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Abstract This paper is concerned with well-posedness and energy decay rates to a
class of nonlinear viscoelastic Kirchhoff plates. The problem corresponds to a class
of fourth order viscoelastic equations of p-Laplacian type which is not locally Lip-
schitz. The only damping effect is given by the memory component. We show that no
additional damping is needed to obtain uniqueness in the presence of rotational forces.
Then, we show that the general rates of energy decay are similar to ones given by the
memory kernel, but generally not with the same speed, mainly when we consider the
nonlinear problem with large initial data.

Keywords Kirchhoff plates · Well-posedness · p-Laplacian · General decay rates

Mathematics Subject Classification 35B35 · 35B40 · 35L75 · 74D99

B M. A. Jorge Silva
marcioajs@uel.br

J. E. Muñoz Rivera
rivera@lncc.br

R. Racke
reinhard.racke@uni-konstanz.de

1 Department of Mathematics, State University of Londrina, Londrina, PR 86057-970, Brazil

2 National Laboratory of Scientific Computation, Petrópolis, RJ 25651-070, Brazil

3 Institute of Mathematics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-909,
Brazil

4 Department of Mathematics and Statistics, University of Konstanz, 78457 Konstanz, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00245-015-9298-0&domain=pdf


166 Appl Math Optim (2016) 73:165–194

1 Introduction

This paper ismotivated bymodels ofKirchhoff plates subject to a viscoelastic damping

utt − σ�utt + μ(0)�2u +
∫ t

−∞
μ′(t − s)�2u(s) ds = F , (1.1)

where σ > 0 is the uniform plate thickness, the kernel μ > 0 corresponds to the
viscoelastic flexural rigidity, and F = F(x, t, u, ut , . . .) represents additional damp-
ing and forcing terms. The unknown function u = u(x, t) represents the transverse
displacement of a plate filament with prescribed history u0(x, t), t ≤ 0. The deriva-
tion of the linear mathematical model (1.1) with F = 0 is given in Lagnese [15] and
Lagnese and Lions [16], by assuming viscoelastic stress-strain laws on an isotropic
material occupying a region of R3 and constant Poisson’s ratio.

Lagnese [15, Chapter 6] studied the behavior of the energy associated to the linear
model (1.1) in a bounded domain � ⊂ R

2, by introducing boundary feedback laws
which induce further dissipation in the system, geometrical descriptions of ∂�, and
also

μ ∈ C2[0,∞), μ(t) > 0, μ′(t) < 0, μ′′(t) ≥ 0, μ(∞) > 0,

see also Lagnese [14]. Muñoz Rivera and Naso [29] considered an abstract model
which encompasses equation (1.1) in the cases F = −ut or else F = �ut . They
showed that the associated semigroup is not exponential stable in the first case (weak
damping) whereas in the second case (strong damping) the corresponding semigroup
is exponential stable. We note that in both casesF introduces an additional dissipation
to the system.

More recently, Jorge Silva and Ma [30,31] investigated the asymptotic behavior
of a N -dimensional system like (1.1) with σ = 0 (without rotational inertia), by
consideringF = �pu− f (u)+h(x)+�ut ,where�pu := div(|∇u|p−2∇u), p ≥ 2.
Then (1.1) becomes to

utt + μ(0)�2u − �pu + f (u) +
∫ t

−∞
μ′(t − s)�2u(s) ds − �ut = h(x),

In such case the strongdampingplays an important role to obtain globalwell-posedness
(mainly uniqueness) in higher dimensions N ≥ 3 due to the presence of the p-
Laplacian term �pu.

If we take u(·, t) = 0 for t ≤ 0, μ(0) = 1 and g(t) = −μ′(t), then (1.1) can be
rewritten as follows,

utt − σ�utt + �2u −
∫ t

0
g(t − s)�2u(s) ds = F . (1.2)

Barreto et al. [4] investigated problem (1.2) in a bounded domain � ⊂ R
2 with

mixed boundary condition, suitable geometrical hypotheses on ∂�, and F = 0. They
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established that the energy decays to zero with the same rate of the kernel g such as
exponential and polynomial decay. To do so in the second case they made assumptions
on g, g′ and g′′ which means that g ≈ (1 + t)−p for p > 2. Then they obtained the
same decay rate for the energy. However, their approach can not be applied to prove
similar results for 1 < p ≤ 2.

Concerning N -dimensional systems which cover the system (1.2) with σ = 0,
both Cavalcanti et al. [7] and Andrade et al. [2] investigated the global existence,
uniqueness and stabilization of energy. By taking a bounded or unbounded open set
� and F = −M

(∫
�

|∇u| dx) ut as a kind of non-degenerated weak damping, where
M(s) > m0 > 0 for all s ≥ 0, the authors showed in [7] that the energy goes to zero
exponentially provided that g goes to zero at the same form. In [2] the authors studied
the same concepts by considering a bounded domain and F = �pu − f (u) + �ut ,
but replacing the fourth order memory term in (1.2) by a weaker memory of the form∫ t
0 g(t − s)�u(s) ds. It is worth noting that in both cases, respectively, the weak or
strong damping constitutes an important role to obtain uniqueness and energy decay.
We also refer to the paper by Alabau-Boussouira et al. [1] where exponential and
polynomial decay were obtained for (1.2) by taking σ = 0 and F of lower order of
type F = ∇h(u), but for two different boundary conditions.

If we consider (1.2) with the Laplace operator instead of the bi-harmonic one we
get the model

utt − σ�utt − �u +
∫ t

0
g(t − s)�u(s) ds = F , (1.3)

which corresponds to a viscoelastic wave equation. Equation (1.3) and related quasi-
linear problems with |ut |ρutt instead, ρ > 0, have been extensively studied by many
researches with possible external forcesF like source f1(u) and damping f2(ut ). See
for instance [5,6,12,13,18,19,21–23,25,32,33] and the references therein.

In 2008 Messaoudi [21,22] established a general decay of the energy solution to
a viscoelastic equation corresponding to (1.3) with σ = 0, by taking F = 0 and
F = |u|γ u, γ > 0. More precisely, he considered the following decay condition on
the memory kernel

g′(t) ≤ −ξ(t)g(t), ∀ t > 0, (1.4)

under proper conditions on ξ(t) > 0, and proved general decay of energy such as

E(t) ≤ c0 e
−c1

∫ t
0 ξ(s) ds, ∀ t ≥ 0, (1.5)

for some c0, c1 > 0 depending on the weak initial data. Ever since several authors
have used this condition to obtain arbitrary decay of energy for problems related to
(1.3). See for instance the papers by Han and Wang [12,13], Liu [18], Liu and Sun
[20], Park and Park [25]. It is worth pointing that in all papers mentioned above when
authors deal with nonlinear systems then c1 is a proportional constant to E(0) (denoted
here by c1 ∼ E(0)), but it is not specified how this occurs. See also Messaoudi et
al. [17,24], Tatar [32] and Wu [33] for other kinds of interesting arbitrary decay rates
in viscoelastic wave models related to (1.3). More recently, sharp decay rates for a
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viscoelastic von Karman plate model were shown in Cavalcanti et al. [8] when the
initial energy is taken in bounded sets of the weak phase space.

There are also previous and recent works which encompass viscoelastic wave equa-
tions in a history framework and only employ memory dissipation to treat asymptotic
behavior of solutions. We refer, for instance, the papers by Dafermos [9], Giorgi et
al. [11], Muñoz Rivera and Salvatierra [28], and Pata [26,27], Fabrizio et al. [10] and
Araújo [3].

Our main goal in the present paper is to discuss the well-posedness and the
asymptotic behavior of energy to the following nonlinear viscoelastic Kirchhoff plate
equation

utt − σ�utt + �2u − divF(∇u) −
∫ t

0
g(t − s)�2u(s) ds = 0 in � ×R

+, (1.6)

with simply supported boundary condition

u = �u = 0 on ∂� × R
+, (1.7)

and initial conditions

u( · , 0) = u0 and ut ( · , 0) = u1 in �, (1.8)

where � is a bounded domain of RN with smooth boundary ∂�, σ ≥ 0, F : RN →
R

N is a vector field and g : [0,∞) → R
+ is a real function. The hypotheses are given

later.
Essentially, we consider the model (1.2) under the presence of a nonlinear pertur-

bation of lower order F = divF(∇u) which is not a locally Lipschitz operator on
the weak phase spaces H and W , whose definitions are given later (see (2.1) in Sect.
2). Our main results are Theorems 2.3, 2.8 and 2.10. Making a comparison with the
above related papers on the viscoelastic plate model (1.2) our main results yield the
following improvements and contributions:

1. The only damping effect is caused by the memory term. Besides, our condition on
the kernel g like (1.4) is less restrictive than those used in [2,4,7,29]. Nevertheless,
our general decay of energy [see (2.16) and (2.19)] generalizes all results on
stability obtained in [2,4,7,29]. We also specify how the decay rate depends on
the initial data.

2. The p-Laplacian term �pu is considered as a particular case. We show that in
the presence of the rotational inertia term (σ > 0) the well-posedness of (1.6)–
(1.8) is achieved without strong damping term. Moreover, for σ ≥ 0 all results
on stability are shown by exploiting only the memory dissipation. No additional
weak or strong dissipation is necessary. Therefore our results improve those ones
given in [2,7,30].

3. No furtherC2-smoothness is imposed on the relaxation function g as regarded e.g.
in [4,7]. Moreover, the decay rate (1 + t)−p holds for every p > 1 when g has a
polynomial behavior. We note that the case 1 < p ≤ 2 was not approached in [4].
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4. The parameter σ is related to the uniform plate thickness and the results on stability
hold by moving σ ∈ [0,∞) uniformly. Further, there is no result by now which
treats the asymptotic behavior for plates with perturbation of p-Laplacian type just
using dissipation from the memory. We also exemplify other interesting types of
decay rates of energy beyond exponential and polynomial ones.

Remark 1.1 It is worth pointing out that the parameter σ changes the character of the
system (1.6) depending whether it is null or not. In the case of choosing σ > 0, the
term −σ�utt acts as a regularizing term by allowing us to consider stronger solutions
and uniqueness (see Theorem 2.3). This is possible because the rotational inertia term
gives a way to control the nonlinear perturbation divF(∇u). On the other hand, if we
consider σ = 0 in (1.6) then we can also check the existence of weak solutions (see
Theorem 2.10 (i)) but uniqueness and stronger solutions are not provided once the
term divF(∇u) spoils the estimates along with lack of regularity for ut . In spite of
having two different systems according to parameter σ all results on stability hold in
both cases [see Theorems 2.8 and 2.10 (i i)]. In the second case (when σ = 0) the
stability is obtained first for approximate solutions and then for weak solutions by
taking lim inf on the approximate energy.

The rest of the paper is organized as follows. In Sect. 2 we fix some notations and
present our assumptions and main results. Section 3 is devoted to show that problem
(1.6)–(1.8) is well posed. Section 4 is dedicated to the proof of the energy decay.
Finally, Sect. 4 consists in an appendix where we first give some examples for different
rates of decay. Then we provide some properties and examples for the vector field F .

2 Assumptions and Main Results

We begin by introducing the following Hilbert spaces

V0 = L2(�), V1 = H1
0 (�), V2 = H2(�) ∩ H1

0 (�),

and

V3 = {u ∈ H3(�) ∩ H1
0 (�); �u ∈ H1

0 (�)},

with norms

‖u‖V0 = ‖u‖2, ‖u‖V1 = ‖∇u‖2, ‖u‖V2 = ‖�u‖2, and ‖u‖V3 = ‖∇�u‖2,

respectively. As usual, ‖ · ‖p means the L p-norm as well as (·, ·) denotes either the
L2-inner product or else a duality pairing between a Banach space V and its dual V ′.
The constants λ0, λ1, λ2, λ > 0 represent the embedding constants

λ0‖u‖22 ≤ ‖∇u‖22, λ1‖u‖22 ≤ ‖�u‖22, λ2‖∇u‖22 ≤ ‖�u‖22, λ = 1

λ1
+ 1

λ2
,
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for u ∈ V2. We also consider the following phase spaces with their respective norms

H = V2 × V1 with ||(u, v)||2H = ||�u||22 + ||∇v||22,
H1 = V3 × V2 with ||(u, v)||2H1

= ||∇�u||22 + ||�v||22,
W = V2 × V0 with ||(u, v)||2W = ||�u||22 + ||v||22. (2.1)

2.1 The Problem with Rotational Inertia

Let us first consider (1.6) with σ > 0. Without loss of generality we can take σ = 1.
Setting I = [0, T ] with T > 0 arbitrary, weak solutions are defined as follows.

Given initial data (u0, u1) ∈ H, we call a functionU := (u, ut ) ∈ C(I,H) a weak
solution of the problem (1.6)–(1.8) on I if U (0) = (u0, u1) and, for every ω ∈ V2,

d

dt

[
(ut (t), ω) + (∇ut (t),∇ω)

]
+ (�u(t),�ω)

+ (F(∇u(t)),∇ω) −
∫ t

0
g(t − s)(�u(s),�ω) ds = 0 a.e. in I.

The energy corresponding to the problem with rotational inertia is defined as

E(t) = 1

2
‖ut (t)‖22+

1

2
‖∇ut (t)‖22+

h(t)

2
‖�u(t)‖22+

1

2
(g��u)(t)+

∫
�

f (∇u(t)) dx,

(2.2)
where h(t) is given below in (2.7) and

(g�w)(t) :=
∫ t

0
g(t − s)‖w(t) − w(s)‖22ds.

Now let us precise the hypotheses on g and F .

Assumption A.1 The C1-function g : [0,∞) → R
+ satisfies

l := 1 −
∫ ∞

0
g(s) ds > 0 and g′(t) ≤ 0, ∀ t ≥ 0. (2.3)

Assumption A.2 F : RN → R
N is a C1-vector field given by F = (F1, . . . , FN )

such that

|∇Fj (z)| ≤ k j
(
1 + |z|(p j−1)/2

)
, ∀ z ∈ R

N , (2.4)

where, for every j = 1, . . . , N , we consider k j > 0 and p j satisfying

p j ≥ 1 if N = 1, 2 and 1 ≤ p j ≤ N + 2

N − 2
if N ≥ 3. (2.5)
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Moreover, F is a conservative vector field with F = ∇ f , where f : RN → R is a
real valued function satisfying

− α0 − αl

2
|z|2 ≤ f (z) ≤ F(z) · z + αl

2
|z|2, ∀ z ∈ R

N , (2.6)

with α0 ≥ 0 and α ∈ [0, λ2).
Remark 2.1 From the choice of l and α we have

h(t) := 1 −
∫ t

0
g(s) ds ≥ l, t ≥ 0, and β := l

(
1 − α

λ2

)
> 0. (2.7)

Also, applying (2.5) it follows from Sobolev embedding that

V2 ↪→ W
1,p j+1
0 (�), ∀ j = 1, . . . , N . (2.8)

Thereby, the constants μp1 , . . . , μpN > 0 represent the embedding constants for

‖∇u‖p j+1 ≤ μp j ‖�u‖2, j = 1, . . . , N .

Remark 2.2 Without loss of generality we can consider F(0) = 0. Indeed, if
F(0) = F0 �= 0, then we define G(z) = F(z) − F0 so that G satisfies G(0) = 0,
|∇G j (z)| = |∇Fj (z)|, j = 1, . . . , N , and G(z) = ∇ f̃ (z), where f̃ (z) =
f (z) − F0 · z. Also, it is easy to check that f̃ and G(z) satisfy (2.6) for some con-
stants α̃0 ≥ 0, α̃ ∈ [0, λ2). Therefore, G is a C1-conservative vector field satisfying
(2.4)–(2.6). In the Sect. 4 we give some examples of vector fields satisfying such
properties.

Our first two main results establish the Hadamard well-posedness of (1.6)–(1.8)
with respect to weak solutions, and a general decay rate of the energy.

Theorem 2.3 (Well-Posedness) Under Assumptions A.1 and A.2 we have:

(i) If (u0, u1) ∈ H1, then problem (1.6)–(1.8) has a stronger weak solution satisfying

u ∈ L∞
loc(R

+,V3), ut ∈ L∞
loc(R

+,V2), (I − �)utt ∈ L∞
loc(R

+,V ′
1). (2.9)

(ii) If (u0, u1) ∈ H, then problem (1.6)–(1.8) has a weak solution satisfying

u ∈ L∞
loc(R

+,V2), ut ∈ L∞
loc(R

+,V1), (I − �)utt ∈ L∞
loc(R

+,V ′
2). (2.10)

(iii) In both cases we have continuous dependence on initial data inH, that is, given
U0 = (u0, u1), V0 = (v0, v1) ∈ H, let us consider the corresponding weak
solutions U = (u, ut ), V = (v, vt ) of the problem (1.6)–(1.8). Then

‖U (t) − V (t)||H ≤ CT ||U0 − V0||H, ∀ t ∈ I, (2.11)
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for some constant CT = C(‖U0‖H, ‖V0‖H, T ) > 0. In particular, problem
(1.6)–(1.8) has a unique weak solution.

Remark 2.4 The proof of existence is given by the Faedo-Galerkin method. We first
prove the existence of stronger (weak) solutions and then the existence of a weak
solution is given by density arguments. The uniqueness follows as a consequence of
the continuous dependence of stronger and weak solutions. The proofs are given in
Sect. 3.

Lemma 2.5 Under the assumptions of Theorem 2.3 the energy E(t) satisfies

d

dt
E(t) = 1

2
(g′��u)(t) − g(t)

2
‖�u(t)‖22, ∀ t > 0. (2.12)

Remark 2.6 From conditions (2.3) and (2.12) it follows that t �→ E(t) is nonincreas-
ing. Since g(t) ≤ g(0), for each t ≥ 0, if we take g(0) = 0 then g, g′ ≡ 0 and Lemma
2.5 implies that E(t) is constant. That is, the system (1.6)–(1.8) is conservative. This
motivates us to define the following decay condition on the memory kernel g(t).

Assumption A.3 g(0) > 0, and there exist a constant ξ0 ≥ 0 and a C1-function
ξ : [0,∞) → R

+ such that

g′(t) ≤ −ξ(t)g(t), ∀ t > 0, (2.13)

and

ξ(t) > 0, ξ ′(t) ≤ 0,

∣∣∣∣ξ
′(t)

ξ(t)

∣∣∣∣ ≤ ξ0, ∀ t ≥ 0. (2.14)

Remark 2.7 The first two conditions in (2.14) allow us to conclude that

ξ(t) ≤ ξ(0) := ξ1 > 0, ∀ t ≥ 0.

Also, condition (2.13) implies that the memory kernel has the uniform decay

g(t) ≤ g(0)e− ∫ t
0 ξ(s) ds, ∀ t ≥ 0. (2.15)

Then our second main result is given by the following

Theorem 2.8 Under the assumptions of Theorem 2.3, let (u, ut ) be the weak solution
of problem (1.6)–(1.8) with given initial data (u0, u1) ∈ H. If we additionally assume
Assumption A.3 and α0 = 0 in (2.6), then

E(t) ≤ c e−γ
∫ t
0 ξ(s) ds, ∀ t ≥ 0, (2.16)

where c = 3E(0) eγ
∫ 1
0 ξ(s) ds > 0, and

γ ∼ k

1 + [E(0)] p−1
2

with k > 0 and p =
⎧⎨
⎩

max
j=1,...,N

{p j } if E(0) ≥ 1,

min
j=1,...,N

{p j } if E(0) < 1.
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Remark 2.9 Theorem 2.8 is proved in Sect. 4. Concerning to estimate (2.16) it is
worth pointing out two issues: (i) when every component of F = (F1, . . . , FN ) is
linear, namely, when p1, . . . , pN = 1 in (2.4) and so p = 1, then the general estimate
(2.16) is similar to the decay of the memory kernel g and provides us several kinds
of decay according to the feature of ξ(t) independently of the size of the initial data;
(i i) otherwise, in the presence of the nonlinear perturbation F , then estimate (2.16)
can be very slow for large initial data even if the memory kernel g decays quickly. In
the Sect. 4 we consider some concrete examples for function ξ .

2.2 The Problem Without Rotational Inertia

Let us now consider (1.6) with σ = 0. Let us also take I = [0, T ] with T > 0.
Given initial data (u0, u1) ∈ W , we say a function U := (u, ut ) ∈ C(I,W) is a

weak solution of (1.6)–(1.8) on I if U (0) = (u0, u1) and, for every ω ∈ V2,

d

dt
(ut (t), ω) + (�u(t),�ω) + (F(∇u(t)),∇ω)

−
∫ t

0
g(t − s)(�u(s),�ω) ds = 0 a.e. in I.

Now the energy associated to the problem without rotational inertia is given by

E(t) = 1

2
‖ut (t)‖22 + h(t)

2
‖�u(t)‖22 + 1

2
(g��u)(t) +

∫
�

f (∇u(t)) dx . (2.17)

Our third main result is the following theorem.

Theorem 2.10 Under Assumptions A.1 and A.2, we have:

(i) If (u0, u1) ∈ W , then problem (1.6)–(1.8) has a weak solution in the class

u ∈ L∞
loc(R

+,V2), ut ∈ L∞
loc(R

+,V0), utt ∈ L∞
loc(R

+,V ′
2). (2.18)

(ii) Besides, if Assumption A.3 holds and α0 = 0 in (2.6), then E(t) also satisfies

E(t) ≤ c e−γ
∫ t
0 ξ(s) ds, ∀ t ≥ 0, (2.19)

where c > 0 and γ > 0 are given in terms of E(0) as in Theorem 2.8.

Remark 2.11 To prove Theorem 2.10 (i) one also uses the Faedo–Galerkin method.
Only one a priori estimate is necessary to get a weak solution satisfying (2.18). Since
we do not have regularity for ut the estimate (2.19) is shown first for Galerkin’s
approximate solutions. Then the proof of Theorem 2.10 (ii) will hold true by passing
the lim inf on the Galerkin’s approximate energy. The details of the proof are very
similar to those ones used in the proofs of Theorems 2.3 and 2.8. Thus we omit them
here but an idea is presented in Remarks 3.2 and 4.6.
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3 Well-Posedness

In this sectionweproveTheorem2.3.We startwith the following approximate problem

(untt (t), ω j ) + (∇untt (t),∇ω j ) + (�un(t),�ω j ) (3.1)

+ (
F(∇un(t)),∇ω j

) −
∫ t

0
g(t − s)(�un(s),�ω j ) ds = 0,

un(0) = un0 and unt (0) = un1, (3.2)

for j = 1, . . . , n, which has a local solution

un(t) =
n∑
j=1

y jn(t)ω j ∈ [ω1, . . . , ωn],

on [0, tn), n ∈ N, given by ODE theory, where (ω j ) j∈N is an orthonormal basis in V0

given by eigenfunctions of �2 with boundary condition (1.7). The a priori estimates
below imply that the local solution can be extended to the interval [0, T ] and allow us
to concluded the existence of a weak solution.

Proof of Theorem 2.3 (i). Let us take regular initial data (u0, u1) ∈ H1 := V3 × V2.
Then we consider the approximate problem (3.1)–(3.2) with

un0 → u0 in V3 and un1 → u1 in V2. (3.3)

A Priori Estimate I Replacing w j by unt (t) in (3.1) and since it hold

∫ t

0
g(t − s)(�un(s),�unt (t)) ds

= −1

2

d

dt

{(
g��un

)
(t) −

(∫ t

0
g(s) ds

)
‖�un(t)‖22

}

+ 1

2

(
g′��un

)
(t) − 1

2
g(t)‖�un(t)‖22, (3.4)

and

∫
�

F(∇un(t)) · ∇unt (t) dx =
∫

�

∇ f (∇un(t)) · ∇unt (t) dx

= d

dt

∫
�

f (∇un(t)) dx, (3.5)

it follows that

d

dt
En(t) = 1

2

(
g′��un

)
(t) − 1

2
g(t)‖�un(t)‖22, t > 0, (3.6)
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where

En(t) = 1

2
‖unt (t)‖22 + 1

2
‖∇unt (t)‖22 + h(t)

2
‖�un(t)‖22

+ 1

2
(g��un)(t) +

∫
�

f (∇un(t)) dx .

From (2.7) and first condition in (2.6) we get

E(t) + α0|�| ≥ 1

2
‖∇unt (t)‖22 + β

2
‖�un(t)‖22 ≥ 0,

Besides, assumption (2.3) along with (3.6) imply that En(t) ≤ En(0). Consequently,

1

2
‖∇unt (t)‖22 + β

2
‖�un(t)‖22 ≤ En(t) + α0|�| ≤ En(0) + α0|�|.

From (3.3), second condition in (2.6), (4.28) and Hölder’s inequality we conclude

‖∇unt (t)‖22 + ‖�un(t)‖22 ≤ M1, ∀ t ∈ [0, T ], ∀ n ∈ N, (3.7)

where M1 = M1(‖∇u1‖2, ‖�u0‖2, |�|) > 0.

A Priori Estimate II Replacing w j by −�unt (t) in (3.1), since (3.4) holds with ∇�

in the place of �, and also

∫
�

F(∇un(t)) · ∇�unt (t) dx = d

dt

∫
�

F(∇un(t)) · ∇�un(t) dx + JF ,

with JF given by

JF = −
∫

�

[(∇F1(∇un(t)) · ∇unt (t), . . . ,∇FN (∇un(t)) · ∇unt (t)
)] · ∇�un(t) dx,

then we infer

d

dt
Fn(t) = 1

2

(
g′�∇�un

)
(t) − 1

2
g(t)‖∇�un(t)‖22 + JF ≤ JF , t > 0, (3.8)

where

Fn(t) = 1

2
‖∇unt (t)‖22 + 1

2
‖�unt (t)‖22 + h(t)

2
‖∇�un(t)‖22 + 1

2

(
g�∇�un

)
(t) − IF

with

IF =
∫

�

F(∇un(t)) · ∇�un(t) dx .
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Let us estimate the right hand side of (3.8). Using assumption (2.4), generalized
Hölder inequality, and (2.8) we get

|JF | ≤
N∑
j=1

∫
�

|∇Fj (∇un(t))| |∇unt (t)| |∇�un(t)| dx

≤
N∑
j=1

k j

∫
�

(
1 + |∇un(t)|(p j−1)/2

)
|∇unt (t)| |∇�un(t)| dx

≤
N∑
j=1

k jμp j

(
|�|

p j−1
2(p j+1) + ‖∇un(t)‖

p j−1
2

p j+1

)
‖�unt (t)‖2‖∇�un(t)‖2.

From estimate (3.7) and using again (2.8) we obtain

N∑
j=1

k jμp j

(
|�|

p j−1
2(p j+1) + ‖∇un(t)‖

p j−1
2

p j+1

)
≤ C < ∞.

From this and Young’s inequality there exists a constantC1 = C1 (||∇u1||2, ||�u0||2)
> 0 such that

|JF | ≤ C1

(
‖�unt (t)‖22 + ‖∇�un(t)‖22

)
. (3.9)

Inserting (3.9) in (3.8) and integrating from 0 to t ≤ T , yields

Fn(t) ≤ Fn(0) + C1

∫ t

0

(
‖�unt (s)‖22 + ‖∇�un(s)‖22

)
ds, t ≥ 0. (3.10)

On the other hand, from (4.28) in the appendix with F(0) = 0 and Hölder’s
inequality, we have

|IF | ≤
∫

�

|F(∇un(t))| |∇�un(t)| dx

≤ K
N∑
j=1

∫
�

(
|∇un(t)| + |∇un(t)|(p j+1)/2

)
|∇�un(t)| dx

≤ K

⎛
⎝N‖∇un(t)‖2 +

N∑
j=1

‖∇un(t)‖
p j+1
2

p j+1

⎞
⎠ ‖∇�un(t)‖2.

Moreover, the estimates (3.7) and (2.8) imply

K

⎛
⎝N‖∇un(t)‖2 +

N∑
j=1

‖∇un(t)‖
p j+1
2

p j+1

⎞
⎠ ≤ C < ∞.
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Using Young’s inequality there exists a constant C2 = C2 (||∇u1||2, ||�u0||2) > 0
such that

|IF | ≤ C2 + l

4
‖∇�un(t)‖22.

Since h(t) ≥ l, then

h(t)

2
‖∇�un(t)‖22 − IF ≥ l

4
‖∇�un(t)‖22 − C2,

and, consequently,

l

4
‖�unt (t)‖22 + l

4
‖∇�un(t)‖22 ≤ Fn(t) + C2. (3.11)

Combining (3.10) and (3.11) we arrive at

‖�unt (t)‖22 + ‖∇�un(t)‖22
≤ 4

l
(C2 + Fn(0)) + 4C1

l

∫ t

0

(
‖�unt (s)‖22 + ‖∇�un(s)‖22

)
ds.

Taking into account (3.3) and applying Gronwall’s inequality, we finally conclude

‖�unt (t)‖22 + ‖∇�un(t)‖22 ≤ M2, ∀ t ∈ [0, T ], ∀ n ∈ N, (3.12)

where M2 = M2(||�u1||2, ||∇�u0||2, |�|, T ) > 0.
The estimates (3.7) and (3.12) are sufficient to pass to the limit in the approximate

problem (3.1)–(3.2) and to obtain a stronger weak solution

(u, ut ) ∈ C ([0, T ],H) ∩ L∞(0, T ;H1), T > 0, (3.13)

satisfying

(I − �)utt = −�2u + divF(∇u) +
∫ t

0
g(t − s)�2u(s) ds in L∞ (

0, T ;V ′
1

)
.

(3.14)
This finishes the proof of the existence of regular weak solutions. ��

Remark 3.1 Unless for the termwhich involves divF(∇u), the limit on the other terms
in the approximate system can be done in a usual way. With respect to this term we
only need to apply estimates (3.7) and (4.27) along with the Aubin–Lions Lemma.
Then it will hold later in the case of weak solutions, see for instance [2,30]. ��
Proof of Theorem 2.3 (iii) (stronger weak solutions) We first show that solution in
(3.13) satisfies the continuous dependence property (2.11).
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Let us consider two stronger weak solutions U = (u, ut ), V = (v, vt ) of the
problem (1.6)–(1.8) corresponding to initial dataU0 = (u0, u1), V0 = (v0, v1) ∈ H1,
respectively. By settingw = u−v, then function (w,wt ) = U−V solves the equation

wt t − �wt t + �2w −
∫ t

0
g(t − s)�2w(s) ds = divF(∇u) − divF(∇v) (3.15)

in L∞ (
0, T ;V ′

1

)
, with initial data (w(0), wt (0)) = U0 − V0.

Sincewt (t) ∈ V2 ↪→ V1, then multiplying Eq. (3.15) bywt (t) and integrating over
�, we get

d

dt
W (t) = 1

2

(
g′��w

)
(t) − 1

2
g(t)‖�w(t)‖22 + LF ≤ LF , t > 0, (3.16)

where

W (t) = 1

2
‖wt (t)‖22 + 1

2
‖∇wt (t)‖22 + h(t)

2
‖�w(t)‖22 + 1

2
(g��w)(t), t ≥ 0,

and

LF = −
∫

�

[F(∇u(t)) − F(∇v(t))] · ∇wt (t) dx .

Estimate (4.27) from the appendix, the generalized Hölder inequality, and (2.8)
imply

|LF | ≤
∫

�

|F(∇u(t)) − F(∇v(t))| |∇wt (t)| dx

≤K
N∑
j=1

∫
�

(
1 + |∇u(t)|(p j−1)/2 + |∇v(t)|(p j−1)/2

)
|∇w(t)| |∇wt (t)| dx

≤K
N∑
j=1

μp j

(
|�|

p j−1
2(p j+1) +‖∇u(t)‖

p j−1
2

p j+1+‖∇v(t)‖
p j−1
2

p j+1

)
‖�w(t)‖2‖∇wt (t)‖2.

From (2.8) and (3.13) we obtain

K
N∑
j=1

μp j

(
|�|

p j−1
2(p j+1) + ‖∇u(t)‖

p j−1
2

p j+1 + ‖∇v(t)‖
p j−1
2

p j+1

)
≤ C < ∞,

andmakinguseofYoung inequality there exists a constantC3=C3 (||∇u1||2, ||�u0||2)
> 0 such that

|LF | ≤ C3

(
‖�w(t)‖22 + ‖∇wt (t)‖22

)
. (3.17)
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Inserting (3.17) into (3.16) and integrating from 0 to t ≤ T , one has

W (t) ≤ W (0) + C3

∫ t

0

(
‖�w(s)‖22 + ‖∇wt (s)‖22

)
ds, t ≥ 0. (3.18)

On the other hand it is easy to check that

‖�w(t)‖22 + ‖∇wt (t)‖22 ≤ 2

l
W (t), t ≥ 0, (3.19)

and

W (0) ≤ 1

2

(
1 + 1

λ0

)(
‖�w(0)‖22 + ‖∇wt (0)‖22

)
. (3.20)

Combining (3.18)–(3.20) and applying Gronwall’s inequality we conclude

(
‖�w(t)‖22 + ‖∇wt (t)‖22

)
≤ C2

T

(
‖�w(0)‖22 + ‖∇wt (0)‖22

)
, ∀ t ∈ [0, T ],

(3.21)
for some constant CT = C(‖U0‖H, ‖V0‖H, T ) > 0. This shows that the estimate
(2.11) is guaranteed for regular solutions since we have (w,wt ) = U − V . ��
Proof of Theorem 2.3 (i i) Let us take initial data (u0, u1) ∈ H. Then there exists a
sequence (un0, u

n
1) ∈ H1 such that

un0 → u0 in V2 and un1 → u1 in V1. (3.22)

For each regular initial data (un0, u
n
1), n ∈ N, there exists a regular solution (un, unt )

satisfying (3.13)–(3.14). Taking the multiplier unt (t) in (3.14) and proceeding analo-
gously as in (3.4)–(3.6) then estimate (3.7) holds true. This implies

(un, unt )
∗
⇀ (u, ut ) in L∞(0, T ;H). (3.23)

Besides, if we considerm, n ∈ N, m ≥ n, andw = um −un , then function (w,wt )

satisfies

wt t − �wt t + �2w −
∫ t

0
g(t − s)�2w(s) ds = divF(∇um) − divF(∇un)

in L∞ (
0, T ;V ′

1

)
, with initial data (w(0), wt (0)) = (um0 − un0, u

m
1 − un1). Taking the

multiplierwt (t) and using analogous arguments as given in (3.16)–(3.20), the estimate
(3.21) also holds. This means that

‖�(um(t) − un(t))‖22 + ‖∇(umt (t) − unt (t))‖22
≤ C

(
‖�(um0 − un0)‖22 + ‖∇(um1 − un1)‖22

)
,
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for any t ∈ [0, T ], and some constant C = C(‖(u0, u1)‖H, T ) > 0. From (3.13) and
(3.22), and since C is a constant depending only on the initial data inH, we infer

(un, unt ) → (u, ut ) in C([0, T ],H). (3.24)

Finally, we note that the limits (3.23) and (3.24) are enough to pass to the limit in the
approximate problem (3.1)–(3.2) and to obtain aweak solution (u, ut ) ∈ C ([0, T ],H)

satisfying (2.10) and

(I − �)utt = −�2u + divF(∇u) +
∫ t

0
g(t − s)�2u(s) ds in L∞ (

0, T ;V ′
2

)
.

This concludes the proof on existence of weak solutions. ��
Remark 3.2 The proof of Theorem 2.10 (i) can be concluded by using similar argu-
ments, namely, there exists a sequence of solutions to the approximate problem
(3.1)–(3.2) without rotational inertia term satisfying

un
∗
⇀ u in L∞(0, T ;V2),

unt
∗
⇀ ut in L∞(0, T ;V0),

un → u in L2(0, T ;V1), (3.25)

where we replace (3.3) by

un0 → u0 in V2 and un1 → u1 in V0. (3.26)

Thereby, we can pass the limit on the corresponding approximate problem to obtain

utt = −�2u + divF(∇u) +
∫ t

0
g(t − s)�2u(s) ds in L∞ (

0, T ;V ′
2

)
.

��
Proof of Theorem 2.3 (i i i) (weak solutions) Given initial data U0 = (u0, u1),
V0 = (v0, v1) ∈ H, let us consider the corresponding initial regular data Un

0 =
(un0, u

n
1), V

n
0 = (vn0 , v

n
1 ) ∈ H1 such that

(Un
0 , V n

0 ) → (U0, V0) in H × H, (3.27)

and the respective regular solutions Un = (un, unt ), V
n = (vn, vnt ) converging to the

weak solutions U = (u, ut ), V = (v, vt ) as in (3.24), namely

(Un, V n) → (U, V ) in C([0, T ],H × H). (3.28)

Since (2.11) holds for stronger weak solutions we have

‖Un(t) − V n(t)||H ≤ CT ||Un
0 − V n

0 ||H, t ∈ [0, T ], n ∈ N, (3.29)

for some constant CT = C(‖U0‖H, ‖V0‖H, T ) > 0.
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Therefore, (2.11) is given for weak solutions after passing (3.29) to the limit when
n → ∞ and applying (3.27)–(3.28). In particular, we have uniqueness of solution in
both cases. This completes the proof of Theorem 2.3. ��

4 Uniform Decay of the Energy

Our methods on stability are similar to (but not equal to) those for viscoelastic
wave equations, see for instance [13,18,21,22,25,32]. The proofs of Lemma 2.5 and
Theorem 2.8 are given first for regular solutions. Then by standard density arguments
the conclusion of Theorem 2.8 also holds for weak solutions.
Proof of Lemma 2.5 By taking the multiplier ut with (1.6) and using the identities
(3.4)–(3.5) for the solution, then the energy defined in (2.2) satisfies (2.12). Therefore,
the proof of Lemma 2.5 follows readily. ��

Before proving Theorem 2.8 we need to state some technical lemmas.

Lemma 4.1 Under the assumptions of Theorem 2.3 we have

d

dt
E(t) ≤ 1

2
(g′��u)(t) ≤ 0, ∀ t > 0. (4.1)

Proof Inequality (4.1) is an immediate consequence of Lemma 2.5. ��
Let us first define the functionals

φχ(t) =
∫

�

(∫ t

0
g(t − s)|χ(t) − χ(s)| ds

)2

dx,

ψχ(t) =
∫

�

(
−

∫ t

0
g′(t − s)|χ(t) − χ(s)| ds

)2

dx,

ζχ (t) =
∫

�

(∫ t

0
g(t − s)|χ(s)| ds

)2

dx .

Lemma 4.2 Under the assumptions of Theorem 2.3 we have:

(a) φu(t) ≤ (1 − l)

λ1
(g��u)(t), ∀ t ≥ 0.

(b) φ∇u(t) ≤ (1 − l)

λ2
(g��u)(t), ∀ t ≥ 0.

(c) φ�u(t) ≤ (1 − l)(g��u)(t), ∀ t ≥ 0.

(d) ψu(t) ≤ g(0)

λ1
(−g′��u)(t), ∀ t ≥ 0.

(e) ψ∇u(t) ≤ g(0)

λ2
(−g′��u)(t), ∀ t ≥ 0.

(f) ζ�u(t) ≤ 2(1 − l)(g��u)(t) + 2(1 − l)2‖�u(t)‖22, ∀ t ≥ 0.

Proof To prove the items (a)–(e) it is enough to apply Hölder’s inequality along with
the embeddings V2 ↪→ V1 ↪→ V0 and the first condition in (2.7). Moreover, from (2.7)
and item (c) of Lemma 4.2, we prove the item ( f ) as follows.
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ζ�u(t) ≤
∫

�

(∫ t

0
g(t − s)

(|�u(t) − �u(s)| + |�u(t)|) ds
)2

dx

≤
∫

�

(∫ t

0
g(t − s)|�u(t) − �u(s)| ds +

∫ t

0
g(t − s) ds|�u(t)|

)2

dx

≤ 2φ�u(t) + 2

(∫ t

0
g(s) ds

)2

‖�u(t)‖22
≤ 2(1 − l)(g��u)(t) + 2(1 − l)2‖�u(t)‖22.

��
Let us now define the functionals

G(t) = E(t) + ε1�(t) + ε2�(t), t ≥ 0, (4.2)

where ε1, ε2 > 0 will be fixed later and

�(t) = ξ(t)
∫

�

(
ut (t) − �ut (t)

)
u(t) dx, (4.3)

�(t) = −ξ(t)
∫

�

(
ut (t) − �ut (t)

) (∫ t

0
g(t − s)(u(t) − u(s))ds

)
dx . (4.4)

Lemma 4.3 Under the assumptions of Theorem 2.8 there exists a constant c0 > 0
such that �(t) given in (4.3) satisfies

d

dt
�(t) ≤ c0ξ(t)

[
‖ut (t)‖22 + ‖∇ut (t)‖22 + (g��u)(t)

]

− ξ(t)

[
β1

2
‖�u(t)‖22 + E(t)

]
, ∀ t > 0, (4.5)

where β1 = β/2 > 0.

Proof Differentiating t �→ �(t), using Eq. (1.6) and integrating by parts we get

d

dt
�(t) = ξ(t)

[
‖ut (t)‖22 + ‖∇ut (t)‖22

]
+ ξ ′(t)J1 + ξ(t)J2

− ξ(t)

[
‖�u(t)‖22 +

∫
�

F(∇u(t)) · ∇u(t) dx

]
, (4.6)

where

J1 = (ut (t), u(t)) + (∇ut (t),∇u(t)),

J2 =
∫ t

0
g(t − s)(�u(s),�u(t)) ds.
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Now, applying Young’s inequality with η1 > 0 and η2 > 0, it is easy to check that

|J1| ≤ η1λ‖�u(t)‖22 + 1

4η1

(
‖ut (t)‖22 + ‖∇ut (t)‖22

)
,

|J2| ≤
(∫ t

0
g(s) ds

)
‖�u(t)‖22 + η2‖�u(t)‖22 + 1

4η2
(g��u)(t).

Inserting these two last estimates into (4.6), using the third condition in (2.14), Adding
and subtracting ξ(t)E(t), we obtain

d

dt
�(t) ≤ ξ(t)

(
3

2
+ ξ0

4η1

)[
‖ut (t)‖22 + ‖∇ut (t)‖22

]
+ ξ(t)

(
1

2
+ 1

4η2

)
(g��u)(t)

− ξ(t)
h(t)

2
‖�u(t)‖22 + ξ(t)

∫
�

[
f (∇u(t)) − F(∇u(t)) · ∇u(t)

]
dx

+ ξ(t)(λξ0η1 + η2)‖�u(t)‖22 − ξ(t)E(t).

Now applying assumption (2.6) and condition (2.7), we have

d

dt
�(t) ≤ ξ(t)

(
3

2
+ ξ0

4η1

)[
‖ut (t)‖22 + ‖∇ut (t)‖22

]
+ ξ(t)

(
1

2
+ 1

4η2

)
(g��u)(t)

− ξ(t)

(
β

2
− λξ0η1 − η2

)
‖�u(t)‖22 − ξ(t)E(t). (4.7)

Since β1 = β
2 > 0, so choosing η2 = η1 ≤ β1

2(1+λξ0)
, and setting c0 = max

{ 3
2 +

ξ0
4η1

, 1
2 + 1

4η1

}
in (4.7), we conclude that (4.5) holds true. This completes the proof of

Lemma 4.3. ��
Lemma 4.4 Under the assumptions of Theorem 2.8, and given any δ > 0, then there
exists a constant cδ > 0 such that � defined in (4.4) satisfies

d

dt
�(t) ≤

(
δ(1 + ξ0)−

∫ t

0
g(s) ds

)
ξ(t)

[
‖ut (t)‖22+‖∇ut (t)‖22

]
+4δξ(t)‖�u(t)‖22

+ cδ

(
1 + [E(0)] p−1

2

)
ξ(t)(g��u)(t) + cδ(−g′��u)(t), ∀ t > 0,

(4.8)

where

p =
{
max{p1, . . . , pN } if E(0) ≥ 1,
min{p1, . . . , pN } if E(0) < 1.

Proof Differentiating �, using Eq. (1.6) and integrating by parts we get

d

dt
�(t) = −

(∫ t

0
g(s) ds

)
ξ(t)

[
‖ut (t)‖22 + ‖∇ut (t)‖22

]
+

6∑
j=1

I j + IF , (4.9)
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where

I1 = −ξ ′(t)
∫

�

ut (t)

(∫ t

0
g(t − s)(u(t) − u(s)) ds

)
dx,

I2 = −ξ ′(t)
∫

�

∇ut (t)

(∫ t

0
g(t − s)(∇u(t) − ∇u(s)) ds

)
dx,

I3 = ξ(t)
∫

�

�u(t)

(∫ t

0
g(t − s)(�u(t) − �u(s)) ds

)
dx,

I4 = −ξ(t)
∫

�

(∫ t

0
g(t − s)�u(s) ds

)(∫ t

0
g(t − s)(�u(t) − �u(s)) ds

)
dx,

I5 = ξ(t)
∫

�

ut (t)

(
−

∫ t

0
g′(t − s)(u(t) − u(s)) ds

)
dx,

I6 = ξ(t)
∫

�

∇ut (t)

(
−

∫ t

0
g′(t − s)(∇u(t) − ∇u(s)) ds

)
dx,

IF = ξ(t)
∫

�

F(∇u(t))

(∫ t

0
g(t − s)(∇u(t) − ∇u(s)) ds

)
dx,

Now let us estimate I j , j = 1, . . . , 6, and IF . From Young’s inequality with δ > 0,
item (a) of Lemma 4.2 and assumption (2.14) we obtain

|I1| ≤
∣∣∣∣ξ

′(t)
ξ(t)

∣∣∣∣ ξ(t)

(
δ‖ut (t)‖22 + 1

4δ
φu(t)

)

≤ δξ0ξ(t)‖ut (t)‖22 + ξ0

4δλ1
(1 − l)ξ(t)(g��u)(t) (4.10)

Analogously, but using items (b) and (c) of Lemma 4.2 instead of (a), we have

|I2| ≤ δξ0ξ(t)‖∇ut (t)‖22 + ξ0

4δλ2
(1 − l)ξ(t)(g��u)(t), (4.11)

|I3| ≤ δξ(t)‖�u(t)‖22 + 1

4δ
(1 − l)ξ(t)(g��u)(t). (4.12)

Again from Young’s inequality with δ > 0, items (c), ( f ) and (d) of Lemma 4.2, we
deduce

|I4| ≤ δξ(t)ζ�u(t) + 1

4δ
ξ(t)φ�u(t)

≤ 2δ(1 − l)2ξ(t)‖�u(t)‖22 +
(
2δ + 1

4δ

)
(1 − l)ξ(t)(g��u)(t), (4.13)

and

|I5| ≤ δξ(t)‖ut (t)‖22 + 1

4δ
ξ(t)ψu(t)

≤ δξ(t)‖ut (t)‖22 + g(0)
ξ1

4δλ1
(−g′��u)(t). (4.14)
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Similarly with item (e) in the place of (d) in Lemma 4.2, we also have

|I6| ≤ δξ(t)‖∇ut (t)‖22 + g(0)
ξ1

4δλ2
(−g′��u)(t). (4.15)

Now with respect to IF we have

|IF | ≤ ξ(t)
∫ t

0
g(t − s)

(∫
�

|F(∇u(t))||∇u(t) − ∇u(s)| dx
)

︸ ︷︷ ︸
:=I 1F

ds.

Applying (4.28) from the appendix with F(0) = 0, Hölder’s inequality, Young’s

inequality with δ > 0, and since V2 ↪→ W
1,p j+1
0 (�) ↪→ V1, j = 1, . . . , N , we infer

I 1F ≤ K
∫

�

⎛
⎝ N∑

j=1

(
1 + |∇u(t)|(p j−1)/2

)⎞⎠ |∇u(t)||∇u(t) − ∇u(s)| dx

≤ K
N∑
j=1

(
|�|

p j−1
2(p j+1) + ‖∇u(t)‖

p j−1
2

p j+1

)
‖∇u(t)‖p j+1‖∇u(t) − ∇u(s)‖2

≤ ‖�u(t)‖2
⎡
⎣ K

λ2

N∑
j=1

μp j

(
|�|

p j−1
2(p j+1) + ‖∇u(t)‖

p j−1
2

p j+1

)⎤
⎦ ‖�u(t) − �u(s)‖2

≤ δ‖�u(t)‖22+
1

4δ

⎡
⎣ K

λ2

N∑
j=1

μp j

(
|�|

p j−1
2(p j+1) +‖∇u(t)‖

p j−1
2

p j+1

)⎤
⎦
2

︸ ︷︷ ︸
:=I 2F

‖�u(t)−�u(s)‖22.

Since ‖∇u(t)‖p j+1 ≤ μp j ‖�u(t)‖2 and β
2 ‖�u(t)‖22 ≤ E(t) ≤ E(0) for any t > 0,

then

I 2F ≤ 2K 2

λ22

⎛
⎝ N∑

j=1

μp j |�|
p j−1

2(p j+1)

⎞
⎠

2

+ 2K 2

λ22

⎛
⎝ N∑

j=1

μ

p j+1
2

p j

(
2

β

) p j−1
4 [E(0)]

p j−1
4

⎞
⎠

2

≤ μ1 + μ2[E(0)] p−1
2 ,

where we consider

p :=
{
max{p1, . . . , pN } if E(0) ≥ 1,
min{p1, . . . , pN } if E(0) < 1,

μ1 := 2K 2

λ22

⎛
⎝ N∑

j=1

μp j |�|
p j−1

2(p j+1)

⎞
⎠

2

and μ2 := 2K 2

λ22

⎛
⎝ N∑

j=1

μ

p j+1
2

p j

(
2

β

) p j−1
4

⎞
⎠

2

.
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Thus,

I 1F ≤ δ‖�u(t)‖22 + 1

4δ

(
μ1 + μ2[E(0)] p−1

2

)
‖�u(t) − �u(s)‖22

from where it follows that

|IF | ≤ δξ(t)‖�u(t)‖22 + 1

4δ

(
μ1 + μ2[E(0)] p−1

2

)
ξ(t)(g��u)(t). (4.16)

Inserting (4.10)–(4.16) into (4.9), and since 1 − l < 1, yields

d

dt
�(t) ≤

(
δ(1 + ξ0) −

∫ t

0
g(s) ds

)
ξ(t)

[
‖ut (t)‖22 + ‖∇ut (t)‖22

]

+ 4δξ(t)‖�u(t)‖22 + g(0)
ξ1λ

4δ
(−g′��u)(t)

+ 1

4δ

(
2 + ξ0λ + 8δ2 + μ1 + μ2[E(0)] p−1

2

)
ξ(t)(g��u)(t).

Therefore, inequality (4.8) follows by taking cδ = 1
4δ max{2 + ξ0λ + 8δ2 +

μ1, μ2, g(0)ξ1λ}. This concludes the proof of Lemma 4.4. ��
Lemma 4.5 Under the assumptions of Theorem 2.8 and fixing any t0 > 0, then

d

dt
G(t) ≤ −ε1ξ(t)E(t), ∀ t ≥ t0, (4.17)

for some positive constant ε1 ∼ c1

1+[E(0)] p−1
2

, with c1 > 0 independent of the initial

data.

Proof From definition of G(t) in (4.2), and Lemmas 4.1, 4.3 and 4.4, we get

d

dt
G(t) ≤

(
ε1c0 + ε2

(
δb1 −

∫ t

0
g(s) ds

))
ξ(t)

[
‖ut (t)‖22 + ‖∇ut (t)‖22

]

−
(

ε1
β1

2
− 4δε2

)
ξ(t)‖�u(t)‖22 − ε1ξ(t)E(t)

+
(
ε1c0 + ε2cδ

(
1 + [E(0)] p−1

2

))
ξ(t)(g��u)(t)

+
(
1

2
− ε2cδ

)
(g′��u)(t), (4.18)

for any δ, ε1, ε2 > 0, where we denote b1 = 1 + ξ0 > 0. By fixing any t0 > 0 we
note that

∫ t

0
g(s) ds ≥

∫ t0

0
g(s) ds := g0 > 0, ∀ t ≥ t0.
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From this and condition (2.13) we can rewrite (4.18) as follows

d

dt
G(t) ≤ −(

ε2(g0 − δb1) − ε1c0
)
ξ(t)

[
‖ut (t)‖22 + ‖∇ut (t)‖22

]

−
(

ε1
β1

2
− 4δε2

)
ξ(t)‖�u(t)‖22 − ε1ξ(t)E(t)

+
(
1

2
− ε1c0 − 2ε2cδ

(
1 + [E(0)] p−1

2

))
(g′��u)(t), (4.19)

for every t ≥ t0. Now we first choose 0 < δ ≤ min{ g0
2b1

,
g0β1
32c0

}. Thus

g0 − δb1 ≥ g0
2

and 4δ ≤ g0β1

8c0
. (4.20)

Once fixed δ > 0 we pick out ε1 > 0 and ε2 > 0 small enough such that

1

2
ε2 <

2c0
g0

ε1 < ε2 < min

⎧⎨
⎩

1

2g0
,

1

8cδ

(
1 + [E(0)] p−1

2

)
⎫⎬
⎭ . (4.21)

Therewith (4.20)–(4.21) imply that

ε2(g0 − δb1) − ε1c0 > 0, ε1
β1

2
− 4δε2 > 0,

1

2
− ε1c0 − 2ε2cδ

(
1 + [E(0)] p−1

2

)
> 0.

Therefore, since g′ ≤ 0, we obtain from (4.19) that estimate (4.17) holds true for

some positive constant ε1 ∼ c1/
(
1 + [E(0)] p−1

2

)
, where c1 > 0 is independent of

the initial data. This completes the proof of Lemma 4.5. ��
With the lemmas above we have obtained the main ingredients to prove Theorem

2.8.
Proof of Theorem 2.8 First of all we note that condition α0 = 0 in (2.6) along with
(2.7) ensure that the energy E(t) is nonnegative for all t ≥ 0. In addition, using Hölder
and Young inequalities, Lemma 4.2 (a)–(b), and (2.6) with α0 = 0, it is easy to check
that

1

2
E(t) ≤ G(t) ≤ 3

2
E(t), ∀ t ≥ 0, (4.22)

where we take ε1 and ε2 such that

0 < ε1, ε2 < β1 min

{
1

2ξ1
,

1

λξ1

}
. (4.23)

Now let us fix t0 = 1 and choose ε1 > 0 and ε2 > 0 so that (4.21) and (4.23) are
satisfied. Then from Lemma 4.5 and (4.22) we have
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d

dt
G(t) ≤ −ε1ξ(t)E(t) ≤ −2ε1

3
ξ(t)G(t), ∀ t ≥ 1.

A straightforward computation implies that

G(t) ≤ G(1)e−γ
∫ t
1 ξ(s) ds, ∀ t ≥ 1,

where γ = 2ε1
3 ∼ k/

(
1 + [E(0)] p−1

2

)
, for some k > 0. Applying again (4.22) and

since E(t) is nonincreasing we obtain

E(t) ≤ 3E(1) e−γ
∫ t
1 ξ(s) ds ≤

(
3E(0) eγ

∫ 1
0 ξ(s) ds

)
e−γ

∫ t
0 ξ(s) ds,

from where it follows that

E(t) ≤ c e−γ
∫ t
0 ξ(s) ds, ∀ t ≥ 1, (4.24)

where c = 3E(0) eγ
∫ 1
0 ξ(s) ds, and γ ∼ k/

(
1 + [E(0)] p−1

2

)
for some positive constant

k.
On the other hand, since 0 < ξ(t) ≤ ξ1 > 0 for any t ≥ 0, we see that

1 < eγ
∫ 1
t ξ(s) ds =

(
eγ

∫ 1
0 ξ(s) ds

)
e−γ

∫ t
0 ξ(s) ds < eγ ξ1 < ∞, ∀ t ∈ [0, 1].

Then, since E(0) eγ
∫ 1
0 ξ(s) ds < c, we get

E(t) ≤ E(0) ≤ c e−γ
∫ t
0 ξ(s) ds, ∀ t ∈ [0, 1]. (4.25)

Therefore, the uniform decay (2.16) is ensured by estimates (4.24)–(4.25). The proof
of Theorem 2.8 is now complete. ��
Remark 4.6 The proof of Theorem 2.10 (ii) can be done with minor changes on the
above calculations. In fact, neglecting terms which appear due to the presence of
rotational inertia term it can be proved in a similar way that the approximate energy

En(t) = 1

2
‖unt (t)‖22 + h(t)

2
‖�un(t)‖22 + 1

2
(g��un)(t) +

∫
�

f (∇un(t)) dx

satisfies (2.19) for Galerkin solutions given in (3.25). In addition, (3.25) implies that
En(t) is lower semi-continuous on the weak star topology whereas (3.26) ensures that
En(0) converges in the strong topology, namely,

E(t) ≤ lim inf
n→∞ En(t) and En(0) → E(0).

This is sufficient to conclude that (2.19) holds true. ��
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Appendix

Rates of Energy Decay

We emphasize below that (2.16) provides several rates of energy decay according to
the function ξ . In fact, the Examples 4.7 and 4.8 aremotivated by [18,21,22,24,32,33].
Besides, the Examples 4.9 and 4.10 are new and illustrate the wide variety of distinct
decay rates provided by (2.16).

Example 4.7 Let us consider ξ(t) = κ ln(a + 1), where a > 0 and κ > 0. Then ξ

satisfies (2.14). The integrability condition (2.3) is satisfied if g(0) < κ ln(a + 1).
Applying (2.16) results in

E(t) ≤ c (a + 1)−κγ t , t ≥ 0.

For a = e − 1 we recover the standard exponential type.

Example 4.8 Let us take a rational function ξ(t) = κ
t+1 , with κ > 1. It is also easy to

check that condition (2.14) holds true. From (2.16) we have the following polynomial-
type decay

E(t) ≤ c

(t + 1)κγ
, t ≥ 0.

The case 1 ≤ κγ ≤ 2 is allowed depending on the size of γ > 0, compare the remarks
following (1.2). However, once fixed initial conditions, the interesting case consists
in considering polynomial decay of higher order which is possible by taking large
values for κ . In this case, the condition g(0) < κ − 1, observing (2.15), ensures the
integrability condition on g required in (2.3).

Example 4.9 Let us now take ξ(t) = κ
1+ln[ln(t+1)+1]

t+1 , with κ > 0. Then ξ satisfies
the conditions in (2.14). From (2.16) we get the decay type

E(t) ≤ c

[ln(t + 1) + 1]κγ [ln(t+1)+1] , t ≥ 0.

The integrability condition (2.3) is satisfied if g(0)
∫ ∞
0 [ln(t + 1) + 1]−κ[ln(t+1)+1] dt

< 1.

Example 4.10 We also consider ξ(t) = κ
1+2 ln(t+e1/2)

t+e1/2
, t ≥ 0, where κ > 1. Then ξ

fulfills condition (2.14). The integrability condition on g stated in (2.3) is satisfied if

g(0) < (κ − 1)e− κ+2
4 . From (2.16) we conclude that the energy has a decay of the

form

E(t) ≤ c e3κ/4

(t + e1/2)κγ (1+ln(t+e1/2))
, t ≥ 0.
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4.1 The Vector Field F

In this sectionwe show an interesting property to vector fieldswhich satisfy a condition
like (2.4). This is given as an application of the Mean Value Inequality.

Lemma 4.1 Let F : RN → R
N be a C1-vector field given by F = (F1, . . . , FN ).

(a) If there exist positive constants k1, . . . , kN and q1, . . . , qN such that

|∇Fj (z)| ≤ k j (1 + |z|q j ), ∀ z ∈ R
N , ∀ j = 1, . . . , N . (4.26)

Then, there exists a constant K = K (k j , q j , N ) > 0, j = 1, . . . , N , such that

|F(x) − F(y)| ≤ K
N∑
j=1

(
1 + |x |q j + |y|q j

) |x − y|, ∀ x, y ∈ R
N . (4.27)

(b) In particular, we have

|F(x)| ≤ |F(0)| + K
N∑
j=1

(
1 + |x |q j

) |x |, ∀ x ∈ R
N . (4.28)

Proof (a) From condition (4.26) it is not so difficult to check that F ′ : RN → L(RN )

satisfies

||F ′(z)||L(RN ) ≤ N
N∑
j=1

k j (1 + |z|q j ), ∀ z ∈ R
N .

Given x, y ∈ R
N , we consider z ∈ [x, y] ⊂ R

N written as

z = (1 − θ)y + θx, θ = θ(x, y) ∈ [0, 1].

Thus,

|z|q j ≤ 2q j (|x |q j + |y|q j ), ∀ j = 1, . . . , N ,

from where it follows that

||F ′(z)||L(RN ) ≤ K
N∑
j=1

(1 + |x |q j + |y|q j ), ∀ z ∈ [x, y],

where K = N max
1≤ j≤N

{2q j k j }. Applying the Mean Value Inequality we obtain (4.27).

(b) It is suffices to define G(z) = F(z) − F(0). ��
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4.2 Examples for F

We finally give examples of vector fields satisfying conditions like (2.4) and (2.6).
More generally, we show below some applications of conservative C1-vector fields
F = ∇ f such that (4.26) holds and also

− a0 − a1|z|2 ≤ f (z) ≤ F(z) · z + a2|z|2, ∀ z ∈ R
N , (4.29)

for some nonnegative constants a0, a1, a3 ≥ 0.

Example 4.11 Let us first consider

F : RN −→ R
N

z �−→ F(z) = |z|q z, q ≥ 0.

Denoting by F(z) = (F1(z), . . . , FN (z)) and z = (z1, . . . , zN ) ∈ R
N , then

Fj (z) = |z|q z j , j = 1, . . . , N .

If we consider 0 �= z ∈ R
N and i, j = 1, . . . , N , we have

∂

∂zi
Fj (z) = q|z|q−2zi z j for i �= j,

∂

∂z j
Fj (z) = q|z|q−2z2j + |z|q for i = j.

(4.30)

It is also easy to check by definition that

∂

∂zi
Fj (0) = 0 = lim

z→0

∂

∂zi
Fj (z), i, j = 1, . . . , N .

Thus, the components F1, . . . , FN are C1-functions in R
N . Besides, from (4.30)

we get

∣∣∣∣ ∂

∂zi
Fj (z)

∣∣∣∣ ≤ (1 + q)|z|q , i, j = 1, . . . , N .

This is suffices to ensure that (4.26) holds true. Moreover, we note that F = ∇ f ,
where

f : RN −→ R

z �−→ f (z) = 1

q + 2
|z|q+2,

and then condition (4.29) is readily verified for any a0, a1, a2 ≥ 0.
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Therefore, this vector field generates the following operator

divF(∇u) = div
(|∇u|q∇u

)
,

which consists a p-Laplacian one by taking p = 2q + 1 satisfying (2.5).

Example 4.12 The above argument can be applied to the vector field F = ∇ f , where

f (z) = k

q + 2
|z|q+2 + τ · z, z = (z1, . . . , zN ) ∈ R

N ,

with q ≥ 0, k > 0, and τ = (τ1, . . . , τN ) ∈ R
N . Thus, condition (4.26) follows

analogously as above whereas (4.29) is fulfilled with a0 = |τ |2
2 a1 = 1

2 , and any
a2 ≥ 0.

Example 4.13 Another case of p-Laplacian operator arises when we consider the
vector field F = (F1, . . . , FN ) whose components Fj , j = 1, . . . , N , are given by

Fj (z) = |z j |p−2z j , ∀ z = (z1, . . . , zN ) ∈ R
N ,

where p ≥ 2. In this case

divF(∇u) =
N∑
j=1

∂

∂x j

(∣∣∣∣ ∂u

∂x j

∣∣∣∣
p−2

∂u

∂x j

)
.

Example 4.14 To illustrate another vector field, different one of p-Laplacian type, we
consider F = ∇ f , where the potential function is given by

f (z) = ln
(√

|z|2 + 1
)

, z = (z1, . . . , zN ) ∈ R
N .

In such case we have

F(z) = z

|z|2 + 1
, ∀ z ∈ R

N ,

which vanishes when z → ∞. It is easy to check that F and f satisfy (4.26) and
(4.29).
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