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1 Introduction

The simplest form of the Cahn–Hilliard equation with or without viscosity (see [3,12,
13]) reads as follows

∂t y − �w = 0 and w = τ∂t y−�y+W′(y) in � × (0, T ) (1.1)
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where � is the domain where the evolution takes place, y and w denote the order
parameter and the chemical potential, respectively, and τ ≥ 0 is the viscosity coeffi-
cient. Moreover,W′ represents the derivative of a double well potentialW, and typical
and important examples are the classical regular potential Wreg and the logarithmic
double-well potential Wlog given by

Wreg(r) = 1

4
(r2 − 1)2 , r ∈ R (1.2)

Wlog(r) = ((1 + r) ln(1 + r) + (1 − r) ln(1 − r)) − cr2 , r ∈ (−1, 1) (1.3)

where c > 0 in the latter is large enough in order to kill convexity.
Moreover, an initial condition like y(0) = y0 and suitable boundary conditions

must complement the above equations. As far as the latter are concerned, the most
common ones in the literature are the usual no-flux conditions for both y and w.
However, different boundary conditions have been recently proposed: namely, still
the usual no-flux condition for the chemical potential

(∂nw)|� = 0 on � × (0, T ) (1.4)

in order to preserve mass conservation, and the dynamic boundary condition

(∂n y)|� + ∂t y� − �� y� + W′
�(y�) = u� on � × (0, T ) (1.5)

where y� denotes the trace y|� on the boundary � of �, �� stands for the Laplace–
Beltrami operator on �,W′

� is a nonlinearity analoguous toW′ but now acting on the
boundary value of the order parameter, and finally u� is a boundary source term. We
just quote, among other contributions, [5,18,21,23,24,28] and especially the papers
[14] and [10]. In the former, the reader can find the physical meaning and free energy
derivation of the boundary value problem given by (1.1) and (1.4)–(1.5), besides the
mathematical treatment of the problem itself. The latter provides existence, uniqueness
and regularity results for the same boundary value problem by assuming that the
dominating potential is the boundary potential W� rather than the bulk potential W
(thus, in contrast to [14]) and thus it is close from this point of view to [4], where
the Allen–Cahn equation with dynamic boundary condition is studied (see also [7] in
which a mass constraint is considered, too).

The aim of this paper is to study an associated optimal boundary control prob-
lem, the control being the forcing term u� that appears on the right-hand side of the
dynamic boundary condition (1.5). While numerous investigations deal with the well-
posedness and asymptotic behavior of Cahn–Hilliard systems, there are comparatively
few contributions dedicated to aspects of optimal control. Usually, these papers treat
the non-viscous case (τ = 0) and are restricted to distributed controls, with the no-
flux boundary condition (∂n y)|� = 0 assumed in place of the more difficult dynamic
boundary condition (1.5). In this connection, we refer to [27] and [15], where the latter
paper also applies to the case in which the differentiable potentials (1.2) or (1.3) are
replaced by the non-differentiable “double obstacle potential” given by
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W2obst (r) =
{

c (1 − r2) if |r | ≤ 1
+∞ if |r | > 1

for some c > 0. (1.6)

Note that in this case the second equation in (1.1) has to be interpreted as a differ-
ential inclusion, since W′ cannot be a usual derivative. Instead, the derivative of the
convex part of W is given by ∂ I[−1,1], the subdifferential of the indicator function of
the interval [−1, 1], which is defined by

s ∈ ∂ I[−1,1](r) if and only if s

⎧⎨
⎩

≤ 0 if r = −1
= 0 if − 1 < r < 1
≥ 0 if r = 1 .

(1.7)

We remark that the double obstacle case is particularly challenging from the view-
point of optimal control, because this case is well known to fall into the class of
“Mathematical Programs with Equilibrium Constraints (MPEC) Problems”; indeed,
the corresponding state system then contains a differential inclusion for which all of
the standard nonlinear programming constraint qualifications are violated so that the
existence of Lagrange multipliers cannot be shown via standard techniques.

Quite recently, also convective Cahn–Hilliard systems have been investigated from
the viewpoint of optimal control. In this connection, we refer to [29] and [30], where
the latter paper deals with the spatially two-dimensional case. The three-dimensional
case with a nonlocal potential is studied in [25]. There also exist contributions dealing
with discretized versions of the more general Cahn–Hilliard–Navier–Stokes system,
cf. [17] and [16]. Finally, we mention the contributions [8] and [9], in which control
problems for a generalized Cahn–Hilliard system introduced in [22] are investigated.

To the authors’ best knowledge, there are presently no contributions to the opti-
mal boundary control of viscous or non-viscous Cahn–Hilliard systems with dynamic
boundary conditions of the form (1.5). We are aware, however, of the recent contribu-
tions [11] and [6] for the corresponding Allen–Cahn equation. In particular, [11] treats
both the cases of distributed and boundary controls for logarithmic-type potentials
as in (1.3). More precisely, both the existence of optimal controls and twice con-
tinuous Fréchet differentiability for the well-defined control-to-state mapping were
established, as well as first-order necessary and second-order sufficient optimality
conditions. The related paper [6] deals with the existence of optimal controls and the
derivation of first-order necessary conditions of optimality for the more difficult case
of the double obstacle potential. The method used consists in performing a so-called
“deep quench limit” of the problem studied in [11].

As mentioned above, the recent paper [10] contains a number of results that regard
the problem obtained by complementing the equations (1.1) with the already under-
lined initial and boundary conditions, namely,

∂t y − �w = 0 in Q := � × (0, T ) (1.8)

w = τ ∂t y − �y + W′(y) in Q (1.9)

∂nw = 0 on � := � × (0, T ) (1.10)

y� = y|� and ∂t y� + (∂n y)|� − �� y� + W′
�(y�) = u� on � (1.11)

y(0) = y0 in �. (1.12)
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More precisely, existence, uniqueness and regularity results were proved for general
potentials that include (1.2)–(1.3) and (1.6), and are valid for both the viscous and non-
viscous cases, i.e., by assuming just τ ≥ 0.Moreover, further regularity of the solution
was ensured provided that τ > 0 and too singular potentials like (1.6) were excluded.
Furthermore, results for the linearization around a solution were given as well. In such
a problem,W′(y) andW′

�(y�) are replaced by λ y and λ� y� , for some given functions
λ and λ� on Q and �, respectively. Therefore, the proper material is already prepared
for the control problem to be studied here.

Among several possibilities, we choose the tracking-type cost functional

J(y, y�, u�) := bQ

2

∥∥y − zQ
∥∥2

L2(Q)
+ b�

2
‖y� − z�‖2L2(�)

+ b�

2
‖y(T ) − z�‖2L2(�)

+ b�

2
‖y�(T ) − z�‖2L2(�)

+ b0
2

‖u�‖2L2(�)
(1.13)

where the functions zQ, z�, z�, z� and the nonnegative constants bQ, b�, b�, b�, b0
are given. The control problem then consists in minimizing (1.13) subject to the state
system (1.8)–(1.12) and to the constraint u� ∈ Uad, where the control boxUad is given
by

Uad := {
u� ∈ H1(0, T ; H�) ∩ L∞(�) :
u�,min ≤ u� ≤ u�,max a.e. on �, ‖∂t u�‖2 ≤ M0

}
(1.14)

for some given functions u�,min, u�,max ∈ L∞(�) and some prescribed positive con-
stant M0. In this paper, we confine ourselves to the viscous case τ > 0 and avoid
potentials like (1.6), in order to be able to apply all of the results proved in [10].
However, regular and singular potentials like (1.2) and (1.3) are allowed. In this frame-
work, we prove both the existence of an optimal control u� and first-order necessary
conditions for optimality. To this end, we show the Fréchet differentiability of the
control-to-state mapping and introduce and solve a proper adjoint problem, which
consists in a backward Cauchy problem for the system

q = −�p and −∂t (p + q) − �q + λq = ϕ in Q (1.15)

∂n p = 0 and ∂t q� + ∂nq − ��q� + λ�q� = ϕ� on �, (1.16)

where q� is the trace q |� of q on the boundary, and where the functions λ, λ� ,
ϕ and ϕ� are suitably related to the functions zQ, z�, z�, z� and the constants
bQ, b�, b�, b�, b0 appearing in the cost functional (1.13), as well as to the state
(y, y�) associated with the optimal control u� .

The paper is organized as follows. In the next section, we list our assumptions and
state the problem in a precise form. Moreover, we present some auxiliary material and
sketch our results. The existence of an optimal control will be proved in Sect. 3, while
the rest of the paper is devoted to the derivation of first-order necessary conditions for
optimality. The final result will be proved in Sect. 6; it is prepared in Sects. 4 and 5,
where we study the control-to-state mapping and solve the adjoint problem.
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2 Statement of the Problem and Results

In this section, we describe the problem under study, present the auxiliary material
we need and give an outline of our results. As in Sect. 1, � is the body where the
evolution takes place. We assume � ⊂ R

3 to be open, bounded, connected, and
smooth, and we write |�| for its Lebesgue measure. Moreover, �, ∂n , ∇� and �� still
stand for the boundary of �, the outward normal derivative, the surface gradient and
the Laplace–Beltrami operator, respectively. Given a finite final time T > 0, we set
for convenience

Qt := � × (0, t) and �t := � × (0, t) for every t ∈ (0, T ] (2.1)

Q := QT , and � := �T . (2.2)

Now,we specify the assumptions on the structure of our system. Some of the results we
need are known and hold under rather mild conditions. However, the control problem
under study in this paper needs the high level of regularity for the solution that we
are going to specify. In particular, the values of the state variable have to be bounded
far away from the singularity of the bulk and boundary potentials in order that the
solution to the linearized problem introduced below is smooth as well. Even though
all this could be true (for smooth data) also in other situations, i.e., if the structure of
the system is somehow different, we give a list of assumptions that implies the whole
set of conditions listed in [10], since the latter surely guarantee all we need. We also
assume the potentials to be slightly smoother than in [10], since this will be useful
later on. In order to avoid a heavy notation, we write f and f� in place ofW andW� ,
respectively. Moreover, as we only consider the case of a positive viscosity coefficient,
we take τ = 1 without loss of generality. We make the following assumptions for the
structure of our system.

−∞ ≤ r− < 0 < r+ ≤ +∞ (2.3)

f, f� : (r−, r+) → [0,+∞) are C3 functions such that (2.4)

f (0) = f�(0) = 0 and f ′′ and f ′′
� are bounded from below (2.5)

| f ′(r)| ≤ η | f ′
�(r)| + C for some η, C > 0 and every r ∈ (r−, r+) (2.6)

lim
r↘r−

f ′(r) = lim
r↘r−

f ′
�(r) = −∞ and lim

r↗r+
f ′(r) = lim

r↗r+
f ′
�(r) = +∞ . (2.7)

We note that (2.3)–(2.7) imply the possibility of splitting f ′ as f ′ = β + π , where
β is a monotone function that diverges at r± and π is a perturbation with a bounded
derivative. Moreover, the same is true for f� , so that the assumptions of [10] are
satisfied. Furthermore, the choices f = Wreg and f = Wlog corresponding to (1.2)
and (1.3) are allowed.

Remark 2.1 Let us notice that our assumptions (2.3)–(2.7) perfectly fit the framework
of the paper [10], in which it is postulated that the boundary potential dominates the
bulk one via condition (2.6). However, the reader may wonder whether, especially
in cases like f = Wreg , assumption (2.6) can be released. To this concern, let us
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refer to the paper [14] where other conditions for the bulk and boundary potentials
are discussed from the viewpoint of well-posedness: it would be interesting to check
whether our results for the optimal control problem can be extended.

Next, in order to simplify notation, we set

V := H1(�), H := L2(�), H� := L2(�) and V� := H1(�) (2.8)

V := {
(v, v�) ∈ V × V� : v� = v|�

}
and H := H × H� (2.9)

and endow these spaces with their natural norms. For 1 ≤ p ≤ ∞, ‖ · ‖p is the
usual norm in L p spaces (L p(�), L p(�), etc.), while ‖ · ‖X stands for the norm in the
generic Banach space X . Furthermore, the symbol 〈 · , · 〉 stands for the duality pairing
between V ∗, the dual space of V , and V itself. In the following, it is understood that
H is embedded in V ∗ in the usual way, i.e., such that we have 〈u, v〉 = (u, v) with
the inner product ( · , ·) of H , for every u ∈ H and v ∈ V . Finally, if u ∈ V ∗ and u ∈
L1(0, T ; V ∗), we define their generalized mean values u� ∈ R and u� ∈ L1(0, T )

by setting

u� := 1

|�| 〈u, 1〉 and u�(t) := (
u(t)

)� for a.a. t ∈ (0, T ). (2.10)

Clearly, (2.10) give the usual mean values when applied to elements of H or
L1(0, T ; H).

At this point, we can describe the state problem. For the data we assume that

y0 ∈ H2(�) , y0|� ∈ H2(�) (2.11)

r− < y0(x) < r+ for every x ∈ �. (2.12)

Moreover, u� is given in H1(0, T ; H�). Even though we could write the equations
and the boundary conditions in their strong forms, we prefer to use the variational
formulation of system (1.8)–(1.12). Thus, we look for a triplet (y, y�,w) satisfying

y ∈ W 1,∞(0, T ; H) ∩ H1(0, T ; V ) ∩ L∞(0, T ; H2(�)) (2.13)

y� ∈ W 1,∞(0, T ; H�) ∩ H1(0, T ; V�) ∩ L∞(0, T ; H2(�)) (2.14)

y�(t) = y(t)|� for a.a. t ∈ (0, T ) (2.15)

r− < inf ess
Q

y ≤ sup ess
Q

y < r+ (2.16)

w ∈ L∞(0, T ; H2(�)) (2.17)

as well as, for almost every t ∈ (0, T ), the variational equations
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∫
�

∂t y(t) v +
∫

�

∇w(t) · ∇v = 0 (2.18)
∫

�

w(t) v=
∫

�

∂t y(t) v+
∫

�

∂t y�(t) v�+
∫

�

∇ y(t) · ∇v +
∫

�

∇� y�(t) · ∇�v�

+
∫

�

f ′(y(t)) v +
∫

�

(
f ′
�(y�(t)) − u�(t)

)
v� (2.19)

for every v ∈ V and every (v, v�) ∈ V, respectively, and the Cauchy condition

y(0) = y0 . (2.20)

We note that an equivalent formulation of (2.18)–(2.19) is given by

∫
Q

∂t y v +
∫

Q
∇w · ∇v = 0 (2.21)

∫
Q

wv =
∫

Q
∂t y v +

∫
�

∂t y� v� +
∫

Q
∇ y · ∇v +

∫
�

∇� y� · ∇�v�

+
∫

Q
f ′(y) v +

∫
�

(
f ′
�(y�) − u�

)
v� (2.22)

for every v ∈ L2(0, T ; V ) and every (v, v�) ∈ L2(0, T ;V), respectively. It is worth
noting that (see notation (2.10))

(∂t y(t))� = 0 for a.a. t ∈ (0, T ) and y(t)� = m0 for every t ∈ [0, T ]
where m0 = (y0)

� is the mean value of y0, (2.23)

as usual for the Cahn–Hilliard equation.
As far as existence, uniqueness, regularity and continuous dependence are con-

cerned, we can apply Theorems 2.2, 2.3, 2.4, 2.6 and Corollary 2.7 of [10] (where V
has a slightly different meaning with respect to the present paper) and deduce what
we need as a particular case. Moreover, as the proofs of the regularity (2.13)–(2.17)
of the solution performed in [10] mainly rely on a priori estimates and compactness
arguments, it is clear that a stability estimate holds as well. However, referring to [10]
let us point out to the reader that the assumption (2.37) explicitly required in the state-
ments of [10, Thms. 2.4 and 2.6, Cor. 2.7] contains the condition ∂n y0|� = 0 which
is completely useless (actually, it is never employed in the proofs, as one can easily
check). Therefore, we have

Theorem 2.2 Assume (2.3)–(2.7) and (2.11)–(2.12), and let u� ∈ H1(0, T ; H�).
Then, problem (2.13)–(2.20) has a unique solution (y, y�,w), and this solution sat-
isfies
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‖y‖W 1,∞(0,T ;H)∩H1(0,T ;V )∩L∞(0,T ;H2(�))

+‖y�‖W 1,∞(0,T ;H�)∩H1(0,T ;V�)∩L∞(0,T ;H2(�))

+‖w‖L∞(0,T ;H2(�)) ≤ c (2.24)

r ′− ≤ y ≤ r ′+ a.e. in Q (2.25)

for some constants c > 0 and r ′−, r ′+ ∈ (r−, r+) that depend only on �, T , the shape
of the nonlinearities f and f� , the initial datum y0, and on an upper bound for the
norm of u� in H1(0, T ; H�). Moreover, if u�,i ∈ H1(0, T ; H�), i = 1, 2, are two
forcing terms and (yi , y�,i , wi ) are the corresponding solutions, the inequality

‖y1 − y2‖2L∞(0,T ;H) + ∥∥y�,1 − y�,2
∥∥2

L∞(0,T ;H�)

+‖∇(y1 − y2)‖2L2(0,T ;H)
+ ∥∥∇�(y�,1 − y�,2)

∥∥2
L2(0,T ;H�)

≤ c
∥∥u�,1 − u�,2

∥∥2
L2(0,T ;H�)

(2.26)

holds true with a constant c that depends only on �, T , and the shape of the nonlin-
earities f and f� .

Once well-posedness for problem (2.13)–(2.20) is established, we can address the
corresponding control problem. As in the Sect. 1, given four functions

zQ ∈ L2(Q), z� ∈ L2(�), z� ∈ L2(�) and z� ∈ L2(�) (2.27)

and nonnegative constants bQ, b�, b�, b�, b0, we set

J(y, y�,u�) := bQ

2

∥∥y − zQ
∥∥2

L2(Q)
+ b�

2
‖y� − z�‖2L2(�)

+ b�

2
‖y(T ) − z�‖2L2(�)

+b�

2
‖y�(T ) − z�‖2L2(�)

+ b0
2

‖u�‖2L2(�)
(2.28)

for, say, y ∈ C0([0, T ]; H), y� ∈ C0([0, T ]; H�) and u� ∈ L2(�), and consider the
problem of minimizing the cost functional (2.28) subject to the constraint u� ∈ Uad,
where the control box Uad is given by

Uad := {
u� ∈ H1(0, T ; H�) ∩ L∞(�) :
u�,min ≤ u� ≤ u�,max a.e. on �, ‖∂t u�‖2 ≤ M0

}
(2.29)

and to the state system (2.18)–(2.20). We simply assume that

M0 > 0, u�,min, u�,max ∈ L∞(�) and Uad is nonempty. (2.30)

Here is our first result.
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Theorem 2.3 Assume (2.3)–(2.7) and (2.11)–(2.12), and let Uad and J be defined by
(2.29) and (2.28) under the assumptions (2.30) and (2.27). Then, there exists u� ∈ Uad
such that

J(y, y�, u�) ≤ J(y, y�, u�) for every u� ∈ Uad (2.31)

where y, y� , y and y� are the components of the solutions (y, y�,w) and (y, y�,w) to
the state system (2.13)–(2.20) corresponding to the controls u� and u� , respectively.

From now on, it is understood that the assumptions (2.3)–(2.7) and (2.11)–(2.12)
on the structure and on the initial datum y0 are satisfied and that the cost functional
and the control box are defined by (2.28) and (2.29) under the assumptions (2.30) and
(2.27). Thus, we do not remind anything of that in the statements given in the sequel.

Our next aim is to formulate necessary optimality conditions. To this end, by recall-
ing the involved definitions (2.8)–(2.9), we introduce the control-to-state mapping by

X := H1(0, T ; H�) ∩ L∞(�), Y := H1(0, T ;H) ∩ L∞(0, T ;V)

(2.32)

U is an open set in X that includes Uad (2.33)

S : U → Y, u� �→ S(u�) =: (y, y�), where (y, y�,w) is the unique

solution to (2.13)-(2.20) corresponding to u� , (2.34)

as well as the so-called “reduced cost functional”

J̃ : U → R, defined by J̃(u�) := J(y, y�, u�) where (y, y�) = S(u�).

(2.35)
As Uad is convex, the desired necessary condition for optimality is

〈DJ̃(u�), v� − u�〉 ≥ 0 for every v� ∈ Uad (2.36)

provided that the derivative DJ̃(u�) exists in the dual space (H1(0, T ; H�))∗ at least
in the Gâteaux sense. Then, the natural approach consists in proving that S is Fréchet
differentiable at u� and applying the chain rule. As we shall see in Sect. 4, this leads
to the linearized problem that we describe at once and that can be stated starting from
a generic element u� ∈ U. Let u� ∈ U and h� ∈ H1(0, T ; H�) be given. We set
(y, y�) := S(u�) and

λ := f ′′(y) and λ� := f ′′
� (y�). (2.37)

Then the problem consists in finding (ξ, ξ�, η) satisfying the analogue of the regularity
requirements (2.13)–(2.17), solving for a.a. t ∈ (0, T ) the variational equations
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∫
�

∂tξ(t) v +
∫

�

∇η(t) · ∇v = 0 (2.38)
∫

�

η(t)v =
∫

�

∂tξ(t) v +
∫

�

∂tξ�(t) v� +
∫

�

∇ξ(t) · ∇v +
∫

�

∇�ξ�(t) · ∇�v�

+
∫

�

λ(t) ξ(t) v +
∫

�

(
λ�(t) ξ�(t) − h�(t)

)
v� (2.39)

for every v ∈ V and every (v, v�) ∈ V, respectively, and satisfying the Cauchy
condition

ξ(0) = 0 . (2.40)

Note that property (2.23) applied to ξ becomes

ξ�(t) = 0 for a.a. t ∈ (0, T ), (2.41)

since ξ(0) = 0. As λ and λ� are bounded, we can apply [10, Cor. 2.5] to conclude the
following result.

Proposition 2.4 Let u� ∈ U. Moreover, let (y, y�) = S(u�) and define λ and λ�

by (2.37). Then, for every h� ∈ H1(0, T ; H�), there exists a unique triplet (ξ, ξ�, η)

satisfying the analogue of (2.13)–(2.17) and solving the linearized problem (2.38)–
(2.40).

Namely, we shall prove that the Fréchet derivative DS(u�) ∈ L(X,Y) actually
exists and the value that it assigns to the generic element h� ∈ X is precisely (ξ, ξ�) ∈
Y, where (ξ, ξ�, η) is the solution to the linearized problem corresponding to the datum
h� . This will be done in Sect. 4. Once this will be established, we may use the chain
rule to prove that the necessary condition (2.36) for optimality takes the form

bQ

∫
Q
(y − zQ)ξ + b�

∫
�

(y� − z�)ξ� + b�

∫
�

(y(T ) − z�)ξ(T )

+ b�

∫
�

(y�(T ) − z�)ξ�(T ) + b0

∫
�

u�(v� − u�) ≥ 0 for any v� ∈ Uad,

(2.42)

where, for any given v� ∈ Uad, the functions ξ and ξ� are the first two components
of the solution (ξ, ξ�, η) to the linearized problem corresponding to h� = v� − u� .

The final step then consists in eliminating the pair (ξ, ξ�) from (2.42). This will be
done by introducing a triplet (p, q, q�) that fulfills the regularity requirements

p ∈ H1(0, T ; H2(�)) ∩ L2(0, T ; H4(�)) (2.43)

q ∈ H1(0, T ; H) ∩ L2(0, T ; H2(�)) (2.44)

q� ∈ H1(0, T ; H�) ∩ L2(0, T ; H2(�)) (2.45)

q�(t) = q(t)|� for a.a. t ∈ (0, T ) (2.46)
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and solves a suitable backward-in-time problem (the so-called “adjoint system”):
namely, the variational equations

∫
�

q(t) v =
∫

�

∇ p(t) · ∇v for all v ∈ V and t ∈ [0, T ] (2.47)

−
∫

�

∂t
(

p(t) + q(t)
)
v +

∫
�

∇q(t) · ∇v +
∫

�

f ′′(y(t)) q(t) v

−
∫

�

∂t q�(t) v� +
∫

�

∇�q�(t) · ∇�v� +
∫

�

f ′′
� (y�(t)) q�(t) v�

=
∫

�

bQ
(
y(t) − zQ(t)

)
v +

∫
�

b�

(
y�(t) − z�(t)

)
v�

for every (v, v�) ∈ V and a.a. t ∈ (0, T ) (2.48)

and the final condition
∫

�

(p + q)(T ) v +
∫

�

q�(T ) v� =
∫

�

b�

(
y(T ) − z�

)
v +

∫
�

b�

(
y�(T ) − z�

)
v�

for every (v, v�) ∈ V (2.49)

have to be satisfied. Some assumptions will be given in order that this problem has
a unique solution, and the optimality condition (2.42) will be rewritten in a much
simpler form. For instance, one can assume that

b� = 0 and b� = 0 . (2.50)

In Sects. 5 and 6, we will prove the results stated below and sketch how to avoid
(2.50) by weakening a little the summability requirements on the solution (see the
forthcoming Remark 5.6).

Theorem 2.5 Let u� and (y, y�) = S(u�) be an optimal control and the corre-
sponding state and assume in addition that (2.50) holds. Then the adjoint problem
(2.47)–(2.49) has a unique solution (p, q, q�) satisfying the regularity conditions
(2.43)–(2.46).

Theorem 2.6 Let u� be an optimal control. Moreover, let (y, y�) = S(u�) and
(p, q, q�) be the associate state and the unique solution to the adjoint problem (2.47)–
(2.49) given by Theorem 2.5. Then we have

∫
�

(q� + b0u�)(v� − u�) ≥ 0 for every v� ∈ Uad. (2.51)

In particular, if b0 > 0, we remark that u� is just a projection, namely

u� is the orthogonal projection of − q�/b0 on Uad (2.52)

with respect to the standard scalar product in L2(�).

123



206 Appl Math Optim (2016) 73:195–225

In the remainder of this section, we recall some well-known facts and introduce
some notation. First of all, we often owe to the elementary Young inequality

ab ≤ δa2 + 1

4δ
b2 for every a, b ≥ 0 and δ > 0 (2.53)

and to the Hölder inequality. Moreover, we account for the well-known Poincaré
inequality

‖v‖2V ≤ C
(‖∇v‖2H + |v�|2) for every v ∈ V (2.54)

where C depends only on�. Next, we recall a tool that is generally used in the context
of problems related to the Cahn–Hilliard equations. We define

domN := {
v∗ ∈ V ∗ : v�∗ = 0

}
and N : domN → {

v ∈ V : v� = 0
}

(2.55)

by setting for v∗ ∈ domN

Nv∗ ∈ V, (Nv∗)� = 0, and
∫

�

∇Nv∗ · ∇z = 〈v∗, z〉 for every z ∈ V

(2.56)
i.e., Nv∗ is the solution v to the generalized Neumann problem for −� with datum
v∗ that satisfies v� = 0. Indeed, if v∗ ∈ H , the above variational equation means
−�Nv∗ = v∗ and ∂nNv∗ = 0. As � is bounded, smooth, and connected, it turns out
that (2.56) yields a well-defined isomorphism which also satisfies

Nv∗ ∈ Hs+2(�) and ‖Nv∗‖Hs+2(�) ≤ Cs ‖v∗‖Hs (�)

if s ≥ 0 and v∗ ∈ Hs(�) ∩ domN (2.57)

with a constant Cs that depends only on � and s. Moreover, we have

〈u∗,Nv∗〉 = 〈v∗,Nu∗〉 =
∫

�

(∇Nu∗) · (∇Nv∗) for u∗, v∗ ∈ domN (2.58)

whence also

2 〈∂tv∗(t),Nv∗(t)〉 = d

dt

∫
�

|∇Nv∗(t)|2 = d

dt
‖v∗(t)‖2∗ for a.a. t ∈ (0, T )

(2.59)
for every v∗ ∈ H1(0, T ; V ∗) satisfying (v∗)� = 0 a.e. in (0, T ).

We conclude this section by stating a general rule we use as far as constants are
concerned, in order to avoid a boring notation. Throughout the paper, the small-case
symbol c stands for different constants which depend only on �, on the final time T ,
the shape of the nonlinearities and on the constants and the norms of the functions
involved in the assumptions of our statements. Hence, the meaning of c might change
from line to line and even in the same chain of equalities or inequalities. On the
contrary, capital letters (with or without subscripts) stand for precise constants which
we can refer to.
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3 Existence of an Optimal Control

We prove Theorem 2.3 by the direct method, recalling that Uad is a nonempty, closed
and convex set in L2(�). Let

{
u�,n

}
be a minimizing sequence for the optimization

problemand, for any n, let us take the corresponding solution (yn, y�,n, wn) to problem
(2.13)–(2.20). Thus, u�,n ∈ Uad for every n, and we can account for the definition
(2.29) of Uad, assumptions (2.30) and estimates (2.24)–(2.25) for the solutions. In
particular, we have that

r− < r ′− ≤ yn ≤ r ′+ < r+ a.e. in Q and for every n. (3.1)

Next, owing to weak star and strong compactness results (see, e.g., [26, Sect. 8, Cor.
4]), we deduce that suitable (not relabeled) subsequences exist such that

u�,n → u� weakly star in L∞(�) ∩ H1(0, T ; H)

yn → y weakly star in W 1,∞(0, T ; H) ∩ H1(0, T ; V ) ∩ L∞(0, T ; H2(�))

and strongly in C0([0, T ]; V )

y�,n → y� weakly star in W 1,∞(0, T ; H�) ∩ H1(0, T ; V�) ∩ L∞(0, T ; H2(�))

and strongly in C0([0, T ]; V�)

wn → w weakly star in L∞(0, T ; H2(�)).

Clearly, u� ∈ Uad. Moreover, y(0) = y0. Furthermore, by (3.1) and the regularity of
f and f� we have assumed in (2.3)–(2.7), we also deduce that f ′(yn) and f ′

�(y�,n)

converge to f ′(y) and f ′
�(y�), e.g., strongly in C0([0, T ]; H) and C0([0, T ]; H�),

respectively. Thus, we can pass to the limit in the integrated variational formulation
(2.21)–(2.22) written for (yn, y�,n, wn) and u�,n , and immediately conclude that the
triplet (y, y�,w) is the solution (y, y�,w) to (2.21)–(2.22) corresponding to u� :=
u� . Finally, by semicontinuity, it is clear that the value J(y, y�, u�) is the infimum of
the cost functional since we have started from a minimizing sequence. ��

4 The Control-to-State Mapping

We recall the definitions (2.32)–(2.34) of the spaces X, Y, the set U and the map S. As
sketched in Sect. 2, themain point is the Fréchet differentiability of the control-to-state
mapping S. Our result on that point is prepared by a stability estimate given by the
following lemma.

Lemma 4.1 Let u�,i ∈ H1(0, T ; H�) for i = 1, 2 and let (yi , y�,i , wi ) be the corre-
sponding solutions given by Theorem 2.2. Then, the following estimate

∥∥(y1, y�,1) − (y2, y�,2)
∥∥
Y ≤ c

∥∥u�,1 − u�,2
∥∥

L2(0,T ;H�)
(4.1)

holds true for some constant c > 0 that depends only on �, T , the shape of the
nonlinearities f and f� , and the initial datum y0.
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Proof We set for convenience

u� := u�,1 − u�,2 , y := y1 − y2 , y� := y�,1 − y�,2 and w := w1 − w2 .

By writing problem (2.13)–(2.20) for both solutions (yi , y�,i , wi ) and taking the dif-
ference, we immediately derive that

∫
�

∂t y(t) v +
∫

�

∇w(t) · ∇v = 0 (4.2)
∫

�

w(t) v=
∫

�

∂t y(t) v+
∫

�

∂t y�(t) v�+
∫

�

∇ y(t) · ∇v +
∫

�

∇� y�(t) · ∇�v�

+
∫

�

(
f ′(y1(t))− f ′(y2(t))

)
v+

∫
�

(
f ′
�(y1(t)) − f ′

�(y2(t)) − u�(t)
)
v�

(4.3)

for a.a. t ∈ (0, T ) and for every v ∈ V and every (v, v�) ∈ V, respectively. Moreover,
y(0) = 0 and ∂t y has zero mean value since (2.23) holds for ∂t yi . Therefore, N(∂t y)

is well defined a.e. in (0, T ) (see (2.55)) and we can test (4.2)–(4.3) written at the time
s by N(∂t y(s)) and −∂t (y, y�)(s), respectively. Then we add the resulting equalities
and integrate over (0, t) with respect to s, where t ∈ (0, T ) is arbitrary. We obtain

∫
Qt

∂t y N(∂t y) +
∫

Qt

∇w · ∇N(∂t y) −
∫

Qt

w ∂t y

+
∫

Qt

|∂t y|2 +
∫

�t

|∂t y�|2 + 1

2

∫
�

|∇ y(t)|2 + 1

2

∫
�

|∇� y�(t)|2

= −
∫

Qt

(
f ′(y1) − f ′(y2)

)
∂t y −

∫
�t

(
f ′
�(y1) − f ′

�(y2)
)
∂t y� +

∫
�t

u� ∂t y� .

(4.4)

By accounting for (2.58) and (2.56), we have

∫
Qt

∂t y N(∂t y) +
∫

Qt

∇w · ∇N(∂t y) −
∫

Qt

w ∂t y =
∫

Qt

|∇N∂t y|2 ≥ 0 .

Moreover, all the other integrals on the left-hand side of (4.4) are nonnegative. The
first two terms on the right-hand side need the same treatement and we only deal with
the first of them. We notice that both y1 and y2 satisfy (2.25) and that f ′ is Lipschitz
continuous on [r ′−, r ′+]. By using this and the Hölder, Young and Poincaré inequalities
(see (2.54)), we derive that

−
∫

Qt

(
f ′(y1) − f ′(y2)

)
∂t y ≤ 1

4

∫
Qt

|∂t y|2 + c
∫

Qt

|∇ y|2 .
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Finally, we simply have

∫
�t

u� ∂t y� ≤ 1

4

∫
�t

|∂t y�|2 +
∫

�t

|u�|2 .

By combining these inequalities and (4.4), we see that we can apply the standard
Gronwall lemma. This directly yields (4.1). ��

Theorem 4.2 Let u� ∈ U. Moreover, let (y, y�) = S(u�) and define λ and λ� by
(2.37). Then the control-to-state mapping S : U ⊂ X → Y is Fréchet differentiable at
u� , and its Fréchet derivative DS(u�) ∈ L(X,Y) is given as follows: for h� ∈ X, the
value of DS(u�) at h� is the pair (ξ, ξ�), where (ξ, ξ�, η) is the unique solution to
the linearized problem (2.38)–(2.40).

Proof At first, a closer inspection of the proof of Theorem4.1 in [10] for the linear case
reveals that the linear mapping, which assigns to each h� ∈ X the pair (ξ, ξ�), where
(ξ, ξ�, η) is the associated unique solution to the linearized system (2.38)–(2.40), is
bounded as a mapping from X into Y. Hence, if DS(u�) has in fact the asserted form,
then it belongs to L(X,Y).

In the following, it understood that‖h�‖X is small enough in order thatu�+h� ∈ U.
As we would like writing the inequality that shows the desired differentiability in a
simple form, we introduce some auxiliary functions. First of all, we also need the third
component w of the solution (y, y�,w) associated to u� . Moreover, given h� ∈ X

small enough, we set

(yh, yh
�,wh) := solution to (2.13)-(2.20) corresponding to u� + h�,

whence (yh, yh
�) = S(u� + h�)

qh := yh − y − ξ, qh
� := yh

� − y� − ξ� and zh := wh − w − η .

By the definition of the Fréchet derivative, we need to show that
∥∥(qh, qh

�)
∥∥
Y= o(‖h�‖X) as ‖h�‖X → 0. We prove a preciser estimate, namely

∥∥∥(qh, qh
�)

∥∥∥
Y

≤ c ‖h�‖2L2(�)
. (4.5)

By definition, the triplets (yh, yh
�,wh) and (y, y�,w) satisfy problem (2.13)–(2.20)

with data u� + h� and u� , respectively. Moreover, (ξ, ξ�, η) solves the linearized
problem (2.38)–(2.40). By writing everything and taking the difference, we obtain
for a.a. t ∈ (0, T )

∫
�

∂t q
h(t) v +

∫
�

∇zh(t) · ∇v = 0 (4.6)
∫

�

zh(t) v=
∫

�

∂t q
h(t) v+

∫
�

∂t q
h
�(t) v�+

∫
�

∇qh(t) · ∇v+
∫

�

∇�qh
�(t)·∇�v�
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+
∫

�

(
f ′(yh(t)) − f ′(y(t)) − f ′′(y(t))ξ(t)

)
v

+
∫

�

(
f ′
�(yh

�(t)) − f ′
�(yh

�(t)) − f ′′
� (y�(t))ξ�(t)

)
v� (4.7)

for every v ∈ V and every (v, v�) ∈ V, respectively. Moreover, qh(0) = 0. We
observe that the choice v = 1 in (4.6) yields that ∂t qh(t) has zero mean value and
thus belongs to the domain of N for a.a. t ∈ (0, T ) (see (2.55)). Therefore, we can
test (4.6)–(4.7) written at the time s by N(∂t qh(s)) and −∂t (qh, qh

�)(s), respectively.
Then, we add the resulting equalities and integrate over (0, t) with respect to s, where
t ∈ (0, T ) is arbitrary. We obtain

∫
Qt

∂t q
h N(∂t q

h) +
∫

Qt

∇zh · ∇N(∂t q
h) −

∫
Qt

zh ∂t q
h

+
∫

Qt

|∂t q
h |2 +

∫
�t

|∂t q
h
�|2 + 1

2

∫
�

|∇qh(t)|2 + 1

2

∫
�

|∇�qh
�(t)|2

=−
∫

Qt

(
f ′(yh)− f ′(y)− f ′′(y)ξ

)
∂t q

h −
∫

�t

(
f ′
�(yh

�)− f ′
�(yh

�)− f ′′
� (y�)ξ�

)
∂t q

h
� .

(4.8)

As in the proof of Lemma 4.1, the sum of the first three integrals on the left-hand side
of (4.8) is nonnegative as well as each of the other terms. Now, we estimate the first
integral on the right-hand side. We write the second order Taylor expansion of the C2

function f ′ (see (2.4)) at y in the Lagrange form. As yh − y = ξ + qh , we obtain

f ′(yh) − f ′(y) − f ′′(y)ξ = f ′′(y) qh + 1

2
f ′′′(σ )|yh − y|2,

with some function σ taking its values between the ones of yh and y. As yh and y are
bounded away from r± (see (2.25), which holds for both of them), f ′′(y) and f ′′′(σ )

are bounded in L∞(Q), and the above expansion yields

| f ′(yh) − f ′(y) − f ′′(y)ξ | ≤ c
(|qh | + |yh − y|2).

Hence, we have

−
∫

Qt

(
f ′(yh)− f ′(y)− f ′′(y)ξ

)
∂t q

h ≤ C1

∫
Qt

|qh | |∂t q
h |+C2

∫
Qt

|yh − y|2|∂t q
h |

(4.9)
where we have marked the constants in front of the last two integrals for a future
reference. We deal with the first term on the right-hand side of the last inequality as
follows:

C1

∫
Qt

|qh | |∂t q
h | ≤ 1

4

∫
Qt

|∂t q
h |2 + c

∫
Qt

|qh |2 ≤ 1

4

∫
Qt

|∂t q
h |2 + c

∫
Qt

|∇qh |2 ,
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by the Poincaré inequality (2.54), since qh= yh − y − ξ has zero mean value. Indeed,
(yh)� = y� and ξ� = 0 since yh(0) = y(0) and ξ(0) = 0 (see (2.23)). As far as the
last term in (4.9) is concerned, we can estimate it this way

C2

∫
Qt

|yh − y|2|∂t q
h | ≤ c

∥∥∥yh − y
∥∥∥2

L∞(0,T ;V )

(∫
Qt

|∂t q
h |2

)1/2

≤ 1

4

∫
Qt

|∂t q
h |2 + c

∥∥∥yh − y
∥∥∥4

L∞(0,T ;V )
≤ 1

4

∫
Qt

|∂t q
h |2 + c ‖h�‖4L2(�)

thanks to the stability estimate (4.1). As the same calculation can be done for the last
term on the right-hand side of (4.8), we can combine, apply the standard Gronwall
lemma, and conclude that (4.5) holds true. ��

5 The Adjoint Problem

In this section, we prove Theorem 2.5, i.e., we show that problem (2.47)–(2.49) has a
unique solution under the further assumptions (2.50). Moreover, we briefly show how
(2.50) can be avoided by just requiring less regularity to the solution (see Remark 5.6).

In order to solve problem (2.47)–(2.49), we first prove that it is equivalent to a
decoupled problem that can be solved by first finding q and then reconstructing p.
The basic ideas are explained at once. We note that the function q(t) has zero mean
value for a.a. t ∈ (0, T ), as we immediately see by choosing v = 1 in (2.47). So, if
we introduce the mean value function p� ∈ C0([0, T ]) (see (2.10)), we realize that,
for a.a. t ∈ (0, T ), (p − p�)(t) satisfies definition (2.56) with v∗ = q(t). We thus
have p(t) − p�(t) = N(q(t)). On the other hand, for any fixed t , the function p�(t)
is a constant; thus, it is orthogonal in L2(�) to the subspace of functions having zero
mean value. Thus, p is completely eliminated from Eq. (2.48) if we confine ourselves
to use test functions with zero mean value. Similar remarks have to be done for the
final condition on p + q that appears in (2.49). Whenever we find a solution (q, q�)

to this new problem, then we can reconstruct p as just said, provided that we can
calculate p�. All this is made precise in our next theorem. As we are going to use test
functions with zero mean value, we introduce the proper spaces by

H� := {
(v, v�) ∈ H : v� = 0

}
and V� := H� ∩ V (5.1)

and endow them with their natural topologies as subspaces of H and V, respectively.
We observe that the first components v of the elements (v, v�) ∈ V� cannot span the
whole of C∞

c (�) because of the zero mean value condition. This has the following
consequence: variational equations with test functions in V� cannot be immediately
read as equations in the sense of distributions (this is the price we have to pay for the
transformation of the old adjoint system into the new one!). Hence, some care is in
order, and we have to prove some auxiliary lemmas. Here, we use the notation u� even
though it has nothing to do with the control variable.
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Lemma 5.1 The set {v� : (v, v�) ∈ V�} is the whole of V� .

Proof Take any v� ∈ V� . As V� ⊂ H1/2(�), there exists some g ∈ H1(�) such that
g|� = v� . Now, we fix a closed ball B ⊂ � and a function ζ ∈ C1(�) such that ζ = 0
in � \ B and

∫
B ζ = 1. Next, we define m = ∫

�
g and v := g − mζ . Then, it turns

out that v ∈ H1(�), v|� = g|� = v� , and
∫
�

v = 0, i.e., (v, v�) ∈ V�. ��
Lemma 5.2 Assume that (u, u�) ∈ H. Then the condition

∫
�

uv +
∫

�

u�v� = 0 for every (v, v�) ∈ V� (5.2)

implies that u is a constant, namely, the mean value u� of u, and u� = 0. Moreover,
u = 0 if (5.2) holds for every (v, v�) ∈ V.

Proof We first decouple (5.2). To this end, we fix v0 ∈ H1
0 (�) such that v�

0 = 1 and
set k := |�|−1

∫
�

u v0. Now, we take any v ∈ H1
0 (�) and observe that v − v�v0

belongs to H1
0 (�) and has zero mean value. Hence, (v − v�v0, 0) ∈ V�, and (5.2)

yields that

0 =
∫

�

u(v − v�v0) =
∫

�

u v − k
∫

�

v =
∫

�

(u − k)v.

As v ∈ H1
0 (�) is arbitrary and H1

0 (�) is dense in L2(�), we infer that u = k a.e. in �,
i.e., u is a constant, and this constant must equal u�. Hence, (5.2) implies

∫
�

u�v� = 0 for every (v, v�) ∈ V�.

By Lemma 5.1, the above equality holds for every v� ∈ V� . As this space is dense in
L2(�), we deduce that u� = 0. If in addition (5.2) holds for every (v, v�) ∈ V, then
we can take v = 1 and v� = 1 in (5.2) and deduce that u� = 0 (since we already
know that u� = 0). ��
Corollary 5.3 The space V� is dense in H�.

Proof We prove the following equivalent statement: the only element (u, u�) ∈ H�

that is orthogonal to V� with respect to the scalar product inH is the zero element of
H�. Thus, we assume that

∫
�

u v +
∫

�

u� v� = 0 for every (v, v�) ∈ V�. (5.3)

By Lemma 5.2, we deduce that u is a constant and that u� = 0. As u ∈ H�, the
constant must be 0. Therefore, (u, u�) = (0, 0). ��

In order to simplify the form of the problems we are dealing with, we introduce a
notation. Starting from the state (y, y�) associated to an optimal control, we set
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λ := f ′′(y) , λ� := f ′′
� (y�) (5.4)

ϕQ := bQ(y − zQ) , ϕ� := b�(y� − z�) (5.5)

ϕ� := b�

(
y(T ) − z�

)
, ϕ� := b�

(
y�(T ) − z�

)
. (5.6)

Then, the adjoint problem (2.47)–(2.49) becomes:

∫
�

q(t) v =
∫

�

∇ p(t) · ∇v for all t ∈ [0, T ] and v ∈ V (5.7)

−
∫

�

∂t
(

p(t) + q(t)
)
v +

∫
�

∇q(t) · ∇v +
∫

�

λ(t) q(t) v

−
∫

�

∂t q�(t) v� +
∫

�

∇�q�(t) · ∇�v� +
∫

�

λ�(t) q�(t) v�

=
∫

�

ϕQ(t)v +
∫

�

ϕ�(t)v� for a.a. t ∈ (0, T ) and every (v, v�) ∈ V (5.8)
∫

�

(p + q)(T ) v +
∫

�

q�(T ) v� =
∫

�

ϕ�v +
∫

�

ϕ�v� for every (v, v�) ∈ V.

(5.9)

The result stated below ensures the equivalence of problem (5.7)–(5.9) and a new
problemwith decoupled equations, as sketched at the beginning of the present section.
We note at once that the latter is plainly meaningful since Nq is well defined (see
(2.55)). The statement also involves the operatorM : L2(0, T ; H2(�)) → H1(0, T )

defined by

(M(v))(t) := (ϕ�)� − 1

|�|
∫ T

t

∫
�

(−�v + λv − ϕQ
)

for every t ∈ [0, T ]. (5.10)

We notice that the subsequent proof will also show that the adjoint problem is solved
in the strong form presented in the Sect. 1.

Theorem 5.4 Assume (2.43)–(2.46). Then, (p, q, q�) solves problem (5.7)–(5.9) if
and only if

q�(t) = 0 and p(t) = N(q(t)) + (M(q))(t) for every t ∈ [0, T ] (5.11)

−
∫

�

∂t
(
N(q(t)) + q(t)

)
v +

∫
�

∇q(t) · ∇v +
∫

�

λ(t) q(t) v

−
∫

�

∂t q�(t) v� +
∫

�

∇�q�(t) · ∇�v� +
∫

�

λ�(t) q�(t) v�

=
∫

�

ϕQ(t)v +
∫

�

ϕ�(t)v� for a.a. t ∈ (0, T ) and every (v, v�) ∈ V� (5.12)
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∫
�

(
Nq + q

)
(T ) v +

∫
�

q�(T ) v� =
∫

�

ϕ�v +
∫

�

ϕ�v� for every (v, v�) ∈ V� .

(5.13)

Proof We assume that (p, q, q�) satisfies (5.7)–(5.9) and prove that it solves (5.11)–
(5.13). We often omit writing the time t in order to simplify the notation. By taking
v = 1 in (5.7), we see that the first assertion of (5.11) holds. In particular, the second
assertion of (5.11) is meaningful. Moreover, by the definition (2.56) of N, we have

p(t) − p�(t) = N(q(t)) or p(t) = N(q(t)) + p�(t) for a.a. t ∈ (0, T ).

(5.14)

We now prove the second equality in (5.11). By taking any v ∈ D(�) and using (v, 0)
as a test functions in (5.8), we derive that

−∂t (p + q) − �q + λq = ϕQ or
1

|�| ∂t (p + q) = 1

|�| (−�q + λq − ϕQ)

in the sense of distributions on Q, whence a.e. in Q as well, due to the regularity
of p and q. By observing that both q and ∂t q have zero mean value (the latter as a
consequence of the former), and just integrating the last equation over �, we obtain

dp�

dt
= 1

|�|
∫

�

(−�q + λq − ϕQ) whence

p�(t) = p�(T ) − 1

|�|
∫ T

t

∫
�

(−�q + λq − ϕQ) .

On the other hand, (5.9) implies that (p + q)(T ) = ϕ�, whence p�(T ) = (ϕ�)�

since q(T ) has zero mean value. By combining, we infer that

p�(t) = (ϕ�)� − 1

|�|
∫ T

t

∫
�

(−�q + λq − ϕQ) = (M(q))(t) .

Therefore, the second assertion in (5.11) follows from (5.14). In order to prove (5.12)–
(5.13), it suffices to write (5.8)–(5.9) with (v, v�) ∈ V�, by recalling (5.14) once more
and observing that ∂t p� and p�(T ) are space independent.

Conversely, we now assume that (p, q, q�) solves (5.11)–(5.13) and prove that the
Eqs. (5.7)–(5.9) are satisfied. We start from (5.11). AsM(q) is space independent, by
recalling the definition (2.56) of the operatorN, we have, for a.a. t ∈ (0, T ) and every
v ∈ V , ∫

�

∇ p(t) · ∇v =
∫

�

∇Nq(t) · ∇v =
∫

�

q(t)v .
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This is exactly (5.7). Now, we prove (5.8). We deduce the strong form of the problem
hidden in the variational Eq. (5.12) thanks to the integration by parts formulas

∫
�

∇q(t) · ∇v =
∫

�

(−�q(t))v +
∫

�

∂nq(t) v|� =
∫

�

(−�q(t))v +
∫

�

∂nq(t) v�∫
�

∇�q�(t) · ∇�v� =
∫

�

(−��q�(t)) v�,

where (v, v�) ∈ V. Thus, (5.12) becomes

∫
�

u(t)v +
∫

�

u�(t)v� = 0 for a.a. t ∈ (0, T ) and every (v, v�) ∈ V�,

where the pair (u, u�) ∈ L2(0, T ;H) is given by

u(t) := −∂t
(
N(q(t)) + q(t)

) − �q(t) + λ(t) q(t) − ϕQ(t)

u�(t) := ∂nq(t) − ∂t q�(t) − ��q�(t) + λ�(t) q�(t) − ϕ�(t) .

Then, Lemma 5.2 yields

u(t) = (u(t))� and u�(t) = 0 for a.a. t ∈ (0, T ).

On the other hand, by recalling that N(∂t q) and ∂t q have zero mean values by the
definition ofN and the first identity in (5.11), and owing to the definition (5.10) ofM,
we have

|�| (u(t))� =
∫
�

{−(
N(∂t q(t)) + ∂t q(t)

) − �q(t) + λ(t) q(t) − ϕQ(t)
}

=
∫
�

{−�q(t) + λ(t) q(t) − ϕQ(t)
} = |�| ∂t (M(q))(t) for a.a. t ∈ (0, T ).

We infer that

−∂t
(
N(q(t))+q(t)

)−�q(t)+λ(t) q(t)−ϕQ(t) = ∂t (M(q))(t) for a.a. t ∈ (0, T )

so that (5.11) yields

∫
�

{−∂t
(

p(t) + q(t)
) − �q(t) + λ(t) q(t) − ϕQ(t)

}
v = 0

for a.a. t ∈ (0, T ) and every v ∈ V .

Now, the identity u� = 0 implies

∫
�

{
∂nq(t) − ∂t q�(t) − ��q�(t) + λ�(t) q�(t) − ϕ�(t)

}
v� = 0

for a.a. t ∈ (0, T ) and every v� ∈ V�.
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In particular, for any (v, v�) ∈ V, we can write both previous equalities and add
them to each other. By integrating by parts in the opposite direction, we deduce (5.8).
Finally, by applying Lemma 5.2 once more, we derive from (5.13)

(
Nq + q

)
(T ) − ϕ� = k and q�(T ) − ϕ� = 0

where k is the mean value of the left-hand side. Note that both q(T ) and (Nq)(T ) have
zero mean value by the first identity in (5.11) and the definition (2.56) ofN. Then, we
have k = −(ϕ�)�. Hence, by the definition of M, we infer that

(Nq + q)(T ) = ϕ� − (ϕ�)� = ϕ� − (M(q))(T ).

Then, the second assertion in (5.11) yields (p + q)(T ) = ϕ�, and (5.9) follows
immediately. ��

Thanks to the theorem just proved, we can replace the old adjoint problem by the
new one in which the equations are decoupled. As we are going to see the sub-problem
for (q, q�) as an abstract differential equation,weprepare the proper framework,which
is related to theHilbert spacesV� andH� defined in (5.1). To this end, letV∗

�
〈 · , · 〉V�

denote the dual pairing between V∗
� and V�. Then, recalling that V� is by Corollary

5.3 dense inH�, we can construct theHilbert triplet (V�,H�,V∗
�), that is, we identify

H� with a subspace of V∗
�, the dual space of V�, in order that

V∗
�

〈(u, u�), (v, v�)〉V�
= (

(u, u�), (v, v�)
)
H�

∀ (u, u�) ∈ H�, ∀ (v, v�) ∈ V� .

(5.15)
Here, we define the scalar product ( · , · )H�

and the scalar product in V� by

(
(u, u�), (v, v�)

)
H�

:=
∫

�

u v +
∫

�

u� v� (5.16)

(
(u, u�), (v, v�)

)
V�

:=
∫

�

∇u · ∇v +
∫

�

∇�u� · ∇�v� . (5.17)

In (5.16) (resp. (5.17)), (u, u�) and (v, v�) denote generic elements of H� (resp.
V�). Note that (5.17) actually defines a scalar product in V� that is equivalent to the
standard one by the Poincaré inequality (2.54). We also introduce the associated Riesz
operator R� ∈ L(V�,V∗

�), namely

V∗
�

〈R�(u, u�), (v, v�)〉V�
=(

(u, u�), (v, v�)
)
V�

for every (u, u�), (v, v�) ∈ V� .

(5.18)
Since, as already mentioned, variational equations with test functions in V� cannot

immediately be read as differential equations, we also prove the following lemma.

Lemma 5.5 Assume (u, u�) ∈ V� and R�(u, u�) ∈ H�. Then we have u ∈ H2(�)

and u� ∈ H2(�). Moreover, it holds

‖u‖H2(�) + ‖u�‖H2(�) ≤ c ‖R�(u, u�)‖H�
, (5.19)
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where c depends only on �.

Proof The assumptions mean that there exists some (ψ,ψ�) ∈ H� such that

(
(u, u�), (v, v�)

)
V�

= (
(ψ,ψ�), (v, v�)

)
H�

, that is,∫
�

∇u · ∇v +
∫

�

∇�u� · ∇�v� =
∫

�

ψv +
∫

�

ψ�v� (5.20)

for every (v, v�) ∈ V�. As in the proof of Lemma 5.2, we decouple (5.20). We fix
v0 ∈ H1

0 (�) such that v�
0 = 1 and set

c1 :=
∫

�

∇u · ∇v0, c2 :=
∫

�

ψv0

and ki := ci/|�| for i = 1, 2. Now, we take any v ∈ H1
0 (�). As v − v�v0 belongs to

H1
0 (�) and has zero mean value, we have (v − v�v0, 0) ∈ V�, and (5.20) yields

∫
�

∇u · ∇(v − v�v0) =
∫

�

ψ(v − v�v0) or
∫

�

(∇u · ∇v − k1v) =
∫

�

(ψ − k2)v .

As v ∈ H1
0 (�) is arbitray, this simply means

− �u = ψ + k where k := k1 − k2. (5.21)

In particular, we infer that �u ∈ L2(�) and this, combined with u|� = u� ∈ H1(�),
yields (cf., e.g., [2, Thm. 3.2, p. 1.79]) u ∈ H3/2(�). Then, by a trace theorem stated,
e.g., in [2, Thm. 2.25, p. 1.62] it follows that ∂nu lies in L2(�) and we can integrate
by parts. Hence, for any (v, v�) ∈ V� we have

∫
�

(ψ + k)v +
∫

�

∇�u� · ∇�v� =
∫

�

(−�u)v +
∫

�

∇�u� · ∇�v�

=
∫

�

∇u · ∇v−
∫

�

∂nu v|� +
∫

�

∇�u� · ∇�v�

=
∫

�

ψv +
∫

�

ψ�v�−
∫

�

∂nu v� =
∫

�

(ψ + k)v +
∫

�

(ψ�−∂nu)v�.

Therefore, we deduce that

∫
�

∇�u� · ∇�v�=
∫

�

(ψ� − ∂nu)v� for every (v, v�) ∈ V�

and Lemma 5.1 implies that the same equality holds for every v� ∈ V� , whence

− ��u� = ψ� − ∂nu on �. (5.22)
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As ψ� and ∂nu both belong to L2(�), the regularity theory for elliptic equations (in
fact, its boundary version) implies that u� ∈ H2(�) (see, e.g., [20, Thms. 7.4 and 7.3,
pp. 187–188] or [2, Thm. 3.2, p. 1.79, and Thm. 2.27, p. 1.64]). Coming back to u,
we thus have �u ∈ L2(�) and u|� = u� ∈ H2(�), whence u ∈ H2(�). Finally, as
each of the regularity results we have used corresponds to an estimate for the related
norm, (5.19) holds as well. ��

At this point, we are ready to prove Theorem 2.5. Thanks to Theorem 5.4, it is suffi-
cient to prove that there exists a unique solution to problem (5.11)–(5.13) satisfying the
regularity requirements (2.43)–(2.46). Moreover, once the existence of a unique solu-
tion (q, q�) to (5.12)–(5.13) with the prescribed regularity is established, it suffices to
observe that (5.11) provides a function p that fulfills (2.43). Indeed, (2.44) and (2.57)
implyNq ∈ L2(0, T ; H4(�)) and ∂tNq = N(∂t q) ∈ L2(0, T ; H2(�)). On the other
hand,M(q) is space independent, and its time derivative belongs to L2(0, T ) since it
is the mean value of an element of L2(Q). Hence, we have that p ∈ L2(0, T ; H4(�))

and ∂t p ∈ L2(0, T ; H2(�)).
In the following, we denote pairs belonging to H� by bold letters, writing, for

instance, v in place of (v, v�). From this no confusion will arise. We are going to
present the problem in the form

− d

dt

(
Bq(t), v

)
H�

+V∗
�

〈A(t)q(t), v〉V�
=V∗

�
〈f(t), v〉V�

for a.a. t ∈ (0, T ) and every v ∈ V� (5.23)(
(Bq)(T ), v

)
H�

= (
zT , v

)
H�

for every v ∈ H� (5.24)

with a proper choice of the operators A(t) ∈ L(V�,V∗
�) and B ∈ L(V�,H�), and

of the data f ∈ L2(0, T ;V∗
�) and zT ∈ H�. This means that the following backward

Cauchy problem

− d

dt

(
Bq(t)

)+A(t) q(t) = f(t) for a.a. t ∈ (0, T ), and (Bq)(T ) = zT (5.25)

has to be solved. Problem (5.25) (in fact the equivalent forward problem obtained by
replacing t by T − t) is well known (see [1] for a very general situation that allows
for time dependent and even nonlocal operators). Here, we recall sufficient conditions
that imply those given in [19, Thm. 7.1, p. 70] and thus yield well-posedness in a
proper framework. We can require that

A(t)=A0+�(t) , A0 ∈L(V�,V∗
�),

and �(t) ∈ L(H�,H�) for a.a. t ∈ (0, T );
V∗

�
〈A0v, v〉V�

≥ α ‖v‖2V�
for some α > 0 and every v ∈ V�;

‖�(t)v‖H�
≤ M ‖v‖H�

for some constant M > 0 and every v ∈ H�;
B ∈ L(H�,H�) is symmetric and satisfies

H�

(
Bv, v

)
H�

≥ α ‖v‖2H�
for some α > 0 and every v ∈ V� .
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Moreover, � is (properly) measurable with respect to t . If such conditions hold then,
for every f ∈ L2(0, T ;V∗

�) and zT ∈ H�, problem (5.25) has a unique solution

q ∈ H1(0, T ;V∗
�) ∩ L2(0, T ;V�) ⊂ C0([0, T ];H�) .

Furthermore, the solution q also satisfies

q′ ∈ L2(0, T ;H�) if A0 is symmetric, f ∈ L2(0, T ;H�) and q(T ) ∈ V�.

In our case, we choose

A0 = R� , the Riesz operator (5.18)

�(t)(v, v�) = (
λ(t)v − (λ(t)v)�, λ�(t)v�

)
for a.a. t ∈ (0, T ) and (v, v�) ∈ H�

B(v, v�) = (Nv + v, v�) for every (v, v�) ∈ H�

f(t) := (
ϕQ(t) − (ϕQ(t))�, ϕ�(t)

)
for a.a. t ∈ (0, T )

zT := (
ϕ� − (ϕ�)�, ϕ�

)
.

The choices of A0 and B being clear, the other ones exactly yield what we need, i.e.,

(
�(t)(u, u�), (v, v�)

)
H�

=
∫

�

λ(t) uv +
∫

�

λ�(t) u�v�

for a.a. t ∈ (0, T ) and (u, u�), (v, v�) ∈ H�

V∗
�

〈f(t), (v, v�)〉V�
=

∫
�

ϕQ(t)v +
∫

�

ϕ�(t)v�

for a.a. t ∈ (0, T ) and (v, v�) ∈ V�(
zT , (v, v�)

)
H�

=
∫

�

ϕ�v +
∫

�

ϕ�v� for (v, v�) ∈ H� .

Furthermore, the conditions we have required on the operators are fulfilled. Indeed,

∥∥λ(t)v − (λ(t)v)�
∥∥

H + ‖λ�(t)v�‖H�
≤ c

(‖v‖H + ‖v�‖H�

)

for a.a. t ∈ (0, T ) and every (v, v�) ∈ H�, since the functions λ and λ� are bounded
(see (5.4)). Moreover,B is symmetric and coercive sinceN is symmetric and positive
(see, in particular, (2.58)). Finally, by accounting for (2.27), (5.5)–(5.6), (2.50), we
see that f ∈ L2(0, T ;H�) and q(T ) = (0, 0). Therefore, problem (5.12)–(5.13) has
a unique solution satisfying

(q, q�) ∈ H1(0, T ;H�) ∩ L2(0, T ;V�) and R�(q, q�) ∈ L2(0, T ;H�),

the last one by comparison in (5.25). Then, Lemma 5.5 ensures that q(t) ∈ H2(�)

and q�(t) ∈ H2(�) for a.a. t ∈ (0, T ) and that the estimate

‖q(t)‖H2(�) + ‖q�(t)‖H2(�) ≤ c ‖R�(q(t), q�(t))‖H�
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holds true for a.a. t ∈ (0, T ). This implies q ∈ L2(0, T ; H2(�)) and q� ∈ L2(0, T ;
H2(�)), and the proof is complete. ��
Remark 5.6 Assumption (2.50) can be avoided provided thatwe require less regularity
from the solution to the adjoint problem.More precisely, we keep the regularity related
to the variational structure of (2.47)–(2.49), e.g., we ask for q ∈ H1(0, T ; V ∗) ∩
L2(0, T ; V ), while we replace L2 summability by weighted L2 summability where
spaces of smooth functions on � are involved, e.g., q ∈ L2(0, T ; H2(�)). Namely,
we require that

the functions t �→ (T − t)1/2q(t) and t �→ (T − t)1/2∂t q(t)

belong to L2(0, T ; H2(�)) and to L2(0, T ; H), respectively

and we analogously deal with the other conditions. By doing that, the equivalence
stated in Theorem 5.4 still holds. On the other hand, the derivative q′ of the solution
q to the abstract problem satisfies the right weighted summability that yields the new
requirements without assuming that q(T ) ∈ V�, so that (2.50) is not needed. For the
reader’s convenience, we sketch the formal a priori estimate that yields the mentioned
property of q′ whenever it is replaced by a rigorous argument. For convenience, we
set

u(t) := q(T − t), μ(t) := �(T − t) and g(t) := f(T − t)

and write (5.25) as a forward Cauchy problem for u. Then, we formally test the new
equation by tu′(t) and integrate with respect to time. We simply write ( · , · ) for both
the duality pairing between V∗

� and V� and for the scalar product in H�. We have,
for every t ∈ [0, T ],
∫ t

0

(
Bu′(s), su′(s)

)
ds +

∫ t

0

(
A0u(s), su′(s)

)
ds =

∫ t

0

(
g(s)−μ(s)u(s), su′(s)

)
ds .

As A0 is symmetric and both A0 and B are coercive, we can estimate the left-hand
side from below as follows∫ t

0

(
Bu′(s), su′(s)

)
ds +

∫ t

0

(
A0u(s), su′(s)

)
ds

=
∫ t

0
s
(
Bu′(s), u′(s)

)
ds+ 1

2

∫ t

0

d

ds

{
s
(
A0u(s), u(s)

)}
ds− 1

2

∫ t

0

(
A0u(s), u(s)

)
ds

≥ α

∫ t

0
s
∥∥u′(s)

∥∥2
H�

ds + α

2
t ‖u(t)‖2V�

− c
∫ T

0
‖u(s)‖2V�

ds .

On the other hand, as ‖μ(t)‖L(H�,H�) ≤ M for a.a. t ∈ (0, T ), we also have

∫ t

0

(
g(s) − μ(s)u(s), su′(s)

)
ds

≤ α

2

∫ t

0
s
∥∥u′(s)

∥∥2
H�

ds + c
∫ T

0
s ‖g(s)‖2H�

ds + c
∫ T

0
s ‖u(s)‖2H�

ds .

By combining we infer that
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∫ t

0
s
∥∥u′(s)

∥∥2
H�

ds + t ‖u(t)‖2V�
≤ c

(‖g‖2L2(0,T ;H�)
+ ‖u‖2L2(0,T ;V�)

)
for every t ∈ [0, T ].

As the last norm of u is supposed to be already estimated, we obtain the desired
weighted summability for u′ as well as a weighted boundedness for u in V�, as a
by-product.

6 Necessary Optimality Conditions

In this section, we derive the optimality condition (2.51) stated in Theorem 2.6. We
start from (2.36) and first prove (2.42). We recall the definitions (2.32)–(2.34) of the
spaces X and Y and of the control-to-state mapping S.

Proposition 6.1 Let u� be an optimal control and (y, y�) := S(u�). Then, (2.42)
holds.

Proof This is just due to the chain rule for Fréchet derivatives, as already said in Sect. 2,
andwe just provide some detail. Let S̃ : U → Y×X be given by S̃(u�) := (S(u�), u�).
Then, S̃ is Fréchet differentiable at any u� ∈ U since S is so. Precisely, thanks to
Theorem 4.2, the Fréchet derivative DS̃(u�) acts as follows

DS̃(u�) : h� �→ ([DS(u�)](h�), h�

) = (ξ, ξ�, h�) for h� ∈ X

where (ξ, ξ�, η) is the solution to the linearized problem (2.38)–(2.40) corresponding
to h� . On the other hand, if we see the cost functional (2.28) as a map from Y × X

to R, it is clear that its Fréchet derivative DJ(y, y�, u�) at (y, y�, u�) ∈ Y × X at
(y, y�, u�) ∈ Y × X is given by

[DJ(y, y�, u�)](k, k�, h�) = bQ

∫
Q
(y − zQ)k + b�

∫
�

(y� − z�)k�

+ b�

∫
�

(y(T ) − z�)k(T ) + b�

∫
�

(y(T ) − z�)k�(T ) + b0

∫
�

u�h�

for (k, k�) ∈ Y and h� ∈ X.

Therefore, being J̃ = J ◦ S̃, the chain rule implies that [DJ̃(u�)] maps any h� ∈ X

into

[DJ̃(u�)](h�) = [DJ(S̃(u�)]([DS̃(u�)](h�)
)

= [DJ(S̃(u�)](ξ, ξ�, h�) = [DJ(y, y�, u�)](ξ, ξ�, h�)

= bQ

∫
Q
(y − zQ)ξ + b�

∫
�

(y� − z�)ξ�

+ b�

∫
�

(y(T ) − z�)ξ(T ) + b�

∫
�

(y(T ) − z�)ξ�(T ) + b0

∫
�

u�h�
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where (y, y�) = S(u�) and (ξ, ξ�) has the same meaning as before. Therefore, (2.42)
immediately follows from (2.36). ��

At this point, we are ready to prove Theorem 2.6 on optimality, i.e., the necessary
condition (2.51) for u� to be an optimal control in terms of the solution (p, q, q�) of
the adjoint problem (2.47)–(2.49). We note that it is sufficient to prove the following:
if u� ∈ U, (y, y�) = S(u�), h� ∈ X, (ξ, ξ�, η) is the solution to the linearized
problem (2.38)–(2.40) corresponding to h� , and (p, q, q�) solves the adjoint problem
(2.47)–(2.49) (where one reads (y, y�) in place of (y, y�)), then

∫
�

q�h� =
∫

Q
bQ(y − zQ)ξ +

∫
�

b�(y� − z�)ξ�

+
∫

�

b�(y(T ) − z�)ξ(T ) +
∫

�

b�(y�(T ) − z�)ξ�(T ) . (6.1)

Indeed, once this is proved, we can apply it to any optimal control u� := u� , and
(2.51) follows from the necessary condition (2.42) already established in Proposition
6.1. So, we fix u� ∈ U and h� ∈ X, and write both the linearized problem and the
adjoint problem we are interested in, for the reader’s convenience. All the variational
equations hold for a.a. t ∈ (0, T ), but we avoid writing the time t , for brevity. We
have

∫
�

∂tξ v +
∫

�

∇η · ∇v = 0 (6.2)
∫

�

q v =
∫

�

∇ p · ∇v (6.3)
∫

�

ηv =
∫

�

∂tξ v +
∫

�

∂tξ� v +
∫

�

∇ξ · ∇v +
∫

�

∇�ξ� · ∇�v�

+
∫

�

λ ξ v +
∫

�

(
λ� ξ� − h�

)
v� (6.4)

−
∫

�

∂t
(

p + q
)
v +

∫
�

∇q · ∇v +
∫

�

λ q v

−
∫

�

∂t q� v� +
∫

�

∇�q� · ∇�v� +
∫

�

λ� q� v�

=
∫

�

bQ
(
y − zQ

)
v +

∫
�

b�

(
y� − z�

)
v� . (6.5)

In the above equations, λ := f ′′(y) and λ� := f ′′
� (y�). Moreover, (6.2)–(6.3) hold

for every v ∈ V , while (6.4)–(6.5) are satisfied for every (v, v�) ∈ V. Furthermore,
ξ(0) = 0 and

∫
�

(p+q)(T ) v+
∫

�

q�(T ) v� =
∫

�

b�

(
y(T )−z�

)
v+

∫
�

b�

(
y�(T )−z�

)
v� (6.6)

for every (v, v�) ∈ V. We choose v = p in (6.2), v = η in (6.3), (v, v�) = (q, q�) in
(6.4) and (v, v�) = −(ξ, ξ�) in (6.5). Then, by integrating over (0, T ) all the equalities
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we obtain, we have

∫
Q

∂tξ p +
∫

Q
∇η · ∇ p = 0

∫
Q

q η =
∫

Q
∇ p · ∇η

∫
Q

∂tξ q +
∫

�

∂tξ� q� +
∫

Q
∇ξ · ∇q +

∫
�

∇�ξ� · ∇�q�

+
∫

Q
λ ξ q +

∫
�

(
λ� ξ� − h�

)
q� =

∫
Q

ηq

∫
Q

∂t
(

p + q
)
ξ −

∫
Q

∇q · ∇ξ −
∫

Q
λ q ξ

+
∫

�

∂t q� ξ� −
∫

�

∇�q� · ∇�ξ� −
∫

�

λ� q� ξ�

= −
∫

Q
bQ

(
y − zQ

)
ξ −

∫
�

b�

(
y� − z�

)
ξ� .

At this point, we add the above equalities to each other and just simplify. We obtain

∫
Q

∂tξ (p + q) +
∫

Q
∂t

(
p + q

)
ξ +

∫
�

∂tξ� q� +
∫

�

∂t q� ξ� −
∫

�

h� q�

= −
∫

Q
bQ

(
y − zQ

)
ξ −

∫
�

b�

(
y� − z�

)
ξ� .

By accounting for the Cauchy condition ξ(0) = 0, we can write an equivalent form
as follows

∫
�

(p + q)(T ) ξ(T ) +
∫

�

q�(T ) ξ�(T )

=
∫

�

h� q� −
∫

Q
bQ

(
y − zQ

)
ξ −

∫
�

b�

(
y� − z�

)
ξ� .

At this point, we choose (v, v�) = (ξ(T ), ξ�(T )) in (6.6) and get

∫
�

(p + q)(T ) ξ(T ) +
∫

�

q�(T ) ξ�(T )

=
∫

�

b�

(
y(T ) − z�

)
ξ(T ) +

∫
�

b�

(
y�(T ) − z�

)
ξ�(T ).

By comparison, we conclude that (6.1) holds. This completes the proof of Theorem
2.6. ��
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