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Abstract In the present paper we study the convergence of the solution of the two
dimensional (2-D) stochastic Leray-α model to the solution of the 2-D stochastic
Navier–Stokes equations. We are mainly interested in the rate, as α → 0, of the
following error function

εα(t) = sup
s∈[0,t]

|uα(s) − u(s)| +
(∫ t

0
|A1

2 [uα(s) − u(s)]|2ds
) 1

2

,

whereuα andu are the solution of stochastic Leray-α model and the stochasticNavier–
Stokes equations, respectively.We show thatwhenproperly localized the error function
εα converges in mean square as α → 0 and the convergence is of order O(α). We also
prove that εα converges in probability to zero with order at most O(α).
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1 Introduction

TheNavier–Stokes system is themost usedmodel in turbulence theory. In recent years,
various regularizationmodelswere introduced as an efficient subgridmodel scale of the
Navier–Stokes equations (NSE), see for eg. [9,11–13,16,26,27,29,30,32]. Moreover,
numerical analyses in [14,28,29,31,34,35,37,38] seem to confirm that these models
can capture remarkably well the physical phenomenon of turbulence in fluid flows at
a lower computational cost. Among them are the Navier–Stokes-α, Leray-α, modified
Leray-α, Clark-α to name just a few.

Another tool used to tackle the closure problem in turbulent flows is to introduce a
stochastic forcing that will mimic all the terms that can’t be handled. This approach is
basicallymotivated byReynolds’ workwhich stipulates that hydrodynamic turbulence
is composed of slow (deterministic) and fast (stochastic) components. This approach
was used in [36] to derive a stochastic Navier–Stokes equations with gradient and
nonlinear diffusion coefficient.

It is worth emphasizing that the presence of the stochastic term (noise) in the
model often leads to qualitatively new types of behavior, which are very helpful in
understanding real processes and is also often more realistic. In particular, for the 2d
Navier–Stokes equations, some ergodic properties are proved when adding a random
perturbation,

There is an extensive literature about the convergence of α-models to the Navier–
Stokes equations, see for eg. [1,7,8,17,21–24,27]. However, only a few papers deal
with the rate of convergence, see [10,15]. In [10] the rates of convergence of four α-
models (NS-αmodel, Leray-αmodel,modifiedLeray-αmodel, and simplifiedBardina
model) in the two-dimensional (2D) case, subject to periodic boundary conditions on
the periodic box [0, L]2 are studied. The authors of [10] mainly showed that all the
four α-models have the same order of convergence and error estimates; that is, the

convergences in the L2-norms are all of the order O( α
L (log( L

α
))

1
2 ) as α

L tends to zero,
while in [15] the rate of convergence of order O(α) is obtained in a mixed L1 − L2

time-space norm with small initial data in Besov-type function spaces.
Despite the numerous papers, there are only very few addressing the convergence

of stochastic α-models to the stochastic Navier–Stokes. It is proved in [17] that the
stochastic Leray-α model has a unique invariant measure which converges to the
stationary solution (unique invariant measure) of 3-D (resp. 2-D) stochastic Navier–
Stokes equations. In [21,22]Deugoué andSango proved that one canfind a sequence of
weak martingales of the 3-D stochastic Navier–Stokes-α and Leray-α model respec-
tively which converges in distribution to the weak martingale solution of the 3-D
stochastic Navier–Stokes equations.

Here in this paper, we are interested in the analysis of the rate of convergence of
the two-dimensional stochastic Leray-α model to the stochastic Navier–Stokes equa-
tions. More precisely we consider the Leray-α model with multiplicative stochastic
perturbation on a periodic domainO = [0, L]2, L > 0, given by the following system

dvα(t) + [νAvα(t) + B(uα(t), vα(t))]dt = Q(uα(t))dW (t), t ∈ (0, T ] (1.1a)

uα + α2Auα = vα, (1.1b)
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uα(0) = u0, (1.1c)

where W is a cylindrical Wiener process on a separable Hilbert space K, A is the
Stokes operator and B is the well-known bilinear map in the mathematical theory of
the Navier–Stokes equations. We refer to Sect. 2 for the functional setting.

Our main goal in the present paper is to study the convergenve of the solution uα

to (1.1) to the solution of the stochastic Navier–Stokes equations given by

du(t) = [−Au(t) − B(u(t), u(t))]dt + Q(u(t))dW (t), t ∈ (0, T ], (1.2a)

u(0) = u0. (1.2b)

To the best of our knowledge it seems that the investigation of the rate of convergence
of the stochastic α-model to the stochastic Navier–Stokes has never been done before.
In this paper we initiate this direction of research by studying the rate of convergence
of the error function for t ∈ [0, T ]

εα(t) = sup
s∈[0,t]

|uα(s) − u(s)| +
(∫ t

0
|A1

2 [uα(s) − u(s)]|2ds
) 1

2

,

as α tends to zero. Here |·| denotes the L2(O)-norm. By deriving several important
uniform estimates for the sequence of stochastic processes uα we can prove that
for an appropriate family of stopping times {τR; R > 0} the stopped error function
εα(t ∧ τR) converges to 0 in mean square as α goes to zero and the convergence is
of order O(α). In particular, this shows that when the error function εα is properly
localized then the order of convergence in the stochastic case is better than the one in
the deterministic case. In this paper, we also prove that the convergence in probability
(see for example [39] for the definition) of εα is also of order O(α). These results
can be found in Theorems 4.1 and 4.2. We mainly combine the approaches used in
[4,10].

In Sect. 2 we introduce the notations and some frequently used lemmata. In Sect.
3, we introduce the main assumptions on the diffusion coefficient. Moreover, several
important uniform estimates which are the backbone of our analysis will be derived.
In Sect. 4, we state and prove our main results; we mainly show that when properly
localized the error function εα converges in mean square to zero as α tend to zero.
Owing to the uniform estimates obtained in Sect. 3, we also show in Sect. 4 that it
converges in probability with order O(α) as α tends to zero.

Throughout the paper C , c denote some unessential constants which do not depend
on α and may change from one place to the next one.

2 Notations

In this section we introduce some notations that are frequently used in this paper. We
will mainly follow the presentation of Cao and Titi [10].

Let O be a bounded subset of R2. For any p ∈ [1,∞) and k ∈ N, Lp(O) and
W

k,p(O) are thewell-knownLebesgue and Sobolev spaces, respectively, ofR2-valued
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functions. The corresponding spaces of scalar functions we will denote by standard
letter, e.g. Wk,p(O). The usual scalar product on L

2(O) is denoted by 〈u, v〉 for
u, v ∈ L

2(O). Its associated norm is |u|, u ∈ L
2(O).

Let L > 0 andP be the set of (periodic) trigonometric polynomials of two variables
defined on the periodic domainO = [0, L]2 and with zero spatial average; that is, for
every φ ∈ P ,

∫
O φ(x)dx = 0. We also set

V =
{

u ∈ [P]2 such that ∇ · u = 0
}

V = closure of Vin H
1(O)

H = closure of Vin L
2(O).

We endow the spaces H with the scalar product and norm of L2. We equip the space
V with the scalar product ((u, v)) := ∫

O ∇u(x) · ∇v(x)dx which is equivalent to the
H

1(O)-scalar product on V. The norm corresponding to the scalar product ((·, ·)) is
denoted by ‖ · ‖.

Let � : L2(O) → H be the projection from L
2(O) onto H. We denote by A the

Stokes operator defined by

{
D(A) = {u ∈ H, �u ∈ H},
Au = −��u, u ∈ D(A).

(2.1)

Note that in the space-periodic case

Au = −��u = −�u, for all u ∈ D(A).

The operator A is a self-adjoint, positive definite, and a compact operator on H (see,
for instance, [20,41]). We will denote by λ1 ≤ λ2 ≤ · · · the eigenvalues of A; the
correspoding eigenfunctions {
i : i = 1, 2, . . .} form an orthonormal basis of H and
an orthogonal basis of V. For any positive integer n ∈ N we set

Hn = linspan{
i : i = 1, . . . , n}

and we denote by Pn the orthogonal projection onto Hn defined by

Pnu =
n∑

i=1

〈u, 
i 〉
i , for all u ∈ H.

We also recall that in the periodic case we have D(A
n
2 ) = H

n(O)∩H, for n > 0 (see,

for instance, [20,41]). In particular we have V = D(A
1
2 ).

For every w ∈ V, we have the following Poincaré inequality

λ1|w|2 ≤ ‖w‖2, for all w ∈ V. (2.2)
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Also, there exists c > 0 such that

c|Aw| ≤ ‖w‖2 ≤ c−1|Aw| for every w ∈ D(A), (2.3)

c|A1
2 w| ≤ ‖w‖1 ≤ c−1|A1

2 w| for every w ∈ V. (2.4)

Thanks to (2.4) the norm ‖ · ‖ of V is equivalent to the usual H1(O)-norm. Recall
that the following estimate, valid for all w ∈ H

1 (or w ∈ H1), is a special case of
Gagliardo-Nirenberg’s inequalities:

‖w‖L4 ≤ c|w| 12 |∇w| 12 . (2.5)

The inequality (2.5) can be written in the spirit of the continuous embedding

H
1 ⊂ L

4. (2.6)

Next, for avery w1, w2 ∈ V we define the bilinear operator

B(w1, w2) = �
[
(w1 · ∇)w2

]
. (2.7)

In the following lemma we recall some properties of the bilinear operator B.

Lemma 2.1 The bilinear operator B defined in (2.7) satisfies the following

(i) B can be extended as a continuous bilinearmap B : V×V → V∗, whereV∗ is the
dual space of V. In particular, the following properties hold for all u, v, w ∈ V:

|〈B(u, v), w〉| ≤c|u| 12 ‖u‖ 1
2 ‖v‖|w| 12 ‖w‖ 1

2 , (2.8)

〈B(u, v), w〉 = − 〈B(u, w), v〉. (2.9)

As consequence of (2.9) we have

〈B(u, v), v〉 = 0 (2.10)

for all u, v ∈ V.
(ii) In the 2D periodic boundary condition case, we have

〈B(u, u),Au〉 = 0, (2.11)

for every u ∈ D(A).

Proof Part (i) is very classical and can be found in any reference related to Navier–
Stokes equations, for instance in [20,41]. Part (ii) can be found in [40, Lemma 3.1].

��
We also recall the following lemma.
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Lemma 2.2 For every u ∈ D(A) and v ∈ V, we have

|〈B(v, u),Au〉| ≤ c‖v‖‖u‖ |Au|. (2.12)

Proof For the proof we refer to [10, Lemma 2.2]. ��

3 A Priori Estimates for the Stochastic Navier–Stokes Equations and the
Stochastic Leray-α Model

The stochastic Leray-α model (1.1) and the stochastic Navier–Stokes equations (1.2)
have been extensively studied. Their well posedness are established in several math-
ematical papers. In this section we just recall the most recent results which are very
close to our purpose. Most of these results were obtained from Galerkin approxima-
tion and energy estimates. However, the estimates derived in previous papers are not
sufficient for our analysis. Therefore, we will also devote this section to derive several
important estimates which are the backbone of our analysis.

We consider a prescribed complete probability system (�,F ,P) equipped with a
filtration F := {Ft ; t ≥ 0}. We assume that the filtration satisfies the usual condition,
that is, the family F is increasing, right-continuous and F0 contains all null sets of F .
Let K be a separable Hilbert space. On the filtered probability space (�,F ,F,P) we
suppose that we are given a cylindrical Wiener process W on K.

For two Banach spaces X and Y , we denote by L(X,Y ) the space of all bounded
linear maps L : X → Y . The space of all Hilbert–Schmidt operators L : X → Y
is denoted by L2(X,Y ). The Hilbert-Schmidt norm of L ∈ L2(X,Y ) is denoted by
‖L‖L2(X,Y ). When X = Y we just write L2(X) := L2(X, X).

Now, we can introduce the standing assumptions of the paper.

Assumption 3.1 Throughout this paperwe assume that Q : D(A
1
2 ) → L(K, D(A

1
2 ))

satisfies:

(i) there exists �0 > 0 such that for any u1, u2 ∈ D(A
1
2 ) we have

‖Q(u1) − Q(u2)‖L2(K,H) ≤ �0|u1 − u2|,

(ii) there exists �1 > 0 such that for any u1, u2 ∈ D(A
1
2 ) we have

∥∥∥A1
2
[
Q(u1) − Q(u2)

]∥∥∥L2(K,H)
≤ �1

∣∣∣A1
2 u1 − A

1
2 u2

∣∣∣ .

Remark 3.1 Assumption 3.1 implies in particular that

(1) there exists �2 > 0 such that for any u ∈ D(A
1
2 ) we have

‖Q(u)‖L2(K,H) ≤ �2(1 + |u|),
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(2) there exists �3 > 0 such that for any u ∈ D(A
1
2 ) we have

∥∥∥A1
2 Q(u)

∥∥∥L2(K,H)
≤ �3

(
1 + |A1

2 u|
)

,

3.1 A Priori Estimates for the Navier–Stokes Equations

The study of stochastic Navier–Stokes equations was pioneered by Bensoussan and
Temam in [3]. Since then, an intense investigation about the qualitative and quantitative
properties of thismodel has generated an extensive literature, see e.g. [2,5,6,18,25,36].

The following definition of solution is mainly taken from [18] (see also [2,25]).

Definition 3.1 A weak solution to (1.2) is a stochastic process u such that

(1) u is progressively measurable,
(2) u belongs to C([0, T ]; H) ∩ L2(0, T, V) almost surely,
(3) for all t ∈ [0, T ], almost surely

(u(t), φ) + ν

∫
〈A1

2 u(s),A
1
2 φ〉ds +

∫ t

0
〈B(u(s), u(s)), φ〉ds

= u0 +
∫ t

0
〈φ, Q(u(s))dW (s)〉,

for any φ ∈ V.

We state the following theorem which was proved in [18, Theorem 2.4], see also
[2,25].

Theorem 3.2 Let u0 be a H-valued F0-measurable such that E|u0|4 < ∞. Assume
that (3.1) holds. Then (1.2) has a unique solution u in the sense of the above definition.
Moreover, for any p ∈ {2, 4} and T > 0 there exists C > 0 such that

E

(
sup

t∈[0,T ]
|u(t)|p +

∫ T

0
|u(s)|p−2|A1

2 u(s)|2ds
)

< C(1 + |u0|4) (3.1)

3.2 A Priori Estimates for the Leray-α Model

The Leray-α model was introduced and analyzed in [16]. Since, then it has been exten-
sively studied; we refer to [10] and references therein for a brief historical description
and review of results. It is worth noticing that the Leray-α model is a particular exam-
ple of a more general regularization used by Leray in his seminal work, [33], in the
context of establishing the existence of solutions for the 2D and 3D NSE.

The stochastic Leray-α model was studied in [18,19,22]. For the inviscid case, we
refer to the recent work [1] where the uniqueness of solutions were investigated. The
following definition of solutions to (1.1) is taken from [22] (see also [18]).

Definition 3.3 A weak solution to (1.1) is a stochastic process uα such that

123
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(1) uα is progressively measurable,
(2) vα , with vα := (I+α2A)uα , belongs toC([0, T ]; H)∩L2(0, T, V) almost surely,
(3) for all t ∈ [0, T ], almost surely

(vα(t), φ) + ν

∫
〈A1

2 vα(s),A
1
2 φ〉ds +

∫ t

0
〈B(uα(s), vα(s)), φ〉ds

= vα
0 +

∫ t

0
〈φ, Q(uα(s))dW (s)〉,

for any φ ∈ V.

Again, we refer to [18, Theorem 2.4] for the statement of the result below. See also
[22].

Theorem 3.4 Let u0 be a D(A)-valued F0-measurable such that E|Au0|4 < ∞.
Assume that (3.1) holds. Then for any α > 0 the system (1.1) has a unique solution
uα in the sense of the above definition. Moreover, for any p ∈ {2, 4} and T > 0 there
exists C > 0 such that

E

(
sup

t∈[0,T ]
|vα(t)|p +

∫ T

0
|vα(s)|p−2|A1

2 vα(s)|2ds
)

< C(1 + |(I + α2A)u0|4)
(3.2)

As stated in [22], the constant C above depends on α and may explode as α tends
to zero. The uniform estimates, with respect to α, obtained in [22] are not helpful
for our analysis. Our aim in this subsection is to derive several a priori estimates for
the stochastic Leray-α model (1.1). These estimates summarized in the following two
propositions, will be used in Sect. 4 to derive a rate of convergence of the stochastic
Leray-α model to the stochastic Navier–Stokes equations.

We start with some estimates in the weak norms of the solution uα , these are
refinements of estimates obtained in [22].

Proposition 3.5 Let u0 be a F0-measurable random variable such that E|u0 +
Au0|4 < ∞. Assume that the set of hypotheses stated in Assumption 3.1 holds. Then,
there exists a constant C > 0 such that for any α ∈ (0, 1) we have

E sup
t∈[0,T ]

[
|uα(t)|2 + 2α2|A1

2 uα(t)|2 + α4|Auα(t)|2
]2

≤ K0, (3.3)

E

∫ T

0
|A1

2 uα(s)|2|uα(s)|2ds ≤ K0, (3.4)

2α2
E

∫ T

0
|uα(s)|2

(
|Auα(s)|2 + α2

2
|A3

2 uα(s)|2
)
ds ≤ K0, (3.5)
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2α2
E

∫ T

0
|A1

2 uα(s)|2
(
|A1

2 uα(s)|2 + 2α2|Auα(s)|2 + α4|A3
2 uα(s)|2

)
ds ≤ K0,

(3.6)

α4
E

∫ T

0
|Auα(s)|2

(
|A1

2 uα(s)|2 + 2α2|Auα(s)|2 + α4|A3
2 uα(s)|2

)
ds ≤ K0, (3.7)

where

K0 :=
(
2E|u0 + Au0|4 + CT

) (
1 + CeCT

)
.

Proof For any positive integer n ∈ N, we will consider the Galerkin approximation
of (1.1) which is a system of SDEs in Hn

dvα
n (t) + [νAvα

n (t) + B(uα
n (t), vα

n (t))]dt = PnQ(uα
n (t))dW (t), t ∈ (0, T ] (3.8a)

uα
n + α2Auα

n = vα
n , (3.8b)

uα
n (0) = u0n, (3.8c)

where u0n = Pnu0. Let
(·) be a mapping defined on Hn defined by
(·) := |·|4. The
mapping 
(·) is twice Fréchet differentiable with first and second derivative defined
by


 ′(u)[f] = 4|u|2〈u, f〉,

 ′′(u)[f, g] = 4|u|2〈g, f〉 + 8〈u, g〉〈u, f〉,

for any u, f, g ∈ Hn . In particular, the last identity implies that


 ′′(u)[f, f] ≤ 12|u|2|f |2,

for any u, f ∈ Hn . Therefore by Itô’s formula to 
(vα
n ) := |vα

n (t)|4 we obtain

d|vα
n (t)|4 + 4|vα

n (t)|2 [
ν〈Avα

n (t) + B(uα
n (t), vα

n (t)), vα
n (t)〉] dt

≤ C |vα
n (t)|2‖Q(uα

n (t))‖2L2(K,H)dt + 4|vα
n (t)|2〈vα

n (t), PnQ(uα
n (t))dW (t)〉.

By using the identity (2.10), the Cauchy’s inequality and Assumption 3.1-(i) along
with Remark 3.1-(1) we infer the existence of a constant c > 0 such that

d|vα
n (t)|4 + 4ν|vα

n (t)|2〈Avα
n (t), vα

n (t)〉dt ≤ c|vα
n (t)|4dt + c dt

+ 4|vα
n (t)|2〈vα

n (t), PnQ(uα
n (t))dW (t)〉.

(3.9)

Since, by definition of vα , |uα| ≤ c|vα| we deduce from Assumption 3.1-(i) that

‖Q(uα
n (s))‖2L2(K,H) ≤ c(1 + |vα|)2.
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Now, using Burkholder–Davis–Gundy and Cauchy–Schwarz inequalities, we deduce
that

E sup
s∈[0,t]

∣∣∣∣
∫ s

0
|vα

n (s)|2〈vα
n (s), PnQ(uα

n (s))dW (s)〉
∣∣∣∣

≤ cE

(∫ t

0
|vα

n (s)|4|vα
n (s)|2‖Q(uα

n (s))‖2L2(K,H)ds

) 1
2

,

≤ cE

[
sup

s∈[0,t]
|vα

n (s)|2
(∫ t

0
c(1 + |vα

n (s)|)4ds
) 1

2
]

≤ 1

2
E sup

s∈[0,t]
|vα

n (s)|4 + cT + cE
∫ t

0
|vα

n (s)|4ds.

From this last estimate and (3.9) we derive that there exists C > 0 such that

E sup
s∈[0,t]

|vα
n (s)|4 + 8νE

∫ t

0
|vα

n (s)|2〈Avα
n (s), vα

n (s)〉ds ≤ 2E|vα(0)|4 + CT

+CE

∫ t

0
|vα

n (s)|4ds.

Since 〈Avα
n (s), vα

n (s)〉 = |A1
2 vα

n (s)|2 is nonnegative, and using Gronwall’s lemma,
we deduce that

E sup
s∈[0,t]

|vα
n (s)|4+8νE

∫ t

0
|vα

n (s)|2〈Avα
n (s), vα

n (s)〉ds ≤ (2E|vα(0)|4+CT )(1+CeCT )

Since α tend to 0, we can assume that α ∈ (0, 1). Therefore, by lower semicontinuity
of the norm and the fact that |vα(0)|4 ≤ |u0 + Au0|4, we infer that as n → ∞

E sup
s∈[0,t]

|vα(s)|4 + 8νE
∫ t

0
|vα(s)|2〈Avα(s), vα(s)〉ds ≤ K0 (3.10)

where K0 := (2E|u0 + Au0|4 + CT )(1 + CeCT ). Since

|vα|2 = |uα|2 + 2α2|A1
2 uα|2 + α4|Auα|2,

〈Avα, vα〉 = |A1
2 uα|2 + 2α2|Auα|2 + α4|A3

2 uα|2,

we deduce from (3.10) that the five estimates (3.3)–(3.7) hold. ��
As a consequence of the estimate (3.4) and the Gagliardo–Nirenberg’s inequality

‖vα‖L4 ≤ c|vα| 12 |A1
2 vα| 12 ,

we state the following corollary.
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Corollary 3.6 Under the assumptions of Proposition 3.5 there exists C > 0 such that
for any α ∈ (0, 1) we have

E

∫ T

0
‖uα(s)‖4ds ≤ (2E|u0 + Au0|4 + CT )(1 + CeCT ). (3.11)

Now we state several important estimates for the norm of uα in stronger norms.

Proposition 3.7 Let Assumption 3.1 holds and let u0 be a F0-measurable random

variable such that E(|A1
2 u0|2 + |Au0|2)2 < ∞. Then, there exists a generic constant

K0 > 0 such that for any α ∈ (0, 1) we have

E sup
t∈[0,T ]

[
|A1

2 uα(t)|4 + α4|Auα(t)|4 + 2α2|A1
2 uα(t)|2|Au(t)|2

]
≤ K0, (3.12)

E

∫ T

0
|A1

2 uα(s)|2|Auα(s)|2ds ≤ K0, (3.13)

α2
E

∫ T

0
|Auα(s)|4ds ≤ K0, (3.14)

α2
E

∫ T

0
|A1

2 uα(s)|2|A3
2 uα(s)|2ds ≤ K0, (3.15)

α4
E

∫ T

0
|Auα(s)|2|A3

2 uα(s)|2ds ≤ K0, (3.16)

where

K0 :=
[
2E

(
|A1

2 u0|2 + |Au0|2
)2 + CT

]
·
[
1 + CeCT

]
.

Proof As in the proof of Proposition 3.5 we still consider the solution vα
n (or uα

n ) of
the n-th Galerkin approximation of (1.1) defined by the system of SDEs (3.8). Let Nα

be the self-adjoint and positive definite operator defined by Nαv = (I+α2A)−1v for
any v ∈ H. It is well-known that N−1

α with domain D(A) is also positive definite and

self-adjoint on H. Thus, the fractional powers N
1
2
α and N

− 1
2

α are also self-adjoint. Since
vα = N−1

α uα it follows from (3.8a) that

duα
n (t) + [νAuα

n (t) + NαB(uα
n (t), vα

n (t))]dt = NαPnQ(uα
n (t))dW (t), (3.17)

Let  : D(A) → [0,∞) be the mapping defined by (v) = 〈Av,N−1
α v〉 for any

v ∈ D(A). It is not difficut to show that (·) is twice Fréchet differentiable and its
first and second derivatives satisfy

′(uα)[f] = 〈Auα,N−1
α f〉 + 〈N−1

α uα,Af〉
= 〈Avα, f〉 + 〈vα,Af〉,

′′(uα)[f, g] = 〈Ag,N−1
α f〉 + 〈Af,N−1

α g〉,
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for any f, g ∈ D(A). In particular, the last identity and A
1
2 and N

− 1
2

α being self-adjoint
imply that

′′(uα)[f, f] = 2

∣∣∣∣A1
2 N

− 1
2

α f

∣∣∣∣
2

.

Therefore, using the Itô formula for (uα
n ) and (3.17), we derive that there exists

c > 0

d(uα
n (t)) ≤ ′(uα

n (t))[−νAuα
n (t) − NαB(uα

n (t), vα
n (t))]dt

+′(uα
n (t))[NαPnQ(uα

n (t))]dW (t)

+ c‖A1
2 N

− 1
2

α NαPnQ(uα
n (t))‖2L2(K,H)dt.

Referring to the equation for ′(uα)[·] we see that

′(uα
n (t))

[−νAuα
n (t) − NαB(uα

n (t), vα
n (t))

]
= 〈Avα

n (t),−νAuα
n (t) − NαB(uα

n (t), vα
n (t))

+ 〈
vα
n (t),A

[−νAuα
n (t) − NαB(uα

n (t), vα
n (t))

]〉
,

and

′(uα
n (t))[NαPnQ(uα

n (t))]dW (t) = 〈
Avα

n (t),NαPnQ(uα
n (t))dW (t)

〉
+ 〈

vα
n (t),A[NαPnQ(uα

n (t))dW (t)]〉 .
Hence

d〈Auα
n (t), vα

n (t)〉 ≤ 〈
Auα

n (t), dvα
n (t)〉 + 〈vα

n (t), dAuα
n (t)

〉
+ c‖A1

2 N
− 1

2
α NαPnQ(uα

n (t))‖2L2(K,H)dt. (3.18)

First, we estimate the term 〈Auα
n (t), dvα

n (t)〉. We derive from (3.8a) that

〈
Auα

n (t), dvα
n (t)

〉 = [−〈Auα
n (t),Avα

n (t)〉 − 〈B(uα
n (t), vα

n (t)),Auα
n (t)〉] dt

+ 〈
Auα

n (t), PnQdW (t)
〉
. (3.19)

Recalling the definition of vα
n we derive that

〈
Auα

n (t),Avα
n (t)

〉 = ∣∣Auα
n (t)

∣∣2 + α2
∣∣∣A3

2 uα
n (t)

∣∣∣2 .

Owing to the definition of vα
n , (2.10) and (2.11) we have

〈
B(uα

n (t), vα
n (t)),Auα

n (t)
〉 = α2〈B(uα

n (t),Auα
n (t),Auα

n (t)〉
+ 〈

B(uα
n (t), uα

n (t),Auα
n (t)

〉
= 0. (3.20)
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Therefore we derive from (3.19)–(3.20) that

〈
Auα

n (t), dvα
n (t)

〉 = − ∣∣Auα
n (t)

∣∣2 − α2
∣∣∣A3

2 uα
n (t)

∣∣∣2 + 〈
Auα

n (t), PnQdW (t)
〉
. (3.21)

Second, we treat the term 〈vα
n (t), dAuα

n (t)〉, but before proceeding further we
observe that

ANα = 1

α2 [I−Nα]

from which it follows that

〈
ANαB(uα

n (t), vα
n (t)), vα

n (t)
〉 = 1

α2

〈
B(uα

n (t), vα
n (t), vα

n (t)
〉

− 1

α2

〈
NαB(uα

n (t), vα
n (t)), vα

n (t)
〉

= − 1

α2

〈
NαB(uα

n (t), vα
n (t)), vα

n (t)
〉
,

where (2.9) was used to derive the last line. Since vα
n = N−1

α uα
n , we obtain that

〈
NαB(uα

n (t), vα
n (t)), vα

n (t)
〉 = 〈

B(uα
n (t), vα

n (t)), uα
n (t)

〉
= 〈

B(uα
n (t), uα

n (t)), uα
n (t)

〉
+α2 〈

B(uα
n (t),Auα

n (t)), uα
n (t)

〉
,

Owing to this last identity, (2.9)–(2.11) we infer that

〈
ANαB(uα

n (t), vα
n (t)), vα

n (t)
〉 = 0. (3.22)

Since

dAuα
n (t) =

[
−A2uα

n (t) − ANαB(uα
n (t), vα

n (t))
]
dt + ANαPnQ(uα

n (t))dW (t),

it follows by invoking (3.22) and using the definition of vα
n that

〈
vα
n (t), dAuα

n (t)
〉 = −

〈
uα
n (t),A2uα

n (t)
〉
− α2

〈
Auα

n (t),A2uα
n (t)

〉

+ 〈
vα
n (t),ANαPnQ(uα

n (t))dW (t)
〉
.

From this latter identity we easily derive that

〈
vα
n (t), dAuα

n (t)
〉 = − ∣∣Auα

n (t)
∣∣2−α2

∣∣∣A3
2 uα

n (t)
∣∣∣2+〈

vα
n (t),ANαPnQ(uα

n (t))dW (t)
〉
.

(3.23)
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Plugging (3.21) and (3.23) in (3.18) implies that

∣∣∣A1
2 uα

n (t)
∣∣∣2 + α2

∣∣Auα
n (t)

∣∣2 −
∣∣∣A1

2 u0n

∣∣∣2 − α2 |Au0n|2

+ 2
∫ t

0

(
|Auα

n (s)|2 + α2|A3
2 uα

n (t)|2
)
ds

≤ c
∫ t

0
‖A1

2 N
1
2
α PnQ(uα

n (t))‖2L2(H)ds + 2
∫ t

0
〈A1

2 uα
n (s),A

1
2 PnQ(uα

n (t))dW (s)〉,
(3.24)

where we have used the fact that

〈
vα
n (s),ANαPnQ(uα

n (t))dW (s)
〉 = 〈

Auα
n (s), PnQ(uα

n (t))dW (s)
〉

=
〈
A

1
2 uα

n (s),A
1
2 PnQ(uα

n (t))dW (s)
〉
.

By the Burkholder–Davis–Gundy, Cauchy–Schwarz, Cauchy inequalities and
Assumption 3.1-(i) along with Remark 3.1-(2) we derive that

E sup
r∈[0,t]

∣∣∣∣
∫ r

0
〈Auα

n (s), PnQ(uα
n (t))dW (s)〉

∣∣∣∣

≤ cE

[
sup

s∈[0,t]
|A1

2 uα
n (s)| ×

(∫ t

0
‖A1

2 Q(uα
n (s))‖L2(K,H)ds

) 1
2
]

≤ 1

4
E

(
sup

s∈[0,t]

[
|A1

2 uα
n (s)|2 + α2|Auα

n (s)|2
])

+ c2E
∫ t

0
‖A1

2 Q(uα
n (s))‖2L2(K,H)ds

≤ 1

4
E

(
sup

s∈[0,t]

[
|A1

2 uα
n (s)|2 + α2|Auα

n (s)|2
])

+ c2�23E
∫ t

0
(1 + |A1

2 uα
n (s)|)2ds

≤ 1

4
E

(
sup

s∈[0,t]

[
|A1

2 uα
n (s)|2 + α2|Auα

n (s)|2
])

+ cT

+ cE
∫ t

0

[
|A1

2 uα
n (s)|2 + α2|Auα

n (s)|2
]
ds. (3.25)

Since N
1
2
α is self-adjoint and ‖Nα‖L(H) ≤ 1 we infer that

‖N
1
2
α ‖L(H) ≤ 1. (3.26)

Thus, it follows from Assumption 3.1-(ii) along with Remark 3.1-(2)

∫ t

0
‖A1

2 N
1
2
α PnQ(uα

n (t))‖2L2(K,H)ds ≤ cT + cE
∫ t

0

[
|A1

2 uα
n (s)|2 + α2|Auα

n (s)|2
]
ds.

(3.27)
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Hence, the calculations between (3.24) and (3.27) yield

E

(
sup

t∈[0,T ]

[
|A1

2 uα
n (t)|2+α2|Auα

n (t)|2
])

+4E
∫ t

0

(
|Auα

n (s)|2 + α2|A3
2 uα

n (t)|2
)
ds

≤ cT + cE
∫ t

0

[
|A1

2 uα
n (s)|2 + α2|Auα

n (s)|2
]
ds + 2|A1

2 u0n|2 + 2α2|Au0n|2.

Since α ∈ (0, 1) we derive from the last estimate that for any α ∈ (0, 1) and n ∈ N

E

(
sup

t∈[0,T ]

[
|A1

2 uα
n (t)|2+α2|Auα

n (t)|2
])

+2E
∫ t

0

(
|Auα

n (s)|2+α2|A3
2 uα

n (t)|2
)
ds

≤ cT + cE
∫ t

0

[
|A1

2 uα
n (s)|2 + α2|Auα

n (s)|2
]
ds + 2|A1

2 u0|2 + 2|Au0|2.

Now it follows from Gronwall’s lemma that there exists C > 0 such that for any
α ∈ (0, 1) and n ∈ N we have

E

(
sup

t∈[0,T ]

[
|A1

2 uα
n (t)|2 + α2|Auα

n (t)|2
])

+ 2E
∫ t

0

(
|Auα

n (s)|2+α2|A3
2 uα

n (t)|2
)
ds

≤
[
CT + 2|A1

2 u0|2 + 2|Au0|2
]
(1 + CeCT ).

As n → ∞, by lower semicontinuity we deduce that

E

(
sup

t∈[0,T ]
[|A1

2 uα(t)|2 + α2|Auα(t)|2]
)

+2E
∫ t

0

(
|Auα(s)|2 + α2|A3

2 uα(t)|2
)
ds ≤ K . (3.28)

where

K :=
[
CT + 2|A1

2 u0|2 + 2|Au0|2
]
(1 + CeCT ).

Now, let yα
n (t) = |A1

2 uα
n (t)|2 + α2|Auα

n (t)|2. Observing that

〈vα
n (t),Auα

n (t)〉 = |A1
2 uα

n (t)|2 + α2|Auα
n (t)|2,

we see that [yα
n (t)]2 = [(uα

n (t))]2. Therefore, from Itô’s formula and (3.26) we
deduce that
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d([yα
n ]2(t))≤[−4yα

n (t)(|Auα
n (t)|2+α2|A3

2 uα
n (t)|2)+2cyα

n (t)‖A1
2 Q(uα

n (t))‖2L2(K,H)

+ c|A1
2 uα

n (t)|2‖A1
2 Q(uα

n (t))‖2L2(K,H)]dt
+ 4yα

n (t)〈A1
2 uα

n (t),A
1
2 Q(uα

n (t))dW (t)〉.
From this last inequality we infer that

E sup
s∈[0,t]

[yα
n ]2(s) − [yα

n (0)]2 + 4
∫ t

0
yα
n (s)

[
|Auα

n (t)|2 + α2|A3
2 uα

n (t)|2
]
ds

≤ 4E sup
r∈[0,t]

∣∣∣∣
∫ r

0
yα
n (s)

〈
A

1
2 uα

n (t),A
1
2 Q(uα

n (s))dW (s)
〉∣∣∣∣

+ cE
∫ t

0
yα
n (s)‖A1

2 Q(uα
n (s))‖2L2(K,H)ds. (3.29)

Thanks to Remark 3.1-(2) we easily derive that

yα
n (s)‖A1

2 Q(uα
n (s))‖2L2(K,H) ≤ C(1 + [yα

n (s)]2) (3.30)

Now, arguing as in the proof of (3.25) and using this last inequality we obtain the
following estimates

4E sup
r∈[0,t]

∣∣∣∣
∫ r

0
yα
n (s)

〈
A

1
2 uα

n (t),A
1
2 Q(uα

n (s))dW (s)
〉 ∣∣∣∣

≤ 1

2
E sup

s∈[0,t]
[yα

n (s)|A1
2 uα

n (s)|2] + cE
∫ t

0
yα
n (s)‖A1

2 Q(uα
n (s))‖2L4(H)ds

≤ 1

2
E sup

s∈[0,t]
[yα

n (s) ×
(
|A1

2 uα
n (s)|2(s) + α2|Auα

n (s)|2
)
]

+ cE
∫ t

0
yα
n (s)(1 + |A1

2 uα
n (s)|2)ds

≤ 1

2
E sup

s∈[0,t]
[yα

n (s)]2 + cT + cE
∫ t

0
[yα

n (s)]2ds.

Taking the latter estimate and (3.30) into (3.29)

E sup
s∈[0,t]

[yα
n ]2(s) + 8E

∫ t

0
yα
n (s)

[
|Auα

n (t)|2 + α2|A3
2 uα

n (t)|2
]
ds

≤ 2[yα
n (0)]2 + cT + cE

∫ t

0
[yα

n (s)]2ds.

Applying Gronwall’s lemma and (3.28) imply that there exists C > 0 such that

E sup
s∈[0,t]

[yα
n ]2(s) + 8E

∫ t

0
yα
n (s)[|Auα

n (t)|2 + α2|A3
2 uα

n (t)|2]ds ≤ K0,
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where

K0 :=
[
2(|A1

2 u0|2 + |Au0|2)2 + CT
]

·
[
1 + CeKT

]
.

Recalling the definition of yα
n and by lower semicontinuity we infer from the last

estimate that as n → ∞

E sup
s∈[0,T ]

[|A1
2 uα(t)|2 + α2|Auα(t)|2]2 ≤ K0, (3.31)

8E
∫ T

0

(
|A1

2 uα(t)|2 + α2|Auα(t)|2
)(

|Auα(t)|2 + α2|A3
2 uα(t)|2

)
ds ≤ K0.

(3.32)

By straightforward calculations we easily derive from (3.31) and (3.32) the set of
estimates (3.12)–(3.16) stated in Proposition 3.7. ��

4 Rate of Convergence of the Sequence uα to u

In this section we consider a sequence {αn; n ∈ N} ⊂ (0, 1) such that αn → 0 as
n ↗ ∞. For each n ∈ N let uαn be the unique solution to (1.1) and for each R ∈ R

define a family of stopping times τ nR by

τ nR := inf

{
t ∈ [0, T ];

∫ t

0
‖uαn (s)‖2ds ≥ R

}
. (4.1)

Let u be the solution of the stochastic Navier–Stokes equations; that is, u solves (1.2).
In the following theorem we will show that by localization procedure the sequence uα

converges strongly in L2(�, L∞(0, T ; H)) and L2(�, L2(0, T ; V)) and the strong
speed of convergence is of order O(α).

Theorem 4.1 Let Assumption 3.1 holds and let u0 be a F0-measurable random vari-

able such that E(|A1
2 u0|2 + |Au0|2)2 < ∞. Then there exists C > 0, κ0(T ) > 0 such

that for any R > 0 and n ∈ N we have

E sup
s∈[0,t∧τ nR ]

|u − uαn |2+4E
∫ t∧τ nR

0
|A1

2 [u − uαn ]|2ds ≤ α2
nβ(R)κ0e

C(T )β(R)T , (4.2)

where C(T ) := c(1 + T ), β(R) := 1 + CReCR and

κ0(T ) := CT + CT 2 + CK0 + CT K1 + C(T ).

Proof Let us fix n ∈ N and let uαn be the unique solution to (1.1). Let u be the unique
solution to (1.2). Let us also fix R > 0 and let τ nR be the stopping time defined above.

123



18 Appl Math Optim (2016) 74:1–25

For sake of simplicity we set τ = t ∧τ nR for any t ∈ [0, T ] and α := αn for any n ∈ N.
Let δ = u − uα . The stochastic process δ(t) with initial condition δ(0) = 0 solves

dδ(t) = [−Aδ(t) − B(u(t), u(t) + NαB(uα(t), vα(t))
]
dt

+ Q(u(t)) − NαQ(uα(t)))dW (t).

Equivalently,

dδ(t) + [
Aδ(t) + B(u(t), u(t) − B(uα(t), uα(t))

]
dt − (Q(u(t))

−NαQ(uα(t)))dW (t)

= [
NαB(uα(t), vα(t)) − B(uα(t), uα(t))

]
dt.

From Itô’s formula we infer that

sup
s∈[0,τ ]

|δ(s)|2+2
∫ τ

0
‖δ(s)‖2ds

≤ 2
∫ τ

0

〈
B(uα(s), uα(s) − B(u(s), u(s)), δ(s)

〉
ds

+2
∫ τ

0

〈[NαB(uα(s), vα(s)) − B(uα(s), uα(s))], δ(s)]〉 ds
+

∫ τ

0
‖Q(u(s)) − NαQ(u(s))‖2L2(K,H)ds

+ 2
∫ τ

0
〈δ(s), (Q(u(t)) − NαQ(u(t)))dW (s)〉

≤ |J1| + |J2|+|J3| + J4 + J5(t), (4.3)

where

J1 := 2
∫ τ

0

〈
B(uα(s), uα(s) − B(u(s), u(s)), δ(s)

〉
ds,

J2 := 2
∫ τ

0

〈
Nα[B(uα(s), vα(s)) − B(uα(s), uα(s))], δ(s)〉 ds,

J3 :=
∫ τ

0

〈
(Nα − I)B(uα(s), uα(s)), δ(s)

〉
ds,

J4 :=
∫ τ

0
‖Q(u(s)) − NαQ(u(s))‖2L2(K,H)ds,

J5(t) := 2
∫ τ

0
〈δ(s), (Q(u(t)) − NαQ(u(t)))dW (s)〉 .

Using the well-known fact

〈B(uα(s), uα(s) − B(u(s), u(s)), δ(s)〉 = −〈B(δ(s), δ(s)), uα(s)〉,
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the Cauchy–Schwarz inequality, the Gagliardo–Nirenberg inequality and the Young
inequality we obtain the chain of inequalities

|J1| ≤ 2c
∫ τ

0
‖δ(s)‖L4‖δ(s)‖‖uα(s)‖L4ds

≤ 2c
∫ τ

0
|δ(s)| 12 ‖δ(s)‖ 3

2 ‖uα(s)‖L4ds,

|J1| ≤ 1

2

∫ τ

0
‖δ(s)‖2ds + c

∫ τ

0
|δ(s)|2‖uα(s)‖4

L4ds. (4.4)

By using the definition vα = uα + α2Auα we see that

〈Nα[B(uα(s), vα(s)) − B(uα(s), uα(s))], δ(s)〉 = α2〈NαB(uα(s),Auα(s)), δ(s)〉
= α2〈B(uα(s),Auα(s)),Nαδ(s)〉
= α2〈B(uα(s),Nαδ(s)),Auα(s)〉.

From the last line along with the Cauchy–Schwarz inequality, the embedding H
2 ⊂

L
∞, (3.26), and (2.3) it follows that

|〈Nα[B(uα(s), vα(s)) − B(uα(s), uα(s))], δ(s)〉|
≤ cα2‖uα(s)‖L∞(O)|NαA

1
2 δ(s)||Auα(s)|,

≤ cα2|Auα(s)|2|A1
2 δ(s)|.

Applying the Cauchy inequality in the last estimate implies that

|〈Nα[B(uα(s), vα(s)) − B(uα(s), uα(s))], δ(s)〉| ≤ 1

2
‖δ(s)‖2 + cα4|Auα(s)|4.

Thus,

|J2| ≤ 1

2

∫ τ

0
‖δ(s)‖2ds + cα2

∫ τ

0
α2|Auα(s)|2ds. (4.5)

Invoking [10, Lemma 4.1] we infer that

|〈(Nα − I)B(uα(s), uα(s)), δ(s)〉| ≤ c
α

2
|B(uα(s), uα(s))|‖δ(s)‖,

from which along Cauchy–Schwarz, the embedding H
1(O) ⊂ L

4(O), (2.3) and the
Cauchy inequality we derive that

|〈(Nα − I)B(uα(s), uα(s)), δ(s)〉| ≤ c
α

2
‖uα(s)‖L4(O)‖∇uα(s)‖L4(O)‖δ(s)‖

≤ c
α

2
‖uα(s)‖|Auα(s)|‖δ(s)‖

≤ 1

2
‖δ(s)‖ + c

α2

4
‖uα(s)‖2|Auα(s)|2.
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Hence

|J3| ≤ 1

2

∫ τ

0
‖δ(s)‖2ds + c

α2

4

∫ τ

0
‖uα(s)‖2|Auα(s)|2ds. (4.6)

Since

Q(u) − NαQ(uα) = [Q(u) − NαQ(u)] + [NαQ(u) − NαQ(uα)],

we infer that

J4 ≤ c
∫ τ

0
‖Q(u(s)) − NαQ(u(s))‖2L2(K,H)ds

+ c
∫ τ

0
‖[NαQ(u(s)) − NαQ(uα(s))]‖2L2(K,H)

:= J4,1 + J4,2.

Since Q(u(t)) − NαQ(u(t)) = α2ANαQ(u(t)) we easily check that

J4,1 ≤ cα2
∫ τ

0
‖αANαQ(u(s))‖2L2(K,H)ds

≤ cα2
∫ τ

0
‖αA1

2 NαA
1
2 Q(u(s))‖2L2(K,H)ds

≤ cα2‖αA1
2 Nα‖2L(H)

∫ τ

0
‖A1

2 Q(u(s))‖2L2(K,H)ds.

Owing to Assumption 3.1-(ii) altogether with Remark 3.1-(2) we obtain that

J4,1 ≤ cα2‖αA1
2 Nα‖2L(H)

∫ τ

0
(1 + |A1

2 u(s)|)2ds

≤ cα2‖αA1
2 Nα‖2L(H)[cT + c

∫ τ

0
|A1

2 u(s)|2ds]

It follows from the last estimate and [10, ProofofLemma4.1] that

J4,1 ≤ c
α2

4

(
T +

∫ τ

0
|A1

2 u(s)|2ds
)

. (4.7)

Now to estimate J4,2 we use the fact that ‖Nα‖L(H) ≤ 1 and Assumption 3.1-(i) and
derive that

J4,2 ≤ c
∫ τ

0
‖Nα‖2L(H)‖Q(u(s)) − Q(uα(s))‖2L2(K,H)ds

≤ c
∫ τ

0
|δ(s)|2ds. (4.8)
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Thus, the two estimates (4.7) and (4.8) yield that

J4 ≤ α2

4

(
cT + c

∫ τ

0
|A1

2 u(s)|2ds
)

+ c
∫ τ

0
|δ(s)|2ds. (4.9)

It follows from (4.4), (4.5), (4.6) and (4.9) that

sup
s∈[0,τ ]

|δ(s)|2 +4
∫ τ

0
|A1

2 δ(s)|2ds ≤ α2
∫ τ

0
X(s)|δ(s)|2ds +α2Y(t)+Z(t), (4.10)

where

Y(t) := c
∫ τ

0

(
α2|Auα(s)|4 + |A1

2 uα(s)|2|Auα(s)|2 + |A1
2 u(s)|2

)
ds + cT,

Z(t) := sup
s∈[0,τ ]

|J5(s)| + c
∫ τ

0
|δ(s)|2ds,

X(t) := ‖uα(t)‖4
L4 .

Note that using the definition of τα
R it is not difficult to see that

∫ τ

0
X(s)ds ≤ R.

Note also that it follows from Gronwall’s lemma that

sup
s∈[0,τ ]

|δ(s)|2 + 4
∫ τ

0
|A1

2 δ(s)|2ds ≤ (α2Y(t) + Z(t)) · (1 + CReCR)

Hence taking the mathematical expectation in (4.10) we obtain that

E sup
s∈[0,τ ]

|δ(s)|2 + 4E
∫ τ

0
|A1

2 δ(s)|2ds ≤ (α2
EY(t) + EZ(t)) · (1+CReCR) (4.11)

Owing to the definition of Y and Proposition 3.7 we derive that

EY(t) ≤ CT + CK0. (4.12)

Now we deal with the estimation of EZ(t). By the Burkholder–Davis–Gundy
inequality we deduce that

E sup
s∈[0,t]

|J5(t)| ≤ cT
1
2E sup

s∈[0,τ ]
|δ(s)|√J4

≤ 1

2
E sup

s∈[0,τ ]
|δ(s)|2 + cT J4.
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Thus, by the last estimate, the inequality (4.9) and the defintion of Z(t) we derive that

EZ(t) ≤ 1

2
E sup

s∈[0,τ ]
|δ(s)|2+α2

4

(
cT 2+cT

∫ τ

0
|A1

2 u(s)|2ds
)

+c(1+T )

∫ τ

0
|δ(s)|2ds.

(4.13)
Therefore, we derive from (1.2), (4.11), (4.12) and (4.13) that

E sup
s∈[0,τ ]

|δ(s)|2+8E
∫ τ

0
‖δ(s)‖2ds ≤ α2κ0β(R) + β(R)C(T )E

∫ τ

0
|δ(s)|2ds,

(4.14)

where C(T ) := c(1 + T ), β(R) := 1 + CReCR and

κ0 := CT + CT 2 + CK0 + CT K1 + C(T )

Applying Gronwall’s lemma into (4.14) implies that

E sup
s∈[0,τ ]

|δ(s)|2+4E
∫ τ

0
‖δ(s)‖2ds ≤ α2

nβ(R)κ0e
C(T )β(R)T , (4.15)

where the positive constant β(R)κ0eC(T )β(R)T does not depend on n and the sequence
αn . ��

For every R > 0, t ∈ [0, T ] and any integer n ≥ 1, let

�n
R(t) :=

{
ω ∈ � :

∫ t

0
‖uαn (s, ω)‖4

L4ds ≤ R

}
. (4.16)

This definition shows that �n
R(t) ⊂ �n

R(s) for s ≤ t and that �n
R(t) ∈ Ft for any

t ∈ [0, T ]. Let τ nR be the stopping time defined in (4.1). It is not difficult to show that
τ nR = T on the set �n

R(T ).
Owing to the intermediate estimate we obtained in the proof of Theorem 4.1 we

derive the following result which tells us about the rate of convergence in probability
of uα to u.

Theorem 4.2 Let the assumptions of Theorem 4.1 be satisfied. For any integer n ≥ 1
let εn(T ) denote the error term defined by

εn(T ) = sup
s∈[0,T ]

∣∣∣∣∣uαn (s) − u(s)

∣∣∣∣+
(∫ T

0

∣∣∣∣A1
2
[
uαn (s) − u(s)

]∣∣∣∣
2

ds

)1/2

.

Then εn(T ) converges to 0 in probability and the convergence is of order O(αn). To
be precise, for any sequence

(
�n

)∞
n=1 converging to ∞,

lim
n→∞P

(
εn(T ) ≥ �n

αn

)
= 0. (4.17)
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Therefore, the sequence uα converges to u in probability in H and the rate of conver-
gence is of order O(α).

Proof First from the definition of �n
R(T ) and Corollary 3.6 we can show that for

each n

lim
R→∞P

(
�\�n

R(T )
) = 0. (4.18)

In fact, it follows by Markov’s inequality and (3.11) that

sup
n≥1

P(�\�n
R(T )) ≤ 1

R
sup
n≥1

E

∫ T

0
‖uαn (s)‖4

L4ds

≤ 1

R
(E|u0 + Au0|4 + CT )(1 + CeCT ) → 0,

as R → ∞.
Now let {�n; n ∈ N} be a sequence of positive numbers such that �n → ∞ as

n → ∞. By straightforward calculation we deduce that

P

(
εn(T ) ≥ �nαn

)
≤ P

(
�\�n

R(T )
) + P

(
εn(T ) ≥ �nαn,�

n
R(T )

)

≤ P
(
�\�n

R(T )
) + E

(
1�n

R(T )εn(T ) ≥ �nαn

)
.

Using Markov’s inequality and (4.2) in the last inequality implies that

P

(
εn(T ) ≥ �nαn

)
≤ P

(
�\�n

R(T )
) + 1

�2
nα

2
n
E

(
1�n

R(T )ε
2
n(T )

)

≤ P
(
�\�n

R(T )
) + 1

�2
n
β(R)κ0e

C(T )β(R)T

where C(T ), β(R), κ0 are previously defined.
Note that β(R) ≤ Ce2CR for any R > 0. Hence there exist positive constants

C > 0 and C(T ) such that for all n ∈ N we have

P

(
εn(T ) ≥ �nαn

)
≤ P

(
�\�n

R(T )
) + 1

�2
n
κ0e

C(T )eCR
. (4.19)

Let {�n; n ∈ N} be a sequence such that �n → ∞ as n → ∞ and

R(n) = 1

C
log

(
1

C(T )
log (log (log(�n)))

)
.
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As n → ∞ we see that R(n) → ∞. Thus, since there exists c > 0 such that
log (log(�n)) ≤ c�n for n large enough, it follows from (4.18) and (4.19) that

P

(
εn(T ) ≥ �nαn

)
≤ P

(
�\�n

R(n)(T )
)

+ 1

�2
n
κ0 log (log(�n)) → 0.

as n → ∞; this concludes the proof. ��
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