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Abstract A finite horizon optimal stopping problem for an infinite dimensional dif-
fusion X is analyzed by means of variational techniques. The diffusion is driven by a
SDE on a Hilbert spaceH with a non-linear diffusion coefficient σ(X) and a generic
unbounded operator A in the drift term. When the gain function � is time-dependent
and fulfils mild regularity assumptions, the value function U of the optimal stopping
problem is shown to solve an infinite-dimensional, parabolic, degenerate variational
inequality on an unbounded domain. Once the coefficient σ(X) is specified, the solu-
tion of the variational problem is found in a suitableBanach spaceV fully characterized
in terms of a Gaussian measure μ. This work provides the infinite-dimensional coun-
terpart, in the spirit of Bensoussan and Lions (Application of variational inequalities
in stochastic control, 1982), of well-known results on optimal stopping theory and
variational inequalities in R

n . These results may be useful in several fields, as in
mathematical finance when pricing American options in the HJM model.
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1 Introduction

This paper studies a finite horizon optimal stopping problem associated to an infinite-
dimensional diffusion process bymeans of variational techniques. It is well known that
the value function of a wide class of optimal stopping problems for general diffusions
inRn may be characterized as the solution of suitable variational problems (see [4] and
references therein for a survey). Here we provide an infinite-dimensional counterpart
of those results by extending methods employed in [4] and combining them with
techniques borrowed from the theory of infinite dimensional SDEs.

This work is partially motivated by a central problem in the modern theory of
mathematical finance. In fact, pricing American bond options on the forward interest
rate curve gives rise to an infinite dimensional optimal stopping problem. This is a
consequence of the dependence of the bond’s price on the whole structure of the
forward curve. The results obtained here will be extended to solve that particular
financial problem in a forthcoming paper [7].

Optimal stopping for processes in locally compact spaces has attracted great atten-
tion in the last decades (cf. [14,27,30] among others) while the case of general
infinite-dimensional Markov processes has been studied in relatively few papers. The
earliest paper on infinite dimensional optimal stopping and variational inequalities
we are aware of is [8]. There Chow and Menaldi extended known finite dimensional
results, in the spirit of [4], to the case of a particular infinite dimensional linear diffu-
sion.

A first attempt towards a more comprehensive study of optimal stopping theory for
processes taking values in a Polish space was made by Zabczyk [31] in 1997 from
a purely probabilistic point of view and later on, in 2001, by variational methods
[32]. Recently Barbu and Marinelli [2] contributed further insights in this direction
adopting arguments similar to those in Zabczyk’s works. In both [2,32] the Authors
considered a diffusion process on a functional space H and solved the variational
problem in mild sense in a suitable L2-space with respect to a measure onH. Instead
in the present work we find Sobolev-type solutions (therefore local) of the variational
problem. Barbu and Sritharan [3] also considered an optimal stopping problem for
a 2-dimensional stochastic Navier–Stokes equation and solved the associated infinite
dimensional variational inequality in a L2-space.

A different approach is based on viscosity theory. It is extensively exploited to solve
general stochastic control problems (cf. [15] for a survey) and the infinite-dimensional
case is currently the object of intense study (cf. [19–21,29] among others). However, as
far as we know, the only paper on infinite-dimensional variational inequalities related
to optimal stopping problems studied by viscosity methods is [16] by Ga̧tarek and
Świȩch. The Authors deal with a problem arising in finance. They characterize the
value function of the optimal stopping problem when the underlying diffusion has a
particular form not involving the unbounded term that normally appears in infinite-
dimensional stochastic differential equations (cf. [10] for a survey).
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It is worth mentioning that attempts to provide some numerical results for this
class of problems were recently made in [23]. However, arguments therein are mostly
heuristic, proofs are only sketched and some of them seem incorrect.

In the present paper the underlying process X lives in a general Hilbert space
H and it is governed by the SDE (2.1) with a generic unbounded operator A
(which is not even required to be self-adjoint) and with diffusion coefficient σ

in a class of functions which depends on A through Assumptions 2.4 and 2.5
(see below the discussion after Remark 2.3). Under mild regularity assumptions
on the gain function �, the value function U of the corresponding optimal stop-
ping problem (see (2.2)) solves an infinite dimensional variational inequality that
is parabolic and highly degenerate on an unbounded domain. We point out that
degenerate variational inequalities represent non-standard problems in the context
of PDE theory even at the finite dimensional level (cf. [28]). For the associated opti-
mal stopping problems one may consult the work of Menaldi [24,25]. In our case
we show that U solves a variational inequality in a specific Sobolev-type space V
(cf. (4.62)) under a given centered Gaussian measure μ (cf. (2.4)). We also obtain
uniqueness at least in a special case under more restrictive assumptions on X (see
Sect. 5).

This work is ideally the extension of [8] to general diffusions in Hilbert spaces and
it provides the infinite dimensional analogue of the results in [24,25]. Differently to
[8] we consider a finite time-horizon and a SDE with a generic non-linear diffusion
coefficient. The problem in [8] is analyzed as a special case of our study and two open
questions raised in [8] find positive answers in our Sect. 5.

The paper is organized as follows. In Sect. 2 we set the problem and we make the
main regularity assumptions on the diffusion X and on the gain function �. Then we
obtain regularity of the value function U . Section 3 deals with the approximation of
the SDE (2.1) and of the optimal stopping problem (2.2). The SDE is approximated
in two steps: first the unbounded term A is replaced by its Yosida approximation Aα ,
α > 0, and afterwards a n-dimensional reduction of the SDE is obtained. In this
approximation procedure the corresponding process X (α);n gives rise to an optimal
stopping problem whose value function we denote by U (n)

α . By means of purely prob-
abilistic arguments we show that U (n)

α converges to the value function U of the original
optimal stopping problem for n → ∞ and α → ∞. The variational problem is stud-
ied in Sect. 4. Initially we prove that the value function U (n)

α is solution of a suitable
variational inequality in R

n and we characterize an optimal stopping time. We also
provide a number of important bounds on U (n)

α , its time derivative and its gradient,
by means of penalization methods. Section 4.3 is entirely devoted to prove that our
original value function U solves a suitable infinite-dimensional variational problem.
The result is obtained by taking the limit as n → ∞ and α → ∞ of the variational
problem detailed in Sects. 4.1 and 4.2. Both analytical and probabilistic tools are
adopted to carry out the proofs and to characterize an optimal stopping time. In Sect.
5 uniqueness of the solution to the variational problem is proved for a specific class of
diffusion processes. The paper is completed by a technical Appendix containing some
proofs.
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2 Setting and Preliminary Estimates

LetH be a separable Hilbert space with scalar product 〈·, ·〉H and induced norm ‖·‖H.
Let A : D(A) ⊂ H → H be the infinitesimal generator of a strongly continuous
semigroup of operators {S(t), t ≥ 0} onH (cf. [26]), where D(A) denotes its domain.
Notice that D(A) is dense in H. Let {ϕ1, ϕ2, . . .} be an orthonormal basis of H with
ϕi ∈ D(A), i = 1, 2, . . ..

We now consider a stochastic framework. Let (�,F ,P) be a complete probability
space and let W := (W 0,W 1,W 2, . . .) be a sequence of independent, real, standard
Brownianmotions on it. Thefiltration generated byW is {Ft , t ≥ 0} and it is completed
by the null sets. Fix a finite horizon T > 0 and take a continuous map σ : H → H
whose regularity will be specified later in this section (cf. Assumption 2.5). Consider
the stochastic differential equation (SDE)

{
dXt = AXtdt + σ(Xt )dW 0

t , t ∈ [0, T ],
X0 = x,

(2.1)

in H. We denote by Xx a mild solution of (2.1) (see [10]). When the starting time
is t rather than zero the solution is denoted by Xt,x . To simplify exposition we have
chosen an SDE driven by a 1-dimensional Brownian motion, however our results may
be also extended toH-valued Brownian motions with trace-class covariance operator.
In this paper we will rely on the infinite sequence of Brownian motions W to find
finite dimensional approximations of Xx driven by a SDEs similar to (2.1) but with

Brownian motion W
(n) := (W 0, . . . ,Wn)ᵀ instead of W 0.

We aim to study the infinite dimensional optimal stopping problem

U(t, x) := sup
t≤τ≤T

E
{
�(τ, Xt,x

τ )
}
, (2.2)

with τ a stopping timewith respect to the filtration {Ft , t ∈ [0, T ]} andwith gain func-
tion� : [0, T ]×H → R such that� ≥ 0 and (t, x) �→ �(t, x) continuous. Although
infinite-dimensional optimal stopping problems like (2.2) have been proposed by sev-
eral Authors (see, for example, [2,8,16,31,32]), here we provide an alternativemethod
to characterize the value function U . Our results might be extended to the case of a
discounted gain function, if the discount factor is a Lipschitz-continuous, non-negative
function of X . In order to work out problem (2.2) we need to specify some properties
of �, σ and A. For that we introduce suitable Gauss-Sobolev spaces.

Define the positive, linear operator Q : H → H by

Qϕi = λiϕi , λi > 0, i = 1, 2, . . . , (2.3)

with
∑∞

i=1 λi < ∞; i.e., Q is of trace class. Consider the centered Gaussian measure
μ with covariance operator Q (cf. [5,9,11]); that is, the restriction to the vectors1

x ∈ 	2 of the infinite product measure

1 	2 denotes the set of infinite vectors x := (x1, x2, . . .) such that
∑

k x
2
k < +∞.
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μ(dx) =
∞∏
i=1

1√
2πλi

e
− x2i

2λi dxi . (2.4)

For 1 ≤ p < +∞ and f : H → R, define the L p(H, μ) norm as

‖ f ‖L p(H,μ) :=
(∫

H
| f (x)|pμ(dx)

) 1
p

. (2.5)

Then, with the notation of [9], Chapter 10, we consider derivatives in the Friedrichs
sense; that is,

Dk f (x) := lim
ε→0

1

ε
[ f (x + εϕk) − f (x)] , x ∈ H, k ∈ N, (2.6)

when the limit exists.
If f belongs to the domain of the gradient operator D and H is identified with its

dual, then the L p(H, μ;H) norm of Df = (D1 f, D2 f, . . .) is defined as

‖Df ‖L p(H,μ;H) :=
(∫

H
‖Df (x)‖p

H μ(dx)

) 1
p

for 1 ≤ p < +∞ (2.7)

where

∥∥Df (x)
∥∥H =

(∑
k

∣∣Dk f (x)
∣∣2) 1

2
< +∞. (2.8)

One can show that D is closable in L p(H, μ) (cf. [9], Chapter 10). Let D denote the
closure of D in L p(H, μ) and define the Sobolev space

W 1,p(H, μ) :=
{
f : f ∈ L p(H, μ) and D f ∈ L p(H, μ;H)

}
. (2.9)

Notice however that in the case of generalized derivatives D and D are the same.
For n ∈ N the finite dimensional counterpart of μ, L p(H, μ), L p(H, μ;H) are,

respectively,

μn(dx) :=
n∏

i=1

1√
2πλi

e
− x2i

2λi dxi , L p(Rn, μn), L p(Rn, μn;Rn).

Remark 2.1 If f : Rn → R, then

‖ f ‖L p(H,μ) =
(∫

H
| f (x)|pμ(dx)

) 1
p =

(∫
Rn

| f (x)|pμn(dx)

) 1
p =: ‖ f ‖L p(Rn ,μn)
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and

‖Df ‖L p(H,μ;H) =
(∫

H
‖Df (x)‖p

H μ(dx)

) 1
p =

(∫
Rn

‖Df (x)‖p
Rn μn(dx)

) 1
p

=: ‖Df ‖L p(Rn ,μn;Rn).

Again as in [9], Chapter 10, we define

DkD j f (x) := lim
ε→0

1

ε

[
Dj f (x + εϕk) − Dj f (x)

]
, x ∈ H, k ∈ N, (2.10)

when the limit exists. For functions f in the domain of D2 one has D2 f : H → L(H)

where L(H) denotes the space of linear operators onH. In this paper we do not need
an L p-space associated to the second derivative.

At this point we can go back to our optimal stopping problem (2.2) and make the
following regularity assumptions on the gain function �.

Assumption 2.2 There exist positive constants �, L�, L ′
� such that

0 ≤ �(t, x) ≤ � on [0, T ] × H, (2.11)

(t, x) �→D�(t, x) is continuous and ‖D�(t, x)‖H≤ L� t ∈ [0, T ], x ∈H, (2.12)

(t, x) �→ ∂�

∂t
(t, x) is continuous and

∣∣∣∂�

∂t
(t, x)

∣∣∣ ≤ L ′
� t ∈[0, T ], x ∈H. (2.13)

Also, (t, x) �→ D2�(t, x) is continuous and sup(t,x)∈[0,T ]×H
∥∥D2�(t, x)

∥∥
L < +∞

with ‖ · ‖L the norm in L(H).

Obviously Assumption 2.2 implies

sup
t∈[0,T ]

‖�(t)‖W 1,p(H,μ) < C� and
∫ T

0

∥∥∥∥∂�

∂t
(t)

∥∥∥∥
2

L2(H,μ)

dt < C�. (2.14)

for some positive constant C� and all 1 ≤ p < +∞. In what follows condition (2.12)
will be often referred to as Lipschitz property of the gain function �.

Remark 2.3 Notice that for existence results of the variational problem (4.101) asso-
ciated to the optimal stopping one (2.2), we could assume

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

� ≥ 0, (t, x) �→ �(t, x) continuous on [0, T ] × H,∣∣�(t, x)
∣∣ ≤ C

(
1 + ‖x‖p

H
)
on [0, T ] × H for some 1 ≤ p < +∞ and C > 0,

sup0≤t≤T

∣∣�(t, x) − �(t, y)
∣∣ ≤ L�

∥∥x − y
∥∥H for L� > 0, x, y ∈ H,

∂�
∂t ∈ L2(0, T ; L2(H, μ)).

(2.15)

However, such � may be approximated by regular ones satisfying Assumption 2.2,
for example exponential functions as in [9] or cylindrical ones as in [5,22].
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The dynamics (2.1) is fully specified in terms of A and σ . In applications of infinite
dimensional SDEs the choice of the unbounded operator A is often distinctive of the
phenomenon that one wants to describe (for example it may involve the Laplacian in
Navier–Stokes equations or the first derivative in delay equations), whereas multiple
choices of the diffusion coefficient are possible in several situations (see for instance
various versions of Musiela’s model for interest rates). In our setting we allow for
a very general operator A at the cost of restricting the class of admissible diffusion
coefficients σ . In fact, given A and denoted by A∗ its adjoint operator we construct Q
verifying the following

Assumption 2.4 The covariance operator Q of (2.3) is such that

Tr
[
A Q A∗] < ∞. (2.16)

The above condition is needed in Sect. 4, however such Q always exists. Indeed
given an orthonormal basis (ϕ j ) j∈N ⊂ D(A) of H, the operator Q is constructed by

picking its eigenvalues (λi )i∈N so that
∑∞

j=1 λ j
∥∥Aϕ j

∥∥2H < +∞, which is equivalent
to say that (2.16) holds. Once Q is constructed the class of diffusion coefficients σ is
determined by

Assumption 2.5 The diffusion coefficient of (2.1) is such that

{
(1) σ (x) ∈ Q(H),∀x ∈ H (i.e., σ (x) = Qγ (x) for some γ : H → H);
(2) γ and Dγ are bounded and continuous onH(cf. (2.6) and (2.8)).

Clearly (1) includes σ state dependent.

Remark 2.6 Assumption 2.5 is redundant in the case of constant diffusion coefficients.
In fact for any unbounded operator A and any constant σ ∈ D(A) one can pick an
orthonormal basis (ϕ j ) j∈N with ϕ1 := σ/‖σ‖H and construct Q as in (2.3) with
λ1 = 1.

Example 2.7 In a version of the Musiela model H = L2
α(R+) is an L2-space

with exponential weight e−αx . An orthonormal basis (ϕ j ) j∈N may be constructed
from polynomials by using Graham-Schmidt method, and the unbounded operator is
(A f )(x) = f ′(x) for f ∈ D(A). The norm p j := ‖Aϕ j‖H is well defined and finite
for all j ∈ N, hence it is enough to take λ j := 1/( j p j )

2 for all j ≥ j0 for some
j0 ∈ N, and γ according to (2) of Assumption 2.5.

Remark 2.8 The second condition in Assumption 2.5 may be substantially relaxed
throughout the paper by considering γ Lipschitz continuous with sublinear growth,
however for simplicity we will not do so.

Under Assumption 2.5 we have existence and uniqueness of a mild solution Xx to
(2.1) (cf. [10]). From now on and unless otherwise specified (see Sect. 5) we will take
Assumptions 2.2 and 2.5 as standing assumptions.

Below we obtain some preliminary estimates and some regularity properties of the
value function U .
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Lemma 2.9 Let Xx and X y be the mild solutions of (2.1) starting at x and y, respec-
tively. Then

E

{
sup

0≤t≤T
‖Xx

t ‖p
H

}
≤ Cp,T (1 + ‖x‖p

H) 1 ≤ p < ∞, (2.17)

E

{
sup

0≤t≤T
‖Xx

t − X y
t ‖p

H

}
≤ Cp,T ‖x − y‖p

H 1 ≤ p < ∞, (2.18)

where the positive constant Cp,T depends only on p and T .

Proof The proof of (2.17) follows from [10], Theorem7.4, whereas the proof of (2.18)
is a consequence of [10], Theorem9.1 and a simple application of Jensen’s inequality.��
Proposition 2.10 The value functionU(t, x) is non-negative, uniformly bounded with
the same upper bound of �, i.e.

sup
(t,x)∈[0,T ]×H

U(t, x) ≤ �. (2.19)

Moreover, there exists LU > 0 such that

|U(t, x) − U(t, y)| ≤ LU‖x − y‖H, t ∈ [0, T ], x, y ∈ H. (2.20)

Proof The first claim is obvious. To show (2.20) take x, y ∈ H and fix t ∈ [0, T ].
Then

U(t, x) − U(t, y) ≤ sup
t≤τ≤T

E
{
�
(
τ, Xt,x

τ

)− �
(
τ, Xt,y

τ

)}

≤ E

{
sup

t≤s≤T
|�(s, Xt,x

s ) − �(s, Xt,y
s )|

}

≤ L� E

{
sup

t≤s≤T
‖Xt,x

s − Xt,y
s ‖H

}
,

by (2.12). Similarly for U(t, y) − U(t, x); hence

|U(t, x) − U(t, y)| ≤ L�E

{
sup

t≤s≤T
‖Xt,x

s − Xt,y
s ‖H

}
.

The coefficients in (2.1) are time-homogeneous, hence

E

{
sup

t≤s≤T
‖Xt,x

s − Xt,y
s ‖H

}
= E

{
sup

0≤s≤T−t
‖Xx

s − X y
s ‖H

}
≤ C1,T ‖x − y‖H,

and (2.20) follows with LU = L� C1,T (cf. (2.18)). ��
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3 The Approximation Scheme

In this section we provide an algorithm for the finite dimensional reduction of the
optimal stopping problem (2.2). The algorithm requires two separate steps (a similar
approach was used for instance in [17] in a different context). First, we obtain a
Yosida approximation of the unbounded operator A by bounded operators Aα; then
we provide a finite dimensional reduction of the SDE. At each step a corresponding
optimal stopping problem is studied.

3.1 Yosida Approximation

A natural way to deal with an unbounded linear operator is to introduce its Yosida
approximation, which does not require any further assumptions. The Yosida approxi-
mationof A is defined as Aα := αA(α I−A)−1, forα > 0 (cf. [26]). The corresponding
SDE is {

dX (α)x
t = AαX

(α)x
t dt + σ(X (α)x

t )dW 0
t , t ∈ [0, T ],

X (α)x
0 = x,

(3.1)

which admits a unique strong solution, X (α)x , since Aα is a bounded linear operator.
That is,

X (α)x
t = x +

∫ t

0
AαX

(α)x
s ds +

∫ t

0
σ(X (α)x

s )dW 0
s , t ∈ [0, T ], P-a.s. (3.2)

Clearly a strong solution is also a mild solution (cf. [10]), hence X (α)x might be
equivalently interpreted as

X (α)x
t = et Aα x +

∫ t

0
e(t−s)Aασ (X (α)x

s )dW 0
s , t ∈ [0, T ], P-a.s.

Similarly X (α)t,x will denote the solution starting at time t from x . The following
important convergence result is proved in [10], Proposition 7.5 and it is here recalled
for completeness.

Proposition 3.1 Let Xx be the unique mild solution of equation (2.1) and X (α)x the
unique strong solution of equation (3.1). For 1 ≤ p < ∞, the following convergence
holds

lim
α→∞E

{
sup

0≤t≤T
‖X (α)x

t − Xx
t ‖p

H

}
= 0, x ∈ H.

We define Uα to be the value function of the optimal stopping problem corresponding
to X (α)x ,

Uα(t, x) := sup
t≤τ≤T

E

{
�
(
τ, X (α)t,x

τ

)}
. (3.3)
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Notice that Uα satisfies (2.19) and (2.20) with the same constants. We have the con-
vergence of Uα to U (cf. (2.2)) as α → ∞ both uniformly with respect to t and in
L p(0, T ; L p(H, μ))-norms.

Theorem 3.2 The following convergence results hold,

lim
α→∞ sup

0≤t≤T
|Uα(t, x) − U(t, x)| = 0, x ∈ H, (3.4)

lim
α→∞

∫ T

0

∫
H

|Uα(t, x) − U(t, x)|pμ(dx)dt = 0, 1 ≤ p < ∞. (3.5)

Proof The arguments are similar to those used in the proof of Proposition 2.10. In fact
by the Lipschitz property of the gain function � and the time-homogeneous character
of the processes we have

|Uα(t, x) − U(t, x)| ≤ LU E

{
sup

0≤s≤T

∥∥∥X (α)x
s − Xx

s

∥∥∥H
}

.

Since LU is independent of t , the uniform convergence (3.4) follows from Proposition
3.1. To prove (3.5) it suffices to apply the dominated convergence theorem, since Uα

is uniformly bounded by � (cf. (2.11)). ��
Corollary 3.3 If Uα ∈ Cb([0, T ] × H) for all α > 0, then Uα → U as α →
∞, uniformly on compact subsets [0, T ] × K ⊂ [0, T ] × H. Moreover U(t, x) ∈
Cb([0, T ] × H).

Proof Fix x ∈ H, then (3.4) implies U(·, x) ∈ Cb([0, T ];R). For each α > 0 define

Fα(x) := sup
t∈[0,T ]

|Uα(t, x) − U(t, x)|,

then Fα(x) → 0 as α → ∞ by (3.4). The family (Fα)α>0 is equibounded and equi-
continuous since (2.19) and (2.20) hold for both Uα and U , and
∣∣Fα(x) − Fα(y)

∣∣ ≤ sup
t∈[0,T ]

∣∣Uα(t, x) − Uα(t, y) + U(t, y) − U(t, x)
∣∣

≤ sup
t∈[0,T ]

∣∣Uα(t, x) − Uα(t, y)
∣∣+ sup

t∈[0,T ]
∣∣U(t, y) − U(t, x)

∣∣
≤ 2LU‖x − y‖H.

Then Uα converges uniformly to U , as α → ∞, on compact subsets [0, T ] ×K ([13],
Theorem 7.5.6); that is

lim
α→∞ sup

(t,x)∈[0,T ]×K
|Uα(t, x) − U(t, x)| = 0.

Hence, being the uniform limit of bounded continuous functions, U is continuous on
any compact subset [0, T ] × K (cf. [13], Theorem 7.2.1). That and (2.20) imply the
continuity of U on [0, T ] × H. ��
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3.2 Finite Dimensional Reduction

For each n ∈ N let us consider the finite dimensional subset H(n) := span{ϕ1, ϕ2,

. . . , ϕn} and the orthogonal projection operator Pn : H → H(n). We approximate
the diffusion coefficients of (3.1), respectively, by σ (n) := (Pnσ) ◦ Pn and Aα,n :=
Pn AαPn . Notice that Aα,n is a bounded linear operator onH(n). We define the process
X (α)x;n as the unique strong solution of the SDE on H(n) given by

{
dX (α)x;n

t = Aα,n X
(α)x;n
t dt + σ (n)(X (α)x;n

t )dW 0
t + εn

∑n
i=1 ϕi dW i

t , t ∈ [0, T ],
X (α)x;n
0 = Pnx =: x (n),

(3.6)

where (εn)n is a sequence of positive numbers such that

√
n εn → 0 as n → ∞. (3.7)

Obviously X (α)x;n lives in the finite dimensional subspaceH(n) but it may still be seen
as a process in H.

Remark 3.4 Notice that at each time t ∈ [0, T ], X (α) x;n
t is not the projection of the

process X (α)x
t on the finite dimensional subspace. In fact, a process with that property

wouldnot benecessarilyMarkovian.Hence X (α)x;n has to be considered as an auxiliary
diffusion process which is used to approximate the original one.

Proposition 3.5 It holds that

lim
n→∞E

{
sup

t∈[0,T ]

∥∥∥X (α)x;n
t − X (α)x

t

∥∥∥2
}

= 0, (3.8)

uniformly with respect to x on compact subsets ofH.

Proof Since X (α)x;n and X (α)x are both strong solutions, i.e.

X (α)x;n = Pnx +
∫ t

0
Aα,n X

(α)x;n
s ds +

∫ t

0
σ (n)(X (α)x;n

s )dW 0
s + εn

n∑
i=1

ϕiW
i
t ,

and (3.2) holds, we have

∥∥∥X (α)x;n
t − X (α)x

t

∥∥∥2H ≤ 6

[
‖Pnx − x‖2H +

∥∥∥
∫ t

0
Pn Aα(X (α)x;n

s − X (α)x
s )ds

∥∥∥2H
+
∥∥∥
∫ t

0
(I − Pn)AαX

(α)x
s ds

∥∥∥2H
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+
∥∥∥
∫ t

0
Pn[σ(X (α)x;n

s ) − σ(X (α)x
s )]dW 0

s

∥∥∥2H
+
∥∥∥
∫ t

0
(I − Pn)σ (X (α)x

s )dW 0
s

∥∥∥2H + ε2n

n∑
i=1

|Wi
t |2
]
,

where we used the fact that Aα,n X (α)x;n = Pn AαX (α)x;n . Denote by ‖ · ‖L the norm
of linear operators on H. We use Hölder’s inequality to estimate the time-integrals,
then take the supremum over t ∈ [0, T ] and the expected value. By isometry of the
stochastic integral and Fubini’s theorem we obtain

E

{
sup

0≤t≤T

∥∥∥X (α)x;n
t − X (α)x

t

∥∥∥2H
}

≤ 6

[
‖Pnx − x‖2H + T ‖Aα‖2L

∫ T

0
E

{
sup

0≤u≤s
‖X (α)x;n

u − X (α)x
u ‖2H

}
ds

+ T
∫ T

0
E

{
‖(I − Pn)AαX

(α)x
s ‖2H

}
ds

+
∫ T

0
E

{∥∥∥σ(X (α)x;n
s ) − σ

(
X (α)x
s

)∥∥∥2H
}
ds

+
∫ T

0
E

{
‖(I − Pn)σ (X (α)x

s )‖2H
}
ds + ε2n

n∑
i=1

E{ sup
0≤t≤T

|Wi
t |2}

]
.

By Assumption 2.5 the diffusion coefficient is Lipschitz and we denote by Lσ > 0
its Lipschitz constant. Then we get

E

{
sup

0≤t≤T
‖X (α)x;n

t − X (α)x
t ‖2H

}

≤ 6

[
‖Pnx − x‖2H + T ‖Aα‖2L

∫ T

0
E

{
sup

0≤u≤s
‖X (α)x;n

u − X (α)x
u ‖2H

}
ds

+ T
∫ T

0
E

{
‖(I − Pn)AαX

(α)x
s ‖2H

}
ds

+ L2
σ

∫ T

0
E

{
sup

0≤u≤s
‖X (α)x;n

u − X (α)x
u ‖2H

}
ds

+
∫ T

0
E

{
‖(I − Pn)σ (X (α)x

s )‖2H
}
ds + ε2n n T

]
.

A straightforward application of Gronwall’s lemma gives

E

{
sup

0≤t≤T
‖X (α)x;n

t − X (α)x
t ‖2H

}
≤ CT eT

2‖Aα‖2L+T L2
σ Mn(x) (3.9)

123



Appl Math Optim (2016) 73:271–312 283

for some positive constant CT and with

Mn(x) := ‖Pnx − x‖2H + ε2nnT

+
∫ T

0
E

{
‖(I − Pn)AαX

(α)x
s ‖2H + ‖(I − Pn)σ (X (α)x

s )‖2H
}
ds

a continuous real function. The right hand side converges to zero as n → ∞ by
dominated convergence and condition (3.7) on (εn)n . Since Mn(x) decreases to zero
as n → ∞, Dini’s theorem guarantees uniform convergence on any compact subset
K ⊂ H.

Remark 3.6 For any starting time t ∈ [0, T ], the previous proposition and the argu-
ments of its proof still hold for X (α)t,x;n and X (α)t,x , thanks to the time-homogeneous
property of equations (3.1) and (3.6).

For n ≥ 1 define �(n) : [0, T ] × H → R by

�(n)(t, x) := �(t, Pnx) = �
(
t, x (n)

)
(3.10)

(cf. (3.6)). Of course, Pnx (n) = x (n), hence �(n)(t, · ) = �(t, · ) on H(n). However,
in what follows it is convenient to use the notation �(n) since this is a gain function
onH(n) and it will occur in the variational formulation of a finite dimensional optimal
stopping problem approximating (3.3). It is not hard to see that (2.12) and Dini’s
Theorem imply

lim
n→∞ sup

(t,x)∈[0,T ]×K

∣∣�(n)(t, x) − �(t, x)
∣∣ = 0, for every compact : K ⊂ H.

(3.11)

Remark 3.7 There is an isomorphism In : (H(n), ‖ · ‖H) → (Rn, ‖ · ‖Rn ), in fact for
any x ∈ H(n) we may define xi := 〈x, ϕi 〉H, i = 1, 2, . . . n and Inx := (x1, . . . , xn).

Let U (n)
α be the value function of the optimal stopping problem

U (n)
α (t, x (n)) := sup

t≤τ≤T
E

{
�(n)

(
τ, X (α)t,x;n

τ

)}
. (3.12)

Obviously U (n)
α may also be seen as a function defined on [0, T ] × R

n . Again, as for
Uα , we point out that U (n)

α satisfies (2.19) and (2.20) with the same constants. The
value function U (n)

α converges to Uα of (3.3) as n → ∞. In fact results similar to
Theorems 3.2 and 3.3 hold.

Theorem 3.8 The following convergence results hold,

lim
n→∞ sup

(t,x)∈[0,T ]×K
|U (n)

α (t, x (n)) − Uα(t, x)| = 0, K ⊂ H, K compact, (3.13)
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i.e. the convergence is uniform on any compact subset [0, T ] × K, and

lim
n→∞

∫ T

0

∫
H

|U (n)
α (t, x (n)) − Uα(t, x)|pμ(dx)dt = 0, 1 ≤ p < ∞. (3.14)

Proof The proof follows along the same lines as the proof of Theorem 3.2 since
�(n)(t, X (α)t,x;n

s ) = �(t, X (α)t,x;n
s ), s ≥ t . Then (3.13) follows from the uniform

convergence in Propositions 3.5, and (3.14) follows from dominated convergence. ��
As a consequence we have

Corollary 3.9 If U (n)
α ∈ Cb([0, T ] ×H(n)) for all n ∈ N, then Uα ∈ Cb([0, T ] ×H).

Proof Recall that (U (n)
α (t, x (n)))n is uniformly bounded (cf. Proposition 2.10) and

(3.13) holds. Hence [13], Theorem 7.2.1 guarantees the continuity ofUα on [0, T ]×K.
Arguments as in Corollary 3.3 provide the continuity on [0, T ] × H. ��

Later in the paper we will prove that U (n)
α is indeed continuous (cf. Theorem 4.12).

4 Infinite Dimensional Variational Inequality: An Existence Result

In this section we prove that the value function U of (2.2) is a strong solution (in the
sense of [4]) of a parabolic infinite dimensional variational inequality on [0, T ] × H.
We start by considering finite-dimensional bounded domains and for those we employ
results by [4]. Then we pass to finite-dimensional unbounded domains, and hence to
infinite-dimensional ones by considering solutions in specific Gauss-Sobolev spaces.
We deal with uniqueness in Sect. 5.

4.1 Finite-Dimensional, Bounded Domains: General Results

When dealing with variational problems on finite dimensional bounded domains, we
find bounds which are uniform with respect to the order of the approximation and the
size of the domain. Recall the finite dimensional SDE (3.6). Let n ∈ N and fix α > 0.
Let OR be the open ball in R

n with center in the origin and with radius R. Define
τR(t, x) to be the first exit time from OR , i.e.

τR(t, x) := inf
{
s ≥ t : X (α)t,x;n

s /∈ OR
} ∧ T . (4.1)

We are slightly abusing the notation by considering H(n) ∼ R
n and X (α)t,x;n ∈ R

n .
For simplicity we set τR := τR(t, x) and we introduce the optimal stopping problem
arrested at τR ,

U (n)
α,R

(
t, x (n)

) := sup
t≤τ≤T

E

{
�(n)

(
τ ∧ τR, X (α)t,x;n

τ∧τR

)}
. (4.2)

The next result is similar to Theorem 3.8 and its proof is provided in the Appendix.
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Proposition 4.1 The function U (n)
α,R converges to U (n)

α as R → ∞, uniformly on every

compact subset [0, T ]×K ⊂ [0, T ]×R
n. Moreover if

(
U (n)

α,R

)
R>0 ⊂ Cb([0, T ]×R

n),

then U (n)
α ∈ Cb([0, T ] × R

n).

Denote by C2
c (R

n) the set of all C2-functions on R
n with compact support. The

infinitesimal generator of the diffusion X (α)x;n is

Lα,ng := 1

2
ε2n

n∑
i=1

∂2g

∂x2i

+1

2

n∑
i, j=1

[
σ (n)σ (n)∗]

i, j

∂2g

∂xi∂x j
+

n∑
i=1

⎛
⎝ n∑

j=1

x j 〈Aαϕ j , ϕi 〉
⎞
⎠ ∂g

∂xi
,(4.3)

for g ∈ C2
c (R

n). Notice that

[
σ (n)σ (n)∗]

i, j
(x) =

〈
σ (n)(x), ϕi

〉
H

〈
σ (n)(x), ϕ j

〉
H, (4.4)

sinceW 0 is a one dimensional Brownianmotion.MoreoverLα,n is a uniformly elliptic
operator. The bilinear form associated to the operator Lα,n is

a(α,n)
R (u, w) := −

∫
OR

Lα,nu w dx (n)

=
n∑

i, j=1

(∫
OR

1

2
B(n)
i, j

∂u

∂xi

∂w

∂x j
dx (n) +

∫
OR

C (n,α)
i, j

∂u

∂xi
w dx (n)

)
,

for u, w ∈ H1
0 (OR) (cf. [4] for the definition of H1

0 ),

B(n)
i, j (x) := ε2n δi, j + [σ (n)σ (n)∗]i, j (x) and

C (n,α)
i, j (x) := 1

2

∂
[
σ (n)σ (n)∗

]
i, j

∂x j
(x) − x j 〈Aαϕ j , ϕi 〉 (4.5)

where δi, j = 0 for i �= j and δi,i = 1. Denote by (·, ·) the scalar product in L2(OR).
From Assumption 2.5 and uniform ellipticity of Lα,n , it is not hard to see that there
exist constants ζα,n,R,Cα,n,R,C ′

α,n,R > 0 such that

|a(α,n)
R (u, w)| ≤ Cα,n,R‖u‖H1

0 (OR) ‖w‖H1
0 (OR), (4.6)

a(α,n)
R (u, u) + ζα,n,R (u, u) ≥ C ′

α,n,R‖u‖2
H1
0 (OR)

. (4.7)

These properties guarantee well-posedness of the variational problem in the following
proposition.
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Define the closed convex set

Kn,R :=
{
w : w ∈ H1

0 (OR) and w ≥ 0 a.e.
}
, (4.8)

and set
u(n)

α,R := U (n)
α,R − �(n), (4.9)

fα,n : = ∂�(n)

∂t
+ Lα,n�

(n)

= ∂�(n)

∂t
+ 1

2
ε2nT r

[
D2�(n)

]
+ 1

2
Tr
[
σ (n)σ (n)∗D2�(n)

]+ 〈Aα,nx, D�(n)〉H.

(4.10)

We expect u(n)
α,R := U (n)

α,R −�(n) to solve an obstacle problem with null obstacle. Now
(4.6), (4.7) and the regularity of fα,n in (4.10) are sufficient to apply [4], Chapter 3,
Theorems 2.2, 2.13, Corollaries 2.2, 2.3, 2.4 to obtain

Proposition 4.2 There exists a unique solution ū of the variational problem:

⎧⎪⎨
⎪⎩
u(t, x (n)) ≥ 0, (t, x (n)) ∈ [0, T ] × OR and u(T, x (n)) = 0, x (n) ∈ OR;
−
(∂u

∂t
(t), w − u(t)

)
+a(α,n)

R (u(t), w − u(t)) − ( fα,n(t), w − u(t))≥0

for a.e. t ∈ [0, T ] and for all w ∈ Kn,R .

(4.11)

Moreover, ū∈ L p(0, T ;W 1,p
0 (OR))∩L p(0, T ;W 2,p(OR)),

∂ ū

∂t
∈ L p(0, T ; L p(OR))

for all 1 ≤ p < ∞ and ū ∈ C([0, T ] × OR).

Corollary 4.3 The function ū coincides with the function u(n)
α,R and uniquely solves in

the almost everywhere sense the obstacle problem

⎧⎪⎪⎨
⎪⎪⎩
max

{
∂u

∂t
+ Lα,nu + fα,n, −u

}
(t, x (n)) = 0, (t, x (n)) ∈ (0, T ) × OR,

u(t, x (n)) ≥ 0 on [0, T ] × OR and u(T, x (n)) = 0, x (n) ∈ OR;
u(t, x (n)) = 0, (t, x (n)) ∈ [0, T ] × ∂OR .

(4.12)

Moreover, an optimal stopping time for U (n)
α,R of (4.2) is

τ �
α,n,R := inf{s ≥ t : U (n)

α,R(s, X (α)t,x;n
s ) = �(n)(s, X (α)t,x;n

s )} ∧ τR ∧ T (4.13)

and

U (n)
α,R(t, x (n)) = E

{
U (n)

α,R(τ, X (α)t,x;n
τ )

}
, for all τ ≤ τ �

α,n,R . (4.14)
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The proof follows from Proposition 4.2 and is outlined in the Appendix for complete-
ness.

Remark 4.4 Notice that when � fulfils only (2.15), the variational inequality still
makes sense by considering fα,n as a map from [0, T ] to the dual space of W 1,p.

4.1.1 Penalization Method and Some Uniform Bounds

Now we would like to take limits in the variational inequalities as R → ∞, n → ∞,
α → ∞, respectively. For that we need bounds on u(n)

α,R , Du(n)
α,R and ∂

∂ t u
(n)
α,R uniformly

in (R, n, α). The first two bounds are obtained in the next Proposition.
Recall Remark 2.1 and the definition ofW 1,p(H, μ) of (2.9). Then for each R > 0,

consider the zero extension outsideOR of u
(n)
α,R and still denote it by u

(n)
α,R for simplicity.

Proposition 4.5 The family
(
u(n)

α,R

)
R,n,α

is bounded in L p(0, T ;W 1,p(H, μ)) for 1 ≤
p < +∞ uniformly with respect to (R, n, α) ∈ (0,+∞) × N × (0,+∞).

Proof Clearly we may think of u(n)
α,R as a function defined on [0, T ] × H. Then from

Assumption 2.2 and (4.9) it follows that u(n)
α,R is bounded by 2� for all (R, n, α) ∈

(0,+∞) × N × (0,+∞), uniformly in (t, x) ∈ [0, T ] × H; i.e. ‖u(n)
α,R(t)‖L p(H,μ) ≤

2�, t ∈ [0, T ]. It is easy to see that

∥∥u(n)
α,R

∥∥
L p(0,T ;L p(H,μ))

=
(∫ T

0

∥∥u(n)
α,R(t)

∥∥p
L p(H,μ)

dt

) 1
p

≤ 2 � T
1
p , 1 ≤ p < +∞.

(4.15)

Moreover, for all (R, n, α) ∈ (0,+∞)×N× (0,+∞), u(n)
α,R is Lipschitz in the space

variable, uniformly with respect to t ∈ [0, T ], with Lipschitz constant lesser or equal
than LU + L�. It follows that

∥∥Du(n)
α,R(t, x (n))

∥∥H = ∥∥Du(n)
α,R(t, x (n))

∥∥
Rn ≤ LU + L�

for a.e. (t, x (n)) ∈ [0, T ] ×R
n . Since μ restricted to Rn is equivalent to the Lebesgue

measure (cf. Remark 2.1) it follows that
∥∥Du(n)

α,R(t)
∥∥
L p(H,μ;H)

≤ LU +L�, t ∈ [0, T ]
and

∥∥Du(n)
α,R

∥∥
L p(0,T ;L p(H,μ;H))

=
(∫ T

0

∥∥Du(n)
α,R(t)

∥∥p
L p(H,μ;H)

dt

) 1
p

≤ (LU + L�)T
1
p , 1 ≤ p < +∞. (4.16)

��
We now go through a number of steps (including penalization) in order to find a

bound on ∂
∂ t u

(n)
α,R . First, by arguments as in [24] we have
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Lemma 4.6 Let ν be any real adapted process in [0, 1], ε > 0, t ∈ [0, T ], x (n) and
y(n) in Rn, then

∣∣∣∣∣E
{∫ τ xR

τ xR∧τ
y
R

e− ∫ st 1
ε
ν(u)du fα,n(s, X

(α)t,x;n
s )ds

}∣∣∣∣∣ ≤ L f
∥∥x (n) − y(n)

∥∥H (4.17)

where τ x
R := τR(t, x) and τ

y
R := τR(t, y) (cf. (4.1)) and L f > 0 only depends on L�

and LU (cf. Assumption 2.2 and Proposition 2.10).

Proof The proof is in the Appendix. ��
Now we need to recall the penalization method used in [4], Chapter 3, Section 2, to

obtain existence and uniqueness results for parabolic variational inequalities as in our
Proposition 4.2. For fixed (R, n, α) we denote uR := u(n)

α,R to simplify notation. In [4]

uR is found in the limit as ε → 0 of functions uR
ε solving the penalized problem

⎧⎪⎨
⎪⎩
uR

ε ∈ L2(0, T ; H2(OR)) ∩ L2(0, T ; H1
0 (OR)) ; ∂

∂ t u
R
ε ∈ L2(0, T ; L2(OR));

∂ uRε
∂ t + Lα,nuR

ε = − fα,n − 1
ε

[− uR
ε

]+
, for a.e. (t, x (n)) ∈ [0, T ] × OR

uR
ε (T, x (n)) = 0, for x (n) ∈ OR .

(4.18)

From now on we consider the zero extension outside OR of uR
ε which we still denote

by uR
ε . Then uR

ε may be represented as (cf. [4], Chapter 3, Section 4, Theorem 4.4)

uR
ε (t, x (n)) = sup

ν∈[0,1]
E

{∫ τ xR

t
e− ∫ st 1

ε
ν(u)du fα,n(s, X

(α)t,x;n
s ) ds

}
, (4.19)

where the supremum is taken over all real adapted stochastic processes ν ∈ [0, 1].
Lipschitz continuity of uR

ε in the space variable, uniformlywith respect to time, follows
by means of Lemma 4.6. The proof is inspired by [24] and it is contained in the
Appendix.

Lemma 4.7 There exists a constant L P > 0 independent of (ε, R, α, n) such that

∥∥DuR
ε (t, x (n))

∥∥H = ∥∥DuR
ε (t, x (n))

∥∥
Rn ≤ LP for a.e. (t, x (n)) ∈ [0, T ] × R

n .

(4.20)

In order to get bounds in L p(H, μ) it is convenient to find a formulation of (4.18)
in such space. To do so we introduce some notation (cf. Remark 2.1).

Definition 4.8 For 1 < p < ∞ and p′ such that 1
p + 1

p′ = 1, denote by V p
n the space

V p
n := {v : v ∈ L2p(Rn, μn) and Dv ∈ L2p′

(Rn, μn;Rn)} (4.21)
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endowed with the norm

|||v|||p,n := ‖v‖L2p(Rn ,μn)
+ ‖Dv‖L2p′ (Rn ,μn;Rn)

. (4.22)

Then (V p
n , |||·|||p,n) is a separable Banach space.

Denote by (·, ·)μn the scalar product in L2(Rn, μn) and, for u, w ∈ V p
n , define the

bilinear form associated to the operator Lα,n (cf. (4.3)),

a(α,n)
μ (u, w) := −

∫
Rn

Lα,nu wμn(dx)

=
n∑

i, j=1

(∫
Rn

1

2
B(n)
i, j

∂u

∂xi

∂w

∂x j
μn(dx) +

∫
Rn
C

(n,α)

i, j
∂u

∂xi
w μn(dx)

)
(4.23)

with

C
(n,α)

i, j (x) := C (n,α)
i, j (x) − 1

2

([
σ (n)σ (n)∗]

i, j

x j
λ j

+ ε2n δi, j
x j
λ j

)
(4.24)

and B(n)
i, j and C (n,α)

i, j as in (4.5). From (4.4) it follows that

∂

∂x j

[
σ (n)σ (n)∗(x)

]
i, j

= 〈Dσ (n)(x)ϕ j , ϕi 〉H〈σ (n)(x), ϕ j 〉H
+ 〈Dσ (n)(x)ϕ j , ϕ j 〉H〈σ (n)(x), ϕi 〉H, (4.25)

then (4.25) and the isometryH(n) ∼ R
n allow us to rewrite the bilinear form (4.23) as

a(α,n)
μ (u, w) :=

∫
Rn

1

2

〈
B(n)Du, Dw

〉
H μn(dx) +

∫
Rn

〈
C

(n,α)
, Du

〉
H w μn(dx) (4.26)

where B(n) := σ (n)σ (n)∗ + ε2n I ∈ L(H), the set of all linear operators on H, and

C
(n,α) ∈ H is given by

C
(n,α) := 1

2

(
Tr [Dσ (n)]Hσ (n) + Dσ (n) · σ (n)

−2Aα,nx − σ (n)σ (n)∗Q−1
n x − ε2n Q−1

n x
)

.

Here Qn := PnQPn and (Dσ (n) · σ (n))i :=∑n
j=1 (Dσ (n))i, j σ

(n)
j , i = 1, . . . , n. The

continuity in V p
n of the bilinear form (4.26) follows from the next result which makes

use of Assumption 2.4.

Theorem 4.9 For every 1 < p < ∞ there exists a constant Cμ,γ,p > 0, depending
only on μ, p and the bounds of γ in Assumption 2.5, such that
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∫ T

0
|a(α,n)

μ (u(t), w(t))|dt ≤ Cμ,γ,p

(∫ T

0
|||u(t)|||2p,ndt

) 1
2
(∫ T

0
|||w(t)|||2p,ndt

) 1
2

(4.27)
for all u, w ∈ L2(0, T ;V p

n ).

Proof Thanks to Assumption 2.5 and since Q is of trace class (cf. (2.3)) the estimate
is straightforward for all the terms in (4.26) except those involving ε2n Q

−1
n and Aα,n .

As for the first case notice that, although Q−1
n becomes unbounded as n → ∞, there

is no restriction in assuming that the sequence (εn)n∈N is such that εnQ−1
n → 0 as

n → ∞ (cf. (3.7)). It then remains to look at

(I ) : =
∣∣∣∣
∫
Rn

〈Aα,nx, Du〉H w μn(dx)

∣∣∣∣. (4.28)

Recalling Assumption 2.4 and using Hölder’s inequality we obtain

(I ) ≤
(∫

Rn
‖Aα,nx‖2Hμn(dx)

) 1
2
(∫

Rn
‖Du‖2H|w|2μn(dx)

) 1
2

≤
⎛
⎝ n∑

j=1

∫
Rn

∣∣〈x, A∗
α,nϕ j 〉

∣∣2Hμn(dx)

⎞
⎠

1
2

|||u|||p,n |||w|||p,n

≤ (Tr [AQA∗]) 12 |||u|||p,n |||w|||p,n , (4.29)

where the last inequality follows from
∫
Rn

∣∣〈x, y〉∣∣2Hμn(dx) = 〈Qny, y〉H for y ∈ H
(see for instance [9], p.13). ��

For vR ∈ H1
0 (OR) we consider its zero extension outside OR , again denoted

by vR . Multiplying (4.18) by vR 1√
(2π)nλ1λ2···λn exp

(
−∑n

i=1
x2i
λi

)
and integrating by

parts over Rn gives the penalized problem in a weaker form; that is

−
(

∂ uR
ε

∂ t
(t), vR

)
μn

+ a(α,n)
μ

(
uR

ε (t), vR
)

− 1

ε

([− uR
ε (t)

]+
, vR)

μn

= ( fα,n(t), v
R)

μn
t ∈ [0, T ]. (4.30)

Following arguments as in [4], Chapter 3, Section 2, p. 246, we finally obtain a bound
on ∂

∂ t u
(n)
α,R .

Proposition 4.10 The family
(

∂
∂ t u

(n)
α,R

)
R,n,α

is bounded in L2(0, T ; L2(H, μ)), uni-
formly with respect to (R, n, α) ∈ (0,∞) × N × (0,∞).

Proof As in [4] one may take vR = ∂
∂ t u

R
ε , possibly up to a regularization, or consid-

ering finite differences, as the estimate obtained at the end does not involve second
derivatives of uR

ε and it is therefore consistent. Plugging such vR in (4.30) gives
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−
∥∥∥∂ uR

ε

∂ t

∥∥∥2
L2(H,μ)

(t) + a(α,n)
μ

(
uR

ε ,
∂ uR

ε

∂ t

)
(t) + 1

2ε

∂

∂ t

∥∥[− uR
ε

]+∥∥2
L2(H,μ)

(t)

=
(
fα,n,

∂ uR
ε

∂ t

)
μn

(t). (4.31)

Next observe that (4.26) implies

a(α,n)
μ

(
uR

ε ,
∂ uR

ε

∂ t

)
= a(α,n)

μ,0

(
uR

ε ,
∂ uR

ε

∂ t

)
+ a(α,n)

μ,1

(
uR

ε ,
∂ uR

ε

∂ t

)
(4.32)

where

a(α,n)
μ,0

(
uR

ε ,
∂ uR

ε

∂ t

)
=
∫
Rn

1

2

〈
B(n)DuR

ε ,
∂

∂ t
DuR

ε

〉
H

μn(dx)

= ∂

∂ t

∫
Rn

〈
B(n)DuR

ε , DuR
ε

〉
H μn(dx) = 2

∂

∂ t
a(α,n)
μ,0

(
uR

ε , uR
ε

)
,

(4.33)

by symmetry and

a(α,n)
μ,1

(
uR

ε ,
∂ uR

ε

∂ t

)
=
∫
Rn

〈
C

(n,α)
, DuR

ε

〉
H

∂ uR
ε

∂ t
μn(dx). (4.34)

By integrating with respect to t over [0, T ], recalling that uR
ε (T, · ) = 0 and rearrang-

ing terms one obtains

∥∥∥∂ uR
ε

∂ t

∥∥∥2
L2(0,T ;L2(H,μ))

+ 2a(α,n)
μ,0

(
uR

ε (0), uR
ε (0)

)+ 1

2ε

∥∥(− uR
ε

)+∥∥2
L2(H,μ)

(0)

= −
∫ T

0

(
fα,n,

∂ uR
ε

∂ t

)
μn

(t)d t + 2a(α,n)
μ,0

(
uR

ε (T ), uR
ε (T )

)

+
∫ T

0
a(α,n)
μ,1

(
uR

ε ,
∂ uR

ε

∂ t

)
(t)d t (4.35)

and therefore

∥∥∥∂ uR
ε

∂ t

∥∥∥2
L2(0,T ;L2(H,μ))

(4.36)

≤
∣∣∣∣∣
∫ T

0

(
fα,n,

∂ uR
ε

∂ t

)
μn

(t)d t

∣∣∣∣∣+ 2
∣∣∣a(α,n)

μ,0

(
uR

ε (T ), uR
ε (T )

)∣∣∣

+
∣∣∣∣
∫ T

0
a(α,n)
μ,1

(
uR

ε ,
∂ uR

ε

∂ t

)
(t)d t

∣∣∣∣ .
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To provide estimates for the terms on the right-hand side of (4.37), notice that by
Assumption 2.5 and Lemma 4.7, one gets

∣∣∣a(α,n)
μ,0

(
uR

ε (T ), uR
ε (T )

)∣∣∣ ≤ C1 (4.37)

with C1 > 0 depending only on LP , μ and the bounds on γ . Also, Assumption 2.4
and arguments as in the proof of Theorem 4.9 give

∣∣∣∣
∫ T

0
a(α,n)
μ,1

(
uR

ε ,
∂ uR

ε

∂ t

)
(t)d t

∣∣∣∣
≤
∫ T

0

∫
Rn

∥∥C (n,α)∥∥H
∥∥DuR

ε

∥∥H
∣∣∣∂ uR

ε

∂ t

∣∣∣μn(dx)d t ≤ LP C2

∥∥∥∂ uR
ε

∂ t

∥∥∥
L2(0,T ;L2(H,μ))

(4.38)

with C2 > 0 depending only on μ, T and the bounds on γ . Similarly Assumption 2.2
implies

∣∣∣∣∣
∫ T

0

(
fα,n,

∂ uR
ε

∂ t

)
μn

(t)d t

∣∣∣∣∣ ≤ C3

∥∥∥∂ uR
ε

∂ t

∥∥∥
L2(0,T ;L2(H,μ))

(4.39)

with C3 > 0 depending only on μ, T , L�, L ′
� and the bounds on γ .

Therefore, from (4.36), (4.37), (4.38) and (4.39) it follows that

∥∥∥∂ uR
ε

∂ t

∥∥∥
L2(0,T ;L2(H,μ))

≤ C4 (4.40)

for a suitable C4 > 0 independent of (ε, R, n, α). Now, (4.40) holds for ∂
∂ t u

R as
well since it is obtained as the weak limit in L2(0, T ; L2(H, μ)) of ∂

∂ t u
R
ε as ε → ∞

(cf. [4], Chapter 3, Section 2.3, p. 239). ��

4.2 Finite-Dimensional Unbounded Domains

Recall the optimal stopping problem (3.12) and set

u(n)
α := U (n)

α − �(n). (4.41)

From Propositions 4.1, 4.5 and 4.10 it follows

Lemma 4.11 There exists a sequence (Ri )i∈N such that Ri → ∞ as i → ∞
and u(n)

α,Ri
converges to u(n)

α as Ri → ∞, weakly in L p(0, T ;V p
n ) and strongly

in L p(0, T ; L p(Rn, μn)), 1 ≤ p < ∞. Moreover, ∂
∂ t u

(n)
α,Ri

converges to ∂
∂ t u

(n)
α as

Ri → ∞, weakly in L2(0, T ; L2(Rn, μn)).
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In the spirit of [4], Chapter 3, Section 1.11, take wR ∈ Kn,R (cf. (4.8)) and recall
that u(n)

α,R is the unique solution of (4.11). Define w̃R ∈ Kn,R by

w̃R − u(n)
α,R := 1√

(2π)nλ1λ2 · · · λn exp

(
−

n∑
i=1

x2i
λi

)
(wR − u(n)

α,R). (4.42)

Take w = w̃R in (4.11) and use (4.42) to obtain

−
(

∂ u(n)
α,R

∂t
, wR − u(n)

α,R

)
μn

+a(α,n)
μ

(
u(n)

α,R, wR − u(n)
α,R

)

−
(
fα,n, wR − u(n)

α,R

)
μn

≥ 0 for a.e. t ∈ [0, T ]. (4.43)

For every 1 < p < ∞, denote by Kp
n,μ the closed convex set

Kp
n,μ := {w : w ∈ V p

n and w ≥ 0 a.e. }. (4.44)

We can now extend Proposition 4.2 to the unbounded case, i.e. to Rn .

Theorem 4.12 For every 1 < p < ∞, the function u(n)
α is a solution of the variational

problem on R
n

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u ∈ L2(0, T ;V p
n ); ∂

∂ t u ∈ L2(0, T ; L2(Rn, μn));
u
(
T, x (n)

) = 0, for x (n) ∈ R
n; u

(
t, x (n)

) ≥ 0, for
(
t, x (n)

) ∈ [0, T ] × R
n;

−
(

∂u

∂t
(t), w − u(t)

)
μn

+a(α,n)
μ

(
u(t), w − u(t)

)− ( fα,n(t), w − u(t)
)
μn

≥ 0,

for a.e. t ∈ [0, T ] and for all w ∈ Kp
n,μ.

(4.45)

Moreover, u(n)
α ∈ C([0, T ] × R

n) and an optimal stopping time for U (n)
α of (3.12)

is

τ �
α,n(t, x) := inf{s ≥ t : U (n)

α (s, X (α)t,x;n
s ) = �(n)(s, X (α)t,x;n

s )} ∧ T . (4.46)

Proof Observe that, by arguments on cut-off functions as in [1], Theorem 3.22, for
each w ∈ Kp

n,μ there exists a family (wR)R>0 ⊂ Kp
n,μ ∩ Kn,R (cf. (4.8)) such that

wR → w as R → ∞ in V p
n . Rewrite the inequality (4.43) as

−
(

∂u(n)
α,R

∂t
(t), wR − u(n)

α,R(t)

)
μn

+ a(α,n)
μ

(
u(n)

α,R(t), wR
)

(4.47)

≥ ( fα,n(t), wR − u(n)
α,R(t)

)
μn

+ a(α,n)
μ

(
u(n)

α,R(t), u(n)
α,R(t)

)
.
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Consider the sequences (Ri )i∈N and (u(n)
α,Ri

)i∈N of Lemma 4.11 and fix arbitrary 0 ≤
t1 < t2 ≤ T . Then taking limits as i → ∞ gives (cf. for instance [6], Proposition 3.5)

∫ t2

t1

(
∂u(n)

α,Ri

∂t
, wRi − u(n)

α,Ri

)
μn

dt →
∫ t2

t1

(
∂u(n)

α

∂t
, w − u(n)

α

)
μn

dt, (4.48)

∫ t2

t1

(
fα,n, wRi − u(n)

α,Ri

)
μn
dt →

∫ t2

t1

(
fα,n, w − u(n)

α

)
μn
dt, (4.49)

∫ t2

t1
a(α,n)
μ

(
u(n)

α,Ri
, wRi

)
dt →

∫ t2

t1
a(α,n)
μ

(
u(n)

α , w
)
dt. (4.50)

As for the last term on the right hand side of (4.47), consider

∫ t2

t1
a(α,n)
μ

(
u(n)

α,Ri
, u(n)

α,Ri

)
dt =

∫ t2

t1
a(α,n)
μ

(
u(n)

α,Ri
− u(n)

α , u(n)
α,Ri

− u(n)
α

)
dt (4.51)

+
∫ t2

t1
a(α,n)
μ

(
u(n)

α , u(n)
α,Ri

)
dt+

∫ t2

t1
a(α,n)
μ

(
u(n)

α,Ri
− u(n)

α , u(n)
α

)
dt .

For the last two integrals argue as above, hence

lim
i→∞

∫ t2

t1
a(α,n)
μ

(
u(n)

α , u(n)
α,Ri

)
dt =

∫ t2

t1
a(α,n)
μ

(
u(n)

α , u(n)
α

)
dt, (4.52)

lim
i→∞

∫ t2

t1
a(α,n)
μ

(
u(n)

α,Ri
− u(n)

α , u(n)
α

)
dt = 0. (4.53)

On the other hand, to the first integral in (4.51) apply arguments similar to those in
the proof of Theorem 4.9 to get

∫ t2

t1
a(α,n)
μ

(
u(n)

α,Ri
− u(n)

α , u(n)
α,Ri

− u(n)
α

)
dt

≥ −Cp

∥∥∥Du(n)
α,Ri

− Du(n)
α

∥∥∥
L2(0,T ;L2p′ (Rn ,μn;Rn))

∥∥∥u(n)
α,Ri

− u(n)
α

∥∥∥
L2(0,T ;L2p(Rn ,μn))

,

(4.54)

with p and p′ as in (4.21) and Cp > 0 a suitable constant independent of i , α and n.
It then follows from Proposition 4.5 and Lemma 4.11 that

lim
i→∞

∫ t2

t1
a(α,n)
μ

(
u(n)

α,Ri
− u(n)

α , u(n)
α,Ri

− u(n)
α

)
dt ≥ 0. (4.55)

Now (4.52), (4.53) and (4.55) imply

lim
i→∞

∫ t2

t1
a(α,n)
μ

(
u(n)

α,Ri
, u(n)

α,Ri

)
dt ≥

∫ t2

t1
a(α,n)
μ

(
u(n)

α , u(n)
α

)
dt . (4.56)

123



Appl Math Optim (2016) 73:271–312 295

Therefore (4.47), (4.48), (4.49), (4.50), (4.56) show the convergence of (4.11) to
(4.45) since t1 and t2 are arbitrary.

The continuity of u(n)
α follows from Proposition 4.1 and Corollary 4.3. As for the

optimality of τ �
α,n(t, x), notice that its proof is a simpler version of the one of Lemma

4.17 and Theorem 4.18 below, hence it is only outlined here. For any initial data (t, x)
one has

lim
R→∞ τ �

α,n,R(t, x) ∧ τ �
α,n(t, x) = τ �

α,n(t, x) P-a.s. (4.57)

by an extension of [4], Chapter 3, Section 3, Theorem 3.7 and by our Proposition 4.1.
Since τ �

α,n,R is optimal for U (n)
α,R and τ �

α,n,R ∧ τ �
α,n ≤ τ �

α,n,R P-a.s., it follows from
(4.14) that

U (n)
α,R(t, x (n)) = E

{
U (n)

α,R

(
τ �
α,n,R ∧ τ �

α,n, X
(α)t,x;n
τ�
α,n,R∧τ�

α,n

)}
. (4.58)

Therefore, Proposition 4.1, the continuity of U (n)
α and (4.57) provide

U (n)
α (t, x (n)) = E

{
U (n)

α

(
τ �
α,n, X

(α)t,x;n
τ�
α,n

)}
= E

{
�(n)

(
τ �
α,n, X

(α)t,x;n
τ�
α,n

)}
(4.59)

by taking limits as R → ∞ in (4.58). It follows that τ �
α,n is optimal. ��

Remark 4.13 Notice that for any stopping time σ the same arguments that provide
(4.57) also give

lim
R→∞ τ �

α,n,R ∧ τ �
α,n ∧ σ = τ �

α,n ∧ σ P-a.s. (4.60)

Therefore one has

U (n)
α (t, x (n)) = E

{
U (n)

α (σ, X (α)t,x;n
σ )

}
for σ ≤ τ �

α,n,P − a.s. (4.61)

4.3 Infinite Dimensional Domains

4.3.1 The Variational Inequality for Bounded Operator Aα

Define the infinite-dimensional counterpart of V p
n of Definition 4.8 by setting

V p := {v : v ∈ L2p(H, μ) and Dv ∈ L2p′
(H, μ;H)}. (4.62)

Endow V p with the norm

|||v|||p := ‖v‖L2p(H,μ) + ‖Dv‖L2p′ (H,μ;H)
(4.63)
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so to obtain a separable Banach space. Notice that V p
n ⊂ V p by Remark 2.1. Also, by

(4.27)

∫ T

0
|a(α,n)

μ (u(t), w(t))|dt ≤ Cμ,γ,p

(∫ T

0
|||u(t)|||2pdt

) 1
2
(∫ T

0
|||w(t)|||2pdt

) 1
2

(4.64)
for u, w ∈ L2(0, T ;V p).

Denote by Lα the infinitesimal generator of X (α) (cf. (3.1)); that is,

Lα g(x) = 1

2
Tr
[
σσ ∗(x)D2g(x)

]
+ 〈Aαx, Dg(x)〉 for g ∈ C2

b (H). (4.65)

The bilinear form associated to (4.65) is the infinite-dimensional counterpart of (4.26)
and it is given by

a(α)
μ (u, w) :=

∫
H

1

2
〈B Du, Dw〉H μ(dx) +

∫
H

〈C (α)
, Du〉H w μ(dx) (4.66)

with B := σσ ∗, C (α) = 1
2

(
Tr [Dσ ]Hσ + Dσ · σ − 2Aαx − σσ ∗Q−1x

)
and Dσ ·σ

denotes the action of Dσ ∈ L(H) on σ ∈ H.
Let w ∈ L2(0, T ;V p) and (wn)n∈N ⊂ L2(0, T ;V p) be such that wn → w. Then,

for arbitrary 0 ≤ t1 < t2 ≤ T , define Tα,w(t1, t2) ∈ L2(0, T ;V p)∗ and the sequence
(T n

α,w(t1, t2))n∈N ⊂ L2(0, T ;V p)∗ by setting

Tα,w(t1, t2)( · ) :=
∫ t2

t1
a(α)
μ (·, w)dt and T n

α,w(t1, t2)( · ) :=
∫ t2

t1
a(α,n)
μ (·, wn)dt .

(4.67)

Tedious but straightforward calculations give

lim
n→∞ ‖T n

α,w(t1, t2) − Tα,w(t1, t2)‖L2(0,T ;V p)∗ = 0. (4.68)

Also, recall fα,n of (4.10) and set

fα := ∂�

∂t
+ Lα�; (4.69)

then it holds

lim
n→∞

∫ T

0
‖ fα,n − fα‖2L p(H,μ) dt = 0, 1 ≤ p < ∞ (4.70)

by Assumptions 2.5 and 2.2 and dominated convergence theorem. Finally, similarly
to Kp

n,μ of (4.44), for 1 < p < ∞ define the closed, convex set

Kp
μ :=

{
w : w ∈ V p and w ≥ 0 μ-a.e.

}
. (4.71)
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Lemma 4.14 Letw ∈ Kp
μ for some 1 < p < +∞. Then there exists a double-indexed

sequence (wk,n)k,n∈N ⊂ V p such that for k fixed, wk,n ∈ ∩m≥nKp
m,μ.

Moreover,

lim
k→∞ lim

n→∞ wk,n = w weakly in V pand strongly in L p(H, μ), (4.72)

taking the limits in the prescribed order.

Proof Since D(A∗) is dense inH the set

EA(H) := span
{
Re(ϕh), Im(ϕh), ϕh(x) = ei〈h,x〉H , h ∈ D(A∗)

}
(4.73)

is dense2 in V p (cf. [9], Chapter 10 and [11], Chapter 9). Hence for w ∈ Kp
μ there

exists a sequence (φ(k))k∈N ⊂ EA(H) such that φ(k) → w in V p as k → ∞. Recall
the projection Pn and set φ

(k)
n (x) := φ(k)(Pnx) for n ∈ N. Since φ(k) is a finite linear

combination of elements in EA(H) and it is continuous and bounded alongside with
Dφ(k), dominated convergence implies φ

(k)
n → φ(k) in V p as n → ∞. It follows that

(φ
(k)
n )k,n∈N is bounded in V p and so is (φ

(k)
n,0)k,n∈N where φ

(k)
n,0 := 0∨φ

(k)
n = [φ(k)

n ]+.
Therefore by taking limits as n → ∞ first, and as k → ∞ afterwards, one obtains
weak convergence inV p of φ(k)

n,0 to some function g. However,
∣∣φ(k)

n,0−w
∣∣ = ∣∣[φ(k)

n ]+−
[w]+∣∣ ≤ ∣∣φ(k)

n − w
∣∣ for all x ∈ H, since w ≥ 0. Therefore dominated convergence

implies φ
(k)
n,0 → w in L p(H, μ) as limits are taken in the same order as before and we

may conclude g ≡ w. Clearly, for k fixed, φ(k)
n,0 ∈ ∩m≥nKp

m,μ and the Lemma follows

by setting wk,n := φ
(k)
n,0. ��

Recall the value function Uα of the optimal stopping problem (3.3) and set uα :=
Uα − �. Then Assumption 2.2, Theorem 3.8 and the same bounds as those employed
to obtain Lemma 4.11 provide the following

Lemma 4.15 There exists a sequence (ni )i∈N such that ni → ∞ as i → ∞
and u(ni )

α converges to uα as ni → ∞, weakly in L p(0, T ;V p) and strongly in
L p(0, T ; L p(H, μ)), 1 ≤ p < ∞.

Moreover, ∂
∂ t u

(ni )
α converges to ∂

∂ t uα as ni → ∞ weakly in L2(0, T ; L2(H, μ)).

Denote by (·, ·)μ the scalar product in L2(H, μ).

Theorem 4.16 For every 1 < p < ∞ the function uα is a solution of the variational
problem on H

2 The proof relies on the fact that the set of continuous functions is dense in L p(H, μ) and goes through
a finite-dimensional reduction, a localization and the Stone-Weierstrass theorem.
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u ∈ L2(0, T ;V p); ∂ u
∂ t ∈ L2(0, T ; L2(H, μ));

u(T, x) = 0, for x ∈ H; u(t, x) ≥ 0, for (t, x) ∈ [0, T ] × H;
−(∂u

∂t
(t), w − u(t)

)
μ

+ a(α)
μ

(
u(t), w − u(t)

)− ( fα(t), w − u(t)
)
μ

≥ 0,

for a.e. t ∈ [0, T ] and for all w ∈ Kp
μ.

(4.74)

Moreover, uα ∈ C([0, T ] × H).

Proof The continuity of uα is a consequence of Corollary 3.9 and Proposition 4.1.
For arbitrary w ∈ Kp

μ take the corresponding approximating sequence (wk,n)k,n∈N
given by Lemma 4.14. For k ∈ N arbitrary but fixed, Theorems 4.12, Lemma 4.14 and
Remark 2.1 guarantee

−
(

∂u(m)
α

∂t
(t), wk,n − u(m)

α (t)

)
μ

+ a(α,m)
μ (u(m)

α (t), wk,n

− u(m)
α (t)) − ( fα,m(t), wk,n − u(m)

α (t))μ ≥ 0,

for m ≥ n and a.e. t ∈ [0, T ]. In the limit as m → ∞, Lemma 4.15, equations (4.68)
and (4.70) and arguments similar to those used in the proof of Theorem 4.12 give

∫ t2

t1

[
−
(

∂uα

∂t
(t), wk,n − uα(t)

)
μ

+ a(α)
μ (uα(t), wk,n − uα(t)) − ( fα(t), wk,n − uα(t))μ

]
dt ≥ 0.

The proof now follows from Theorem 4.14 by taking limits as n, k → ∞ and then
dividing by t2 − t1 and letting t2 − t1 → 0. ��

The existence of an optimal stopping time for Uα of (3.3) is obtained by purely
probabilistic considerations (cf. Theorem 4.18 below). Two preliminary lemmas are
needed. Given (t, x) ∈ [0, T ] × H, let τ �

α,n(t, x) be as in (4.46) and define

τ �
α(t, x) := inf{s ≥ t : Uα(s, X (α)t,x

s ) = �(s, X (α)t,x
s )} ∧ T . (4.75)

Lemma 4.17 For each (t, x) ∈ [0, T ]×H there exists a subsequence (τ �
α,n j

(t, x)) j∈N,
with n j = n j (t, x), such that n j → ∞ as j → ∞ and

lim
j→∞(τ �

α(t, x) ∧ τ �
α,n j

(t, x))(ω) = τ �
α(t, x)(ω), P-a.e. ω ∈ �. (4.76)

Proof Fix x0 ∈ H. There is no loss of generality if we consider the diffusions X (α)x0

and X (α)x0;n starting at time zero as all results remain true for arbitrary initial time
t . The proof of this Lemma is adapted from [4], Chapter 3, Section 3, Theorem 3.7
(cf. in particular p. 322).
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Using Proposition 3.5, fix �0 ⊂ � with P(�0) = 1 and a subsequence (n j ) j∈N,
with n j = n j (x0), such that

lim
j→∞ sup

0≤t≤T

∥∥∥X (α)x0;n j
t (ω) − X (α)x0

t (ω)

∥∥∥H → 0, for all ω ∈ �0. (4.77)

Since the starting point x0 ∈ H is fixed, to simplify the notation in the rest of the proof,
we shall write τ �

α,n and τ �
α instead of τ �

α,n(0, x0) and τ �
α(0, x0), respectively. The limit

(4.76) is trivial if ω′ ∈ �0 is such that τ �
α(ω′) = 0. On the other hand, if ω′ ∈ �0 is

such that τ �
α(ω′) > δ for some δ = δx0 > 0, then by (4.75)

Uα(t, X (α)x0
t (ω′)) > �(t, X (α)x0

t (ω′)), t ∈ [0, τ �
α(ω′) − δ].

Since the map t �→ X (α)x0
t (ω′) is continuous and [0, τ �

α(ω′) − δ] is a compact set it

follows that the set χδ(ω′) := {y ∈ H : y = X (α)x0
t (ω′), t ∈ [0, τ �

α(ω′) − δ]} is
a compact subset of H. Therefore the continuous map (t, x) �→ Uα(t, x) − �(t, x)
(cf. Theorem 4.16) attains itsminimumon [0, τ �

α(ω)−δ]×χδ(ω′), call it ρ(δ, ω′) > 0.
Then

Uα(t, X (α)x0
t (ω′)) ≥ �(t, X (α)x0

t (ω′)) + ρ(δ, ω′), t ∈ [0, τ �
α(ω′) − δ]. (4.78)

Recall from Theorem 3.8 and (3.11) that U (n)
α and �(n) converge respectively to Uα

and �, uniformly on compact subsets of [0, T ] × H. Therefore there exists nρ =
n(ρ(δ, ω′)) ∈ (n j ) j∈N, nρ > 0 large enough such that

U (nρ)
α (t, y(nρ)) > Uα(t, y) − 1

4
ρ(δ, ω′), (t, y) ∈ [0, τ �

α(ω′) − δ] × χδ(ω′),

(4.79)

�(nρ)(t, y(nρ)) < �(t, y) + 1

4
ρ(δ, ω′), (t, y) ∈ [0, τ �

α(ω′) − δ] × χδ(ω′),

(4.80)

and

sup
0≤t≤T

∥∥X (α)x0;nρ (ω′) − X (α)x0(ω′)
∥∥H ≤ 1

4LU ∨ L�

ρ(δ, ω′). (4.81)

Now (4.78), (4.79) and (4.80) imply

U (nρ)
α (t, Pnρ X

(α)x0
t (ω′)) > �(nρ)(t, Pnρ X

(α)x0
t (ω′))

+1

2
ρ(δ, ω′), t ∈ [0, τ �

α(ω′) − δ]. (4.82)
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On the other hand Assumption 2.2, Proposition 2.10 and the fact that Pnρ X
(α)x0;nρ =

X (α)x0;nρ imply

sup
0≤t≤T

∣∣∣U (nρ)
α (t, Pnρ X

(α)x0
t (ω′)) − U (nρ)

α (t, X
(α)x0;nρ

t (ω′))
∣∣∣

≤ LU sup
0≤t≤T

∥∥∥X (α)x0;nρ

t (ω′) − X (α)x0
t (ω′)

∥∥∥H (4.83)

and

sup
0≤t≤T

∣∣∣�(nρ)(t, Pnρ X
(α)x0
t (ω′)) − �(nρ)(t, X

(α)x0;nρ

t (ω′))
∣∣∣

≤ L� sup
0≤t≤T

∥∥∥X (α)x0;nρ

t (ω′) − X (α)x0
t (ω′)

∥∥∥H (4.84)

which, together with (4.81) and (4.82), imply

U (nρ)
α (t, X

(α)x0;nρ

t (ω′)) > �(nρ)(t, X
(α)x0;nρ

t (ω′)), t ∈ [0, τ �
α(ω′) − δ].

It follows that τ �
α,nρ

(ω′) > τ�
α(ω′) − δ. Notice that ρ(δ, ω′) → 0 as δ → 0 and hence

nρ → ∞. Therefore τ �
α,nρ

(ω′) ∧ τ �
α(ω′) → τ �

α(ω′) as nρ → ∞, which is equivalent
to say that (4.76) holds along a subsequence. ��

Notice that arguments as in the proof of (2.20) also give

sup
0≤t≤T

∣∣U (n)
α (t, x (n)) − Uα(t, x)

∣∣ ≤ LU‖x − x (n)‖H, (4.85)

since the optimal stopping problems (2.2), (3.3) and (3.12) are considered under the
same filtration {Ft , t ≥ 0}.
Theorem 4.18 An optimal stopping time of (3.3) is τ �

α(t, x) as defined in (4.75).
Moreover

Uα(t, x) = E

{
Uα

(
σ ∧ τ �

α, X (α)t,x
σ∧τ�

α

)}
for all stopping times t ≤ σ ≤ T . (4.86)

Proof Given the initial data (t, x), we adopt the simplified notation used in the proof
of Lemma 4.17; that is, we set τ �

α := τ �
α(t, x) and τ �

α,n := τ �
α,n(t, x). By Remark 4.13

we have

U (n)
α (t, x (n)) = E

{
U (n)

α

(
τ �
α ∧ τ �

α,n, X
(α)t,x;n
τ�
α∧τ�

α,n

)}
. (4.87)

In (4.87) take the subsequence (n j ) j∈N of Lemma 4.17 and apply Theorem 3.8 to

obtain the convergence of U (n j )
α (t, x (n j )) to Uα(t, x) as j → ∞.
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On the other hand

∣∣∣∣E
{
U (n j )

α

(
τ �
α ∧ τ �

α,n j
, X

(α)t,x;n j
τ�
α∧τ�

α,n j

)

− Uα

(
τ �
α, X (α)t,x

τ�
α

)}∣∣∣∣
≤ E

{
sup

t≤s≤T

∣∣∣∣U (n j )
α

(
s, X

(α)t,x;n j
s

)
− U (n j )

α

(
s, Pn j X

(α)t,x
s

)∣∣∣∣
}

+ E

{
sup

t≤s≤T

∣∣∣∣U (n j )
α

(
s, Pn j X

(α)t,x
s

)
− Uα

(
s, X (α)t,x

s

)∣∣∣∣
}

(4.88)

+ E

{∣∣∣∣Uα

(
τ �
α ∧ τ �

α,n j
, X (α)t,x

τ�
α∧τ�

α,n j

)
− Uα

(
τ �
α, X (α)t,x

τ�
α

)∣∣∣∣
}
,

where the first termon the right hand side goes to zero as j → ∞ by (2.20), Proposition
3.5 and Jensen’s inequality. Similarly, the second term goes to zero by (4.85) and
dominated convergence, and the third term goes to zero by dominated convergence
and Lemma 4.17.

In conclusion, by taking the limits in (4.87) along the subsequence (n j ) j∈N we
obtain

Uα(t, x) = E

{
Uα

(
τ �
α, X (α)t,x

τ�
α

)} = E

{
�
(
τ �
α, X (α)t,x

τ�
α

)}
, (4.89)

and the optimality of τ �
α follows. Similar arguments are used to prove (4.86) since

Lemma 4.17 implies σ ∧ τ �
α ∧ τ �

α,n j
→ σ ∧ τ �

α as j → ∞. ��

4.3.2 Removal of the Yosida Approximation

The function uα in Theorem 4.16 solves the variational inequality associated to the
Yosida approximation Aα of the unbounded operator A. In this section we study the
limiting behavior, as α → ∞, of uα and of the corresponding variational inequality
by adopting both probabilistic and analytical tools.

When α → ∞ the term involving Aα in the bilinear form a(α)
μ (·, ·) of (4.66)

converges to a suitable operator that needs to be fully characterized. Let w ∈ V p be
given and define the linear functional L(α)

A (w, ·) ∈ V p ∗ by

L(α)
A (w, u) :=

∫
H

〈Aαx, Du〉H w μ(dx), u ∈ V p. (4.90)

It is easy to show that L(α)
A (w, ·) is continuous by (4.29) and any sequence

(L(αn)
A (w, ·))n∈N, with αn → ∞ as n → ∞, is a Cauchy sequence in V p ∗. In fact for

n > m arguments similar to those in (4.29) give
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|L(αn)
A (w, u) − L(αm )

A (w, u)|=
∣∣∣∣
∫
H

〈(Aαn − Aαm )x, Du〉Hw μ(dx)

∣∣∣∣
≤Cp Tr

[
(Aαn −Aαm )Q(Aαn −Aαm )∗

] |||u|||p |||w|||p ,

and hence

‖L(αn)
A (w, · ) − L(αm )

A (w, · )‖V p ∗ ≤Cp Tr
[
(Aαn − Aαm )Q(Aαn − Aαm )∗

] |||w|||p .

(4.91)

Since Aα → A on D(A) as α → ∞ and Assumption 2.4 holds, (4.91) goes to zero
as m, n → ∞ and (L(αn)

A (w, · ))n∈N is Cauchy in V p ∗. Therefore, by completeness

of V p ∗ there exists L̂ A(w, · ) ∈ V p ∗ such that L(α)
A (w, · ) → L̂ A(w, ·) as α → ∞ in

V p ∗.
It suffices to characterize L̂ A(w, ·) on the set EA(H) of (4.73) since that is dense

in V p. In order to do so notice that A∗Du ∈ L p(H, μ) for u ∈ EA(H) and

∫
H

〈Aαx, Du〉H w μ(dx) =
∫
H

〈x, A∗
αDu〉H w μ(dx).

Nowdominated convergence allows us to define a linear functional LA(w, ·) by setting

L A(w, u) := lim
α→∞ L(α)

A (w, u) =
∫
H

〈x, A∗Du〉H w μ(dx), for u ∈ EA(H).

(4.92)

Clearly its domain D(LA(w, ·)) contains EA(H) and it is dense in V p. Since (4.29) is
uniform with respect to n ∈ N and α > 0 we also obtain

|L A(w, u)| ≤ Tr
[
AQA∗] |||w|||p |||u|||p , for u ∈ EA(H). (4.93)

By density arguments LA(w, ·) is continuously extended to the whole space V p and
the extended functional is denoted by L̄ A(w, ·). It then follows

L̂ A(w, · ) := lim
n→∞ L(αn)

A (w, · ) = L̄ A(w, · ) in V p ∗. (4.94)

Note that, for w ∈ L2(0, T ;V p) fixed, one has
(
L(α)
A (w, · ))

α>0 bounded in
L2(0, T ;V p ∗) by (4.93) (or by (4.29)). Then for arbitrary 0 ≤ t1 < t2 ≤ T
and u ∈ L2(0, T ;V p) we may define T (α)

A (w, ·)(t1, t2) ∈ L2(0, T ;V p)∗ and
T̄A(w, ·)(t1, t2) ∈ L2(0, T ;V p)∗ by

T (α)
A (w, u)(t1, t2) :=

∫ t2

t1
L(α)
A (w(t), u(t))dt, (4.95)
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and

T̄A(w, u)(t1, t2) :=
∫ t2

t1
L̄ A(w(t), u(t))dt . (4.96)

Proposition 4.19 For arbitrary 0 ≤ t1 < t2 ≤ T , with T (α)
A (w, · )(t1, t2) and

T̄A(w, · )(t1, t2) given by (4.95) and (4.96), respectively, it holds that

lim
α→∞ ‖(T (α)

A − T̄A
)
(w, · )(t1, t2)‖L2(0,T ;V p)∗ = 0. (4.97)

Proof A direct calculation gives

∣∣(T (α)
A − T̄A

)
(w, u)(t1, t2)

∣∣ ≤ ∥∥(L(α)
A − L̄ A

)
(w, ·)∥∥L2(0,T ;V p ∗)

∥∥u∥∥L2(0,T ;V p ∗)

and hence ‖(T (α)
A − T̄A)(w, · )(t1, t2)‖L2(0,T ;V p)∗ ≤ ∥∥(L(α)

A − L̄ A)(w, · )∥∥L2(0,T ;V p ∗).

Now, since
∥∥(L(α)

A −L̄ A)(w(t), · )∥∥V p ∗ ≤ 2Tr [AQA∗] |||w(t)|||p and the upper bound
is independent of α and it belongs to L2(0, T ), then dominated convergence theorem
and (4.94) give (4.97). ��

Remark 4.20 Notice that for our gain function�wehave L(α)
A (·,�) ∈ L2(0, T ;V p ∗).

Moreover T (α)
A (·,�)(t1, t2) → T̄A(·,�)(t1, t2) in L2(0, T ;V p)∗ as α → ∞, for all

0 ≤ t1 < t2 ≤ T , by arguments similar to those used in the proof of Proposition 4.19.

For t ∈ [0, T ] define F(·)(t) ∈ V p ∗ by

F(w)(t) :=
(∂�

∂t
(t) + 1

2
Tr
[
σσ ∗D2�(t)

]
, w
)
μ

+ L̄ A(w,�(t)), for all w ∈ V p.

(4.98)
Then, with fα as in (4.69), from dominated convergence, Assumption 2.2 and Remark
4.20 follows that

lim
α→∞

∥∥∥
∫ t2

t1

[
( fα(t), · )μ − F(·)(t)] dt∥∥∥

L2(0,T ;V p)∗
= 0 (4.99)

for all 0 ≤ t1 < t2 ≤ T .
It is natural to consider the bilinear form associated to the infinitesimal generator

of (2.1),

aμ(u, w) :=
∫
H

1

2
〈B Du, Dw〉H μ(dx) +

∫
H
〈 Ĉ, Du〉H w μ(dx) − L̄ A(w, u)

(4.100)

for u, w ∈ L2(0, T ;V p), and with B as in (4.66) and Ĉ = 1
2 (Tr [Dσ ]Hσ + Dσ · σ

−σσ ∗Q−1x
)
. We set û := U − � (see (2.2)). By Theorem 3.2 and the same bounds

as those used to prove Lemma 4.11 we obtain
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Lemma 4.21 There exists a sequence (αi )i∈N such that αi → ∞ as i → ∞
and uαi converges to û as αi → ∞, weakly in L p(0, T ;V p) and strongly in
L p(0, T ; L p(H, μ)), 1 ≤ p < ∞.

Moreover, ∂
∂ t uαi converges to

∂
∂ t û as αi → ∞ weakly in L2(0, T ; L2(H, μ)).

The next Theorem generalizes Theorem 4.16 to the case of unbounded operator A.

Theorem 4.22 For every 1 < p < ∞ the function û is a solution of the variational
problem on H
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u ∈ L2(0, T ;V p); ∂ u
∂ t ∈ L2(0, T ; L2(H, μ));

u(T, x) = 0, x ∈ H; u(t, x) ≥ 0, (t, x) ∈ [0, T ] × H;
−
(∂u

∂t
(t), w−u(t)

)
μ

+ aμ

(
u(t), w − u(t)

)− F
(
w − u( · ))(t) ≥ 0,

for a.e. t ∈[0, T ] and for all w∈Kp
μ.

(4.101)

Moreover, û ∈ C([0, T ] × H).

We omit the proof which follows from Lemma 4.21, Proposition 4.19, (4.99) and it
goes through arguments similar to (but simpler than) those adopted in the proof of
Theorem 4.16. Continuity of the solution is a consequence of Corollary 3.3.

An optimal stopping time of U is found by probabilistic arguments as in Sect. 4.3.1.
For (t, x) ∈ [0, T ] × H, let τ �

α(t, x) be defined as in (4.75) and set

τ �(t, x) := inf{s ≥ t : U(s, Xt,x
s ) = �(s, Xt,x

s )} ∧ T . (4.102)

Lemma 4.23 For each (t, x) ∈ [0, T ] × H there exists a sequence (α j ) j∈N, with
α j = α j (t, x), such that α j → ∞ as j → ∞ and

lim
j→∞(τ �(t, x) ∧ τ �

α j
(t, x))(ω) = τ �(t, x)(ω), P-a.e. ω ∈ �. (4.103)

Proof The proof follows along the same lines of that of Lemma 4.17 and it is based
on Corollary 3.3 and Proposition 3.1. ��
Theorem 4.24 The stopping time τ �(t, x) is optimal for U(t, x).

Proof Set τ � = τ �(t, x) for simplicity. Take σ = τ � in (4.86) to obtain

Uα(t, x) = E

{
Uα

(
τ � ∧ τ �

α, X (α)t,x
τ�∧τ∗

α

)}
. (4.104)

Consider the subsequence (Uα j ) j∈N corresponding to the sequence (α j ) j∈N given in
Lemma 4.23, and take limits in (4.104) as j → ∞. Proposition 3.1, Corollary 3.3 and
arguments as in the proof of Theorem 4.18 allow us to conclude that

U(t, x) = E
{
U(τ �, Xt,x

τ� )
} = E

{
�(τ�, Xt,x

τ� )
}
. (4.105)

That is, τ � is optimal. ��
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5 Uniqueness in a Particular Case

We address the question of uniqueness of the solution to problem (4.101) only in the
case of processes X whose Kolmogorov operator generates a symmetric Ornstein-
Uhlenbeck semigroup (cf. [11], Chapters 6 and 7). For instance, Chow and Menaldi
[8] consider such dynamics while carrying out an analysis similar to ours.

In (2.1) we take σ(x) ≡ 1 and repalce W 0 by a Q-Wiener process (Wt )t∈[0,T ]
taking values inH (cf. [10], Chapter 4 and Remark 5.1 of Chapter 5), with covariance
operator Q ∈ L(H) positive and of trace-class. We make the following assumption
on A.

Assumption 5.1 The operator A is negative, self-adjoint and there esists m > 0 such
that 〈Ax, x〉H ≤ −m‖x‖2H. Moreover Tr

[
QA−1

]
H < +∞ and et AQ = Qet A for

all t > 0.

Then the semigroup generated by the Kolmogorov operator associated to X is sym-
metric (cf. [11], Corollary 10.1.7), and admits a centered Gaussian invariant measure
ν (cf. [11], Proposition 10.1.1) with covariance operator � defined by

� := −1

2
A−1Q (5.1)

(cf. [11], Proposition 10.1.6). For ϕk and λk as in (2.3) the Q-Wiener process may be

represented asWt =∑k
√

λkβ
k
t ϕk =: Q 1

2 Bt where
{
βk
t , t ≥ 0, k ∈ N

}
is an infinite

sequence of independent, real, standard Brownian motions and Bt := ∑
k βk

t ϕk .
Therefore, the SDE for X may be formally written as

dXt = AXt dt + Q
1
2 dBt , t ∈ [0, T ]. (5.2)

Now the variational problem may be set in the Gauss-Sobolev space associated
to the measure ν rather than that associated to Q. All arguments developed in the
previous sections may be carried out and, in particular, Theorems 4.22 and 4.24 hold
with V p replaced by W 1,2(H, ν), with aμ(·, ·) replaced by

aν(u, w) :=
∫
H

1

2
〈Q Du(x), Dw(x)〉Hν(dx), u, w ∈ W 1,2(H, ν) (5.3)

and with F(·)(t) replaced by the dual pairing

〈〈 f (t), w〉〉:=
(∂ �

∂ t
(t), w

)
ν

− aν(�(t), w) for w ∈ W 1,2(H, ν). (5.4)

Notice that conditions (2.15) are sufficient to guarantee the well posedness of (5.4)
and that it is no longer needed to introduce the operator LA of Sect. 4.3.2 and its contin-
uous extension; also, A�A is not necessarily of trace class and hence the analogue of
Assumption 2.4 in this setting (i.e. Tr

[
A�A

]
H < +∞), breaks down. However, here

we do not need to rely on that assumption since the existence of the Gaussian invariant
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measure and the particular form of its covariance operator � (cf. (5.1)) substantially
simplify the bilinear form.

The uniqueness in L2(H, ν) of the solution of the variational inequality now follows
from usual comparison arguments as in [4] and the fact that

aν(u, u) + η
(
u, u

)
ν

≥ η
(
u, u

)
ν
, for any η > 0. (5.5)

Remark 5.2 Notice that our approach allow to give a positive answer to the open
question in Remark 2, of [8], p. 49, under assumptions similar to those required there,
although in the finite time-horizon case. Also, it solves the problem posed in Section
5 of [8] (see discussion following Theorem 3, p. 51, therein) regarding the connection
between infinite dimensional variational inequalities and optimal stopping problems
when σ depends on the process. We believe that our method extends to the infinite
time-horizon case under quite natural integrability assumptions.

Remark 5.3 The above arguments suggest that when aGaussian invariant measure can
be found, then uniqueness is more likely to be obtained as well. That naturally links
our work to [2,3,32], where variational problems associated to optimal stopping ones
are solved in Sobolev spaces with respect to excessive measures (possibly invariant)
of the diffusion process’ semigroup.

Our proof of existence of a solution to the variational problem and its connection
to the optimal stopping one could be possibly replicated when the Gaussian measure
μ is replaced by an excessive measure ν (possibly invariant) provided that derivatives
of ν along the basis vectors’ directions exist (in the sense of [5], Definition 5.1.3) and
natural integrability conditions hold, together with some refinements of Assumptions
2.5 and 2.4. Then uniqueness of the solution of the variational problem (4.101) would
follow as shown in [2], [3] and [32].

Acknowledgments During this work the second named author was funded by the University of Rome
“La Sapienza” through the Ph.D programme in Mathematics for Economic-Financial Applications and by
the EPSRC Grant EP/K00557X/1

Appendix

Proof of Proposition 4.1 Fix (t, x (n)) ∈ [0, T ] ×R
n and take R > 0 such that x (n) ∈

OR . Now for all R ≥ R we have

0 ≤ U (n)
α (t, x (n)) − U (n)

α,R(t, x (n))

≤ sup
t≤σ≤T

E

{(
�(n)(σ, X (α)t,x;n

σ ) − �(n)(τR, X (α)t,x;n
τR

)
)
I{σ>τR}

}
≤2�P

(
τR <T

)
,

by (2.11) and with I{σ>τR} the indicator function of the set {σ > τR}. By Markov
inequality and standard estimates for strong solutions of SDEs in Rn (cf. for instance
[18] Chapter 2, Section 5, Corollary 12), it follows
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P
(
τR < T

) ≤ P

(
sup

t≤s≤T

∥∥X (α)t,x;n
s − x (n)

∥∥
Rn > R − R

)

≤
E

{
supt≤s≤T

∥∥X (α)t,x;n
s −x (n)

∥∥
Rn

}
(R − R)

≤Cn,α,T

(
1+∥∥x (n)

∥∥
Rn

) (T−t)
1
2

(R−R)

with Cn,α,T > 0, only depending on (α, n, T ) and bounds on σ .
Therefore

lim
R→∞ sup

(t,x (n))∈[0,T ]×K

∣∣U (n)
α,R(t, x (n)) − U (n)

α (t, x (n))
∣∣ = 0

for every compact subsetK ⊂ R
n . If all U (n)

α,R , are continuous, then U
(n)
α is continuous

on every compact subset [0, T ] ×K and this is enough for global continuity in Rn . ��
Proof of Corollary 4.3 By the regularity of ū in Corollary 4.2, it is well known that
the expression (4.11) is equivalent to

max

{
∂ ū

∂t
+ Lα,nū + fα,n, −ū

}
= 0, a.e. ∈ [0, T ] × OR .

(see for instance [4], Chapter 3, Section 1, p. 191).
The regularity of ∂OR and [1], Theorem 3.22 enable us to find a sequence (u j ) j∈N,

such that u j ∈ C∞
c (Rn+1) and

‖u j − ū‖W 1 2,p((0,T )×OR) → 0 as j → ∞. (6.1)

In fact it suffices to take a partition of the domain and use the standard mollification
on each element of the partition. Then (6.1) follows from the usual properties of the
mollifiers and the fact that the operators ∂t , D and D2 are closed in L p. Moreover, the
continuity of ū and that of a suitable extension to Rn+1 imply that the convergence is
also uniform on any compact set O′ such that [0, T ] × OR ⊂ O′; that is

‖u j − ū‖L∞ → 0, as j → ∞, on O′. (6.2)

Now we fix an arbitrary t ∈ [0, T ] and a stopping time τ ∈ [t, T ]. An application
of Dynkin’s formula from t to τ ∧ τR gives

E

{
u j (τ ∧ τR, X (α)t,x;n

τ∧τR
)
}

= u j (t, x
(n))

+E

{∫ τ∧τR

t

(
∂u j

∂s
+ Lα,nu j

)
(s, X (α)t,x;n

s )ds

}
. (6.3)

On the other hand by [4], Chapter 2, Lemma 8.1 there exists a constantCT,R > 0 such
that

123



308 Appl Math Optim (2016) 73:271–312

∣∣∣∣E
{∫ τ∧τR

t

(
∂

∂s
+ Lα,n

) (
u j − ū

)
(s, X (α)t,x;n

s )ds

}∣∣∣∣
≤ CT,R

∥∥∥∥
(

∂

∂s
+ Lα,n

) (
u j − ū

)∥∥∥∥
L2((0,T )×OR)

, (6.4)

hence by taking the limit as j → ∞ and by using (6.1) and (6.2) we obtain

E

{
ū(τ ∧ τR, X (α)t,x;n

τ∧τR
)
}

= ū(t, x (n))

+ E

{∫ τ∧τR

t

(
∂ ū

∂s
+ Lα,nū

)
(s, X (α)t,x;n

s )ds

}
for all τ ∈ [t, T ]. (6.5)

Recall that (4.12) holds almost everywhere in (0, T ) × OR and, being the diffusion
uniformly non degenerate, the law of X (α)t,x;n is absolutely continuous with respect
to the Lebesgue measure on (0, T ) × OR . Then

ū(t, x (n)) ≥ E

{∫ τ∧τR

t
fα,n(s, X

(α)t,x;n
s )ds

}
for all τ ∈ [t, T ]; (6.6)

in particular, with τ � defined by

τ � := inf{s ≥ t : ū(s, X (α)t,x;n
s ) = 0} ∧ τR ∧ T, (6.7)

(4.12) implies

ū(t, x (n)) = E

{∫ τ�

t
fα,n(s, X

(α)t,x;n
s )ds

}
. (6.8)

Therefore, by using (4.10) and by recalling (4.2) we have

ū(t, x (n)) = sup
t≤τ≤T

E

{∫ τ∧τR

t

(
∂�(n)

∂s
+ Lα,n�

(n)

)
(s, X (α)t,x;n

s )ds

}

= sup
t≤τ≤T

E

{
�(n)(τ ∧ τR, X (α)t,x;n

τ∧τR
)
}

− �(n)(t, x)

= U (n)
α,R(t, x) − �(n)(t, x). (6.9)

It now follows that ū = u(n)
α,R and τ � = τ �

α,n,R .
Notice that for any stopping time τ ≤ τ �

α,n,R , combining (6.9) and (6.5) gives

U (n)
α,R(t, x (n)) = E

{
U (n)

α,R(τ, X (α)t,x;n
τ )

}
, (6.10)

i.e. the dynamic programming principle for U (n)
α,R holds. ��
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Proof of Lemma 4.6 Set uR := u(n)
α,R and recall Corollary 4.3. An application of

Dynkin’s formula based on the same arguments as those that lead to (6.5) gives

E

{
e− ∫ τ xR

t
1
ε
ν(s)ds uR(τ x

R, X (α)t,x;n
τ xR

)− e− ∫ τ xR∧τ
y
R

t
1
ε
ν(s)ds uR(τ x

R ∧ τ
y
R, X (α)t,x;n

τ xR∧τ
y
R

)}

≤ − E

{∫ τ xR

τ xR∧τ
y
R

e− ∫ st 1
ε
ν(u)du fα,n

(
s, X (α)t,x;n

s

)
ds

}
. (6.11)

For the left-hand side of (6.11) we observe that on the set
{
τ x
R ≤ τ

y
R

}
the difference

inside the expectation is zero, whereas on the set
{
τ x
R > τ

y
R

}
one has

uR(τ x
R, X (α)t,x;n

τ xR

) = 0 = uR(τ x
R ∧ τ

y
R, X (α)t,y;n

τ xR∧τ
y
R

)
P − a.s. (6.12)

Therefore from (6.11), (4.9), (2.12), (2.20) and Lemma 2.9 we obtain

E

{∫ τ xR

τ xR∧τ
y
R

e− ∫ st 1
ε
ν(u)du fα,n

(
s, X (α)t,x;n

s

)
ds

}

≤E

{∣∣uR(τ x
R ∧ τ

y
R, X (α)t,y;n

τ xR∧τ
y
R

)− uR(τ x
R ∧ τ

y
R, X (α)t,x;n

τ xR∧τ
y
R

)∣∣} (6.13)

≤(L� + LU
)
C1,T

∥∥x (n) − y(n)
∥∥H.

To obtain (4.17) we need to find a similar bound for the first member of (6.13) but
from below. For that we introduce the auxiliary problem

vR(t, x (n)) := inf
t≤τ≤T

E

{∫ τ∧τR

t
fα,n(s, X

(α)t,x;n
s )ds

}
for (t, x (n)) ∈ [0, T ] × R

n

(6.14)

and we observe that same arguments as those used to obtain Proposition 4.2 and

Corollary 4.3 give vR ∈ L p(0, T ;W 1,p
0 (OR)) ∩ L p(0, T ;W 2,p(OR)) and ∂ vR

∂ t ∈
L p(0, T ; L p(OR)), for all 1 ≤ p < +∞. Moreover vR uniquely solves, in the almost
everywhere sense, the obstacle problem

⎧⎨
⎩
max

{
−∂v

∂t
− Lα,nv − fα,n, v

}
(t, x (n)) = 0, (t, x (n)) ∈ (0, T )×OR,

v(t, x (n)) ≤ 0 on [0, T ] × OR; v(T, x (n))=0, x (n) ∈OR .

(6.15)
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Again, by arguing as above for (6.11) and by replacing uR by vR , the reversed inequal-
ity is obtained. Hence, the analogous for vR of (6.12) gives

E

{∫ τ xR

τ xR∧τ
y
R

e− ∫ st 1
ε
ν(u)du fα,n

(
s, X (α)t,x;n

s

)
ds

}
≥ −(L� + LU

)
C1,T

∥∥x (n) − y(n)
∥∥H.

(6.16)

Now (4.17) follows by (6.13) and (6.16). ��
Proof of Lemma 4.7 It is enough to show that ‖uR

ε (t, x (n)) − uR
ε (t, y(n))‖ ≤

LP‖x (n) − y(n)‖H for all t ∈ [0, T ] and x, y ∈ H. Recalling (4.10) and (4.19),
we find

uR
ε (t, x (n)) − uR

ε (t, y(n))

≤∣∣�(n)(t, x (n)) − �(n)(t, y(n))
∣∣

+ sup
ν

inf
ν′ E

{∫ τ xR

t
e− ∫ st 1

ε
ν(u)du 1

ε
ν(s)�(n)

(
s, X (α)t,x;n

s

)
ds

−
∫ τ

y
R

t
e− ∫ st 1

ε
ν′(u)du 1

ε
ν′(s)�(n)

(
s, X (α)t,y;n

s
)
ds (6.17)

+ e− ∫ τ xR
t

1
ε
ν(s)ds�(n)

(
τ x
R, X (α)t,x;n

τ xR

)

− e− ∫ τ
y
R

t
1
ε
ν′(s)ds�(n)

(
τ
y
R, X (α)t,y;n

τ
y
R

)}
.

From Itô’s formula, (4.10) and Lemma 4.6 one finds

E

{
e− ∫ τ xR

t
1
ε
ν(s)ds �(n)

(
τ x
R, X (α)t,x;n

τ xR

)}
(6.18)

≤L f
∥∥x (n) − y(n)

∥∥+ E

{
e− ∫ τ xR∧τ

y
R

t
1
ε
ν(s)ds �(n)

(
τ x
R ∧ τ

y
R, X (α)t,x;n

τ xR∧τ
y
R

)}

− E

{∫ τ xR

τ xR∧τ
y
R

e− ∫ st 1
ε
ν(u)du 1

ε
ν(s)�(n)

(
s, X (α)t,x;n

s

)
ds

}

and similarly,

E

{
e− ∫ τ

y
R

t
1
ε
ν′(s)ds �(n)

(
τ
y
R, X (α)t,y;n

τ
y
R

)}
(6.19)

≥ − L f
∥∥x (n) − y(n)

∥∥+ E

{
e− ∫ τ xR∧τ

y
R

t
1
ε
ν′(s)ds �(n)

(
τ x
R ∧ τ

y
R, X (α)t,y;n

τ xR∧τ
y
R

)}

− E

{∫ τ
y
R

τ xR∧τ
y
R

e− ∫ st 1
ε
ν′(u)du 1

ε
ν′(s)�(n)

(
s, X (α)t,y;n

s
)
ds

}
.

123



Appl Math Optim (2016) 73:271–312 311

Take now

ν′(s) = ν(s) for s ∈ (t, τ x
R ∧ τ

y
R] and ν′(s) = 0 for s > τ x

R ∧ τ
y
R, (6.20)

then from (6.17), (6.18), (6.19), (6.20) and recalling (2.12) and Lemma 2.9 we obtain

uR
ε (t, x (n)) − uR

ε (t, y(n))

≤ (2L f + L�

)∥∥x (n) − y(n)
∥∥H

+ E

{∣∣∣�(n)
(
τ x
R ∧ τ

y
R, X (α)t,x;n

τ xR∧τ xR

)− �(n)
(
τ
y
R ∧ τ x

R, X (α)t,y;n
τ
y
R∧τ xR

)∣∣∣
}

(6.21)

+ sup
ν

E

{∫ τ xR

τ xR∧τ
y
R

e− ∫ st 1
ε
ν(u)du 1

ε
ν(s)

(
�(n)

(
s, X (α)t,x;n

s

)

− �(n)
(
s, X (α)t,y;n

s
))
ds

}

≤(2L f + L� + 2L�C1,T
)∥∥x (n) − y(n)

∥∥H.

One can argue in a similar way to bound uR
ε (t, y(n)) − uR

ε (t, x (n)). ��
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