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Abstract In this paper, we study optimal dividend problems in a diffusion risk model
for two different cases depending on whether reinsurance is incorporated. In either
case, the dividend rate is bounded above by a constant, and the company earns invest-
ment income at a constant force of interest. Unlike existing approaches in the literature
dealing with optimal problemswith interest, we allow the force of interest to be greater
than the discount factor, and we use a different method to solve the corresponding
Hamilton–Jacobi–Bellman (HJB) equation instead of introducing a confluent hyper-
geometric function. We conclude that the optimal dividend policy is of a threshold
type and show that the corresponding dividend barrier is nondecreasing in the dividend
rate bound. In cases where there is no reinsurance, we construct an auxiliary reflect-
ing control problem to find the nonzero dividend barrier. If proportional reinsurance
is purchased, the optimal reinsurance strategy looks somewhat strange. The optimal
retention level of risk first increases monotonically with risk reserve to some possible
value (less than 1) and then stays at level 1 for a while or, if 1 has been reached, finally,
it decreases to 0.
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1 Introduction

Optimal dividend and reinsurance problems have attracted much attention in recent
years. Two classical papers by [3,16] studied the optimal dividend problem for an
insurance company whose surplus process follows Browninan motion with drift. In
caseswhere reserveprocesses havedownward jumps, onemayconsult, for example, [4,
11,18]. Furthermore, for cases where companies are allowed to invest in the financial
markets, one may refer to [5,14,15] for some work on optimal dividend problems.

Barrier or band strategies often may be the optimal strategy when the dividend rate
is unrestricted. Then the ultimate ruin of the company is usually certain, which in
many circumstances is not desirable or acceptable. In addition, there may be some
institutional or statutory reasons (e.g., the company is publicly owned) such that the
company is regulated and is unable to simply pay dividends at any desired level. These
considerations lead to the idea of imposing restrictions on the dividend policy, for
example, the dividend rate is bounded above by some constant. Under such constraints
the optimal dividend policy is often of a threshold type, i.e., dividends are paid out
at the maximal admissible rate only when the surplus process exceeds a certain level;
otherwise they are paid out at the minimum rate 0. Some results on this policy can be
found in, for example, [6,11,13,17].

In this paper, we study the optimal dividend policy with restrictions or risk control
for an insurance company in two different scenarios. The first case considers the
optimal dividend problem without reinsurance. In the second case, the firm controls
dividend payments and risk exposure as well as profit from reinsurance. Furthermore,
in either case, the dividend rate is bounded by a constant, and the company earns
investment income at a constant force of interest. The objective is to find a policy
consisting of a dividend payment scheme and reinsurance strategy (if reinsurance is
incorporated) to maximize the expected present value of dividend distributions until
time of ruin.

A similar dividend problem with a constant rate of interest was considered by
[1,7] for classical and diffusion models, respectively, but in which the dividend rate
is unbounded and no reinsurance is incorporated. The interest income earned by the
company can be seen as a risk-free asset return on investment in the financial markets.
This suggests that our model is somewhat analogous to that of [14], where the authors
study the optimal unrestricted dividend payment scheme for a large corporation that
controls risk exposure by reinsurance and invests in a financial market based on a
Black–Scholes model. However, when imposing restrictions on the dividend rate,
we find that the value function is finite even in cases where the discount factor is
smaller than the force of interest. The optimal dividend strategy turns out to be that
of a threshold type, not a barrier strategy. In the case of no reinsurance, we introduce
an auxiliary reflecting control problem, which keeps the firm from ruin by capital
injections and helps to find the dividend barrier. In the case of buying proportional
reinsurance, the optimal retention level of risk is no longer a simply increasing function
of risk reserve. It first increases monotonically with risk reserve to some possible value
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(less than 1), and then stays at the level 1 for a while if 1 has been reached, and finally,
it decreases to 0. Another point differentiating our paper from the existing literature
is that we directly analyze the equations satisfied by the value function rather than by
introducing the confluent hypergeometric function adopted by, for example, [7,9,19].
This simplifies the calculations and complies with our purpose of concentrating on the
conclusive results. Finally, we obtain the optimal return function expressed in terms
of the solutions to these equations.

The paper is organized as follows. In the next section, we first give a rigorous
mathematical formulation of the problem, and then give some properties of the value
functions and state the Hamilton–Jacobi–Bellman (HJB) equations and verification
theorem. Section 3 is devoted to the derivation of the value function for the casewithout
reinsurance. In Sect. 4, when risk control is incorporated, we solve the corresponding
HJB equation and show that the candidate solution coincides with the optimal return
function. The optimal reinsurance and dividend strategy are also given in this section.
Some technical lemmas and proofs are given in Appendices A and B.

2 Problem Formulation

Let (�,F , {Ft }, P) be a complete, filtered probability space, where P is a real-
world probability. Our results will be formulated within the framework of a controlled
diffusion model. However, for the purpose of motivation, it is convenient to start from
the classical Cramér–Lunberg model, in which the reserve of the insurance company
is modeled as

rt = x + pt −
Nt∑

i=1

Xi , (2.1)

where x ≥ 0 is the initial reserve, {Nt } is a Poisson process with intensity β > 0,
and the individual claim sizes X1, X2, . . ., independent of {Nt }, are independent and
identically distributed (i.i.d.) positive random variables with finite first and second
momentsμ1,μ2. The premium rate p is calculated by the expected premium principle,
p = (1 + θ)βμ1, where θ > 0 is the relative safety loading of the insurer.

We now consider proportional reinsurance for the aforementioned classical model.
Let a ∈ [0, 1] denote the (fixed) proportional retention level, and assume that the
reinsurance company uses the same safety loading θ as the cedent. Then the reserve
of the cedent is given by

rat = x + apt −
Nt∑

i=1

aXi . (2.2)

According to [12], the diffusion approximation is described by the stochastic differ-
ential equation

dRa
t = aβθμ1dt + a

√
βμ2dBt ,
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where {Bt} is a standard Brownian motion, perhaps not adapted to the filtration {Ft }.
With a slight abuse of notation, we denote by {Ft }t≥0 the σ -algebra flow generated
by the Brownian motion.

An admissible control policy π is described by the two-dimensional, adaptive sto-
chastic process (aπ

t , lπt ), where aπ
t ∈ [0, 1] corresponds to the proportion of risk

exposure at time t and lπt corresponds to the dividend rate, bounded above by a con-
stant M > 0. In addition, the company invests all its surplus in the risk-free asset with
a force of interest r > 0. For notational convenience, we replace βθμ1 and

√
βμ2 with

μ and σ , respectively. Then the dynamics of the controlled surplus process evolves as

dRπ
t = (

r Rπ
t + aπ

t μ − lπt
)
dt + aπ

t σdBt . (2.3)

We denote by �x the set of all admissible control policies with initial value x . With
a given admissible policy π , we define the corresponding ruin time as τπ = inf{t ≥
0 : Rπ

t < 0} and the return function V π
M (x) as

V π
M (x) = Ex

[∫ τπ

0
e−δt lπt dt

]
, (2.4)

where δ > 0 is the discount factor. Note that here we do not require, as elsewhere in
the literature, that δ be greater than the risk-free interest rate r . In other words, we
allow δ < r .

If no reinsurance is incorporated, i.e., aπ
t ≡ 1 in (2.3), denote by θ = (lθt )t≥0 ∈

[0, M] the admissible policy in this case. Hence, (2.3) changes into

dRθ
t =

(
r Rθ

t + μ − lθt
)
dt + σdBt . (2.5)

Similarly, we denote by 
x , τ θ , and J θ
M (x) the set of all admissible policies with

initial value x , the ruin time with admissible policy θ , and the expected discounted
dividend payments until ruin, respectively.

Our objectives are to find the optimal return functions (value functions), which are
defined as

VM (x) = sup
π∈�x

V π
M (x) (2.6)

and

JM (x) = sup
θ∈
x

J θ
M (x), (2.7)

and to find the optimal policies π∗ and θ∗, which satisfies VM (x) = V π∗
M (x) and

JM (x) = J θ∗
M (x), respectively, for all x ≥ 0.

In the following parts of this section, we first give some properties of these value
functions, then state the corresponding HJB equations and the verification theorem.

123



Appl Math Optim (2016) 73:115–136 119

We only prove the latter two results; the first one has a proof similar to [13, Proposition
1.1], so we omit it here.

Lemma 2.1 The value function defined by (2.6) is concave.

Lemma 2.2 The value functions VM and JM are nondecreasing on [0,∞), with 0 ≤
VM , JM ≤ M/δ, and VM (x) = M/δ for any x ≥ M/r .

Proof Since the dividend rate is bounded above by the constant M , the accumulated
discounted dividend payments are bounded above by M/δ. In the case where cheap
reinsurance is available for the company, whenever the surplus process is above the
level M/r , ceding all the risk to the reinsurance company and paying dividends at the
maximum admissible rate M , the company will obtain the maximum present value of
dividends M/δ, and never fall to ruin. 	

Theorem 2.1 Assume the value function VM is twice continuously differentiable; then
VM satisfies the HJB equation

max
a∈[0,1],l∈[0,M]

{
1

2
a2σ 2V ′′

M (x) + (aμ + r x − l)V ′
M (x) − δVM (x) + l

}
= 0 (2.8)

subject to the boundary condition VM (0) = 0. Conversely, if there exists a continuously
differentiable, concave function W (x), such that W solves the precedingHJB equation
on (0, M/r) andW (x) = M/δ for x ≥ M/r , thenW coincides with the value function
VM. Furthermore, let a∗(x) be the maximizer of the left-hand side of (2.8), with VM

replaced by W over the variable a, and let x∗ be the point where W ′(x∗) = 1; define
π∗ = (a∗(Rπ∗

t ), lπ
∗
(Rπ∗

t )), where lπ
∗
(Rπ∗

t ) = M1{Rπ∗
t ≥x∗}, and Rπ∗

t is a solution to
the following problem:

dRπ∗
t =

(
r Rπ∗

t + μa∗(Rπ∗
t

) − lπ
∗(
Rπ∗
t

))
dt + σa∗(Rπ∗

t

)
dBt . (2.9)

Then VM (x) = V π∗
M (x) = W (x).

Proof The first part follows from a standard argument in stochastic control by using
the dynamic programming principle (e.g., [10]). For the second part, let R0 = x ∈
(0, M/r) and fix an arbitrary policy π . Due to Lemma 2.2, we can revise the policy
as (aπ

t , lπt ) = (0, M) when Rπ
t = M/r . As a result, the surplus process will never

exceed the level M/r . Choose 0 < ε < x , and let τπ
ε = inf{t : Rτ

t ≤ ε}; then Itô’s
formula yields

e−δ
(
t∧τπ

ε

)
W

(
Rπ
t∧τπ

ε

)

= W (x)+
∫ t∧τπ

ε

0
e−δs

(
σ 2

2

(
aπ
s

)2W ′′(Rπ
s

)+(
r Rπ

s + aπ
s μ − lπs

)
W ′(Rπ

s
) − δW

(
Rπ
s

))
ds

+
∫ t∧τπ

ε

0
σe−δsaπ

s W
′(Rπ

s
)
dBs

≤ W (x) −
∫ t∧τπ

ε

0
e−δslπs ds +

∫ t∧τπ
ε

0
σe−δsaπ

s W
′(Rπ

s
)
dBs ,

123



120 Appl Math Optim (2016) 73:115–136

where the last inequality is due to (2.8). By concavity, W ′(Rπ
s ) ≤ W ′(ε) on [0, τπ

ε ],
so the term of the stochastic integral is a zero-mean martingale. Taking expectations
and noting that W is bounded and τπ

ε ↑ τπ as ε → 0, and lastly letting t → ∞, we
have

Ex

[ ∫ τπ

0
e−δt lπt dt

]
≤ W (x).

Since π is arbitrary, we get W (x) ≥ VM (x).
Next, considering π∗ and following the same proof as earlier, we find that all

inequalities turn out to be equalities. Therefore,

Ex

[ ∫ τπ∗

0
e−δt lπ

∗
t dt

]
= W (x),

which, together with the earlier result, implies W (x) = VM (x) = V π∗
M (x). 	


Remark 2.1 In Sect. 4, we will show that the candidate solution W (x) is twice con-
tinuously differentiable except at the point x = M/r .

For a twice continuously differentiable function q(x), define the operators A and
H by

Aq(x) := 1

2
σ 2q ′′(x) + (μ + r x)q ′(x) − δq(x)

and

Hq(x) :=
(μ

2
+ r x

)
q ′(x) − δq(x).

Similar to Theorem 2.1, assume JM is sufficiently smooth; then JM satisfies the HJB
equation

max
l∈[0,M]

{
AJM (x) + (

1 − J ′
M (x)

)
l
}

= 0 (2.10)

with boundary conditions

JM (0) = 0 and lim
x→∞ JM (x) = M

δ
. (2.11)

3 The Case of No Reinsurance

This section is devoted to dealing with the optimal problem (2.7). Equivalently, we
need to solve HJB equation (2.10) with boundary conditions (2.11). First we introduce
an auxiliary control problem that will later be used to characterize the optimal dividend
policy.
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Suppose the insurance company is regulated such that whenever the surplus process
Rθ
t in (2.5) hits the barrier 0, sufficient capital injections must be made to keep the

controlled process nonnegative. In other words, there is a reflection at zero. Given an
admissible dividend policy θ , denote by Lθ

t the accumulated injections until time t . The
injection process Lθ is adapted to the filtration {Ft }, nondecreasing, and continuous
and is constant on any interval in which Rθ,L > 0, where the reflected process Rθ,L

satisfies

Rθ,L
t = x +

∫ t

0

(
r Rθ,L

s − lθs
)
ds + μt + σWt + Lθ

t . (3.1)

It is worth noting that because the process Rθ
t lacks space homogeneity, Lθ

t �=
−(infs≤t Rθ

s ∧ 0) for any t > τθ . Define the performance function by the differ-
ence between the present value of dividend payments and the expected discounted
injections,

Ĵ θ
M (x) = Ex

[ ∫ ∞

0
e−δt lπt dt −

∫ ∞

0
e−δtdLθ

t

]
. (3.2)

Then the corresponding value function of this reflection problem is given by

ĴM (x) = sup
θ∈
x

Ĵ θ
M (x). (3.3)

Analogous to Theorem 2.1, we have the following results, which give sufficient con-
ditions for the optimal problem (3.3). Since one can easily prove that by applying Itô’s
formula, we leave the details to the interesting reader.

Theorem 3.1 Assume there exists a twice continuously differentiable function P(x)
that solves the HJB equation

max
l∈[0,M]

{AP(x) + (1 − P ′(x))l
} = 0 (3.4)

subject to the boundary conditions

P ′(0) = 1 and lim
x→∞ P(x) = M

δ
; (3.5)

then P(x) ≥ ĴM (x) for all x ≥ 0. Moreover, if P is concave, then we have P(x) =
ĴM (x) = Ĵ θ(M)

M (x), where θ(M) denotes the constant dividend policy of paying
dividends at the maximum admissible rate M from time 0, i.e., lθs ≡ M in (3.1).

We conjecture that the optimal dividend policy for the optimal problem (2.7) is of
a threshold type. Therefore, the HJB equation (2.10) reads as AJM (x) = 0 in the
nonintervention region andAJM (x)+ (1− J ′

M (x))M = 0 in the dividend region. Our
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main idea is to paste the solutions of JM on different regions in smooth conditions.
Define two functions on [0,∞),

J 1(x) := f (x)

f ′(x)
and J 2M (x) := M

δ
+ φM (x)

φ′
M (x)

, (3.6)

where f and φM is given in Lemmas A.1 and A.2, respectively. The following two
lemmas help to find the nonzero dividend barrier.

Lemma 3.1 There exists an M0 ∈ (0,∞) such that J 2M (0) ≤ 0 for any M ≤ M0 and
J 2M (0) > 0 for any M > M0.

Lemma 3.2 On (0,∞), J 1 and J 2M defined by (3.6) have an intersection if and only
if M > M0. Moreover, if they do, the intersection is unique and lies on (zM , z̄), where
z̄ and zM are given in Lemmas A.1ii and A.2ii, respectively.

Now we have the value function and the optimal dividend policy.

Theorem 3.2 Let M0 be given by Lemma 3.1, and denote by z∗ the intersection in
Lemma 3.2, otherwise setting z∗ = 0 if there is no intersection on (0,∞). If M ≤ M0,
then the value function defined by (2.7) is

JM (x) = M

δ

(
1 − φM (x)

)
, x ∈ [0,∞). (3.7)

If M > M0, then we have

JM (x) =
⎧
⎨

⎩

f (x)
f ′(z∗) , x ∈ [0, z∗],
M
δ

+ φM (x)
φ′
M (z∗) , x ∈ (z∗,∞),

(3.8)

where f (x) and φM (x) are given in Lemmas A.1 and A.2, respectively. The optimal
dividend policy is of a threshold type with the barrier z∗.

Proof Inspired by Theorem 3.1, we only need to show that, in either case, JM given
earlier solvesHJB equation (2.10) and satisfies boundary conditions (2.11). First, when
M ≤ M0, from the beginning part of the proof of Lemma 3.2 we know that φM is
strictly convex on R+. So JM given by (3.7) is concave, and then J ′

M (x) < 1 follows
from J ′

M (0) ≤ 1, where the latter inequality is naturally satisfied since from Lemma
3.1 we know that J 2M (0) ≤ 0. These, combined with (A.2a) and (A.2b), show that JM
given by (3.7) is a concave solution of (2.10) and (2.11). Next, for M > M0, for a
similar reason we only need to demonstrate that JM given by (3.8) is concave on R+.
This follows from z∗ ∈ (zM , z̄) and the fact that f ′ > 0 and f is concave on (0, z̄) by
Lemma A.1, φ′

M < 0, and φM is convex on (zM ,∞) by Lemma A.2. Furthermore,
Lemma 3.2 and J ′

M (z∗) = 1 guarantee the smooth past condition at z∗. The preceding
analysis also implies that the optimal dividend policy is of a threshold type and the
corresponding barrier is z∗. 	
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Remark 3.1 Since the class of admissible policies 
 enlarges with increasing M , so
is the value function JM . This, in combination with the first case of (3.8) and the
concavity of f on (0, z̄), yields that z∗ is nondecreasing in the dividend rate bound M .
Furthermore, taking M → ∞, if δ > r , then we have z∗ → z̄ and the value function
for this limiting case

J∞(x) =
{

f (x)
f ′(z̄) , x ∈ [0, z̄],
x − z̄ + μ

δ
, x ∈ (z̄,∞),

which solves the following variational inequality

max
{AJ∞(x), 1 − J ′∞(x)

} = 0.

If δ ≤ r , then by Lemma A.1ii we know that z̄ = ∞, so there is no optimal strategy.
However, thanks to LemmaA.1iii, we have J∞(x) = f (x)/ f ′(∞) for the special case
where δ = r . Lemma A.1iii also tells us that the value function J∞ is infinite for any
x > 0 if δ < r . One can verify this using a barrier strategy and then raising the barrier
to infinity.

Remark 3.2 From Lemma 3.1 and Theorem 3.2 we know that the optimal dividend
barrier z∗ is nonzero if and only if J 2M (0) > 0. This result agrees with [9, Theorem
4.1]. But a correction needs to be made since f3(x) in (2.5) given in that paper is not
an increasing function on R

+ if α > μ.

4 The Case of Buying Reinsurance

In this section, we settle the optimal problem (2.6). By construction we solve the
corresponding HJB equation (2.8). The optimal strategy, consisting of a reinsurance
and dividend payment scheme, is also characterized.

Inspired by Lemmas 2.1 and 2.2 and Theorem 2.1, we will look for an increasing,
concave function W ∈ C2(R+ \ {Mr }) that solves the HJB equation

max
a∈[0,1],l∈[0,M]

{
1

2
a2σ 2W ′′(x) + (

aμ + r x − l
)
W ′(x) − δW (x) + l

}
= 0 (4.1)

subject to the boundary conditions

W (0) = 0 and W (x) = M

δ
for all x ≥ M

r
. (4.2)

Let a∗(x) be the maximizer of the left-hand side of (4.1) over the variable a. For each
x > 0 define

φ(x, a) := 1

2
a2σ 2W ′′(x) + (

aμ + r x
)
W ′(x) − δW (x).
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Suppose W is concave; then the maximizer of φ(x, a) over a is given by

A(x) = −μW ′(x)
σ 2W ′′(x)

, x > 0. (4.3)

It is easy to see that

a∗(x) = min
(
A(x), 1

)
. (4.4)

Assume A(x) < 1 andW ′(x) > 1 in a right neighborhood of 0; substituting (4.3) into
(4.1) yields

− μ2

2σ 2

(
W ′(x)

)2

W ′′(x)
+ r xW ′(x) − δW (x) = 0. (4.5)

We conjecture a solution of (4.5) in the form W (x) = cxα , with constant c to be
determined subsequently. Inserting this solution into (4.5) shows that α must satisfy

h(α) ≡ rα2 −
(

μ2

2σ 2 + r + δ

)
α + δ = 0. (4.6)

In order for cxα to be concave, we choose the root α∗ ∈ (0, 1) such that h(α∗) = 0.
Then the solution of (4.5) can be written as

W (x) = cxα∗
, (4.7)

and A(x) defined via (4.3) is given by

A(x) = μ

σ 2(1 − α∗)
x . (4.8)

Because of the preceding assumptions, (4.7) and (4.8) may solve (4.1) only on [0, x0],
where

x0 = σ 2

μ

(
1 − α∗) (4.9)

satisfying A(x0) = 1 and

x0
α∗ = r x0 + μ

2

δ
. (4.10)

From (4.4) and (4.8) we see that the optimal reinsurance strategy a∗(x) is increasing
in a right neighborhood of 0. However, at the critical level M/r , Lemma 2.2 shows
that the optimal reinsurance strategy for the company is to cede out all the risk, in
other words, we should have a∗(M/r) = 0. This reflects the fact that the optimal
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reinsurance strategy a∗(x) is not always increasing with risk reserve. We conjecture
that in a left neighborhood of M/ra∗(x) decreases to 0 and W ′ < 1, the latter is due
to the requirements that W ∈ C1 and is equal to M/δ above M/r .

Based on these conjectures, in a left neighborhood of M/r , HJB equation (4.1)
reads

(
1

2
μA(x) + r x − M

)
W ′(x) − δW (x) + M = 0. (4.11)

Differentiating the preceding equation and using (4.3) again gives

μ

2
A′(x) = δ − r + μ

σ 2A(x)

(μ

2
A(x) + r x − M

)
. (4.12)

Let a(x) be the solution of (4.12) subject to the conjectured boundary conditions

a

(
M

r
−

)
= 0 and a′

(
M

r
−

)
< 0. (4.13)

Set k := a′(Mr −); then, by l’Hôpital’s rule, k satisfies

μ

2
k2 −

(
δ − r + μ2

2σ 2

)
k − μr

σ 2 = 0, (4.14)

which also induces

δ >
μ

2
k + r > 0. (4.15)

We conjecture the solution of (4.12) and (4.13) in the form

a(x) = k

(
x − M

r

)
. (4.16)

Setting

x1 := −1

k
, (4.17)

(4.4) implies that a(x) given by (4.16) could be used to indicate the optimal reinsurance
strategy only on the interval [xM , M/r ], where

xM := M

r
− x1, (4.18)

satisfying a(xM ) = 1.
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x

a∗(x)

M
r

1

x∗xM x0

a(x) = k(x− M
r
)

A(x) = μx
σ2(1−α∗)

x0 + x1

Fig. 1 Optimal reinsurance strategy a∗(x) for M < r(x0 + x1)

For each M > 0 there exists a unique intersection x∗ ∈ (0, M/r) between the two
lines represented by (4.8) and (4.16), respectively, and

x∗ = kMσ 2(1 − α∗)
r(kσ 2(1 − α∗) − μ)

. (4.19)

In order for the lower parts of the crossed lines (Fig. 1) to indicate the optimal rein-
surance strategy, we must have A(x∗) ≤ 1 or, equivalently expressed by the dividend
bound M ,

M ≤ r(x0 + x1). (4.20)

In this case, we can suggest the following solution of (4.1) and (4.2):

W (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x∗
α∗

( x
x∗

)α∗
, x ∈ [0, x∗],

M
δ

+ ( x∗
α∗ − M

δ

)( x− M
r

x∗− M
r

) 2δ
μk+2r

, x ∈ (
x∗, M

r

)
,

M
δ

, x ≥ M
r ,

(4.21)

and the optimal reinsurance strategy

a∗(x) =

⎧
⎪⎪⎨

⎪⎪⎩

μ

σ 2(1−α∗) x, x ∈ [0, x∗],
k
(
x − M

r

)
, x ∈ (

x∗, M
r

)
,

0, x ≥ M
r .

(4.22)

The following theorem verifies that the previously suggested expressions indeed
correspond to the value function and the optimal reinsurance strategy.

Theorem 4.1 Let x0, x1, and x∗ be given by (4.9), (4.17), and (4.19), respectively. α∗
and k satisfy (4.6) and (4.14), respectively. If M ≤ r(x0 + x1), then W given by (4.21)
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belongs to C2(R+ \ {Mr }), is an increasing concave solution of (4.1), and coincides
with the value function VM defined by (2.6). The optimal reinsurance strategy a∗(x)
is characterized by (4.22), and the optimal dividend policy is of a threshold type with
the barrier x∗.

Proof We first show that W given by (4.21) is an increasing function, which is equiv-
alent to proving x∗

α∗ < M
δ
. Keeping in mind A(x∗) = a(x∗), we have

M

δ
= r x∗ + M − r x∗

δ
>

r x∗ + a(x∗)μ
2

δ
= r x∗ + A(x∗)μ

2

δ
= x∗

α∗ , (4.23)

where the inequality is due to (4.15) and (4.16), and the last equality is a direct
consequence of (4.8) and h(α∗) = 0.

Next we prove that W ∈ C2(R+ \ {Mr }) and is concave. Referring to (4.23) and
(4.16) again yields

x∗

α∗ − M

δ
= r x∗ + a(x∗)μ

2 − M

δ

= 1

δ

(μ

2
k + r

)(
x∗ − M

r

)
. (4.24)

Therefore,W ′(x∗−) = W ′(x∗+) = 1, and from this and (4.3) we have thatW ′′ is also
continuous at x∗. However, the continuity ofW ′′ may fail at the critical level M/r . To
see this, note that in a left neighborhood of M/r , using (4.3) with A(x) replaced by
a(x) and (4.24), we obtain

W ′′(x) = − μ

σ 2

W ′(x)
a(x)

= μ

kσ 2

(M
r − x

) 2δ
kμ+2r −2

(M
r − x∗) 2δ

kμ+2r −1
,

whose left limit at M/r is equal to 0 if and only if δ > μk + 2r , which by (4.14) is
equivalent to μ2/σ 2 + δ > 2r . Since this inequality is not always true for different
possible pairs of parameters, for simplicity we say that W ∈ C2(R+ \ {Mr }). The
concavity of W follows from (4.3), with A(x) replaced by a∗(x) on (0, M

r ) and the
continuity of W ′ at M/r .

Lastly, based on the preceding analysis we see that W is a classic solution of HJB
equation (2.8). Thus,W coincides with the value function by Theorem 2.1, fromwhich
we also know that a∗(x) given by (4.22) is the optimal reinsurance strategy and the
optimal dividend policy is of a threshold type with the barrier x∗. 	


By shifting rightward the line a(x) in Fig. 1, i.e., increasing the dividend rate
bound M , we see that a∗(x) given by (4.22) is greater than 1 in a neighborhood of x∗
if (4.20) fails. Then the suggested solutions (4.21) and (4.22) are no longer suitable.
We conjecture that the optimal reinsurance strategy is a∗(x) = 1 on [x0, xM ], where
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x

a∗(x)

M
r

1

x0 xM

a(x) = k(x− M
r
)

A(x) = μx
σ2(1−α∗)

x0 + x1

x̂ =?

Fig. 2 Optimal reinsurance strategy a∗(x) for M ≥ r(x0 + x1)

xM defined by (4.18) is an increasing function of M . Note here that xM > x0 if and
only if M > r(x0 + x1). Furthermore, we guess that the optimal dividend barrier lies
on the interval (x0, xM ) and denote this point by x̂ (Fig. 2).

We now look for the optimal dividend barrier x̂ and then verify our conjectures for
the case

M > r(x0 + x1). (4.25)

Based on our suppositions, HJB equation (4.1) reads AW (x) = 0 on (x0, x̂). This, in
combination with (4.7), suggests thatU (x) given subsequently is a canonical solution
of (4.1) on the interval (0, x̂):

U (x) =
{
xα∗

, x ∈ [0, x0),
g(x), x ∈ [x0,+∞),

(4.26)

where g(x) is defined in Lemma A.3. On (x̂, xM ), HJB equation (4.1) changes into
AW (x) + (1 − W ′(x))M = 0, whose general solution can be expressed by ψM (x)
given in Lemma A.4. By a method analogous to that used in Sect. 3, we define two
functions,

V 1(x) := U (x)

U ′(x)
, x ∈ (0,∞), (4.27)

and

V 2
M (x) := ψM (x)

ψ ′
M (x)

+ M

δ
, x ∈ (0, xM ). (4.28)

Then, similar to Lemma 3.2, we have the following conclusion, which characterizes
the optimal dividend barrier x̂ .

Lemma 4.1 If M > r(x0 + x1), then V 1 and V 2
M defined respectively by (4.27) and

(4.28) have a unique intersection x̂ , which lies on (x0 ∨ xM , xM ∧ x̄), where x̄ and
xM are given in Lemmas A.3ii and A.4ii, respectively.
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Building on the foregoing results and conjectures,we propose the following solution
of HJB equation (4.1):

W (x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

U (x)
U ′(x̂) , x ∈ [0, x̂],
M
δ

+ ψM (x)
ψ ′
M (x̂)

, x ∈ (x̂, xM ],
M
δ

−
(

x− M
r

xM− M
r

) 2δ
μk+2r

(
ψ ′
M (x̂)

)−1
, x ∈

(
xM , M

r

)
,

M
δ

, x ≥ M
r ,

(4.29)

and the optimal reinsurance strategy

a∗(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

μx
σ 2(1−α∗) , x ∈ [0, x0],
1, x ∈ [x0, xM ],
k
(
x − M

r

)
, x ∈ (xM , M

r ),

0, x ≥ M
r .

(4.30)

The following theorem verifies our conjectures and shows that W given (4.29) coin-
cides with the value function and a∗(x) given by (4.30) is the optimal reinsurance
strategy.

Theorem 4.2 Let x0 and x1 be given by (4.9) and (4.17), respectively, where α∗ and
k satisfy (4.6) and (4.14), respectively. U (x) is defined by (4.26), and ψM (x) solves
differential equation (A.5). For each M > r(x0 + x1), let xM and x̂ be given by (4.18)
and Lemma 4.1, respectively. Then W given by (4.29) belongs to C2(R+ \ {Mr }), is an
increasing concave solution of (4.1), and coincides with the value function VM defined
by (2.6). The optimal reinsurance strategy a∗(x) is characterized by (4.30), and the
optimal dividend policy is of a threshold type with the barrier x̂ .

Proof Owing to Theorem 2.1, it suffices to check thatW given by (4.29) is an increas-
ing concave solution of HJB equation (4.1), and W ∈ C2(R+ \ {Mr }). To clarify more
conveniently, we denote by W1(x), W2(x), and W3(x) the values of W at different
intervals [0, x̂], (x̂, xM ], and (xM , M/r), respectively. First, from Lemma 4.1 we have
that W is continuous at x̂ . This, together with the fact that AW1(x̂) = AW2(x̂) = 0,
shows that W ′′ is also continuous at x̂ . The continuity of W and W ′ at xM follows
from (4.17) and (4.18) and boundary conditions (A.5b). Then the continuity of W ′′ at
xM is guaranteed by the equation

W ′′
3 (xM+)

W ′
3(xM+)

=
(
xM − M

r

)−1(
δ

μk
2 + r

− 1

)
= − μ

σ 2 = W ′′
2 (xM )

W ′
2(xM )

,

where the second equality is simply (4.14). However, for the same reason as that in
the proof of Theorem 4.1, W is continuously differentiable at M/r but might fail to
be second-order continuously differentiable. With the help of Lemmas A.3(i and ii)
and A.4(i and ii) and inequalities (4.15), we know that W1, W2, and W3 are concave
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on the respective defined intervals. Thus, by the smooth conditions at x̂ and xM , W is
concave on R+.

Referring to Eqs. (4.3) and (4.4) and Lemmas A.3iii and A.4iii, we confirm our
conjecture that a∗(x) = 1 on (x0, xM ). The results that W is concave and W ′(x̂) = 1
yield the optimal dividend strategy is of a threshold type with barrier x̂ . 	

Remark 4.1 The optimal reinsurance strategy is not unique for large reserves, for
example, x > M/r , but for simplicity, in (4.22) and in (4.30) we choose the strategy
of ceding all the risk. Equation (4.19) shows that the optimal dividend barrier x∗ is
an increasing function of the dividend rate bound for the case (4.20). By a similar
reason and argument as in Remark 3.1, one can also show that x̂ is nondecreasing in
M . Moreover, if δ > r , then Lemma 4.1 implies that x̂ will increase to the finite x̄
as M tends to infinity. When the dividend rate is unlimited, no optimal strategy for
dividend payment exists for δ ≤ r , and the value function is infinite if δ < r . These
limiting results correspond to that of [14] with a risk-free investment. An interesting
phenomenon that needs to be noted is that the controlled surplus will never hit the
critical level M/r from below since M/r − Rπ∗

t evolves as a geometric Brownian
motion in a left neighborhood of M/r . This situation also occurs in [21].
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Foundation of China (NSFC Grant 11171164, 11471171, and 11371020).

Appendix A: Technical Lemmas

Lemma A.1 Let f be a solution of A f (x) = 0 on R+ subject to the boundary
conditions f (0) = 0 and f ′(0) > 0.

(i) f ′(x) > 0 on [0,∞).
(ii) There exists a z̄ > 0 (possibly taking the value infinity) such that f is strictly

concave on [0, z̄) and strictly convex on (z̄,∞). In particular z̄ < ∞ if and only
if δ > r , and trivially in this case f ′′(z̄) = 0.

(iii) If r = δ, then limx→∞ f ′(x) > 0; whereas if r > δ, limx→∞ f ′(x) = 0.

Proof The general solution ofA f (x) = 0 has been given by [7], expressed in terms of
Kummer’s confluent hypergeometric functions.We construct the needed f as follows.
Let f1 and f2 be two independent solutions; choose so that f (x) = f1(0) f2(x) −
f2(0) f1(x) satisfies f ′(0) > 0. f is often called a canonical solution since any solution
of Ag(x) = 0 with g(0) = 0 has the form g(x) = c f (x) for some c ∈ R.

Suppose assertion (i) is not true; then x̃ := inf{x > 0 : f ′(x) = 0} < ∞. However,
according to the boundary conditions f (0) = 0 and f ′(0) > 0, we have f ′′(x̃) ≤ 0
and f (x̃) > 0. These result in A f (x̃) < 0, which contradicts A f (x) = 0 on [0,∞).

A similar argument can be used to show that z̄ < ∞ in the case where δ > r .
Differentiating A f (x) = 0 yields

σ 2

2
f ′′′(x) + (μ + r x) f ′′(x) − (δ − r) f ′(x) = 0. (A.1)
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Suppose f ′′(x) < 0 on [0,∞); then by (A.1) f ′′′(x) > 0 for all x > 0. So f ′′(x)
increases to 0 as x → ∞; otherwise, f ′ cannot always be positive on the positive axis.
Dividing by f (x) on both sides of A f (x) = 0 and then letting x tend to ∞, we now
have (μ+r x) f ′(x)/ f (x) → δ. Moreover, r x f ′(x)/ f (x) → δ by the assumption that
f is concave on [0,∞) and the boundary condition f (0) = 0. However, for the same
reason we have f (x) ≥ f ′(x)x , which results in lim supx→∞ r x f ′(x)/ f (x) ≤ r . This
contradicts δ > r . So there must exist a finite point z̄ > 0 such that f ′′(x) < 0 on
[0, z̄) and f ′′(z̄) = 0.

The strict convexity of f on (z̄,∞) in the case where δ > r and the strict concavity
of f on [0,∞) in the case where δ ≤ r can be proved in a similar way as that f ′ > 0,
just using the differential equation (A.1) instead of A f (x) = 0 in the proof.

Next we show that limx↑∞ f ′(x) > 0 if r = δ. In this case, (A.1) tells us that

f ′′′(x)
f ′′(x)

= − 2

σ 2 (μ + r x).

Integrating this equality on both sides gives

f ′′(x) = f ′′(0)e− 1
σ2

(
r x2+2μx

)
,

which, together with f (0) = 0, yields

f ′(x) = f ′(0)
(
1 − 2μ

σ 2

∫ x

0
e− 1

σ2

(
r y2+2μy

)
dy

)
.

Our conclusion follows from
∫ ∞
0 e− 1

σ2
(r y2+2μy)dy <

∫ ∞
0 e− 2μy

σ2 dy = σ 2

2μ and the
boundary condition f ′(0) > 0.

Finally, for the remaining assertion in (iii), because of (i) and (ii) we know that
the limit exists and is no smaller than 0. Denote this limit by q. Suppose q > 0;
then f increases to infinity certainly. Integrating A f (x) = 0 on both sides and using
integration by parts yields

σ 2

2

(
f ′(x) − f ′(0)

)
+ f (x)(μ + r x) = (δ + r)

∫ x

0
f (y)dy.

Dividing by (μ + r x)2 on both sides and then taking limits as x → ∞, by l’Hôpital’s
rule we have q

r = q δ+r
2r2

, which contradicts the condition δ < r . 	

Lemma A.2 For each M > 0, let φM be the solution of the following singular bound-
ary value problem:

{AφM (x) = Mφ′
M (x), x ≥ 0, (A.2a)

φM (0) = 1, lim
x→∞ φM (x) = 0. (A.2b)

(i) φM (x) > 0 and φ′
M (x) < 0 on [0,∞).
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(ii) There exists a zM (possibly taking the value 0) such that φM is strictly concave on
[0, zM ) and strictly convex on (zM ,∞). Moreover, for δ ≥ r or M ≤ μ, zM = 0;
for δ < r , if there exists an �M > μ such that z �M > 0, then zM > 0 for any
M > �M.

Proof A twice continuously differentiable solution of (A.2a) can be found in [8, Exam-
ple 2.1] using a power series expansion. By [2, Proposition 2.1] we know in fact that
φM (x) = Ex [e−δτ θ(M) ], where θ(M) denotes the constant dividend rate policy, i.e.,
lθt ≡ M in (2.5).

Assertion (i) is a direct consequence of [20, Lemma 4.2 ] and boundary conditions
(A.2b).

Rewrite (A.2) as

σ 2

2
φ′′
M (x) = δφM (x) − (

μ + r x − M
)
φ′
M (x),

which, together with (i), implies that φM is strictly convex on [0 ∨ (M − μ)/r,∞).
Thus, zM = 0 if M ≤ μ. Differentiating (A.2a) yields

σ 2

2
φ′′′
M (x) + (

μ + r x − M
)
φ′′
M (x) − (δ − r)φ′

M (x) = 0. (A.3)

For each M > μ, define zM := sup{x ∈ [0, M−μ
r );φ′′

M (x) = 0}, with the convention
sup{∅} = 0. Suppose that zM > 0 for some M > μ; according to the definition of zM ,
we should have φ′′′

M (zM ) ≥ 0. However, this, in combination with φ′
M < 0, will lead

to a contradiction in (A.3) when δ > r . For δ = r , (A.3), together with (A.2a), tells us
that φ′′

M (x) = 2δ
σ 2 φM (

M−μ
r ) exp (− r

σ 2 (x − M−μ
r )2). Thus, zM = 0 by assertion (i).

An analogous argument shows that φM is strictly concave on (0, zM ) if zM > 0.
For the remaining part of assertion (ii), assume there exists some M > �M such

that zM = 0, which means φM is convex on R+. Hence, by Theorem 3.1, we know
that ĴM (x) = Ĵ θ(M)

M (x) = M/δ + φM (x)/φ′
M (0). By an argument similar to [20,

Corollary 2.2], we have Ĵ θ( �M)
�M (x) = �M/δ + φ �M (x)/φ′�M (0). However, from (A.2a),

in combination with φ′
M (0), φ′�M (0) < 0 and φ′′�M (0) < 0 ≤ φ′′

M (0), we may deduce

ĴM (0) = M

δ
+ φM (0)

φ′
M (0)

= μ

δ
+ σ 2

2δ

φ′′
M (0)

φ′
M (0)

≤ μ

δ
<

μ

δ
+ σ 2

2δ

φ′′�M (0)

φ′�M (0)
= Ĵ θ( �M)

�M (0).

This results in ĴM (0) < Ĵ�M (0), which contradicts the fact that ĴM is nondecreasing
in M since the class of admissible policies 
 expands with increasing M . 	

Lemma A.3 Let x0 be given by (4.9) and g be the solution of Ag(x) = 0 on x ≥ x0
with the boundary conditions

g(x0) = xα∗
0 and g′(x0) = α∗xα∗−1

0 . (A.4)
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(i) g′(x) > 0 on [x0,∞).
(ii) There exists an x̄ > x0 (possibly taking the value infinity) such that g is strictly

concave on (x0, x̄) and strictly convex on (x̄,∞). In particular, x̄ < ∞ if and
only if δ > r , and trivially in this case g′′(x̄) = 0.

(iii) Hg(x) < 0 for any x ∈ (x0,∞).

Proof Assertions (i) and (ii) follow from an analogous argument used in the proof
of Lemma A.1. To validate assertion (iii), first note that, by (4.10) and boundary
conditions (A.4), we have Hg(x0) = 0. Therefore,

(Hg(x)
)′|x=x0 =

(μ

2
+ r x0

)
g′′(x0) − (δ − r)g′(x0)

=
(
r − δ − μ

σ 2

(μ

2
+ r x0

))
g′(x0)

=
(
r − δ − δ

α∗
(
1 − α∗))g′(x0)

=
(
r − δ

α∗
)
g′(x0) < 0,

where the inequality follows from (4.6) that rα∗−δ = μ2α∗
2σ 2(α∗−1)

< 0. Thus,Hg(x) <

0 in a right neighborhood of x0. Suppose there exists a finite x̃ > x0 such thatHg(x̃) =
0 andHg(x) < 0 for all x ∈ (x0, x̃);we should then have (Hg(x))′|x=x̃ ≥ 0.However,
calculations similar to the preceding ones show that

(Hg(x)
)′|x=x̃ =

(
r − δ − μ

σ 2

(μ

2
+ r x̃

))
g′(x̃)

<
(
r − δ − μ

σ 2

(μ

2
+ r x0

))
g′(x̃) < 0,

which is a contradiction. 	

Lemma A.4 For each M > 0, let xM be given by (4.18), and let ψM be the unique
solution of a differential equation with boundary conditions:

{ AψM (x) = Mψ ′
M (x), x ≤ xM , (A.5a)

HψM (xM ) = Mψ ′
M (xM ), ψM (xM ) = −1. (A.5b)

(i) ψ ′
M (x) > 0 on (−∞, xM ].

(ii) There exists an xM (possibly taking the value minus infinity) such that ψM is
strictly concave on (xM , xM ) and strictly convex on (−∞, xM ). If δ ≥ r , then
xM = −∞.

(iii) HψM (x) − Mψ ′
M (x) < 0 for any x < xM.

Proof Since all the results can be proved in the spirit of the proof of Lemmas A.1
and A.3, for the sake of brevity, we only show that they are true in a left neighborhood
of xM and leave the details for the interested reader.
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Boundary conditions (A.5b), in conjunction with (4.17) and (4.18), tell us that
ψ ′
M (xM ) = −δ/(

μ
2 + r

k ), which, by (4.15), is greater than 0. Thus, ψ ′′
M (xM ) =

−μ/σ 2ψ ′
M (xM ) < 0. This, together with (4.14), yields

(HψM (x) − Mψ ′
M (x)

)′|x=xM =
(

− μ

σ 2

(μ

2
+ r xM − M

)
− δ + r

)
ψ ′
M (xM )

= −μk

2
ψ ′
M (xM ) > 0,

which shows that HψM (x) − Mψ ′
M (x) < 0 in a left neighborhood of xM . 	


Appendix B: Technical Proofs

Using the equations satisfied by f and φM respectively, we can rewrite J 1 and J 2M as

J 1(x) = μ + r x

δ
+ σ 2 f ′′(x)

2δ f ′(x)
(B.1)

and

J 2M (x) = μ + r x

δ
+ σ 2φ′′

M (x)

2δφ′
M (x)

. (B.2)

Proof of Lemma 3.1. We prove this conclusion by dividing it into two different cases.
First, if δ ≥ r , then from Lemma A.2ii we know that φM is convex on [0,∞) for any
M > 0. This, in conjunction with Theorem 3.1, yields ĴM (x) = Ĵ θ(M)

M (x) = M/δ +
φM (x)/φ′

M (0) which is nondecreasing in M since admissible policies 
 enlarge with
increasing M . Taking M → ∞, we have ĴM (0) → μ/δ, which is simply the return
function of the policy that pays everything above 0 as dividends and injects enough
capital to ensure that the surplus process will remain at 0. Moreover, limM↓0 ĴM (0) <

0. These results suggest that there must be some point, denoted by M0 ∈ (0,∞), such
that ĴM (0) ≤ 0 if M ≤ M0 and ĴM (0) > 0 if M > M0. Our conclusion follows from
J 2M (0) = ĴM (0).

For the case where δ < r , set �M := inf{M; zM > 0} with the convention inf{∅} =
∞, where zM is defined in Lemma A.2ii, from which we also know that �M > μ. If
�M = ∞, which means that φM is convex on [0,∞) for each M > 0. If �M is finite,
then φM is convex on [0,∞) for any M < �M , and for each M > �M , by (B.2) and
LemmaA.2ii, we have J 2M (0) > μ/δ. In either of the preceding cases, J 2M (0) = ĴM (0)
for M < �M and limM↑ �M J 2M (0) = μ/δ; then one can find M0 (< �M) by an argument
analogous to that used in the case δ ≥ r .

Proof of Lemma 3.2. We first show that there is no intersection if M ≤ M0. In this
case, Lemma 3.1, together with φ′

M < 0 and (B.2), tells us that φ′′
M (0) ≥ 0. Then,

by Lemma A.2ii, we know that φM is strictly convex on R+, which, combined with
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Fig. 3 Optimal dividend barrier
x̂ for M > r(x0 + x1), δ > r ,
and xM < x̄

x

y

x0

x̄

μ/2+rx
δ

μ+rx
δV 1(x) = U(x)

U (x)

V 2
M(x) = ψM (x)

ψM (x) +
M
δ

xMx̂

φM > 0 and (B.2), induces J 2M
′
(x) < 1 and J 2M (x) < (μ + r x)/δ. Similarly, from

Lemma A.1 and (B.1) we have

J 1
′
(x) > 1 on (0, z̄) and J 1(x) >

μ + r x

δ
on (z̄,∞). (B.3)

These inequalities, in conjunctionwith initial values J 1(0) = 0 ≥ J 2M (0), demonstrate
that J 1 and J 2M have no intersection on (0,∞) when M ≤ M0.

For the case where M > M0, Lemma 3.1 tells us that J 2M (0) > 0 = J 1(0), and
by Lemma A.2i we know that J 2M < M/δ, while (B.3) shows that J 1(x) → ∞ as
x → ∞. Therefore, J 1 and J 2M have at least one intersection. Moreover, if δ > r ,
then the intersection lies on (0, z̄) since J 1(x) > (μ + r x)/δ > J 2M (x) on (z̄,∞).
For the case where δ < r and zM > 0, from Lemmas A.1ii and A.2ii we know that
f and φM are concave on (0, zM ). This, in combination with (B.1) and (B.2) and the
fact that φ′

M < 0 < f ′, shows J 2M (x) > (μ + r x)/δ > J 1(x) on (0, zM ). Thus the

intersection lies above zM . The uniqueness follows from J 1
′
(x) > 1 > J 2M

′
(x) on

(0, z̄) if δ ≥ r and on (zM ,∞) if δ < r . 	


Proof of Lemma 4.1. Equation (4.10) manifests on x ∈ (0, x0], V1(x) = x/α ≤
(μ/2 + r x)/δ, which, by Lemma A.4iii, is smaller than V 2

M (x), whereas from
Lemma A.3iii and boundary condition (A.5b) we know that V 1(xM ) > (μ/2 +
r xM )/δ = V 2

M (xM ). These results show that the intersection lies on (x0, xM ).
Uniqueness is verified by considering two different cases. First, if δ ≥ r , then,

by Lemma A.4ii, we know that V 2
M

′
(x) < 1. Similarly, from Lemma A.3ii we have

V 1′
(x) > 1 on (x0, x̄). Therefore, uniqueness is certain if xM ≤ x̄ . A typical situation

for δ > r and xM < x̄ is shown in Fig. 3. If xM > x̄ (which, according to LemmaA.3ii,
happens only if δ > r ), by rewriting V 1(x) and V 2

M (x) on (x0, xM ) in the form of
(B.1) and (B.2), respectively, and then using the strict convexity of U and the strict
concavity of ψM on (x̄, xM ), one gets that the unique intersection x̂ lies on (x0, x̄).
For the remaining case where δ < r , Lemma (A.4)ii tells us that ψM is concave
on (xM , xM ) and convex on (−∞, xM ) (possibly being an empty set). Whenever
xM > x0 or xM ≤ x0, just like xM > x̄ or xM ≤ x̄ in the case of δ > r , uniqueness
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can be proved similarly. Moreover, if the first subcase occurs, i.e., xM > x0, then
x̂ ∈ (xM , xM ). 	


References

1. Albrecher, H., Thonhauser, S.: Optimal dividend strategies for a risk process under force of interest.
Insur. Math. Econ. 43(1), 134–149 (2008)

2. Alili, L., Patie, P., Pedersen, J.L.: Representations of the first hitting time density of an Ornstein–
Uhlenbeck process. Stoch. Models 21(4), 967–980 (2005)

3. Asmussen, S., Taksar, M.: Controlled diffusion models for optimal dividend pay-out. Insur. Math.
Econ. 20(1), 1–15 (1997)

4. Avram, F., Palmowski, Z., Pistorius, M.R.: On the optimal dividend problem for a spectrally negative
Lévy process. Ann. Appl. Probab. 17(1), 156–180 (2007)

5. Azcue, P., Muler, N.: Optimal investment policy and dividend payment strategy in an insurance com-
pany. Ann. Appl. Probab. 20(4), 1253–1302 (2010)

6. Azcue, P., Muler, N.: Optimal dividend policies for compound poisson processes: the case of bounded
dividend rates. Insur. Math. Econ. 51(1), 26–42 (2012)

7. Cai, J., Gerber, H.U., Yang, H.: Optimal dividends in an Ornstein–Uhlenbeck type model with credit
and debit interest. North Am. Actuarial J. 10(2), 94–108 (2006)

8. Eisenberg, J., Hanspeter, S.: Optimal control of capital injections by reinsurance with a constant rate
of interest. J. Appl. Probab. 48(3), 733–748 (2011)

9. Fang, Y.,Wu, R.: Optimal dividends in the Brownian motion risk model with interest. J. Comput. Appl.
Math. 229(1), 145–151 (2009)

10. Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions, vol. 25. Springer,
Berlin (2006)

11. Gerber, H.U., Shiu, E.S.W.: On optimal dividend strategies in the compound Poisson model. North
Am. Actuarial J. 10(2), 76–93 (2006)

12. Grandell, J.: Empirical bounds for ruin probabilities. Stoch. Process. Appl. 8(3), 243–255 (1979)
13. Højgaard, B., Taksar,M.: Controlling risk exposure and dividends payout schemes: insurance company

example. Math. Fin. 9(2), 153–182 (1999)
14. Højgaard, B., Taksar, M.: Optimal risk control for a large corporation in the presence of returns on

investments. Fin. Stoch. 5(4), 527–547 (2001)
15. Højgaard, B., Taksar, M.: Optimal dynamic portfolio selection for a corporation with controllable risk

and dividend distribution policy. Quant. Fin. 4(3), 315–327 (2004)
16. Jeanblanc-Picqué, M., Shiryaev, A.N.: Optimization of the flow of dividends. Russian Math. Surv. 50,

257–277 (1995)
17. Kyprianou, A.E., Loeffen, R., Pérez, J.-L.: Optimal control with absolutely continuous strategies for

spectrally negative Lévy processes. J. Appl. Probab. 49(1), 150–166 (2012)
18. Loeffen, R.L.: On optimality of the barrier strategy in de Finetti’s dividend problem for spectrally

negative Lévy processes. Ann. Appl. Probab. 18(5), 1669–1680 (2008)
19. Paulsen, J., Gjessing, H.K.: Optimal choice of dividend barriers for a risk process with stochastic return

on investments. Insur. Math. Econ. 20(3), 215–223 (1997)
20. Shreve, S.E., Lehoczky, J.P., Gaver, D.P.: Optimal consumption for general diffusions with absorbing

and reflecting barriers. SIAM J. Control Optim. 22(1), 55–75 (1984)
21. Taksar, M., Markussen, C.: Optimal dynamic reinsurance policies for large insurance portfolios. Fin.

Stoch. 7(1), 97–121 (2003)

123


	Optimal Control with Restrictions for a Diffusion Risk Model Under Constant Interest Force
	Abstract
	1 Introduction
	2 Problem Formulation
	3 The Case of No Reinsurance
	4 The Case of Buying Reinsurance
	Acknowledgments
	Appendix A:  Technical Lemmas
	Appendix B:  Technical Proofs
	References




