted by U . In what follows, we use

notation γn = (γ 0
n , γ 1

n ). An admissible strategy u with un = (
ψn, πn, γ

0
n , γ 1

n

)
for

n ∈ N
∗ is called randomized stationary, if there exist ψ ∈ �M∗+(X), π ∈ Pg(Ag|X),

a stochastic kernel γ 0 on Y given X such that γ 0(·|x) ∈ PY(x) for any x ∈ X,
and a stochastic kernel γ 1 on Y given X such that γ 1(·|x) ∈ PY∗

(x) for any x ∈
X
i satisfying u0(·) = γ 0(·|x0), ψn(·|hn) = δψ(x(yn))(·), πn(·|hn, t) = π(·|x(yn)),

γ 0
n (·|hn, t, x) = γ 0(·|x), and γ 1

n (·|hn) = γ 1(·|x(yn)) when x(yn) ∈ X
i .

Roughly speaking, ψn represents the conditional time distribution of the next pos-
sible intervention after time Tn , πn is the usual continuous control influencing the
intensity of the jumps q between Tn and Tn+1, γ 0

n is the distribution of the next inter-
vention if it is decided to have an intervention just immediately after a natural jump
and γ 1

n is the distribution of the next intervention if it is decided to have an intervention
before a natural jump.

Suppose a strategy u = (un)n∈N ∈ U is fixed with un = (
ψn, πn, γ

0
n , γ 1

n

)
for

n ∈ N
∗. We introduce the intensity of the natural jumps

λn(�x , hn, t) =
∫
Ag

�q(�x |x(yn), a)πn(da|hn, t),

and the rate of the natural jumps

�n(�x , hn, t) =
∫

]0,t[
λn(�x , hn, s)ds

for any n ∈ N
∗, �x ∈ B(X), hn = (y0, θ1, y1, . . . , θn, yn) ∈ Hn and t ∈ �R∗+. Now,

for any n ∈ N
∗, the stochastic kernel Gn on Y∞ × R

∗
+ given Hn is defined by

Gn({+∞} × {y∞}|hn) = δyn ({y∞}) + δyn (Y)e−�n(X,hn ,+∞)ψn({+∞}|hn) (2)

and

Gn(�� × �y |hn) = δyn (Y)
[
γ 1
n (�y |hn)

∫
�θ

e−�n(X,hn ,t)ψn(dt |hn)

+
∫

�θ

∫
X

ψn([t,∞]|hn)γ 0
n (�y |hn, t, x)λn(dx, hn, t)e−�n(X,hn ,t)dt

]
,

(3)

and

Gn({+∞} × �y |hn) = 0, (4)
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where �y ∈ B(Y), �� ∈ B(R∗+) and hn = (y0, θ1, y1, . . . , θn, yn) ∈ Hn . Note that
the kernel γ 1

n does not appear in the formula for Gn if x(yn) /∈ X
i .

Consider an admissible strategy u ∈ U and an initial state x0 ∈ X. Recalling
that � = ⋃∞

n=1 �n
⋃ (

Y × (R∗+ × Y)∞
)
and that F denotes its associated Borel

σ -algebra, Theorem 3.6 in [17] (or Remark 3.43 in [18] or [19]) implies the existence
of a probability Pu

x0 on (�,F) such that the restriction of Pu
x0 to (�,F0) is given by

P
u
x0

({Y0} × {0} × �y × (�R∗+ × Y∞)∞
) = u0(�y |x0) (5)

for any �y ∈ B(Y) and the positive random measure ν defined on R
∗+ × Y by

ν(dt, dy) =
∑
n∈N∗

Gn(dt − Tn, dy|Hn)

Gn([t − Tn,+∞] × Y∞|Hn)
I{Tn<t≤Tn+1} (6)

is the predictable projection of μ with respect to Pu
x0 .

Remark 2.1 Observe that FTn is the σ -algebra generated by the random variable Hn

for n ∈ N
∗. The conditional distribution of (Yn+1,�n+1) given FTn under Pu

x0 is
determined by Gn(·|Hn) and the conditional survival function of �n+1 given FTn
under Pu

x0 is given by Gn([t,+∞] × Y∞|Hn).

3 Optimization Problem and Assumptions

The objective of this section is to introduce the infinite-horizon performance criteria
we are concerned with. Next we state our assumptions on the parameters of the model.
Moreover, in the context of these hypotheses, at the end of this section we recall a
technical result from [8] providing a decomposition of the predictable projection ν

of the measure μ in terms of the distributions (γ 0
n )n∈N∗ and (γ 1

n )n∈N∗ of the next
intervention.

We consider an optimization problem with p ∈ N constraints where the perfor-
mance and the constraint criteria are given in terms of infinite-horizon discounted
functionals. In order to define these criteria, we need to introduce the cost rates(
Cg

j

)
j∈Np

associated with continuous actions. For any j ∈ Np, the real-valued

mapping Cg
j is defined on K

g . The costs
(
Ci

j

)
j∈Np

associated with an intervention

y = (x0, a0, x1, a1, . . .) ∈ Y are given by Ci
j (y) = ∑

k∈N cij (xk, ak), where for

any j ∈ Np, cij is a non-negative real-valued mapping defined on K
i
� satisfying

cij (x, a) = 0 if (x, a) /∈ K
i . For any (x, a) ∈ K

i and j ∈ Np, cij (x, a) corresponds
to the cost associated with a single jump at x ∈ X resulting from the impulsive action
a ∈ Ai (x). The cost associated with a randomized intervention ρ ∈ PY(x) for x ∈ X
is given by

∫
Y Ci

j (y)ρ(dy|x) for any j ∈ Np. Therefore, the infinite-horizon dis-
counted performance criteria corresponding to an admissible control strategy u ∈ U
are defined by

123



Appl Math Optim (2016) 74:129–161 139

V j (u, x0) =
∫
Y
Ci

j (y)u0(dy|x0) + E
u
x0

[ ∫ +∞

0
e−αs

∫
Ag

Cg
j (x(ξs−), a)π(da|s)ds

]

+ E
u
x0

[ ∫
]0,∞[×Y

e−αsCi
j (y)μ(ds, dy)

]
, (7)

for any j ∈ Np. In the previous expression, α > 0 is the discount factor. Note that,
the performance criteria are well defined under Assumption A imposed below.

Definition 3.1 The constrained optimization problem consists to minimize V0(u, x0)
within the class of admissible strategies u ∈ U where x0 is the initial state and such
that V j (u, x0) ≤ Bj , for any j ∈ N

∗
p where (Bj ) j∈N∗

p
are nonnegative real numbers

representing the constraint bounds. The class of feasible strategies u ∈ U will be

denoted by U f =
{
u ∈ U : V j (u, x0) ≤ Bj , for any j ∈ N

∗
p

}
.

Assumption A There exists a constant K ∈ R+ such that for any x ∈ X, ag ∈ Ag(x),
ai ∈ Ai (x) and j ∈ Np

(A1) �q(X|x, ag) ≤ K .
(A2) Cg

j (x, a
g) ≥ 0.

(A3) cij (x, a
i ) ≥ 0.

Remark 3.1 It must be emphasized that Assumption (A2) can be replaced by the
following apparently weaker condition Cg

j (x, a
g) ≥ −K .

The purpose of the next assumption is to avoid infinite simultaneous interventions.
This is a classical hypothesis in the framework of impulsive control problems, see for
example [6].

Assumption B There exists a constant c > 0 such that
∑

j∈Np
cij (x, a) ≥ c for any

(x, a) ∈ K
i .

Finally, let us recall the following technical result from [8, Lemma 3.1]

Lemma 3.2 The predictable projection of the random measure μ is given by ν =
ν0 + ν1 where

ν0(�, �y) =
∫

�

∫
Ag

∫
X

γ 0(�y |x, s)�q(dx |x(ξs−), a)π(da|s)ds,

ν1(�, �y) =
∑
n∈N∗

γ 1
n (�y |Hn)

∫
�

I{Tn<s≤Tn+1}
ψn(ds − Tn|Hn)

ψn([s − Tn,+∞]|Hn)
,

γ 0(dy|x, t) =
∑
n∈N∗

I{Tn<t≤Tn+1}γ 0
n (dy|Hn, t−Tn, x),π(da|t) =

∑
n∈N∗

I{Tn<t≤Tn+1}πn

(da|Hn, t − Tn), for any � ∈ B(R∗+), �y ∈ B(Y), t ∈ R+.
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4 Occupation Measures and Their Properties

In this section, we introduce the definition of an occupation measure ηu induced by a
control strategy u ∈ U (see Definition 4.2). The objective of this section is twofold.
First, it is shown in Theorem 4.5 that for any control strategy u ∈ U , the corresponding
occupation measure ηu satisfies a linear equation depending on the kernels q and
Q. A measure satisfying such equation will be called admissible. Second, from any
admissiblemeasureη one can construct a randomized stationary control strategy u ∈ U
such that the restrictions of η and ηu to Kg are equal and the restriction of ηu to Ki is
smaller than the restriction of η toKi (see Theorem 4.9). These two important results
will play an important role in the next section to establish a connection between the
constrained optimal control problem and the linear program given in Definition 5.1. In
order to prove these two results, one needs to provide auxiliary results whose proofs
are deferred to the Appendices 1 and 2 to streamline the presentation.

Definition 4.1 To any γ ∈ M(Y), we associate the measure γ̃ ∈ M(X� × Ai
�)

defined by γ̃ (�) =
∞∑
j=1

γ
({y ∈ Y : y j ∈ �}), for any � ∈ B(X� × Ai

�) and where

y j is the j th coordinate of y ∈ Y ⊂ (Ki
�)∞. Similarly, if R is a stochastic kernel

on Y given a Borel space Z then R̃ is a kernel on X� × Ai
� given Z defined by

R̃(�|z) =
∞∑
j=1

R
({y ∈ Y : y j ∈ �}|z), for any z ∈ Z and � ∈ B(X� × Ai

�).

These definitions will be naturally extended to probability measures defined on
(Ki

�)∞ and to stochastic kernels on (Ki
�)∞ given a Borel spaceZ. Now, we introduce

the definition of an occupation measure ηu induced by an admissible control strategy
u.

Definition 4.2 For a strategy u = (un)n∈N ∈ U , let us introduce the measures η
g
u

(respectively, μi
u and ηiu) defined on X × Ag (respectively, Y and X� × Ai

�) by

η
g
u (dx, da) = αEu

x0

[ ∫ T∞

0
e−αsδ�x(ξs−)(dx)π(da|s)ds

]
, (8)

μi
u(dy) = E

u
x0

[ ∫
]0,T∞[

e−αsμ(ds, dy)

]
+ u0(dy|x0), (9)

and

ηiu(dx, da) = μ̃i
u(dx, da). (10)

Actually, the measure η
g
u is supported on Kg and clearly finite for any u ∈ U , and the

measure ηiu is supported on Ki
�. Then, the measure ηu defined on X × A by

ηu(�) = η
g
u (� ∩K

g) + ηiu(� ∩K
i ), (11)
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for any � ∈ B(X × A) is called the occupation measure of the controlled process
induced by the control strategy u. Clearly, the measure ηu is supported on K

g ∪K
i .

The infinite-horizon discounted performance criteria corresponding to an admissi-
ble control strategy u ∈ U satisfying P

u
x0(T∞ = +∞) = 1 can be written in terms of

the measure ηu as follows

V j (u, x0) = ηu(C j ) (12)

with C j (x, a) = 1
α
Cg

j (x, a)IKg (x, a) + cij (x, a)IKi (x, a), for j ∈ Np.
In order to show the first main result of this section, Theorem 4.6, we need to

derive two intermediate results: Propositions 4.3 and 4.4. For the sake of clarity in
the exposition, their proofs are presented in Appendix 1. Roughly speaking, these two
technical results establish links between the measures η

g
u and ηiu .

Proposition 4.3 Consider a strategy u = (un)n∈N ∈ U fixed with un =(
ψn, πn, γ

0
n , γ 1

n

)
for n ∈ N

∗ satisfying ηiu(X × Ai
�) < ∞. Then, for any � ∈ B(X),

η
g
u (� × Ag) = ηiu(� × {�}) − 1

α

∫
X×Ag

I�(x)�q(X|x, a)η
g
u (dx, da)

− E
u
x0

[ ∑
n∈N∗

e−αTn I�(x(Yn))
∫

]0,∞[
e−αsψn(ds|Hn)

]
. (13)

Proof See Appendix 1. ��
Proposition 4.4 Consider a strategy u = (un)n∈N ∈ U fixed with un =(
ψn, πn, γ

0
n , γ 1

n

)
for n ∈ N

∗ satisfying P
u
x0(T∞ = +∞) = 1. Then, for any

� ∈ B(X�)

ηiu(� × Ai
�) = δx0(�) +

∫
X�×Ai

�

Q�(�|z, b)ηiu(dz, db)

+ 1

α

∫
X×Ag

�q(� ∩X|x, a)η
g
u (dx, da)

+ E
u
x0

[ ∑
n∈N∗

e−αTn I�(x(Yn))
∫

]0,∞[
e−αsψn(ds|Hn)

]
. (14)

Proof See Appendix 1. ��
Remark 4.1 Observe that in the previous result, if we consider� inB(X) then Eq. (14)
becomes

ηiu(� × Ai
�) = δx0(�) +

∫
X×Ai

Q�(�|z, b)ηiu(dz, db)

+ 1

α

∫
X×Ag

�q(�|x, a)η
g
u (dx, da)
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+ E
u
x0

[ ∑
n∈N∗

e−αTn I�(x(Yn))
∫

]0,∞[
e−αsψn(ds|Hn)

]
, (15)

since Q�(�|x, a) = 0 for any (x, a) /∈ K
i .

Definition 4.5 Ameasureρ ∈ M f (X×A) is said to be admissible ifρ is concentrated
on Kg ∪K

i and

ρ(� × A) = δx0(�) +
∫
X×Ai

Q�(�|z, b)ρ(dz, db) + 1

α

∫
X×Ag

q(�|x, a)ρ(dx, da),

(16)

for any � ∈ B(X).

The next result shows that any occupation measure is admissible.

Theorem 4.6 Consider a strategy u = (un)n∈N ∈ U fixedwith un = (
ψn, πn, γ

0
n , γ 1

n

)
for n ∈ N

∗ satisfying ηiu(X × Ai
�) < ∞. Then, the measure ηu is admissible.

Proof First of all, recall that ηu is finite and notice that q(�|x, a) = �q(�|x, a) −
I�(x)�q(X|x, a) for any � ∈ B(X) and (x, a) ∈ K

g . Now consider � ∈ B(X), then by
adding Eqs. (13) and (15), it yields that

ηu(� × A) = η
g
u (� × Ag) + ηiu(� × Ai )

= δx0(�) +
∫
X×Ai

Q�(�|z, b)ηiu(dz, db) + 1

α

∫
X×Ag

q(�|x, a)η
g
u (dx, da)

= δx0(�) +
∫
X×Ai

Q�(�|z, b)ηu(dz, db) + 1

α

∫
X×Ag

q(�|x, a)ηu(dx, da),

showing the result. ��
Let ϕ be a randomized stationary policy for the model Mi . Introduce the set

Sϕ = {
x ∈ X : P̃ϕ(X × {�}|x) = 1

}
, (17)

and the stochastic kernel Rϕ on Y given X by

Rϕ(dy|x) = Pϕ(dy|x)ISϕ
(x) + δ(x,�,�,...)(dy)ISc

ϕ
(x). (18)

We introduce now a special class of randomized stationary control strategies.

Definition 4.7 Consider π ∈ Pg(Ag|X) and ϕ ∈ P i (Ai
�|X�). The strategy uπ,ϕ =

(uπ,ϕ
n )n∈N is defined by uπ,ϕ

0 (·) = Rϕ(·|x0) and by uπ,ϕ
n = (

ψn, πn, γ
0
n , γ 1

n

)
for

n ∈ N
∗ where for any x ∈ X, t ∈ R+ and hn = (y0, θ1, . . . θn, yn) ∈ Hn , ψn(·|hn) =

δ+∞(·), πn(·|hn, t) = π(·|�x(yn)), γ 0
n (·|hn, t, x) = Rϕ(·|x). Finally, γ 1

n is defined
by γ 1

n (·|hn) = γ 1(·|x(yn)) where γ 1 is an arbitrary stochastic kernel on Y given X
satisfying γ 1(·|x) ∈ PY∗

(x) for x ∈ X
i and γ 1(·|x) = δ(x,�,�,...)(·) otherwise.
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Clearly, the strategy so defined satisfies uπ,ϕ ∈ U . The following proposition pro-
vides important properties of the measures η

g
uπ,ϕ and ηiuπ,ϕ that will be needed in the

proof of Theorem 4.9.

Proposition 4.8 Consider π ∈ Pg(Ag|X) and ϕ ∈ P i (Ai
�|X�). Then

ηiuπ,ϕ (dx, da) =
[
δx0 + 1

α
η̂
g
uπ,ϕ�qπ

]
R̃ϕ(dx, da), (19)

and for any � ∈ B(X)

η̂
g
uπ,ϕ (�) = 1

α
η̂
g
uπ,ϕrπ

ϕ (�) + R̃ϕ(� × {�}|x0), (20)

where η̂
g
uπ,ϕ (dx) denotes η

g
uπ,ϕ (dx,Ag) and the transition rate rπ

ϕ on X given X is
defined by

rπ
ϕ (�|x) = �qπ R̃ϕ(� × {�}) − I�(x)�qπ (X|x). (21)

Proof See Appendix 2. ��

The following theorem is the second main result of this section. Roughly speaking,
it can be seen as a converse of Theorem 4.6. In particular, it shows that an admissible
measure η may not be necessarily an occupation measure but one can construct from
η a randomized stationary control strategy u such that the corresponding occupation
measure ηu is smaller than η (see Eq. 26).

Theorem 4.9 Let η be an admissible measure. Let us define the measure ηg onX×Ag

by

ηg(�) = η(� ∩K
g), (22)

for any � ∈ B(X × Ag) and the measure ηi on X × Ai
� by

ηi (�) = η(� ∩K
i ), (23)

for any � ∈ B(X × Ai ) and

ηi (� × {�}) = 1

α

∫
X×Ag

I�(x)�q(X|x, a)ηg(dx, da) + ηg(� × Ag),

for any � ∈ B(X). Then, there exist a stochastic kernel π ∈ Pg(Ag|X) satisfying

ηg(�) =
∫

�

π(da|x)ηg(dx,Ag), (24)
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for any � ∈ B(X × Ag) and a stochastic kernel ϕ ∈ P i (Ai
�|X�) satisfying

ηi (�) =
∫

�

ϕ(da|x)ηi (dx,Ai
�) (25)

for any � ∈ B(X × Ai
�) and ϕ({�}|�) = 1. Then,

η
g
uπ,ϕ = ηg and ηiuπ,ϕ ≤ ηi (26)

and

ηiuπ,ϕ =
[
δx0 + 1

α
η
g
uπ,ϕ�q

]
P̃ϕ. (27)

Proof First, notice that ηi ∈ M f (X × Ai
�) and since Q�(X|x, a) = 1 for any

(x, a) ∈ K
i and q(X|x, a) = 0 for any (x, a) ∈ K

g , we obtain from Eq. (16)
that ηg ∈ P(X × Ag). Consequently, Proposition D.8 in [13, p. 184] ensures the
existence of π ∈ Pg(Ag|X) and ϕ ∈ P i (Ai

�|X�) satisfying respectively Eqs. (24)
and (25). Consider an arbitrary set� ∈ B(X). For notational convenience, let us denote
ηi (� × Ai

�) by η̂i (�) and ηg(� × Ag) by η̂g(�). Observe that Qϕ
�(�|{�}) = 0. By

using the definitions of ηg and ηi and Eq. (16) which is satisfied by η, it is easy to see
that

η̂g(�) = ηi (� × {�}) − 1

α

∫
X×Ag

I�(x)�qπ (X|x, a)̂ηg(dx), (28)

η̂i (�) = δx0(�) + 1

α
η̂g�qπ (�) +

∫
X
Qϕ

�(�|z)̂ηi (dz) (29)

for any � ∈ B(X) by recalling that q(�|x, a) = �q(�|x, a) − I�(x)�q(X|x, a). Conse-
quently,

η̂i (�) = δx0(�) + 1

α
η̂g�qπ (�) + η̂i IX Q

ϕ
�(�). (30)

Moreover, IX Q
ϕ
� IX = Qϕ

� IX and therefore, by iterating Eq. (30) we have

∫
X

n∑
k=0

(
Qϕ

�

)k
(�|x)

[
δx0(dx) + 1

α
η̂g�qπ (dx)

]
≤ η̂i (�) (31)

for any n ∈ N. Observe that
∞∑
k=0

(
Qϕ

�

)k
(�|x) = P̃ϕ(� × Ai

�|x). For notational

convenience, let us denote by ρ the measure
[
δx0 + 1

α
η̂g�qπ

]
P̃ϕ ∈ M(X� × Ai

�)

which is concentrated on K
i
�. Applying the monotone convergence Theorem and

taking the limit as n tends to infinity in Eq. (31), it follows that
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ρ(� × Ai
�) ≤ η̂i (�). (32)

By using the fact that P̃ϕ(dz, db|x) = ϕ(db|z)P̃ϕ(dz × Ai
�|x) for any x ∈ X, it

follows that

ρ(dz, db) = ϕ(db|z)ρ(dz,Ai
�). (33)

Combining Eqs. (25) and (32)–(33), it implies

ρ ≤ ηi . (34)

Clearly, the measure ρ ∈ M f (X × Ai
�) and satisfies

ρ(� × Ai
�) = δx0(�) + 1

α
η̂g�qπ (�) +

∫
X
Qϕ

�(�|z)ρ(dz,Ai
�)

and so, recalling (33)

ρ(� × Ai
�) = δx0(�) + 1

α
η̂g�qπ (�) +

∫
X×Ai

Q�(�|z, b)ρ(dz, db).

Since Q�(X|z, b) = IKi (z, b) and ρ(Ki ) = ρ(X×Ai ), we obtain from the previous
equation

ρ(X × {�}) + ρ(X × Ai ) = δx0(X) + 1

α
η̂g�qπ (X) + ρ(X × Ai )

showing

ρ(X × {�}) = δx0(X) + 1

α
η̂g�qπ (X).

Moreover, from the definition of ρ we obtain that

∫
X

[
P̃ϕ(X × {�}|x) − 1

]
δx0(dx) +

∫
X

[
P̃ϕ(X × {�}|x) − 1

]̂
ηg�qπ (dx) = 0.

Lemma B.1 yields that P̃ϕ(X × {�}|x) ≤ 1 for any x ∈ X. Consequently,

[
δx0 + η̂g�qπ

](Sc
ϕ

) = 0, (35)

where the set Sϕ has been introduced in (17). Now, combining Eqs. (29) and (34), it
follows

η̂g(�) ≥ P̃ϕ(� × {�}|x0) + 1

α
η̂g pπ

ϕ (�),
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where

pπ
ϕ (�|x) = �qπ P̃ϕ(� × {�}|x) − I�(x)�qπ (X|x). (36)

Now, from Eq. (35) we have P̃ϕ(X × {�}|x0) = 1 and

η̂g pπ
ϕ (X) =

∫
X
P̃ϕ(X × {�}|x )̂ηg�qπ (dx) − η̂g�qπ (X) = 0.

Therefore, since η̂g(X) = 1 it follows that the positive measure γ defined on X by

γ = η̂g − P̃ϕ(·, {�}|x0) − 1

α
η̂g pπ

ϕ ,

satisfies γ (X) = 0 and so

η̂g(�) = P̃ϕ(� × {�}|x0) + 1

α
η̂g pπ

ϕ (�). (37)

However, from the definition of Rϕ in Eq. (18) we have

R̃ϕ(dz, db|x) = P̃ϕ(dz, db|x)ISϕ
(x) + δ(x,�)(dz, db)ISc

ϕ
(x),

on X × Ai
�. Now, the previous equation and (35) yield

[
δx0 + 1

α
η̂g�qπ

]
R̃ϕ =

[
δx0 + 1

α
η̂g�qπ

]
P̃ϕ. (38)

Combining Eqs. (36)–(38), we obtain that

η̂g(�) = R̃ϕ(� × {�}|x0) + 1

α
η̂grπ

ϕ (�),

where rπ
ϕ has been defined in Eq. (21). Clearly, rπ

ϕ is a transition rate on X given
X and so applying the uniqueness result of item d) in Theorem 3.2 in [24] we have
from (20) that η̂guπ,ϕ = η̂g . From the definitions of uπ,ϕ and η

g
u it is easy to show that

η
g
uπ,ϕ (dx, da) = η̂

g
uπ,ϕ (dx)π(da|x). Therefore,

η
g
uπ,ϕ (dx, da) = η̂

g
uπ,ϕ (dx)π(da|x) = η̂g(dx)π(da|x) = ηg(dx, da), (39)

showing the first part of the result.
Now, combining the previous equation, (34) and (38) we get that

[
δx0 + 1

α
η̂g�qπ

]
R̃ϕ =

[
δx0 + 1

α
η̂g�qπ

]
P̃ϕ = ρ ≤ ηi ,

and so, by using Eqs. (19) and (39), we have that ηiuπ,ϕ =
[
δx0 + 1

α
η̂
g
uπ,ϕ�qπ

]
P̃ϕ ≤ ηi

giving the last assertions. ��
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Finally, the following corollary shows that, although ηi and ηiuπ,ϕ are not equal,
there exists a subset of X × Ai on which they coincide.

Corollary 4.10 Under the conditions of Theorem4.9, there exists a set D ∈ B(X) such
that for any z ∈ D, Qϕ

�(D|z) = 1; η̂
g
uπ,ϕ (D) = η̂iuπ,ϕ (D) = 0, and ηi (�) = ηiuπ,ϕ (�)

for any � ∈ B(
(X \ D) × Ai

�

)
.

Proof From Proposition 4.4 the pair of measures (η
g
uπ,ϕ , η

i
uπ,ϕ ) satisfies

η̂iuπ,ϕ (�) = δx0(�) + 1

α

∫
X×Ag

�q(�|x, a)η
g
uπ,ϕ (dx, da) +

∫
X
Qϕ

�(�|z)̂ηiuπ,ϕ (dz),

(40)

since for uπ,ϕ we have ψn(·|hn) = δ+∞(·) for any hn = (y0, θ1, . . . θn, yn) ∈ Hn .
Moreover, according to Eq. (29), we have

η̂i (�) = δx0(�) + 1

α

∫
X×Ag

�q(�|x, a)ηg(dx, da) +
∫
X
Qϕ

�(�|z)̂ηi (dz)

for any � ∈ B(X). Therefore, the measure γ defined on X by γ = η̂i − η̂iuπ,ϕ satisfies
the following equation

γ (�) =
∫
X
Qϕ

�(�|z)γ (dz) for any � ∈ B(X) (41)

since η
g
uπ,ϕ = ηg . Define the sequence of sets (Xn)n∈N by Xn+1 = {z ∈ Xn :

Qϕ
�(Xn|z) = 1}, for n ∈ N

∗ and X0 = X. This sequence satisfies γ (Xn \Xn+1) = 0,
Qϕ

�(Xn|z) = 1, for any z ∈ Xn+1 and

γ (Xn) =
∫
Xn

Qϕ
�(Xn|z)γ (dz), (42)

for any n ∈ N. Indeed, Eq. (42) clearly holds for n = 0 by using (41). Therefore, we
have γ (z ∈ X0 : Qϕ

�(X0|z) < 1) = 0 implying that γ (X0 \ X1) = 0. Moreover,
by definition of X1 it is straightforward to see that Qϕ

�(X0|z) = 1 for any z ∈ X1.
Suppose the decreasing family of sets (X j ) j∈Nn satisfies the above equations. From
Eq. (42) we have γ (z ∈ Xn : Qϕ

�(Xn|z) < 1) = 0 showing that γ (Xn \ Xn+1) = 0.

Then by using Eq. (41), we obtain γ (Xn+1) =
∫
Xn+1

Qϕ
�(Xn+1|z)γ (dz). Finally, by

definition of Xn+1, we have Qϕ
�(Xn|z) = 1 for any z ∈ Xn+1. Let us introduce the

set D ⊂ X defined by D =
∞⋂
j=0

X j . Then γ (X \ D) = ∑∞
j=0 γ (X j \ X j+1) = 0.

Consequently, for any � ∈ B(
(X \ D)

)
we have η̂i (�) = η̂iuπ,ϕ (�), so the measures

ηi and ηiuπ,ϕ coincide on (X \ D) × Ai
� because ηi (dx, da) = η̂i (dx)ϕ(da|x) and

ηiuπ,ϕ (dx, da) = η̂iuπ,ϕ (dx)ϕ(da|x) due to (27).
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Now, observe that for any z ∈ D and j ∈ N, Qϕ
�(X j |z) = 1 implying Qϕ

�(D|z) = 1
and so, choosing � = D in Eq. (40), we have

η̂iuπ,ϕ (D) = δx0(D) + 1

α

∫
X×Ag

�q(D|x, a)η
g
uπ,ϕ (dx, da) + η̂iuπ,ϕ (D)

+
∫
X\D

Qϕ
�(D|z)̂ηiuπ,ϕ (dz)

leading to δx0(�) + 1

α

∫
X×Ag

�q(�|x, a)η
g
uπ,ϕ (dx, da) +

∫
X\D

Qϕ
�(�|z)̂ηiuπ,ϕ (dz) =

0, for any � ∈ B(D). Consequently, δx0(D) + 1
α
η
g
uπ,ϕ�q(D) = 0 and

[
δx0 +

1
α
η
g
uπ,ϕ�q] ∑

k∈N
(
Qϕ

�

)k
IX\DQϕ

�(D) = 0, where we have used (27) to get the last
equation. Combining the two previous equations, it can be shown easily by induction
that

[
δx0 + 1

α
η
g
uπ,ϕ�q](

Qϕ
�

)k
(D) = 0 for any k ∈ N and so, recalling (27), it follows

that η̂iuπ,ϕ (D) = 0.
Now, from Eq. (40) and by using the fact that δx0(D) = η̂iuπ,ϕ (D) = 0, we obtain

∫
X×Ai

Q�(D|z, b)ηiuπ,ϕ (dz, db) + 1

α

∫
X×Ag

�q(D|x, a)η
g
uπ,ϕ (dx, da) = 0.

Therefore, Eq. (16) yields η̂
g
uπ,ϕ (D×Ag) = 1

α

∫
D×Ag

q({x}|x, a)η
g
uπ,ϕ (dx, da). Since

η
g
uπ,ϕ ≥ 0 and q({x}|x, a) ≤ 0, we conclude that η̂guπ,ϕ (D × Ag) = 0. ��

5 The LP Formulation

Themain objective of this section is to show the existence of an optimal strategy for the
constrained optimal control problem introduced in Definition 5.1. The idea to get this
existence result can be decomposed into two steps. First, we introduce the (primal)
linear program PLP associated with the optimization problem under consideration
(see Definition 5.1) and show in Theorem 5.2 that there exists an optimal strategy for
the constrained optimization control problem if and only if the linear program PLP

is solvable. The second step consists in showing that the PLP is solvable (Theorem
5.5) and this is done by introducing an auxiliary linear program (whose properties
are studied in Proposition 5.4) and by considering an additional set of hypotheses
(see Assumption C ). Combining these two steps, it is straightforward to obtain the
existence of an optimal randomized control strategy for the constrained optimal control
problem (see Theorem 5.6). An easy consequence of this result is that the class of
strategies introduced in Definition 4.7 is a sufficient set. Assumption C is a standard
hypothesis in the literature on CTMDPs (see for example [24]) and mainly requires
that the parameters of the system be lower semicontinuous and that the transition rate
be weakly continuous. As an independent result, the dual linear program associated
with the linear program PLP is briefly discussed at the end of this section.
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Definition 5.1 The constrained linear program, labeled PLP, is defined as minimize
η(C0) subject to η ∈ L where L is defined by the set of measures η in M f (X × A)

which are admissible in the sense of Definition 4.5 and such that for any j ∈ N
∗
p,

η(C j ) ≤ Bj .

The nonnegative real number infη∈L η(C0) is called the value of the constrained
linear program PLP. Below, we say that PLP is solvable if there is η∗ ∈ L such that
η∗(C0) = infη∈L η(C0).

Theorem 5.2 The values of the constrained control problem and the linear program
PLP are equivalent:

inf
η∈L

η(C0) = inf
u∈U f

V0(u, x0).

Moreover, assume the existence of �u ∈ U f such that V0(�u, x0) < ∞. Then the
following assertions hold:

(i) Themeasureη�u as defined inEq. (11) for the strategy�u belongs toLandη�u(C0) <

∞.
(ii) The constrained optimal control problem as introduced in Definition 3.1 is solv-

able if and only if the linear program PLP is solvable.
(iii) If the constrained optimal control problem is solvable then there exists a ran-

domized stationary optimal control strategy where the interventions only occur
after the natural jumps and with a possible intervention at the initial moment.

Proof if η ∈ L then it is admissible in the sense of Definition 4.5. From Theorem 4.9,
the control strategy uπ,ϕ ∈ U where π (respectively, ϕ) has been defined in Eq. (24)
(respectively, (25)) satisfies η

g
uπ,ϕ = ηg and ηiuπ,ϕ ≤ ηi with ηg (respectively, ηi )

given in (22) (respectively, (23)). Therefore, we have for any j ∈ N
∗
p, V j (uπ,ϕ, x0) ≤

η(C j ) ≤ Bj and V0(uπ,ϕ, x0) ≤ η(C0). In particular, this first statement implies that
on one hand L is empty if U f is empty and on the other hand if the set U f is not
empty with V0(u, x0) = ∞ for any u ∈ U f then either L is empty or inf

η∈L
η(C0) = ∞

showing in any case inf
η∈L

η(C0) = inf
u∈U f

V0(u, x0) = ∞.

Now, if V0(u, x0) < ∞ for u ∈ U and V j (u, x0) ≤ Bj for any j ∈ N
∗
p then

recalling Assumptions (A2), (A3) and B we have necessarily ηiu(X×Ai ) < ∞. From
Lemma A.1, it gives ηiu(X×Ai

�) < ∞. Consequently, according to Theorem 4.6, for
any admissible control strategy u ∈ U such that V0(u, x0) < ∞ and V j (u, x0) ≤ Bj

for any j ∈ N
∗
p, there exists a finite measure ηu ∈ M f (X × A) concentrated on

K
g ∪K

i satisfying Eq. (16) with ηu(C j ) = V j (u, x0) for any j ∈ Np implying that
ηu ∈ L and ηu(C0) < ∞.

Combining these two statements, we obtain easily the results. ��
To study the solvability of the linear programPLP, we need to introduce an auxiliary

linear program. First, let us define Xσ by X∪{σ } where σ is an isolated point and the
kernel Q̃ on Xσ given K

g ∪K
i ∪({σ } × A) by
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Q̃(�|x, a) =
{ 1

K + α

[
�q(� ∩X|x, a) + δx (� ∩X)

(
K − �q(X|x, a)

)]

+ α

K + α
δσ (�)

}
IKg (x, a) + Q(� ∩X|x, a)IKi (x, a) + δσ (�)I{σ }(x).

(43)

Definition 5.3 The auxiliary linear program, labeled LP
′, is defined as minimize

ρ(C ′
0) subject to ρ ∈ L

′ where L′ is defined by the set of measures ρ inM(Xσ × A)

concentrated on K
g ∪K

i ∪({σ } × A) such that for any � ∈ B(Xσ )

ρ(� × A) = δx0(�) +
∫
Xσ ×A

Q̃(�|z, b)ρ(dz, db), (44)

ρ(C ′
j ) ≤ Bj , for any j ∈ N

∗
p,

ρ(Kg) ≤ K + α

α
,

with C ′
j (x, a) = 1

K+α
Cg

j (x, a)IKg (x, a) + cij (x, a)IKi (x, a) for j ∈ Np.

Proposition 5.4 The following assertions hold:

i) If the measure η belongs to L then the measure ρ, defined on Xσ × A by

ρ(�) = η(� ∩K
i ) + K + α

α
η(� ∩K

g),

for any � ∈ B(X × A) and ρ({σ } × �) = +∞ for any � ∈ B(A), belongs to L′.
Moreover, ρ(C ′

j ) = η(C j ) for any j ∈ Np.
ii) If the measure ρ ∈ L

′ satisfies ρ(C ′
0) < ∞ then the measure η defined on X × A

by

η(�) = ρ(� ∩K
i ) + α

K + α
ρ(� ∩K

g)

belongs to L. Moreover, η(C j ) = ρ(C ′
j ) for any j ∈ Np.

Proof Regarding item i), it is clear that ρ so defined is a positive measure on Xσ ×A
concentrated onKg ∪K

i ∪({σ }×A). Moreover, a straightforward calculus show that
ρ satisfies Eq. (44) with ρ(C ′

j ) = η(C j ), for any j ∈ Np, giving the first part of the
result. For item i i), we have η(Kg) = α

K+α
ρ(Kg) ≤ 1.Moreover, combining assump-

tions (A2), (A3) and B it follows that cη(Ki ) ≤ ∑
j∈N∗

p
B j + η(C ′

0). Consequently,

η ∈ M f (X × A) and η is clearly concentrated on K
g ∪K

i . Now, simple algebraic
manipulations yield that the measure η satisfies Eq. (16) with η(C j ) = ρ(C ′

j ), for any
j ∈ Np showing the last part of the result. ��
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Assumption C (C1) The transition rate q is weakly continuous, that is, for any h ∈
Cb(X), qh ∈ Cb(K

g).
(C2) If Ki 
= ∅, the transition kernel Q is weakly continuous, that is, Qh ∈ Cb(K

i )

for any h ∈ Cb(X).
(C3) For any j ∈ Np, the function cij is lower semicontinuous on K

i .

(C4) For any j ∈ Np, the function C
g
j is lower semicontinuous on K

g .

(C5) For any x ∈ X, Ag(x) and Ai (x) are compact sets.
(C6) The multifunction � : X → A defined by �(x) = Ag(x)∪Ai (x) is upper

semicontinuous.

Theorem 5.5 Assume that there exists �η ∈ L such that �η(C0) < ∞. Then the linear
program PLP is solvable.

Proof Introduce K = K
g ∪K

i ∪({σ } × A). According to Assumption C , it is easy
to see that the stochastic kernel Q̃ on Xσ given K is weakly continuous and the
mappings C ′

j are nonnegative and lower semicontinuous on K for any j ∈ Np.
Consequently, by using Theorem 7.2 in [5], the auxiliary linear program LP

′ is solv-
able because, according to item i) of Proposition 5.4, there is ρ ∈ L

′ such that
ρ(C ′

0) = η(C0) < ∞. Observe that Theorem 7.2 in [5] is an extension of Theorem
4.1 in [7] to the case where the action space depends on the state variable. Now, from
Proposition 5.4, it is easy to see that the auxiliary linear program LP

′ is solvable if
and only if the linear program LP is solvable, since there exists �ρ ∈ L

′ such that
�ρ(C ′

0) < ∞. Let ρ∗ be a measure in L
′ such that infρ∈L′ ρ(C ′

0) = ρ∗(C ′
0). Then,

ρ∗(C ′
0) ≤ �ρ(C ′

0) < ∞. Consequently, item i i) of Proposition 5.4 implies that the
measure η∗ defined on X × A by

η∗(�) = ρ∗(� ∩K
i ) + α

K + α
ρ∗(� ∩K

g)

belongs toLwithη∗(C0) = ρ∗(C ′
0). Finally, it is easy to show thatwe have necessarily

inf
η∈L

η(C0) = η∗(C0)

by using item i) of Proposition 5.4, giving the result. ��
IfL 
= ∅ and η(C0) = ∞ for any η ∈ L then PLP is also solvable without Assump-

tion C . The last following Theorem is the main result of this section. It establishes
the existence of an optimal randomized control strategy and states that the class of
strategies introduced in 4.7 is a sufficient set.

Theorem 5.6 Assume that there exists�u ∈ U f such that V0(�u, x0) < ∞. Then, there
exists a randomized stationary optimal control strategy, for the constrained optimal
control problem introduced in Definition 3.1, where the interventions only occur after
the natural jumps and with a possible intervention at the initial moment, that is,
there exist π∗ ∈ Pg(Ag|X) and ϕ∗ ∈ P i (Ai

�|X�) such that the strategy uπ∗,ϕ∗
as

introduced in Definition 4.7 belongs to U f and satisfies

inf
u∈U f

V0(u, x0) = V0(u
π∗,ϕ∗

, x0) = ηuπ∗,ϕ∗ (C0) = inf
η∈L

η(C0). (45)
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As a consequence, the class of randomized stationary control strategy as introduced
in Definiton 4.7 is a sufficient class of control strategy for the constrained control
problem under consideration.

Proof This result is a straightforward consequence of Theorems 5.2 and 5.5. ��
Wenowdiscuss briefly the dual program associated to the linear programPLP in the

case of an unconstrained control problem, that is p = 0. Assume that |Cg
0 (x, a)| ≤ K

for any (x, a) ∈ K
g . The dual linear program is defined as maximise W (x0) subject

to W ∈ L
∗ where L∗ is the set of functions belonging to B(X) such that

W (x) ≤ C0(x, a) + IKi (x, a)

∫
X
W (y)Q(dy|x, a)+ 1

α
IKg (x, a)

∫
X
W (y)q(dy|x, a).

It is easy to show that that for any η ∈ L and W ∈ L
∗, we have η(C0) ≥ W (x0)

showing that infη∈L η(C0) ≥ supW∈L∗ W (x0). Now, if Assumptions A and B hold
then we have inf

u∈U
V0(u, x0) = inf

η∈L
η(C0) ≥ sup

W∈L∗
W (x0), from Theorem 5.2. Observe

that the set L∗ can be equivalently described by the set of functions belonging to B(X)

and satisfying the following two inequalities

⎧⎪⎪⎨
⎪⎪⎩

αW (x) ≤ inf
a∈Ag(x)

{
Cg
0 (x, a) +

∫
X
W (y)q(dy|x, a)

}
,

W (x) ≤ inf
a∈Ai (x)

{
ci0(x, a) +

∫
X
W (y)Q(dy|x, a)

}
.

(46)

Now, assume that the setsAg andAi are compact and the setsKg andKi are closed in
X × Ag and X × Ai correspondingly and suppose that Assumptions (C1)–(C4) hold.
In this context, according to item c) of Corollary 4.8 in [8], infu∈U V0(u, x0) = V (x0)
where V is the unique bounded measurable solution to the Bellman equation

inf
a∈Ag(x)

{
−αV (x) + Cg

0 (x, a) +
∫
X
V (y)q(dy|x, a)

}

∧ inf
a∈Ai (x)

{
−V (x) + ci0(x, a) +

∫
X
V (y)Q(dy|x, a)

}
= 0.

Since V satisfies the inequalities in (46), then

inf
u∈U

V0(u, x0) = inf
η∈L

η(C0) = sup
W∈L∗

W (x0) = V (x0),

and there is no duality gap. Consequently, if there are no constraints then solving the
dual linear program is equivalent to solving the Bellman equation.
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IdEx Bordeaux - CPU (ANR-10-IDEX-03-02).
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Appendix 1: Proofs of Propositions 4.3 and 4.4

The next result provides a sufficient condition in terms of the finiteness of the occu-
pation measure to ensure that the process is not explosive.

Lemma A.1 For any u ∈ U , ηiu(X × {�}) ≤ 1 + 1

α

∫
Ki

q(X|x, a)η
g
u (dx, da) +

ηiu(X × Ai ). If ηiu(X × Ai
�) < ∞ then μi

u(Y) < ∞ and P
u
x0(T∞ < ∞) = 0.

Proof Note that

ηiu(X × {�}) = μ̃i
u(X × {�}) =

∞∑
j=1

μi
u

({y ∈ Y : y j ∈ X × {�}})

=
∞∑
j=1

μi
u(Y j−1) = μi

u(Y) = E
u
x0

[∫
]0,T∞[

e−αsμ(ds,Y)

]
+ u0(Y|x0).

Since ν = ν0 + ν1 is the predictable projection of μ and ν1(ds, ·) is concentrated on
Y∗, we see that

ηiu(X × {�}) = E
u
x0

[∫
]0,T∞[

e−αs
∫
Ag

q(X|x(ξs−), a)π(da|s)ds
]

+ E
u
x0

[∫
]0,T∞[

e−αsν1(ds,Y)

]
+ 1

= 1

α

∫
Ki

q(X|x, a)η
g
u (dx, da) + E

u
x0

[∫
]0,T∞[

e−αsν1(ds,Y∗)
]

+ 1

and

E
u
x0

[∫
]0,T∞[

e−αsν1(ds,Y∗)
]

≤ μi
u(Y

∗) =
∞∑
k=1

μi
u(Yk).

Finally, since {y ∈ Y : y j ∈ X × Ai } = ⋃∞
k= j Yk ,

ηiu(X × Ai ) =
∞∑
j=1

μi
u

({y ∈ Y : y j ∈ X × Ai }) =
∞∑
j=1

jμi
u(Y j ) ≥

∞∑
k=1

μi
u(Yk),

showing the first part of the result. To prove the last statement, observe first that for
any j ∈ N

∗, we have

{y ∈ Y : y j ∈ X × Ai
�} = {y ∈ Y : y j ∈ X × Ai } ∪{y ∈ Y : y j ∈ X × {�}}

= ∞∪
k= j

Yk ∪Y j−1
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Consequently, ηiu(X×Ai
�) = μ̃i

u(X×Ai
�) = ∑

j∈N( j + 1)μi
u(Y j ) ≥ μi

u(Y). Now,

we have that Eu
x0

[ ∞∑
n=2

e−αTn I{Tn<T∞}
]

≤ μi
u(Y) < ∞, showing the last part of the

result. �

Proof of Proposition 4.3 Consider� ∈ B(X). FromLemmaA.1,Pu
x0(T∞ = +∞) = 1

and so, by using the product formula for functions of bounded variation

e−αt I�(x(ξt )) = I�(x(y1)) −
∫ t

0
αe−αs I�(x(ξs))ds

+
∫

]0,t]×Y
e−αs

[
I�(x(z)) − I�(x(ξs−))

]
μ(ds, dz).

Therefore, combining the bounded convergenceTheoremand the fact thatμi
u(Y) < ∞

(see Lemma A.1), we have

η
g
u (�×Ag) = αEu

x0

[ ∫ ∞

0
e−αs I�(x(ξs))ds

]

= E
u
x0

[ ∫
Y
I�(x(y))u0(dy|x0)

]

+ E
u
x0

[ ∫
]0,∞[×Y

e−αs
[
I�(x(z)) − I�(x(ξs−))

]
μ(ds, dz)

]
.

Recalling the definition μi
u (see Eq. 9) and the fact that ν is the predictable projection

of μ, we obtain by using Lemma 3.2

η
g
u (� × Ag) =

∫
Y
I�(�x(y))μi

u(dy)

− E
u
x0

[ ∫ ∞

0
e−αs

∫
Ag

I�(x(ξs))�q(X|x(ξs), a)π(da|s)ds
]

− E
u
x0

[ ∑
n∈N∗

∫
]Tn ,Tn+1]

e−αs I�(x(ξs−))
ψn(ds − Tn|Hn)

ψn([s − Tn,+∞]|Hn)

]
,

and so,

η
g
u (� × Ag) =

∫
Y
I�(�x(y))μi

u(dy)

− E
u
x0

[ ∫
X×Ag

I�(x)�q(X|x, a)

∫ ∞

0
e−αsδx(ξs )(dx)π(da|s)ds

]

− E
u
x0

[ ∑
n∈N∗

I�(x(Yn))
∫

]Tn ,Tn+1]
e−αs ψn(ds − Tn|Hn)

ψn([s − Tn,+∞]|Hn)

]
.
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By using Fubini’s Theorem, we have that

E
u
x0

[ ∫
X×Ag

I�(x)�q(X|x, a)

∫ ∞

0
e−αsδx(ξs )(dx)π(da|s)ds

]

= 1

α

∫
X×Ag

I�(x)�q(X|x, a)η
g
u (dx, da).

Moreover, observe that

E
u
x0

[ ∫
]Tn ,Tn+1]

e−αs ψn(ds − Tn|Hn)

ψn([s − Tn,+∞]|Hn)

∣∣∣FTn

]
= e−αTn

∫
]0,∞[

e−αsψn(ds|Hn).

Combining the last three equations, it follows that

η
g
u (� × Ag) =

∫
Y
I�(�x(y))μi

u(dy) − 1

α

∫
X×Ag

I�(x)�q(X|x, a)η
g
u (dx, da)

− E
u
x0

[ ∑
n∈N∗

e−αTn I�(x(Yn))
∫

]0,∞[
e−αsψn(ds|Hn)

]
.

Finally, remark that I�(�x(y)) = ∑∞
j=1 I�×{�}(y j ) for any y = (

y1, y2, . . . , y j , . . .
) ∈

Y. Therefore,
∫
Y
I�(�x(y))μi

u(dy) = ηiu(� × {�}) showing the result. ��

Lemma A.2 Consider a strategy u = (un)n∈N ∈ U fixed with un = (
ψn, πn, γ

0
n , γ 1

n

)
for n ∈ N

∗.
Then, for any n ∈ N

∗, � ∈ B(X�), t ∈ R+, x ∈ X and hn ∈ Hn

γ̃ 0
n (� × Ai

�|hn, t, x) = δx (�) +
∫
X�×Ai

�

Q�(�|z, a)γ̃ 0
n (dz, da|hn, t, x), (47)

γ̃ 1
n (� × Ai

�|hn) = δ�x(yn)(�) +
∫
X�×Ai

�

Q�(�|z, a)γ̃ 1
n (dz, da|hn), (48)

where hn = (y0, θ1, y1, . . . , θn, yn) ∈ Hn. Similarly, for any � ∈ B(X�) and x ∈ X

ũ0(� × Ai
�|x) = δx (�) +

∫
X�×Ai

�

Q�(�|z, a)̃u0(dz, da|x). (49)

Proof This Lemma is a straightforward consequence of Lemma 9.4.3 in [14]. ��
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Proof of Proposition 4.4 By using the fact that ν is the predictable projection of μ and
Lemma 3.2, we have

ηiu(� × Ai
�) = ũ0(� × Ai

�|x0)
+ E

u
x0

[ ∫
]0,∞[

e−αs
∫
Ag

∫
X

γ̃ 0(� × Ai
�|x, s)�q(dx |x(ξs−), a)π(da|s)ds

]

+ E
u
x0

[ ∑
n∈N∗

∫
]Tn ,Tn+1]

e−αs γ̃ 1
n (� × Ai

�|Hn)
ψn(ds − Tn|Hn)

ψn([s − Tn,+∞]|Hn)

]
.

Now, by using Lemma A.2, it follows that

ηiu(� × Ai
�)

= δx0 (�) +
∫
X�×Ai

�

Q�(�|z, b)̃u0(dz, db|x0)

+ E
u
x0

[ ∫
]0,∞[

e−αs
∫
Ag

∫
X

δx (�)�q(dx |x(ξs−), a)π(da|s)ds
]

+ E
u
x0

[ ∫
]0,∞[

e−αs
∫
Ag

∫
X

∫
X�×Ai

�

Q�(�|z, b)γ̃ 0(dz, db|x, s)�q(dx |x(ξs−), a)π(da|s)ds
]

+ E
u
x0

[ ∑
n∈N∗

∫
]Tn ,Tn+1]

e−αs I�(x(Yn))
ψn(ds − Tn |Hn)

ψn([s − Tn,+∞]|Hn)

]

+ E
u
x0

[ ∑
n∈N∗

∫
]Tn ,Tn+1]

e−αs
∫
X�×Ai

�

Q�(�|z, b)γ̃ 1
n (dz, db|Hn)

ψn(ds − Tn |Hn)

ψn([s − Tn,+∞]|Hn)

]
.

Consequently

ηiu(� × Ai
�) = δx0(�) +

∫
X�×Ai

�

Q�(�|z, b)ηiu(dz, db)

+ 1

α

∫
X×Ag

�q(� ∩X|x, a)η
g
u (dx, da)

+ E
u
x0

[ ∑
n∈N∗

∫
]Tn ,Tn+1]

e−αs I�(x(Yn))
ψn(ds − Tn|Hn)

ψn([s − Tn,+∞]|Hn)

]

showing the result. ��

Appendix 2: Proof of Proposition 4.8

This appendix is dedicated to the proof of Proposition 4.8.We first need to derive some
technical results. In all this section, we consider π ∈ Pg(Ag|X) and ϕ ∈ P i (Ai

�|X�)

fixed. Let us introduce the stochastic kernel Gπ,ϕ on R
∗+ × Y given Y

Gπ,ϕ(dt, dy|z) = �qπ Rϕ(dy|�x(z))e−t�qπ (X|�x(z))dt, (50)
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and the stochastic kernel Lπ on X given Y

Lπ (dx |y) = δx(y)(dx)

α + �qπ (X|�x(y)) . (51)

For notational convenience, we denote

Hπ,ϕ = Lπ�qπ Rϕ. (52)

Lemma B.1 Let γ ∈ P(Y). Then γ̃ is supported on K
i
� and γ̃ (X × {�}) = 1.

Consider x ∈ X and a randomized stationary policy ϕ for the modelMi then P̃ϕ(X×
{�}|x) ≤ 1. Moreover, P̃ϕ(X × {�}|x) = 1 if and only if Pϕ(Y|x) = 1.

Proof Let j ∈ N
∗. Observe that {y ∈ Y : y j ∈ X × {�}} = Y j−1 and the first

assertion is clear. Regarding the second claim, we have Pϕ
({

y ∈ (Ki
�)∞ : y j ∈

X × {�}}|x) = Pϕ
(
Y j−1|x

)
for x ∈ X since Pϕ is the strategic measure for the

model Mi generated by ϕ, showing the last part of the result. ��
Lemma B.2 For any ϒ ∈ B(Y) and n ∈ N

∗, we have

E
uπ,ϕ

x0

[
I{Tn<∞}e−αTnδYn (ϒ)

]
= RϕHn−1

π,ϕ (ϒ |x0). (53)

Proof Let us show the result by induction. Clearly, this equation holds for n = 1.
Now, assume that Eq. (53) holds for n. Consider ϒ ∈ B(Y). Then,

E
uπ,ϕ

x0

[
I{Tn+1<∞}e−αTn+1δYn+1(ϒ)

]

= E
uπ,ϕ

x0

[
I{Tn<∞}e−αTnEuπ,ϕ

x0

[
I{�n+1<∞}e−α�n+1δYn+1(ϒ)|FTn

]]

= E
uπ,ϕ

x0

[
I{Tn<∞}e−αTn

∫
R∗+

e−αsGπ,ϕ(ds, ϒ |Yn)
]

= E
uπ,ϕ

x0

[
I{Tn<∞}e−αTn

∫
R∗+

e−αs�qπ Rϕ(ϒ |�x(Yn))e−s�qπ (X|�x(Yn))ds
]

= E
uπ,ϕ

x0

[
I{Tn<∞}e−αTn Hπ,ϕ(ϒ |Yn)

]

=
∫
Y
Hπ,ϕ(ϒ |z)RϕHn−1

π,ϕ (dz|x0),

showing the result. ��
Proposition B.3 The following three equalities hold:

ηiuπ,ϕ (dx, da) = R̃ϕ(dx, da|x0) +
∞∑
n=1

RϕHn−1
π,ϕ H̃π,ϕ(dx, da|x0), (54)

η̂
g
uπ,ϕ (dx) = α

∞∑
n=1

RϕHn−1
π,ϕ Lπ (dx |x0), (55)
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and

ηiuπ,ϕ (� × {�}) =η̂
g
uπ,ϕ (�) + 1

α

∫
X×Ag

I�(x)�qπ (X|x )̂ηguπ,ϕ (dx), (56)

Proof From the definition of μi
uπ,ϕ (see Eq. 9) and Lemma B.2, we have

μi
uπ,ϕ (dy) = Rϕ(dy|x0) +

∞∑
n=2

E
uπ,ϕ

x0

[
I{Tn<∞}e−αTnδYn (dy)

]

= Rϕ(dy|x0) +
∞∑
n=1

RϕHn
π,ϕ(dy|x0).

Observe that H̃π,ϕ = Lπ�qπ R̃ϕ . Since ηiuπ,ϕ (dx, da) = μ̃i
uπ,ϕ (dx, da), we obtain

easily Eq. (54).
Moreover, we have

E
uπ,ϕ

x0

[ ∫ T∞

0
e−αsδ�x(ξs−)(dx)ds

]

=
∞∑
n=1

E
uπ,ϕ

x0

[
I{Tn<∞}

∫
]Tn ,Tn+1]

e−αsδ�x(ξs−)(dx)ds

]

= 1

α

∞∑
n=1

E
uπ,ϕ

x0

[
I{Tn<∞}e−αTnδ�x(Yn)(dx)

(
1 − e−α�n+1

)]

=
∞∑
n=1

E
uπ,ϕ

x0

[
I{Tn<∞}e−αTn δ�x(Yn)(dx)

α + �qπ (X|�x(Yn))
]
,

and so by using the definition of Lπ and Lemma B.2, we obtain (55).
Now, from Eq. (55) we get

η̂
g
uπ,ϕ (�) + 1

α

∫
X×Ag

I�(x)�qπ (X|x )̂ηguπ,ϕ (dx)

=
∞∑
n=1

∫
Y

α I�(�x(y))
α + �qπ (X|�x(y)) R

ϕHn−1
π,ϕ (dy|x0)

+
∞∑
n=1

∫
Y

I�(�x(y))�qπ (X|�x(y))
α + �qπ (X|�x(y)) RϕHn−1

π,ϕ (dy|x0)

=
∞∑
n=1

∫
Y
I�(�x(y))RϕHn−1

π,ϕ (dy|x0) = R̃ϕ(� × {�}|x0)

+
∞∑
n=1

RϕHn−1
π,ϕ H̃π,ϕ(� × {�}|x0).

Recalling (54), we have Eq. (56), showing the result. ��
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Proof of Proposition 4.8 Observe that H̃π,ϕ = Lπ�qπ R̃ϕ , and so

ηiuπ,ϕ (dx, da) = R̃ϕ(dx, da|x0) +
∞∑
n=1

RϕHn−1
π,ϕ Lπ�qπ R̃ϕ(dx, da|x0),

and with (55) we get (19). The measure η̂
g
uπ,ϕ is finite by definition and so, by using

Propositions B.3 and Assumption (A1), we have that for any � ∈ B(X)

∞∑
n=1

RϕHn−1
π,ϕ Lπ (�|x0) < ∞ (57)

∞∑
n=1

RϕHn−1
π,ϕ H̃π,ϕ(� × {�}|x0) < ∞ (58)

Now, from Eq. (55) and the definition of Hπ,ϕ (see Eq. 52), we have that for any
� ∈ B(X)

1

α
η̂
g
uπ,ϕ�qπ R̃ϕ(� × {�}) =

∑
n∈N∗

RϕHn−1
π,ϕ Lπ�qπ R̃ϕ(� × {�}|x0)

=
∑
n∈N

RϕHn
π,ϕ H̃π,ϕ(� × {�}|x0). (59)

Moreover, observe that
�qπ (X|�x(y))

α + �qπ (X|�x(y)) = 1 − α

α + �qπ (X|�x(y)) and so, for n ≥ 2

∫
X
I�(x)�qπ (X|x)RϕHn−1

π,ϕ Lπ (dx |x0)

=
∫
Y

I�(�x(y))�qπ (X|�x(y))
α + �qπ (X|�x(y)) RϕHn−1

π,ϕ (dy|x0)
= RϕHn−2

π,ϕ H̃π,ϕ(� × {�}|x0) − αRϕHn−1
π,ϕ Lπ (�|x0) (60)

and
∫
X
I�(x)�qπ (X|x)RϕLπ (dx |x0) =

∫
Y

I�(�x(y))�qπ (X|�x(y))
α + �qπ (X|�x(y)) Rϕ(dy|x0)

= R̃ϕ(� × {�}|x0) − αRϕLπ (�|x0). (61)

Consequently, by using the expression of η̂
g
uπ,ϕ in (55) and Eqs. (60)−(61)

1

α

∫
X
I�(x)�qπ (X|x )̂ηguπ,ϕ (dx |x0) =

∞∑
n=2

∫
X
I�(x)�qπ (X|x)RϕHn−1

π,ϕ Lπ (dx |x0)

+
∫
X
I�(x)�qπ (X|x)RϕLπ (dx |x0)
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=
∑
n∈N

RϕHn
π,ϕ H̃π,ϕ(�×{�}|x0) + R̃ϕ(�×{�}|x0)

−α
∑
n∈N

RϕHn
π,ϕLπ (�|x0). (62)

Note that the above calculations are possible since the quantities
∑∞

n=1 R
ϕHn−1

π,ϕ Lπ

(�|x0) and∑∞
n=1 R

ϕHn−1
π,ϕ H̃π,ϕ(�×{�}|x0) are finite (see inequalities (58) and (58)).

Recalling (55) and combining Eqs. (59) and (62) we obtain that

1

α
η̂
g
uπ,ϕ�qπ R̃ϕ(� × {�}) − 1

α

∫
X
I�(x)�qπ (X|x )̂ηguπ,ϕ (dx |x0)

= −R̃ϕ(� × {�}|x0) + η̂
g
uπ,ϕ (�|x0),

showing the result. ��
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