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Abstract We consider a backward stochastic differential equation with jumps
(BSDEJ) which is driven by a Brownian motion and a Poisson random measure.
We present two candidate-approximations to this BSDEJ and we prove that the solu-
tion of each candidate-approximation converges to the solution of the original BSDEJ
in a space which we specify. We use this result to investigate in further detail the
consequences of the choice of the model to (partial) hedging in incomplete markets
in finance. As an application, we consider models in which the small variations in the
price dynamics are modeled with a Poisson random measure with infinite activity and
models in which these small variations are modeled with a Brownian motion or are
cut off. Using the convergence results on BSDEJs, we show that quadratic hedging
strategies are robust towards the approximation of the market prices and we derive an
estimation of the model risk.
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1 Introduction

Since Bismut [6] introduced the theory of backward stochastic differential equations
(BSDEs), there has been a wide range of literature about this topic. Researchers have
kept on developing results on these equations and recently, many papers have studied
BSDEs driven by Lévy processes [10,26,27].

In this paper we consider a BSDE which is driven by a Brownian motion and a
Poisson random measure (BSDEJ). We present two candidate-approximations to this
BSDEJ and we prove that the solution of each candidate-approximation converges to
the solution of the BSDEJ in a space which we specify. Our aim from considering
such approximations is to investigate the effect of the small jumps of the Lévy process
in quadratic hedging strategies in incomplete markets in finance (see, e.g., Föllmer
and Schweizer [15] and Vandaele and Vanmaele [32] for more about quadratic hedg-
ing strategies in incomplete markets). These strategies are related to the study of
the Föllmer–Schweizer decomposition (FS) or/and the Galtchouk–Kunita–Watanabe
(GKW) decomposition which are both backward stochastic differential equations (see
Choulli et al. [12] for more about these decompositions).

The two most popular types of quadratic hedging strategies are the locally risk-
minimizing strategies and the mean-variance hedging strategies. To explain, let us
consider a market in which the risky asset is modelled by a jump-diffusion process
S(t)t≥0. Let ξ be a contingent claim. A locally risk-minimizing strategy is a non self-
financing strategy that allows a small cost process C(t)t≥0 and insists on the fact that
the terminal condition of the value of the portfolio is equal to the contingent claim
[29]. In other words the existence of the local risk-minimizing strategy for ξ is related
to the Föllmer-Schweizer (FS) decomposition, i.e.,

ξ = ξ (0) +
∫ T

0
χ FS(s)dS(s) + φFS(T ), (1.1)

where χ FS(t)t≥0 is a process such that the integral in (1.1) exists and φFS(t)t≥0 is
a martingale which has to satisfy certain conditions that we will show in the next
sections of the paper. The financial importance of the FS decomposition lies in the
fact that it directly provides the locally risk-minimizing strategy for ξ . In fact at each
time t the number of risky assets is given by χ FS(t) and the cost C(t) is given by
φFS(t) + ξ (0). The mean-variance hedging strategy is a self-financing strategy which
minimizes the hedging error in mean square sense [16].

In this paper we study the robustness of these two latter hedging strategies towards
the approximation of the market prices. Hereto we assume that the process S(t)t≥0 is
a jump-diffusion with stochastic factors and driven by a pure jump term with infinite
activity and aBrownianmotionW (t)t≥0.We consider three approximations to S(t)t≥0.
In the first approximation S0,ε(t)t≥0 , we truncate the small jumps and rescale the
Brownian motion W (t)t≥0 to justify the variance of the small jumps. In the second
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approximation S1,ε(t)t≥0 ,we truncate the small jumps and replace thembyaBrownian
motion B(t)t≥0 independent of W (t)t≥0 and scaled with the standard deviation of the
small jumps. In the third approximation S2,ε(t)t≥0 , we truncate the small jumps.

This idea of shifting from a model with small jumps to another where those varia-
tions are represented by some appropriately scaled continuous component goes back to
Asmussen and Rosinsky [3] who proved that the second model approximates the first
one. This explains our choice of the two models S0,ε(t)t≥0 and S1,ε(t)t≥0 . This kind
of approximation results is here considered for the purpose of a study of robustness of
themodel. Hence it is interesting from themodeling point of view. In addition, it is also
interesting from a simulation point of view. In fact no easy algorithms are available for
simulating general Lévy processes. In the present paper the approximating processes
we obtain contain a compound Poisson process and a Brownian motion which are
both easy to simulate [13]. For numerical solutions to BSDEs driven by a Brownian
motion and a compound Poisson process, we refer to the paper by Bouchard and Elie
[8]. This latter paper is in fact an extension of the work by Bouchard and Touzi [7]
written for Brownian noise where time discretisation is studied to solve BSDEs with
an Euler type scheme. In a forthcoming paper by Khedher et al. [20], BSDEs driven by
Brownian motion and jumps with infinite activity are considered. There the combined
effect of approximation and time-discretisation is studied together with a numerical
scheme to solve such BSDEs. This then will be used to prove the robustness of the
locally risk-minimizing strategies to model risk and numerical discretisation.

We do not discuss in this paper any preferences for the choice of themodel.We leave
this to further studies. For instance Daveloose et al. [14] have this type of discussion
about the model choice, in the case the dynamics are given by an exponential Lévy
process. Benth et al. [4,5] investigated the consequences of this approximation to
option pricing in finance. They consider option prices written in exponential Lévy
processes and they proved the robustness of the option prices after a change ofmeasure
where the measure depends on the model choice. For this purpose the authors used
Fourier transform techniques.

In this paper we focusmostly on the locally risk-minimizing strategies andwe show
that under some conditions on the parameters of the stock price process, the value of
the portfolio, the amount of wealth, and the cost process in a locally risk-minimizing
strategy are robust to the choice of themodel.Moreover, we prove the robustness of the
value of the portfolio and the amount of wealth in a mean-variance hedging strategy,
where we assume that the parameters of the jump-diffusion are deterministic. To prove
these results we use the convergence results on BSDEJs and we exploit the relation
between BSDEJs and quadratic hedging strategies. In this context, we refer to a paper
by Jeanblanc et al. [18] in which the authors exploit the relation between BSDEJs and
mean variance hedging strategies in a general semimartingale setting.

This robustness study is a continuation and a generalization of the results byBenth et
al. [4]. In fact we consider more general dynamics and we prove that indeed the locally
risk-minimizing strategy and the mean-variance hedging strategy are robust to the risk
of model choice. For the special choice of dynamics for the price process, namely an
exponential Lévy process, Daveloose et al. [14] study robustness of quadratic hedging
strategies using a Fourier approach.
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The paper is organised as follows: in Sect. 2we introduce the notations andwemake
a short introduction toBSDEJs. InSect. 3wepresent the twocandidate-approximations
to the original BSDEJ and we prove the robustness. In Sect. 4 we prove the robustness
of quadratic hedging strategies towards the choice of themodel. In Sect. 5we conclude.

2 Some Mathematical Preliminaries

Let (�,F ,P) be a complete probability space.We fix T > 0. LetW = W (t) and B =
B(t), t ∈ [0, T ], be two independent standard Wiener processes and Ñ = Ñ (dt, dz),
t, z ∈ [0, T ] × R0 (R0 := R \ {0}) be a centered Poisson random measure, i.e.
Ñ (dt, dz) = N (dt, dz) − �(dz)dt , where �(dz) is the jump measure and N (dt, dz)
is the Poisson random measure independent of the Brownian motions W and B and
such that E[N (dt, dz)] = �(dz)dt . Define B(R0) as the σ -algebra generated by the
Borel sets Ū ⊂ R0. We assume that the jump measure has a finite second moment,
namely

∫
R0

z2�(dz) < ∞. We introduce the P-augmented filtrations F = (Ft )0≤t≤T ,
G = (Gt )0≤t≤T , respectively by

Ft = σ
{
W (s),

∫ s

0

∫
A
Ñ (du, dz), s ≤ t, A ∈ B(R0)

}
∨ N ,

Gt = σ
{
W (s), B(s),

∫ s

0

∫
A
Ñ (du, dz), s ≤ t, A ∈ B(R0)

}
∨ N ,

where N represents the set of P-null events in F . We introduce the notation H =
(Ht )0≤t≤T , such thatHt will be given either by the σ -algebra Ft or Gt depending on
our analysis later.

Define the following spaces;

• L2
T : the space of all HT -measurable random variables X : � → R such that

‖X‖2 = E[X2] < ∞.

• H2
T : the space of all H-predictable processes φ : � × [0, T ] → R, such that

‖φ‖2
H2
T

= E

[ ∫ T

0
|φ(t)|2dt

]
< ∞.

• H̃2
T : the space of all H-adapted, càdlàg processes ψ : � × [0, T ] → R such that

‖ψ‖2
H̃2
T

= E

[ ∫ T

0
|ψ(t)|2dt

]
< ∞.
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• Ĥ2
T : the space of all H-predictable mappings θ : � × [0, T ] ×R0 → R, such that

‖θ‖2
Ĥ2
T

= E

[ ∫ T

0

∫
R0

|θ(t, z)|2�(dz)dt
]

< ∞.

• S2T : the space of all H-adapted, càdlàg processes γ : � × [0, T ] → R such that

‖γ ‖2
S2T

= E[ sup
0≤t≤T

|γ 2(t)|] < ∞.

• ν = S2T × H2
T × Ĥ2

T .

• ν̃ = S2T × H2
T × Ĥ2

T × H2
T .

• L̂2(R0,B(R0), �): the space of all B(R0)-measurable mappings ψ : R0 → R such
that

‖ψ‖2
L̂2(R0,B(R0),�)

=
∫
R0

|ψ(z)|2�(dz) < ∞.

The following result is crucial in the study of the existence and uniqueness of the
backward stochastic differential equations we are interested in. Indeed it is an appli-
cation of the decomposition of a random variable ξ ∈ L2

T with respect to orthogonal
martingale random fields as integrators. See Kunita and Watanabe [22], Cairoli and
Walsh [9], and Di Nunno and Eide [25] for the essential ideas. In Di Nunno [23,24],
and Di Nunno and Eide [25], explicit representations of the integrands are given in
terms of the non-anticipating derivative.

Theorem 2.1 Let H = G. Every GT -measurable random variable ξ ∈ L2
T has a

unique representation of the form

ξ = ξ (0) +
3∑

k=1

∫ T

0

∫
R

ϕk(t, z)μk(dt, dz), (2.1)

where the stochastic integrators

μ1(dt, dz) = W (dt) × δ0(dz), μ2(dt, dz) = B(dt) × δ0(dz),

μ3(dt, dz) = Ñ (dt, dz)1[0,T ]×R0(t, z),

are orthogonal martingale random fields on [0, T ]×R0 and the stochastic integrands
are ϕ1, ϕ2 ∈ H2

T and ϕ3 ∈ Ĥ2
T . Moreover ξ (0) = E[ξ ].

Let H = F. Then for every FT -measurable random variable ξ ∈ L2
T , (2.1) holds

with μ2(dt, dz) = 0.

As we shall see the above result plays a central role in the analysis that follows.
Let us now consider a pair (ξ, f ), where ξ is called the terminal condition and f the
driver such that
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Assumptions 2.1 (A) ξ ∈ L2
T isHT -measurable

(B) f : � × [0, T ] × R × R × R → R such that
• f (·, x, y, z) is H-progressively measurable for all x, y, z,
• f (·, 0, 0, 0) ∈ H2

T ,• f (·, x, y, z) satisfies a uniform Lipschitz condition in (x, y, z), i.e. there exists a
constant C such that for all (xi , yi , zi ) ∈ R × R × L̂2(R0,B(R0), �), i = 1, 2 we
have

| f (t, x1, y1, z1) − f (t, x2, y2, z2)|
≤ C

(
|x1 − x2| + |y1 − y2| + ‖z1 − z2‖

)
, for all t ∈ [0, T ].

We consider the following backward stochastic differential equation with jumps (in
short BSDEJ)

⎧⎨
⎩

−dX (t) = f (t, X (t),Y (t), Z(t, ·))dt − Y (t)dW (t) −
∫
R0

Z(t, z)Ñ (dt, dz),

X (T ) = ξ.

(2.2)

Definition 2.2 A solution to the BSDEJ (2.2) is a triplet of H-adapted or predictable
processes (X,Y, Z) ∈ ν satisfying

X (t) = ξ +
∫ T

t
f (s, X (s),Y (s), Z(s, ·))ds −

∫ T

t
Y (s)dW (s)

−
∫ T

t

∫
R0

Z(s, z)Ñ (ds, dz), 0 ≤ t ≤ T .

The existence and uniqueness result for the solution of the BSDEJ (2.2) is guaran-
teed by the following result proved in Tang and Li [31].

Theorem 2.3 Given a pair (ξ, f ) satisfying Assumptions 2.1(A) and (B), there exists
a unique solution (X,Y, Z) ∈ ν to the BSDEJ (2.2).

3 Two Candidate-Approximating BSDEJs and Robustness

3.1 Two Candidate-Approximating BSDEJs

In this subsection we present two candidate-approximations of the BSDEJ (2.2). Let
H = F and f 0ε be a function satisfying Assumptions 2.1(B), for all ε ∈ [0, 1]. In the
first candidate-approximation, we approximate the terminal condition ξ of the BSDEJ
(2.2) by a sequence of random variables ξ0ε ∈ L2

T , FT -measurable such that

lim
ε→0

ξ0ε = ξ, in L2
T .
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We obtain the following approximation

⎧⎨
⎩

−dXε(t) = f 0ε (t, Xε(t),Yε(t), Zε(t, ·))dt − Yε(t)dW (t) −
∫
R0

Zε(t, z)Ñ (dt, dz),

Xε(T ) = ξ0ε .

(3.1)

We present the following condition on f 0ε , whichwe need to imposewhenwe study the
robustness results in the next section. For all (xi , yi , zi ) ∈ R×R× L̂2(R0,B(R0), �),
i = 1, 2, and for all t ∈ [0, T ], it holds that

| f (t, x1, y1, z1) − f 0ε (t, x2, y2, z2)|
≤ C

(
|x1 − x2| + |y1 − y2| + ‖z1 − z2‖ + G̃(ε)|y2| + G̃(ε)‖z2‖

)
, (3.2)

for C and G̃(ε) positive constants and G̃(ε) vanishing when ε goes to 0.
In the next theorem we state the existence and uniqueness of the solution

(Xε,Yε, Zε) ∈ ν of the BSDEJ (3.1). This result on existence and uniqueness of
the solution to (3.1) is along the same lines as the proof of Theorem 2.3, see also Tang
and Li [31].

Theorem 3.1 LetH = F. Given a pair (ξ0ε , f 0ε ) such that ξ0ε ∈ L2
T isFT -measurable

and f 0ε satisfies Assumptions 2.1(B), then there exists a unique solution (Xε,Yε, Zε) ∈
ν to the BSDEJ (3.1).

Let H = G. We present the second candidate-approximation to (2.2). Hereto we
introduce a sequence of random variables GT -measurable ξ1ε ∈ L2

T such that

lim
ε→0

ξ1ε = ξ

and a function f 1ε satisfying

Assumptions 3.1 f 1ε : �×[0, T ]×R×R×R×R → R is such that for all ε ∈ [0, 1],
• f 1ε (·, x, y, z, ζ ) is G-progressively measurable for all x, y, z, ζ ,
• f 1ε (·, 0, 0, 0, 0) ∈ H2

T ,• f 1ε (·, x, y, z, ζ ) satisfies a uniform Lipschitz condition in (x, y, z, ζ ).

Besides Assumptions 3.1 which we impose on f 1ε , we need moreover to assume
the following condition in the robustness analysis later on. For all (xi , yi , zi , ζ ) ∈
R × R × L̂2(R0,B(R0), �) × R, i = 1, 2, and for all t ∈ [0, T ], it holds that

| f (t, x1, y1, z1) − f 1ε (t, x2, y2, z2, ζ )|
≤ C

(
|x1 − x2| + |y1 − y2| + ‖z1 − z2‖ + |ζ | + G̃(ε)‖z1‖|

)
, (3.3)

for C and G̃(ε) positive constants and G̃(ε) vanishing when ε goes to 0.
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We introduce the second candidate BSDEJ approximation to (2.2) which reads as
follows

⎧⎪⎪⎨
⎪⎪⎩

−dXε(t) = f 1ε (t, Xε(t), Yε(t), Zε(t, ·), ζε(t))dt − Yε(t)dW (t) −
∫
R0

Zε(t, z)Ñ (dt, dz)

−ζε(t)dB(t),
Xε(T ) = ξ1ε ,

(3.4)

wherewe use the same notations as in (3.1). B is a Brownianmotion independent ofW .
Because of the presence of the additional noise B the solution processes are expected
to be G-adapted (or predictable). Notice that the solution of such equation is given
by (Xε,Yε, Zε, ζε) ∈ ν̃. In the next theorem we state the existence and uniqueness of
the solution of the Eq. (3.4). The proof is very similar to the proof of Theorem 3.1.
However we work under the σ -algebra Gt .
Theorem 3.2 LetH = G. Given a pair (ξ1ε , f 1ε ) such that ξ1ε ∈ L2

T is GT -measurable
and f 1ε satisfies Assumptions 3.1, then there exists a unique solution (Xε,Yε, Zε, ζε) ∈
ν̃ to the BSDEJ (3.1).

It is expected that when (3.3) holds, the process ζε vanishes when ε goes to 0. This
will be shown in the next subsection in which we also prove the robustness of the
BSDEJs.

3.2 Robustness of the BSDEJs

Beforewe show the convergenceof the twoequations (3.1) and (3.4) to theBSDEJ (2.2)
when ε goes to 0, we present the following lemma in which we prove the boundedness
of the solution of (2.2) and of that of (3.1). We need this lemma in Theorem 3.4 and
for our analysis in the next section.

Lemma 3.3 Let (X,Y, Z), (Xε,Yε, Zε) be the solution of (2.2) and (3.1), respec-
tively. Then we have for all t ∈ [0, T ],

E

[ ∫ T

t
X2(s)ds

]
+ E

[ ∫ T

t
Y 2(s)ds

]
+ E

[ ∫ T

t

∫
R0

Z2(s, z)�(dz)ds
]

≤ C
(
E[ξ2] + E

[ ∫ T

t
| f (s, 0, 0, 0)|2ds

])
,

respectively,

E

[ ∫ T

t
X2

ε (s)ds
]

+ E

[ ∫ T

t
Y 2

ε (s)ds
]

+ E

[ ∫ T

t

∫
R0

Z2
ε (s, z)�(dz)ds

]

≤ C
(
E[|ξ0ε |2] + E

[ ∫ T

t
| f 0ε (s, 0, 0, 0)|2ds

])
,

where C is a positive constant.
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Proof Recall the expression of X given by (2.2). Applying the Itô formula to eβt X2(t)
and taking the expectation, we get

E[eβt X2(t)] = E[eβT X2(T )] − βE
[ ∫ T

t
eβs X2(s)ds

]
− E

[ ∫ T

t
eβsY 2(s)ds

]

+ 2E
[ ∫ T

t
eβs X (s)

(
f (s, X (s), Y (s), Z(s, .)) − f (s, 0, 0, 0)

)
ds

]

+ 2E
[ ∫ T

t
eβs X (s) f (s, 0, 0, 0)ds

]
− E

[ ∫ T

t

∫
R0

eβs Z2(s, z)�(dz)ds
]
.

Thus by the Lipschitz property of f we find

E[eβt X2(t)] + E

[ ∫ T

t
eβsY 2(s)ds

]
+ E

[ ∫ T

t

∫
R0

eβs Z2(s, z)�(dz)ds
]

≤ E[eβT X2(T )] − βE
[ ∫ T

t
eβs X2(s)ds

]

+ 2CE

[ ∫ T

t
eβs X (s)

(
|X (s)| + |Y (s)| + |

∫
R0

Z2(s, z)�(dz)| 12
)
ds

]

+ 2E
[ ∫ T

t
eβs X (s) f (s, 0, 0, 0)ds

]
.

Using the fact that for every k > 0 and a, b ∈ R we have that 2ab ≤ ka2 + b2
k

and (a + b + c)2 ≤ 3(a2 + b2 + c2), choosing β = 6C2 + 2, and noticing that
β > 0, the result follows for (X,Y, Z). The same computations lead to the result for
the approximation (Xε,Yε, Zε). ��

From now on we use a unified notation for both BSDEJs (3.1) and (3.4) in the
BSDEJ

⎧⎨
⎩

−dXρ
ε (t) = f ρ

ε (t)dt − Y ρ
ε (t)dW (t) −

∫
R0

Zρ
ε (t, z)Ñ (dt, dz) − ζ ρ

ε (t)dB(t),

Xρ
ε (T ) = ξ

ρ
ε , for ρ = 0 and ρ = 1,

(3.5)

where

f ρ
ε (t) =

{
f 0ε (t, X0

ε (t),Y
0
ε (t), Z0

ε (t)), ρ = 0,
f 1ε (t, X1

ε (t),Y
1
ε (t), Z1

ε (t), ζ
1
ε (t)), ρ = 1

and

ζ ρ
ε (t) =

{
0, ρ = 0,
ζ 1
ε (t), ρ = 1.
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Notice that the BSDEJ (3.5) has the same solution as (3.1) and (3.4) respectively for
ρ = 0 and ρ = 1. We state the following theorem in which we prove the convergence
of both BSDEJs (3.1) and (3.4) to the BSDEJ (2.2).

Theorem 3.4 Assume that f 0ε and f 1ε satisfy (3.2)and (3.3) respectively. Let (X,Y, Z)

be the solution of (2.2) and (Xρ
ε ,Y ρ

ε , Zρ
ε , ζ

ρ
ε ) be the solution of (3.5). Then we have

for t ∈ [0, T ], ρ = 0 and ρ = 1

E

[ ∫ T

t
|X (s) − Xρ

ε (s)|2ds
]

+ E

[ ∫ T

t
|Y (s) − Y ρ

ε (s)|2ds
]

+ E

[ ∫ T

t

∫
R0

|Z(s, z) − Zρ
ε (s, z)|2�(dz)ds

]
+ E

[ ∫ T

t
|ζ ρ

ε (s)|2ds
]

≤ KE[|ξ − ξρ
ε |2] + K̃ G̃2(ε)(1 − ρ)

(
E[|ξ0ε |2] + E[

∫ T

t
| f 0ε (s, 0, 0, 0)|2ds]

)

+ K̂ G̃2(ε)ρ
(
E[|ξ |2] + E[

∫ T

t
| f (s, 0, 0, 0)|2ds]

)
,

where K , K̃ , K̂ and G̃(ε) are positive constants and with G̃(ε) vanishing when ε goes
to 0.

Proof Let

X̄ρ
ε (t) = X (t) − Xρ

ε (t), Ȳ ρ
ε (t) = Y (t) − Y ρ

ε (t), Z̄ρ
ε (t, z) = Z(t, z) − Zρ

ε (t, z),

f̄ ρ
ε (t) = f (t, X (t),Y (t), Z(t, .)) − f ρ

ε (t). (3.6)

Applying the Itô formula to eβt |X̄ρ
ε (t)|2, we get

E[eβt |X̄ρ
ε (t)|2] + E

[ ∫ T

t
eβs |Ȳ ρ

ε (s)|2ds
]

+ E

[ ∫ T

t

∫
R0

eβs |Z̄ρ
ε (s, z)|2�(dz)ds

]

+ E

[ ∫ T

t
eβs |ζ ρ

ε (s)|2ds
]

= E[eβT |X̄ρ
ε (T )|2] − βE

[ ∫ T

t
eβs |X̄ρ

ε (s)|2ds
]

+ 2E
[ ∫ T

t
eβs |X̄ρ

ε (s)|| f̄ ρ
ε (s)|ds

]
. (3.7)

Using conditions (3.2) and (3.3), we get

E[eβt |X̄ρ
ε (t)|2] + E[

∫ T

t
eβs |Ȳ ρ

ε (s)|2ds] + E

[ ∫ T

t

∫
R0

eβs |Z̄ρ
ε (s, z)|2�(dz)ds

]

+ E

[ ∫ T

t
eβs |ζ ρ

ε (s)|2ds
]

≤ E[eβT |X̄ρ
ε (T )|2] − βE

[ ∫ T

t
eβs |X̄ρ

ε (s)|2ds
]
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+ 2CE

[ ∫ T

t
eβs |X̄ρ

ε (s)|
(
|X̄ρ

ε (s)| + |Ȳ ρ
ε (s)| + |ζ ρ

ε (s)| + (1 − ρ)G̃(ε)|Y 0
ε (s)|

+ ρG̃(ε)(

∫
R0

|Z(s, z)|2�(dz)) 1
2 + (1 − ρ)G̃(ε)(

∫
R0

|Z0
ε (s, z)|2�(dz))

1
2

+ (

∫
R0

|Z̄ρ
ε (s, z)|2�(dz)) 1

2

)
ds

]
.

Using the fact that for every k > 0 and a, b ∈ R we have that 2ab ≤ ka2 + b2
k and(∑7

i=1 ai
)2 ≤ 7

∑7
i=1 a

2
i , we obtain

E[eβt |X̄ρ
ε (t)|2] + E[

∫ T

t
eβs |Ȳ ρ

ε (s)|2ds] + E

[ ∫ T

t

∫
R0

eβs |Z̄ρ
ε (s, z)|2�(dz)ds

]

+ E

[ ∫ T

t
eβs |ζ ρ

ε (s)|2ds
]

≤ E[eβT |X̄ρ
ε (T )|2] − βE

[ ∫ T

t
eβs |X̄ρ

ε (s)|2ds
]

+ 14C2
E

[ ∫ T

t
eβs |X̄ρ

ε (s)|2ds
]

+ 1

2
E

[ ∫ T

t
eβs |X̄ρ

ε (s)|2ds
]

+ 1

2
E

[ ∫ T

t
eβs |ζ ρ

ε (s)|2ds
]

+ 1

2
E

[ ∫ T

t
eβs |Ȳ ρ

ε (s)|2ds
]

+ 1

2
E

[ ∫ T

t

∫
R0

eβs |Z̄ρ
ε (s, z)|2�(dz)ds

]

+ 1

2
(1 − ρ)G̃2(ε)E

[ ∫ T

t
eβs |Y 0

ε (s)|2ds
]

+ 1

2
ρG̃2(ε)E

[ ∫ T

t

∫
R0

eβs |Z(s, z)|2�(dz)ds
]

+ 1

2
(1 − ρ)G̃2(ε)E

[ ∫ T

t

∫
R0

eβs |Z0
ε (s, z)|2�(dz)ds

]
.

Choosing β = 14C2 + 1 and since E[eβt |X̄ρ
ε (t)|2] > 0, we get

E

[ ∫ T

t
eβs |X̄ρ

ε (s)|2ds
]

+ E

[ ∫ T

t
eβs |Ȳ ρ

ε (s)|2ds
]

+ E

[ ∫ T

t

∫
R0

eβs |Z̄ρ
ε (s, z)|2�(dz)ds

]
+ E

[ ∫ T

t
eβs |ζ ρ

ε (s)|2ds
]

≤ KE[eβT |X̄ρ
ε (T )|2] + 1

2
(1 − ρ)G̃2(ε)

(
E

[ ∫ T

t
eβs |Y 0

ε (s)|2ds
]

+ E

[ ∫ T

t

∫
R0

eβs |Z0
ε (s, z)|2�(dz)ds

])

+ 1

2
ρG̃2(ε)E

[ ∫ T

t

∫
R0

eβs |Z(s, z)|2�(dz)ds
]
,
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where K is a positive constant and the result follows using Lemma 3.3 and the fact
that β > 0.

Remark 3.5 Since Ft ⊂ Gt for all t ∈ [0, T ], the solution of (2.2) is also G-adapted.
This fact allowed us to compare the solution of (2.2) with the solution of (3.4).

Notice that in the case ρ = 0, the condition (3.2) implies that for (x, y, z) ∈
R × R × L̂2(R0,B(R0), �)

lim
ε→0

f 0ε (t, x, y, z) = f (t, x, y, z), P-a.s.,∀t ∈ [0, T ].

Thus the convergence of the solution of (3.1) to the solution of (2.2) in the space
H̃2
T × H2

T × Ĥ2
T , follows directly from Proposition 2.1 in El Karoui et al. [19]. We

presented the proof for the sake of completeness. In the latter theorem, we proved the
convergence of the solution of (3.1) respectively (3.4) to the solution of (2.2) in the
space H̃2

T × H2
T × Ĥ2

T, respectively H̃2
T × H2

T × Ĥ2
T × H2

T . In the next theorem we
prove the convergence in ν, respectively ν̃.

Theorem 3.6 Assume that (3.2) and (3.3) hold. Let X, Xρ
ε be the solution of (2.2),

(3.5), respectively. Then we have for ρ = 0 and ρ = 1

E

[
sup

0≤t≤T
|X (t) − Xρ

ε (t)|2
]

≤ CE[|ξ − ξρ
ε |2] + K̂ G̃2(ε)ρ

(
E[|ξ |2] + E[

∫ T

t
| f (s, 0, 0, 0)|2ds]

)

+ K̃ G̃2(ε)(1 − ρ)
(
E[|ξ0ε |2] + E[

∫ T

t
| f 0ε (s, 0, 0, 0)|2ds]

)
,

where C, K̃ , and K̂ are positive constants.

Proof Let X̄ρ
ε , Ȳ

ρ
ε , Z̄

ρ
ε , and f̄ ρ

ε be as in (3.6). Then applying Hölder’s inequality, we
have for K > 0

E

[
sup

0≤t≤T
|X̄ρ

ε (t)|2
]

≤ K
(
E

[
|X̄ρ

ε (T )|2
]

+ E

[ ∫ T

0
| f̄ ρ

ε (s)|2ds
]

+ E

[
sup

0≤t≤T
|
∫ T

t
Ȳ ρ

ε (s)dW (s)|2
]

+ E

[
sup

0≤t≤T
|
∫ T

t

∫
R0

Z̄ρ
ε (s, z)Ñ (ds, dz)|2

]

+ E

[
sup

0≤t≤T
|
∫ T

t
ζ ρ
ε (s)dB(s)|2

])
.
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However from Burkholder’s inequality we can prove that for C > 0, we have (for
more details see Tang and Li [31])

E

[
sup

0≤t≤T
|
∫ T

t

∫
R0

Z̄ρ
ε (s, z)Ñ (ds, dz)|2

]
≤ CE

[ ∫ T

0

∫
R0

|Z̄ρ
ε (s, z)|2�(dz)ds

]
,

E

[
sup

0≤t≤T
|
∫ T

t
Ȳ ρ

ε (s)dW (s)|2
]

≤ CE

[ ∫ T

0
|Ȳ ρ

ε (s)|2ds
]
,

E

[
sup

0≤t≤T
|
∫ T

t
ζ ρ
ε (s)dB(s)|2

]
≤ CE

[ ∫ T

0
|ζ ρ

ε (s)|2ds
]
.

Thus from the estimates on f 0 and f 1ε in equations (3.2) and (3.3), Lemma 3.3 and
Theorem 3.4 we get the result. ��

Notice that we proved the convergence of the two candidate approximating BSDEJs
(3.1), (3.4) to the BSDEJ (2.2) in the space ν, ν̃ respectively. This type of convergence
is stronger than the L2-convergence.

4 Robustness of Quadratic Hedging Strategies

We assume we have two assets. One of them is a riskless asset with price S(0) given
by

dS(0)(t) = S(0)(t)r(t)dt,

where the short rate r(t) = r(t, ω) ∈ R is F-adapted. The dynamics of the risky asset
are given by

⎧⎨
⎩

dS(1)(t) = S(1)(t)
{
a(t)dt + b(t)dW (t) +

∫
R0

γ (t, z)Ñ (dt, dz)
}
,

S(1)(0) = x ∈ R+ ,

where a(t) = a(t, ω) ∈ R, b(t) = b(t, ω) ∈ R, and γ (t, z) = γ (t, z, ω) ∈ R for
t ≥ 0, z ∈ R0 are F-adapted processes. We assume that γ (t, z, ω) = g(z)γ̃ (t, ω),
such that

G2(ε) :=
∫

|z|≤ε

g2(z)�(dz) < ∞. (4.1)

The dynamics of the discounted price process S̃ = S(1)/S(0) are given by

d S̃(t) = S̃(t)
[
(a(t) − r(t))dt + b(t)dW (t) +

∫
R0

γ (t, z)Ñ (dt, dz)
]
. (4.2)

For S̃ to be positive, we assume γ (t, z) > −1, a.e. in (t, z, ω). We further assume that
the semimartingale S̃ is locally square integrable (in the sense of Definition 2.27 in
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Jacod and Shiryaev [17]). We can decompose S̃ into a locally square integrable local
martingale M starting at zero in zero and a predictable finite variation process A, with
A(0) = 0, where M and A have the following expressions

M(t) =
∫ t

0
b(s)S̃(s)dW (s) +

∫ t

0

∫
R0

γ (s, z)S̃(s)Ñ (ds, dz), (4.3)

A(t) =
∫ t

0
(a(s) − r(s))S̃(s)ds.

We denote the predictable compensator associated to M , see Protter [28], by

〈M〉(t) =
∫ t

0
b2(s)S̃2(s)ds +

∫ t

0

∫
R0

S̃2(s)γ 2(s, z)�(dz)ds

and we can represent the process A as follows

A(t) =
∫ t

0
α(s)d〈M〉(s) , (4.4)

where

α(t) := a(t) − r(t)

S̃(t)
(
b2(t) + ∫

R0
γ 2(t, z)�(dz)

) , 0 ≤ t ≤ T . (4.5)

We define a process K by means of α as follows

K (t) =
∫ t

0
α2(s)d〈M〉(s) =

∫ t

0

(a(s) − r(s))2

b2(s) + ∫
R0

γ 2(s, z)�(dz)
ds. (4.6)

The process K is called the mean-variance tradeoff (MVT) process.
Since the stock price fluctuations are modeled by jump-diffusion, the market is

incomplete and not every contingent claim can be replicated by a self-financing strat-
egy and there is no perfect hedge. However, one can adopt a partial hedging strategy
according to some optimality criteria minimizing the risk. Föllmer and Schweizer
[15] introduced the so-called quadratic hedging strategies. The study of such strate-
gies heavily depends on the Föllmer-Schweizer (FS) decomposition. This decompo-
sition was first introduced by Föllmer and Schweizer [15] for the continuous case and
extended to the discontinuous case by Ansel and Stricker [2].

In order to formulate our robustness study for the quadratic hedging strategies,
we present in the sequel the relation between BSDEs and the FS decomposition. We
denote by L(S̃), the S̃-integrable processes, that is the class of predictable processes
for which we can determine the stochastic integral with respect to S̃. We define the
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space � by

� :=
{
θ ∈ L(S̃) |E

[ ∫ T

0
θ2(s)d〈M〉(s) + ( ∫ T

0
|θ(s)d A(s)|)2] < ∞

}
. (4.7)

Consider a process χ FS ∈ �. Let ξ be a square integrable contingent claim and
ξ̃ = ξ/S(0)(T ) its discounted value. Define the process Ṽ as follows

Ṽ (t) := E

[
ξ̃ −

∫ T

t
χ FS(s)d A(s)|Ft

]
, 0 ≤ t ≤ T .

Then applying the Galtchouk–Kunita–Watanabe decomposition (see, e.g., Ansel and
Stricker [1]) to the random variable U (T ) := ξ̃ − ∫ T

0 χ FS(s)d A(s), we get

U (T ) = E

[
ξ̃ −

∫ T

0
χ FS(s)d A(s)

]
+

∫ T

0
χ̃ (s)dM(s) + φFS(T ) , (4.8)

where χ̃ ∈ � and φFS is a square integrable martingale such that [φFS, M] is a local
martingale. Taking conditional expectations in (4.8), we obtain

E [U (T )|Ft ]=E

[
ξ̃ −

∫ T

0
χ FS(s)d A(s)

]
+

∫ t

0
χ̃(s)dM(s) + φFS(t) , 0 ≤ t≤ T ,

which implies

Ṽ (t) = Ṽ (0) +
∫ t

0
χ̃(s)dM(s) +

∫ t

0
χ FS(s)d A(s) + φFS(t) .

In Proposition 14 in Schweizer [30], it is shown that χ̃ = χ FS in L2(M) under the
condition

|a(t) − r(t)|√
κ(t)

≤ C, P-a.s., ∀ 0 ≤ t ≤ T , (4.9)

where κ(t) = b2(t) + ∫
R0

γ 2(t, z)�(dz) and C is a positive constant. Thus we obtain

the following decomposition for the process Ṽ

Ṽ (t) = Ṽ (0) +
∫ t

0
χ FS(s)d S̃(s) + φFS(t) , 0 ≤ t ≤ T . (4.10)

The latter decomposition is called the FS decomposition of the value process Ṽ and
in particular of ξ̃ for t = T . This explains the superscript FS in χ FS and φFS . Notice
that (4.9) is a sufficient condition for the existence of decomposition (4.10). The most
general result concerning the existence and uniqueness of the FS decomposition is
given by Choulli et al. [11].
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The financial importance of such decomposition lies in the fact that it directly
provides the locally risk-minimizing strategy in our setting. In fact, Ṽ (t) is the value
of the portfolio in a locally risk-minimizing strategy at time t , the component χ FS(t)
is the number of risky assets to invest in the stock at time t , and φFS + Ṽ (0) is the cost
process in a locally risk-minimizing strategy (see Proposition 3.4 in Schweizer [29]).
These components will be identified solving some BSDEJs of the type presented in
Sect. 3.We refer also to Jeanblanc et al. [18] for a discussion about the relation between
BSDEJs and quadratic hedging strategies in the context of general semimartingales.

Now substituting the dynamics (4.2) of S̃ in (4.10) we get

⎧⎪⎪⎨
⎪⎪⎩

dṼ (t) = π̃(t)(a(t) − r(t))dt + π̃(t)b(t)dW (t)

+
∫
R0

π̃(t)γ (t, z)Ñ (dt, dz) + dφFS(t),

Ṽ (T ) = ξ̃ ,

(4.11)

where π̃ = χ FS S̃. The process π̃ is interpreted as the amount of wealth Ṽ (t) to invest
in the stock at time t in a locally risk-minimizing strategy.

Since φFS(T ) is a FT -measurable square integrable random variable, applying
Theorem 2.1 with H = F and the P-martingale property of φFS we know that there
exist stochastic integrands Y FS , Z FS , such that

φFS(t) = E[φFS(T )] +
∫ t

0
Y FS(s)dW (s) +

∫ t

0

∫
R0

Z FS(s, z)Ñ (ds, dz).

Since φFS is a martingale, we have E[φFS(T )] = E[φFS(0)]. However from (4.10)
we deduce that φFS(0) = 0. Therefore

φFS(t) =
∫ t

0
Y FS(s)dW (s) +

∫ t

0

∫
R0

Z FS(s, z)Ñ (ds, dz). (4.12)

In view of the orthogonality of φFS and M , we get

Y FS(t)b(t) +
∫
R0

Z FS(t, z)γ (t, z)�(dz) = 0. (4.13)

In that case, the set of equations (4.11) are equivalent to

⎧⎪⎪⎨
⎪⎪⎩

dṼ (t) = π̃(t)(a(t) − r(t))dt + (
π̃(t)b(t) + Y FS(t)

)
dW (t)

+
∫
R0

(
π̃(t)γ (t, z) + Z FS(t, z)

)
Ñ (dt, dz),

Ṽ (T ) = ξ̃ .

(4.14)

4.1 First Candidate-Approximation to S

Now we consider an approximation to the price of the risky asset. In this model we
approximate the small jumps by a Brownian motion B which is independent ofW and
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which we scale with the standard deviation of the small jumps. That is

⎧⎪⎨
⎪⎩
dS(1)

1,ε(t) = S(1)
1,ε(t)

{
a(t)dt + b(t)dW (t) +

∫
|z|>ε

γ (t, z)Ñ (dt, dz) + G(ε)γ̃ (t)dB(t)
}
,

S(1)
1,ε(0) = S(1)(0) = x .

The discounted price process is given by

d S̃1,ε(t) = S̃1,ε(t)
{
(a(t) − r(t))dt + b(t)dW (t) +

∫
|z|>ε

γ (t, z)Ñ (dt, dz)

+ G(ε)γ̃ (t)dB(t)
}
.

It was proven in Benth et al. [5], that the process S̃1,ε converges to S̃ in L2 when ε

goes to 0 with rate of convergence G2(ε) defined in (4.1).
In the followingwe study the robustness of the quadratic hedging strategies towards

approximations where the price processes are modeled by S̃ and S̃1,ε. We will first
show that considering the approximation S̃1,ε, the value of the portfolio in a quadratic
hedging strategy will be written as a solution of a BSDEJ of type (3.5) with ρ = 1.
That is what explains our choice of the index 1 in S̃1,ε. Here we choose to start with
the approximation S̃1,ε because it involves another Brownian motion B besides the
Brownian motionW . The approximations in which we truncate the small jumps in the
underlying price process and the one in which we truncate the small jumps and replace
them by scaling the Brownian motion W are studied in the next two subsections.

The locally square integrable local martingale M1,ε in the semimartingale decom-
position of S̃1,ε is given by

M1,ε(t) =
∫ t

0
b(s)S̃1,ε(s)dW (s) +

∫ t

0

∫
|z|>ε

γ (s, z)S̃1,ε(s)Ñ (ds, dz)

+ G(ε)

∫ t

0
γ̃ (s)S̃1,ε(s)dB(s) (4.15)

and the predictable finite variation process A1,ε is given by

A1,ε(t) =
∫ t

0
α1,ε(s)d〈M1,ε〉(s) , (4.16)

where

α1,ε(t) := a(t) − r(t)

S̃1,ε(t)
(
b2(t) + G2(ε)γ̃ 2(t) + ∫

|z|>ε
γ 2(t, z)�(dz)

) , 0 ≤ t ≤ T .

(4.17)
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Thus the mean-variance tradeoff process K1,ε is given by

K1,ε(t) =
∫ t

0
α2
1,ε(s)d〈M1,ε〉(s)

=
∫ t

0

(a(s) − r(s))2

b2(s) + G2(ε)γ̃ 2(s) + ∫
|z|>ε

γ 2(s, z)�(dz)
ds = K (t), (4.18)

in view of the definition of G(ε), Eq. (4.1). Hence the assumption (4.9) ensures the
existence of the FS decomposition with respect to S̃1,ε for any square integrable GT -
measurable random variable.

Let ξ1ε be a square integrable contingent claim as a financial derivative with under-

lying S(1)
1,ε and maturity T . We denote its discounted payoff by ξ̃1ε = ξ1ε /S(0)(T ).

Consider χ FS
1,ε ∈ � and define

Ṽ1,ε := E

[
ξ̃1ε −

∫ T

t
χ FS
1,ε (s)d A1,ε(s) |Gt

]
, 0 ≤ t ≤ T .

Then following the same steps as before and imposing the condition (4.9), we prove
the FS decomposition for the value process Ṽ1,ε written under the world measure P to
be as follows

Ṽ1,ε(t) = Ṽ1,ε(0) +
∫ t

0
χ FS
1,ε (s)d S̃1,ε(s) + φFS

1,ε (t), (4.19)

where φFS
1,ε is a P-martingale such that [φFS

1,ε , M1,ε] is a local martingale. Replacing
S̃1,ε by its expression in (4.19), we get

⎧⎪⎪⎨
⎪⎪⎩

dṼ1,ε(t) = π̃1,ε(t)(a(t) − r(t))dt + π̃1,ε(t)b(t)dW (t) + π̃1,ε(t)G(ε)γ̃ (t)dB(t)

+
∫

|z|>ε

π̃1,ε(t)γ (t, z)Ñ (dt, dz) + dφFS
1,ε (t),

Ṽ1,ε(T ) = ξ̃1ε ,

where π̃1,ε = χ FS
1,ε S̃1,ε. Notice that φFS

1,ε (T ) is a GT -measurable square integrable
random variable. Thus applying Theorem 2.1 withH = G and using the P-martingale
property of φFS

1,ε we know that there exist stochastic integrands Y FS
1,ε , Y

FS
2,ε , and Z FS

ε ,
such that

φFS
1,ε (t) = E[φFS

1,ε (T )] +
∫ t

0
Y FS
1,ε (s)dW (s) +

∫ t

0
Y FS
2,ε (s)dB(s)

+
∫ t

0

∫
R0

Z FS
ε (s, z)Ñ (ds, dz).

123



Appl Math Optim (2015) 72:353–389 371

Using the martingale property of φFS
1,ε and Eq. (4.19), we get E[φFS

1,ε (T )] =
E[φFS

1,ε (0)] = 0. Therefore we deduce

φFS
1,ε (t) =

∫ t

0
Y FS
1,ε (s)dW (s) +

∫ t

0
Y FS
2,ε (s)dB(s) +

∫ t

0

∫
R0

Z FS
ε (s, z)Ñ (ds, dz).

(4.20)

In view of the orthogonality of φFS
1,ε with respect to M1,ε, we have

0 = Y FS
1,ε (t)b(t) + Y FS

2,ε (t)G(ε)γ̃ (t) +
∫
R0

Z FS
ε (t, z)γ (t, z)1{|z|>ε}�(dz). (4.21)

The equation we obtain for the approximating problem is thus given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dṼ1,ε(t) = π̃1,ε(t)(a(t) − r(t))dt + (π̃1,ε(t)b(t) + Y FS
1,ε (t))dW (t)

+ (π̃1,ε(t)G(ε)γ̃ (t) + Y FS
2,ε (t))dB(t)

+
∫
R0

(
π̃1,ε(t)γ (t, z)1{|z|>ε}(z) + Z FS

ε (t, z)
)
Ñ (dt, dz),

Ṽ1,ε(T ) = ξ̃1ε .

(4.22)

In order to apply the robustness results studied in Sect. 3, we have to prove that Ṽ and
Ṽ1,ε are respectively equations of type (2.2) and (3.4). This is the purpose of the next
lemma. Notice that the processes Ṽ1,ε, π̃1,ε, and φFS

1,ε are all G-adapted.

Lemma 4.1 Assume (4.9) holds. Let Ṽ , Ṽ1,ε be given by (4.14), (4.22), respectively.
Then Ṽ satisfies a BSDEJ of type (2.2) and Ṽ1,ε satisfies a BSDEJ of type (3.4).

Proof From the expression of Ṽ , we deduce

⎧⎨
⎩
dṼ (t) = − f (t, Ṽ (t), Ỹ (t), Z̃(t, .))dt + Ỹ (t)dW (t) +

∫
R0

Z̃(t, z)Ñ (dt, dz),

Ṽ (T ) = ξ̃ ,

where

Ỹ (t) = π̃(t)b(t) + Y FS(t), Z̃(t, z) = π̃(t)γ (t, z) + Z FS(t, z),

f (t, Ṽ (t), Ỹ (t), Z̃(t, .)) = −π̃(t)(a(t) − r(t)). (4.23)

We have to show that f satisfies Assumptions 2.1(B). We first express π̃ in terms of
Ṽ , Ỹ , and Z̃ . Inspired by (4.13), we combine Ỹ and Z̃ to get

Ỹ (t)b(t)+
∫
R0

Z̃(t, z)γ (t, z)�(dz)= π̃(t)
(
b2(t)+

∫
R0

γ 2(t, z)�(dz)
)
+Y FS(t)b(t)

+
∫
R0

Z FS(t, z)γ (t, z)�(dz).
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From (4.13), we deduce that

π̃(t) = 1

κ(t)

(
Ỹ (t)b(t) +

∫
R0

Z̃(t, z)γ (t, z)�(dz)
)
. (4.24)

Hence

f (t, Ṽ (t), Ỹ (t), Z̃(t, .)) = −a(t) − r(t)

κ(t)

(
Ỹ (t)b(t) +

∫
R0

Z̃(t, z)γ (t, z)�(dz)
)
.

(4.25)

Now we have to prove that f is Lipschitz. Let

h(t) = a(t) − r(t)

κ(t)
, t ∈ [0, T ]. (4.26)

We have

| f (t, x1, y1, z1) − f (t, x2, y2, z2)| ≤ |h(t)|
[
|y1 − y2||b(t)| +

∫
R0

|z1 − z2||γ (t, z)|�(dz)
]

≤ |h(t)|
[
|y1 − y2||b(t)|

+
(∫

R0

|z1 − z2|2�(dz)
) 1

2
(∫

R0

|γ (t, z)|2�(dz)
) 1

2
]

≤ √
κ(t)|h(t)|

(
|y1 − y2| + ‖z1 − z2‖

)
.

Thus f is Lipschitz if there exists a positive constant C such that

√
κ(t)|h(t)| = |a(t) − r(t)|√

κ(t)
≤ C ∀t ∈ [0, T ]

and we prove the statement for Ṽ .
From Eq. (4.22), we have

⎧⎪⎪⎨
⎪⎪⎩

dṼ1,ε(t) = − f 1ε (t, Ṽ1,ε(t), Ỹε(t), Z̃ε(t, .), ζ̃ε(t))dt + Ỹε(t)dW (t) + ζ̃ε(t)dB(t)

+
∫
R0

Z̃ε(t, z)Ñ (dt, dz),

Ṽ1,ε(T ) = ξ̃1ε ,

where

Ỹε(t) = π̃1,ε(t)b(t) + Y FS
1,ε (t), ζ̃ε(t) = π̃1,ε(t)G(ε)γ̃ (t) + Y FS

2,ε (t),

Z̃ε(t, z) = π̃1,ε(t)γ (t, z)1{|z|>ε}(z) + Z FS
ε (t, z),

f 1ε (t, Ṽ1,ε(t), Ỹε(t), Z̃ε(t, .), ζ̃ε(t)) = −π̃1,ε(t)(a(t) − r(t)).

(4.27)
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With the same arguments as above and using (4.21) we can prove that

π̃1,ε(t) = 1

κ(t)

{
Ỹε(t)b(t) + ζ̃ε(t)G(ε)γ̃ (t) +

∫
R0

Z̃ε(t, z)1{|z|>ε}(z)γ (t, z)�(dz)
}
.

(4.28)

Hence

f 1ε (t, Ṽ1,ε(t), Ỹε(t), Z̃ε(t, .), ζ̃ε(t)) = −a(t) − r(t)

κ(t)

(
Ỹε(t)b(t) + ζ̃ε(t)G(ε)γ̃ (t)

+
∫
R0

Z̃ε(t, z)1{|z|>ε}(z)γ (t, z)�(dz)
)

(4.29)

and

| f 1ε (t, x1, y1, z1, ζ1) − f 1ε (t, x2, y2, z2, ζ2)|
≤ |h(t)|

[
|y1 − y2||b(t)| +

∫
R0

1{|z|>ε}(z)|z1 − z2||γ (t, z)|�(dz)

+ G(ε)|γ̃ (t)||ζ1 − ζ2|
]

≤ √
κ(t)|h(t)|

(
|y1 − y2| + |ζ1 − ζ2| + ‖z1 − z2‖

)

and we prove the statement. ��
Now we present the following main result in which we prove the robustness of the

value of the portfolio.

Theorem 4.2 Assume that (4.9) holds and that for all t ∈ [0, T ],
∣∣ γ̃ (t)(a(t) − r(t))

κ(t)

∣∣ ≤ K , P-a.s. (4.30)

Let Ṽ , Ṽ1,ε be given by (4.14), (4.22), respectively. Then

E

[
sup

0≤t≤T
|Ṽ (t) − Ṽ1,ε(t)|2

]
≤ CE[|̃ξ − ξ̃1ε |2] + C̃G2(ε) .

Proof This is an immediate result of Theorem 3.6 with ρ = 1 and noticing that
f (t, 0, 0, 0) = 0. We only have to prove the assumption (3.3) on the drivers f and f 1ε
given by (4.25) and (4.29). We have for all t ∈ [0, T ], recalling (4.26)

| f (t, Ṽ (t), Ỹ (t), Z̃(t, .)) − f 1ε (t, Ṽ1,ε(t), Ỹε(t), Z̃ε(t, .), ζ̃ε(t))|
=

∣∣∣h(t)
{
(Ỹ (t) − Ỹε(t))b(t) − ζ̃ε(t)G(ε)γ̃ (t)
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+
∫

|z|>ε

(Z̃(t, z) − Z̃ε(t, z))γ (t, z)�(dz) +
∫

|z|≤ε

Z̃(t, z)γ (t, z)�(dz)
}∣∣∣

≤ |h(t)|(√κ(t) + |γ̃ (t)|)
{
|Ỹ (t) − Ỹε(t)| + ‖Z̃(t, .) − Z̃ε(t, .)‖

+ G(ε)‖Z̃(t, .)‖ + |̃ζε(t)|
}
,

which proves the statement. ��

Remark 4.3 Weused the expectationE[|̃ξ−ξ̃
ρ
ε |2] to dominate the convergence results.

In finance the discounted contingent claim ξ̃ = ξ/S(0)(T ) is given by the payoff
function ξ = g(S(1)(T )). Thus we have

E[|̃ξ − ξ̃ ρ
ε |2] = E

[∣∣∣g(S
(1)(T ))

S(0)(T )
− g(S(1)

ρ,ε(T ))

S(0)(T )

∣∣∣2
]
, ρ = 0, 1, 2,

where the case ρ = 0 refers to the second candidate-approximation of Sect. 4.3 and
ρ = 2 refers to the one in Sect. 4.2. The convergence of the latter quantity when ε

goes to 0 was studied in Benth et al. [5] using Fourier transform techniques. It was
also studied in Kohatsu-Higa and Tankov [21] in which the authors show that adding
a small variance Brownian motion to the big jumps gives better convergence results
than when we only truncate the small jumps. For this purpose the authors consider a
discretisation of the price models.

The next theorem contains the robustness result for the amount of wealth to invest
in the stock in a locally risk-minimizing strategy.

Theorem 4.4 Assume that (4.9) holds and that for all t ∈ [0, T ],

sup
t≤s≤T

γ̃ 2(s) ≤ K , inf
t≤s≤T

κ(s) ≥ K̃ , P-a.s., (4.31)

where K is a positive constant and K̃ is a strictly positive constant. Let π̃ , π̃1,ε be
given by (4.24), (4.28), respectively. Then for all t ∈ [0, T ],

E

[ ∫ T

t
|π̃(s) − π̃1,ε(s)|2ds

]
≤ CE[|̃ξ − ξ̃1ε |2] + C̃G2(ε),

where C and C̃ are positive constants.
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Proof Using (4.24) and (4.28), we have

|π̃(s) − π̃1,ε(s)|2 = 1

κ2(s)

{
(Ỹ (s) − Ỹε(s))b(s) − ζ̃ε(s)G(ε)γ̃ (s)

+
∫

|z|>ε

(Z̃(s, z) − Z̃ε(s, z))γ (s, z)�(dz)

+
∫

|z|≤ε

Z̃(s, z)γ (s, z)�(dz)
}2

≤ C

κ(s)

{
|Ỹ (s) − Ỹε(s)|2 + |̃ζε(s)|2

+ G2(ε)|γ̃ 2(t)|
∫
R0

|Z̃(s, z)|2�(dz)

+
∫
R0

|Z̃(s, z) − Z̃ε(s, z)|2�(dz)
}

.

Hence from Lemma 3.3, Theorem 3.4 and Lemma 4.1, we deduce

E

[ ∫ T

t
|π̃(s) − π̃1,ε(s)|2ds

]
≤ C

inf t≤s≤T κ(s)

{
E

[ ∫ T

t
|Ỹ (s) − Ỹε(s)|2ds

]
+ E

[ ∫ T

t
|̃ζε(s)|2ds

]

+ G2(ε) sup
t≤s≤T

γ̃ 2(s)E
[ ∫ T

t

∫
R0

|Z̃(s, z)|2�(dz)ds
]

+ E

[ ∫ T

t

∫
R0

|Z̃(s, z) − Z̃ε(s, z)|2�(dz)ds
]}

≤ C̃E[|̃ξ − ξ̃1ε |2] + ĈG2(ε)E[ξ2]

and we prove the statement. ��

The robustness of the process φFS defined in (4.12) is shown in the next theorem.

Theorem 4.5 Assume that (4.9) and (4.31) hold and for all t ∈ [0, T ],

sup
t≤s≤T

κ(s) ≤ K̂ < ∞, P-a.s. (4.32)

Let φFS, φFS
1,ε be given by (4.12), (4.20), respectively. Then for all t ∈ [0, T ], we have

E

[
|φFS(t) − φFS

1,ε (t)|2
]

≤ CE[|̃ξ − ξ̃1ε |2] + C ′G2(ε),

where C and C ′ are positive constants.
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Proof From (4.23), (4.27), Theorem 3.6, and Theorem 4.4, we have

E

[ ∫ T

t
|Y FS(s) − Y FS

1,ε (s)|2ds
]

≤ C
{
E

[ ∫ T

t
|Ỹ (s) − Ỹ1,ε(s)|2ds

]

+ sup
t≤s≤T

κ(s)E
[ ∫ T

t
|π̃(s) − π̃1,ε(s)|2ds

]}

≤ C̃E[|̃ξ − ξ̃1ε |2] + KG2(ε)E[|̃ξ |2]. (4.33)

Moreover, starting again from (4.27) we arrive at

E

[ ∫ T

t
|Y FS
2,ε (s)|2ds

]
≤ C

{
E[

∫ T

t
|̃ζε(s)|2ds + sup

t≤s≤T
κ(s)E

[ ∫ T

t
|π̃(s) − π̃1,ε(s)|2ds

]

+ G2(ε) sup
t≤s≤T

γ̃ 2(s)E
[ ∫ T

t
|π̃(s)|2ds

]
.

However from (4.24) and Lemma 3.3, we get

E

[ ∫ T

t
|π̃(s)|2ds

]
≤ 1

inf t≤s≤T κ(s)

{
E

[ ∫ T

t
Ỹ 2(s)ds

]
+ E

[ ∫ T

t

∫
R0

Z̃2(s, z)�(dz)ds
]}

≤ CE[̃ξ2]. (4.34)

Thus from Theorem 3.4 and Theorem 4.4 we conclude in view of assumption (4.32)

E

[ ∫ T

t
|Y FS

2,ε (s)|2ds
]

≤ CE[|̃ξ − ξ̃1ε |2] + C ′G2(ε)E[̃ξ2]. (4.35)

Let G2(∞) = ∫
R0

g2(z)�(dz). From (4.23), (4.27), Theorem 3.4, Theorem 4.4 and
(4.34), we obtain

E

[ ∫ T

t

∫
R0

|Z FS(s, z) − Z FS
ε (s, z)|2�(dz)ds

]

≤ CE

[ ∫ T

t

∫
R0

|Z̃(s, z) − Z̃ε(s, z)|2�(dz)ds
]

+ G2(∞) sup
t≤s≤T

γ̃ 2(s)E
[ ∫ T

t
|π̃(s) − π̃1,ε(s)|2ds

]

+ G2(ε) sup
t≤s≤T

γ̃ 2(s)E
[ ∫ T

t
|π̃(s)|2ds

]

≤ CE[|̃ξ − ξ̃1ε |2] + C ′G2(ε)E[̃ξ2]. (4.36)
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Finally from (4.12) and (4.20), we infer

E[|φFS(t) − φFS
1,ε (t)|2] ≤ E

[ ∫ T

0
|Y FS(s) − Y FS

1,ε (s)|2ds
]

+ E

[ ∫ T

0
|Y FS

2,ε (s)|2ds
]

+ E

[ ∫ T

0

∫
R0

|Z FS(s, z) − Z FS
ε (s, z)|2�(dz)ds

]

and combining with the relations (4.33), (4.35) and (4.36) the result follows. ��
Let C(t) = φFS(t) + Ṽ (0) and C1,ε(t) = φFS

1,ε (t) + Ṽ1,ε(0). Then the processes C
and C1,ε are the cost processes in a locally risk-minimizing strategy for ξ̃ and ξ̃1ε . In
the next corollary we prove the robustness of this cost process.

Corollary 4.6 Assume that (4.9), (4.30), (4.31), and (4.32) hold. Then for all t ∈
[0, T ], we have

E[|C(t) − C1,ε(t)|2] ≤ K̃E[|̃ξ − ξ̃1ε |2] + K ′G2(ε),

where K̃ and K ′ are two positive constants.

Proof From Theorem 4.2, we deduce

E

[
|Ṽ1,ε(0) − Ṽ (0)|2] ≤ CE[|̃ξ − ξ̃1ε |2] + C̃G2(ε).

Applying the latter together with Theorem 4.5 we get

E[|C(t) − C1,ε(t)|2] = E

[
|(Ṽ1,ε(0) + φFS

1,ε (t)) − (Ṽ (0) + φFS(t))|2]
≤ 2

(
E

[
|Ṽ1,ε(0) − Ṽ (0)|2] + E[|φFS

1,ε (t) − φFS(t)|2])
≤ K̃E[|̃ξ − ξ̃1ε |2] + K ′G2(ε).

��
In the next section we present a second candidate-approximation to S and we study

the robustness of the quadratic hedging strategies.

4.2 Second Candidate-Approximation to S

In this model we truncate the small jumps in S. We obtain

⎧⎨
⎩
dS(1)

2,ε(t) = S(1)
2,ε(t)

{
a(t)dt + b(t)dW (t) +

∫
|z|>ε

γ (t, z)Ñ (dt, dz)
}
,

S(1)
2,ε(0) = S(1)(0) = x .
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The discounted price process is given by

d S̃2,ε(t) = S̃2,ε(t)
{
(a(t) − r(t))dt + b(t)dW (t) +

∫
|z|>ε

γ (t, z)Ñ (dt, dz)
}
.

It is easy to show that S̃2,ε converges to S̃ in L2 when ε goes to 0 with rate of
convergence G2(ε). Notice that this second choice of the approximating process S(1)

2,ε
allows to work under the same filtration F as for the original process. However it
involves a different variance.

Let π̃2,ε = χ FS
2,ε S̃2,ε, where χ FS

2,ε ∈ �, (4.7). Without going through details and
since the computations are similar to the previous section, we claim that the discounted
value of the portfolio associated with S̃2,ε is given by

⎧⎪⎪⎨
⎪⎪⎩

dṼ2,ε(t) = π̃2,ε(t)(a(t) − r(t))dt + π̃2,ε(t)b(t)dW (t)

+
∫

|z|>ε

π̃2,ε(t)γ (t, z)Ñ (dt, dz) + dφFS
2,ε (t),

Ṽ2,ε(T ) = ξ̃2ε ,

where φFS
2,ε is a P-martingale such that [φFS

2,ε , M2,ε] is a local martingale with M2,ε

being the locally square integrable local martingale part in S̃2,ε and where ξ̃2ε is the
discounted value of the contingent claim. Moreover, φFS

2,ε (T ) is a FT -measurable
square integrable random variable. Thus applying Theorem 2.1 withH = F and using
the P-martingale property of φFS

2,ε we know that there exist stochastic integrands Y FS
ε

and Z FS
ε , such that

φFS
2,ε (t) =

∫ t

0
Y FS

ε (s)dW (s) +
∫ t

0

∫
R0

Z FS
ε (s, z)Ñ (ds, dz).

Thus the equation we obtain for the approximating problem Ṽ2,ε is given by⎧⎪⎪⎨
⎪⎪⎩

dṼ2,ε(t) = π̃2,ε(t)(a(t) − r(t))dt + (π̃2,ε(t)b(t) + Y FS
ε (t))dW (t)

+
∫
R0

(
π̃2,ε(t)γ (t, z)1{|z|>ε}(z) + Z FS

ε (t, z)
)
Ñ (dt, dz),

Ṽ2,ε(T ) = ξ̃2ε .

(4.37)

To prove similar convergence results as in Sect. 4.1, we identify (4.37) with the BSDEJ
(3.1). In that case the driver of (4.37) is given by

f 0ε (t, Ṽ2,ε(t), Ỹε(t), Z̃ε(t, ·)) = −hε(t)
[
b(t)Ỹε(t) +

∫
|z|>ε

Z̃ε(t, z)γ (t, z)�(dz)
]
,

(4.38)

where

hε(t) = a(t) − r(t)

κε(t)
and κε(t) = b2(t) +

∫
|z|>ε

γ 2(t, z)�(dz) . (4.39)
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In the following lemma we prove that under some conditions on the parameters of the
price process, f 0ε is Lipschitz and satisfies (3.2).

Lemma 4.7 Define κ1(t) = b2(t) + ∫
|z|>1 γ 2(t, z)�(dz). Assume that for all t ∈

[0, T ], we have
|a(t) − r(t)|√

κ1(t)
≤ K , P-a.s., (4.40)

where K is a positive constant. Then f 0ε (t, x, y, z), t ∈ [0, T ], satisfies a uniform
Lipschitz condition in (x, y, z), for all ε ∈ [0, 1].
Moreover, assume

inf
t≤s≤T

κ(s) ≥ K̂ , and sup
t≤s≤T

γ̃ 2(t) ≤ K̃ P-a.s., (4.41)

where K̂ and K̃ are positive constants. Then f 0ε (t, x, y, z), t ∈ [0, T ], satisfies con-
dition (3.2).

Proof We have

| f 0ε (t, x1, y1, z1) − f 0ε (t, x2, y2, z2)| ≤ |hε(t)|
[
b(t)|y1 − y2| +

∫
|z|>ε

|z1 − z2|γ (t, z)�(dz)
]

≤ |a(t) − r(t)|√
κ1(t)

[
|y1 − y2| + (

∫
R0

|z1 − z2|2�(dz)) 1
2

]
.

Thus f 0ε is Lipschitz requiring (4.40) is satisfied.
Recall the expressions of h and hε in (4.26) and (4.39), respectively. Then we have

using (4.25) and (4.38)

| f (t, Ṽ (t), Ỹ (t), Z̃(t, ·)) − f 0ε (t, Ṽε(t), Ỹε(t), Z̃ε(t, ·))|
≤ |h(t)b(t)||Ỹ (t) − Ỹε(t)| + |h(t) − hε(t)||b(t)Ỹε(t)|

+ |h(t)|
∫
R0

|Z̃(t, z) − Z̃ε(t, z)||γ (t, z)|�(dz)

+ |h(t) − hε(t)|
∫
R0

|Z̃ε(t, z)γ (t, z)|�(dz)

+ |hε(t)|
∫

|z|≤ε

|Z̃ε(t, z)γ (t, z)|�(dz) .

Notice that

|h(t) − hε(t)| = |a(t) − r(t)| |κε(t) − κ(t)|
|κ(t)κε(t)|

≤ |a(t) − r(t)|
|κ(t)κ1(t)| γ̃ 2(t)G2(ε) .
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Thus

| f (t, Ṽ (t), Ỹ (t), Z̃(t, ·)) − f 0ε (t, Ṽε(t), Ỹε(t), Z̃ε(t, ·))|
≤ |a(t) − r(t)|√

κ(t)

(
|Ỹ (t) − Ỹε(t)| + (

∫
R0

|Z̃(t, z) − Z̃ε(t, z)|2�(dz)) 1
2

)

+ G2(ε)
|a(t) − r(t)|

|κ1(t)| γ̃ 2(t)
[ 1√

κ(t)
+ 1

](
|Ỹε(t)| + (

∫
R0

|Z̃ε(t, z)|2�(dz)) 1
2

)

and the statement of the lemma follows providing that conditions (4.40) and (4.41)
hold. ��

We do not prove in this section the convergence results since they follow the same
lines as the latter section. However we claim that, considering the approximation
S̃2,ε, the value of the portfolio, the amount of wealth to invest in the stock, and the
cost process in the locally risk-minimizing strategy are robust when imposing certain
boundedness conditions on the parameters of the price process.

4.3 Third Candidate-Approximation to S

In the candidate-approximation S1,ε, the variance of the continuous part is given by
b2(t)+G2(ε)γ̃ 2(t), which is the same as the sumof the variance of the small jumps and
the variance of the continuous part in S. We studied this approximation by embedding
the original model solution into a larger filtration G. If one insists on working under
the filtration F, then one could also select a third candidate-approximation S(1)

0,ε in the
following way.

⎧⎨
⎩
dS(1)

0,ε(t) = S(1)
0,ε(t)

{
a(t)dt + (b(t) + G̃(ε)γ̃ (t))dW (t) +

∫
|z|>ε

γ (t, z)Ñ (dt, dz)
}
,

S(1)
0,ε(0) = S(1)(0) = x ,

where G̃(ε) satisfies the relation

(b(t) + G̃(ε)γ̃ (t))2 = b2(t) + G2(ε)γ̃ 2(t).

We choose

G̃(ε) = −b(t) + sgn(b(t))
(
b2(t) + γ̃ 2(t)G2(ε)

) 1
2

γ̃ (t)
, (4.42)

which is clearly vanishing when ε goes to 0.
Notice that we obtain this third candidate-approximation S(1)

0,ε by truncating the
small jumps of the jump-diffusion and replacing them by the Brownian motion W
which is scaled with G̃(ε)γ̃ (t). G̃(ε) is chosen in a way to keep the same variance as
the original model S(1).

123



Appl Math Optim (2015) 72:353–389 381

The discounted price process is given by

d S̃0,ε(t) = S̃0,ε(t)
{
(a(t) − r(t))dt + (b(t) + G̃(ε)γ̃ (t))dW (t)

+
∫

|z|>ε

γ (t, z)Ñ (dt, dz)
}
.

It is easy to show that S̃0,ε(t) converges to S̃(t) in L2 when ε goes to 0 with rate of
convergence G̃(ε).

The locally square integrable local martingale M0,ε in the semimartingale decom-
position of S̃0,ε is given by

M0,ε(t) =
∫ t

0
(b(s) + G̃(ε)γ̃ (s))S̃0,ε(s)dW (s) +

∫ t

0

∫
|z|>ε

γ (s, z)S̃0,ε(s)Ñ (ds, dz) .

We define the process α0,ε by

α0,ε(t) := a(t) − r(t)

S̃0,ε(t)
(
b2(t) + ∫

R0
γ 2(t, z)�(dz)

) , 0 ≤ t ≤ T .

Thus the mean-variance tradeoff process K0,ε is given by

K0,ε(t) =
∫ t

0
α2
0,ε(s)d〈M0,ε〉(s) =

∫ t

0

(a(s) − r(s))2

b2(s) + ∫
R0

γ 2(s, z)�(dz)
ds = K (t) .

Let ξ0ε be a square integrable contingent claim as a financial derivative with under-
lying S̃0,ε. We denote the discounted payoff of ξ0ε by ξ̃0ε = ξ0ε /S(0)(T ). Following the
same steps as before, we get the following equation for the value of the portfolio

⎧⎪⎪⎨
⎪⎪⎩

dṼ0,ε(t) = π̃0,ε(t)(a(t) − r(t))dt + π̃0,ε(t)(b(t) + G̃(ε)γ̃ (t))dW (t)

+
∫

|z|>ε

π̃0,ε(t)γ (t, z)Ñ (dt, dz) + dφFS
0,ε (t),

Ṽ0,ε(T ) = ξ̃0ε ,

where π̃0,ε = χ FS
0,ε S̃0,ε and χ FS

0,ε ∈ �, (4.7). Since φFS
0,ε (T ) is aFT -measurable square

integrable random variable, then applying Theorem 2.1 with H = F and using the
P-martingale property of φFS

0,ε we know that there exist stochastic integrands Y FS
ε and

Z FS
ε , such that

φFS
0,ε (t) = E[φFS

0,ε (T )] +
∫ t

0
Y FS

ε (s)dW (s) +
∫ t

0

∫
R0

Z FS
ε (s, z)Ñ (ds, dz). (4.43)
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Using the same arguments as forφFS
1,ε we can prove thatE[φFS

0,ε (T )] = E[φFS
0,ε (0)] = 0.

In view of the orthogonality of φFS
0,ε with respect to M0,ε, we have

0 = Y FS
ε (t)[b(t) + G̃(ε)γ̃ (t)] +

∫
R0

Z FS
ε (t, z)γ (t, z)1{|z|>ε}(z)�(dz). (4.44)

The equation we obtain for the approximating problem is thus given by

⎧⎪⎪⎨
⎪⎪⎩

dṼ0,ε(t) = π̃0,ε(t)(a(t)−r(t))dt+(
π̃0,ε(t)[b(t)+G̃(ε)γ̃ (t)] + Y FS

ε (t)
)
dW (t)

+
∫
R0

(
π̃0,ε(t)γ (t, z)1{|z|>ε}(z) + Z FS

ε (t, z)
)
Ñ (dt, dz),

Ṽ0,ε(T ) = ξ̃0ε .

(4.45)

In the next lemma we prove that Ṽ0,ε satisfies the set of equations of type (3.1).

Lemma 4.8 Assume that (4.9) holds. Let Ṽ0,ε be given by (4.45). Then Ṽ0,ε satisfies
a BSDEJ of type (3.1).

Proof We rewrite Eq. (4.45) as

⎧⎨
⎩
dṼ0,ε(t) =− f 0ε (t, Ṽ0,ε(t), Ỹε(t), Z̃ε(t, .))dt+Ỹε(t)dW (t)+

∫
R0

Z̃ε(t, z)Ñ (dt, dz),

Ṽ0,ε(T ) = ξ̃0ε ,

where we introduce the processes Ỹε, Z̃ε and the function f 0ε by

Ỹε(t) = π̃0,ε(t)[b(t) + G̃(ε)γ̃ (t)] + Y FS
ε (t),

Z̃ε(t, z) = π̃0,ε(t)γ (t, z)1{|z|>ε}(z) + Z FS
ε (t, z), (4.46)

f 0ε (t, Ṽ0,ε(t), Ỹε(t), Z̃ε(t, .)) = −π̃0,ε(t)(a(t) − r(t)).

With the same arguments as above and using (4.44) we can prove that

π̃0,ε(t) = 1

κ(t)

{
Ỹε(t)

[
b(t) + G̃(ε)γ̃ (t)

] +
∫
R0

Z̃ε(t, z)1{|z|>ε}(z)γ (t, z)�(dz)
}
.

(4.47)

Hence

f 0ε (t, Ṽ0,ε(t), Ỹε(t), Z̃ε(t, .)) = −a(t) − r(t)

κ(t)

(
Ỹε(t)[b(t) + G̃(ε)γ̃ (t)]

+
∫
R0

Z̃ε(t, z)1{|z|>ε}(z)γ (t, z)�(dz)
)

and along the same lines as in the proof of Lemma 4.7 it is easy to show that f 0ε is
Lipschitz when (4.9) holds. This proves the statement. ��
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Now we present the following theorem in which we prove the robustness of the
value of the portfolio.

Theorem 4.9 Assume that (4.9) and (4.30) hold. Let Ṽ , Ṽ0,ε be given by (4.14), (4.45),
respectively. Then we have

E

[
sup

0≤t≤T
|Ṽ (t) − Ṽ0,ε(t)|2

]
≤ CE[|̃ξ − ξ̃0ε |2] + C̃[G̃2(ε) + G2(ε)]E[|̃ξ0ε |2],

where C and C̃ are positive constants and G̃(ε) is given by (4.42).

Proof Following the same steps as in the proof of Theorem 4.2, we can show that f 0ε
satisfies condition (3.2). Indeed

| f (t, x1, y1, z1) − f 0ε (t, x2, y2, z2)|
≤ |h(t)|

[
|y1 − y2||b(t)| + G̃(ε)|y2||γ̃ (t)| +

∫
|z|≤ε

|z2||γ (t, z)|�(dz)

+
∫
R0

|z1 − z2||γ (t, z)|�(dz)
]

≤ |h(t)|
[
|y1 − y2||b(t)| + G̃(ε)|y2||γ̃ (t)| + (

∫
|z|≤ε

|γ (t, z)|2�(dz)) 1
2 (

∫
R0

|z2|2�(dz))
1
2

+ (

∫
R0

|γ (t, z)|2�(dz)) 1
2 (

∫
R0

|z1 − z2|2�(dz))
1
2

]

≤ |h(t)|(√κ(t) + |γ̃ (t)|)
[
|y1 − y2| + G̃(ε)|y2| + G(ε)‖z2‖ + ‖z1 − z2‖

]
.

From (4.30) and (4.9) and noticing that f 0ε (t, 0, 0, 0) = 0, we prove the statement by
applying Theorem 3.6. ��
Remark 4.10 In the convergence result in the latter theorem, the termE[|̃ξ0ε |2] appears.
It is given by

E[|̃ξ0ε |2] = E

[∣∣∣g(S
(1)
0,ε(T ))

S(0)(T )

∣∣∣2
]
,

where g is the payoff function. In case g is Lipschitz with K being the Lipschitz
coefficient and g(0) = 0, then we have

E

[∣∣∣g(S
(1)
0,ε(T ))

S(0)(T )

∣∣∣2
]

≤ KE

[∣∣∣ S
(1)
0,ε(T )

S(0)(T )

∣∣∣2
]
.

This latter quantity is bounded in ε by a constant (see Lemma 3.2 in Benth
et al. [5]). In case g is not Lipschitz, one can still prove the boundedness of
E[|g(S(1)

0,ε(T ))/S(0)(T )|2] using Fourier transforms as in Benth et al. [5].

In the next theorem we prove the robustness of the amount of wealth to invest in a
locally risk-minimizing strategy.
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Theorem 4.11 Assume that (4.9) and (4.41) hold. Let π̃ , π̃0,ε be given by (4.24),
(4.47), respectively. Then

E

[ ∫ T

t
|π̃(s) − π̃0,ε(s)|2ds

]
≤ CE[|̃ξ − ξ̃0ε |2] + C̃[G̃2(ε) + G2(ε)]E[|̃ξ0ε |2] ,

where C and C̃ are positive constants.

Proof We have

|π̃(s) − π̃0,ε(s)|2 = 1

κ2(s)

{
(Ỹ (s) − Ỹε(s))b(s) − Ỹε(s)G̃(ε)γ̃ (s)

+
∫
R0

(Z̃(s, z) − Z̃ε(s, z))γ (s, z)�(dz) +
∫

|z|≤ε

Z̃ε(s, z)γ (s, z)�(dz)
}2

≤ C

κ(s)

{
|Ỹ (s) − Ỹε(s)|2 + G̃2(ε)γ̃ 2(s)|Ỹε(s)|2

+
∫
R0

|Z̃(s, z) − Z̃ε(s, z)|2�(dz) + G2(ε)γ̃ 2(s)
∫
R0

|Z̃ε(s, z)|2�(dz)
}
,

where C is a positive constant. Hence from Theorem 3.4 and Lemma 3.3, we deduce

E

[ ∫ T

t
|π̃(s) − π̃0,ε(s)|2ds

]
≤ C

inf t≤s≤T κ(s)

{
E

[ ∫ T

t
|Ỹ (s) − Ỹε(s)|2ds

]

+ G̃2(ε) sup
t≤s≤T

γ̃ 2(s)E
[ ∫ T

t
|Ỹε(s)|2ds

]

+ G2(ε) sup
t≤s≤T

γ̃ 2(s)E
[ ∫ T

t

∫
R0

|Z̃ε(s, z)|2�(dz)ds
]

+ E

[ ∫ T

t

∫
R0

|Z̃(s, z) − Z̃ε(s, z)|2�(dz)ds
]}

≤ C̃E[|̃ξ − ξ̃0ε |2] + C ′(G̃2(ε) + G2(ε))E[|̃ξ0ε |2]

and we prove the statement. ��

In the next theorem we deal with the robustness of the process φFS .

Theorem 4.12 Assume that (4.9) and (4.41) hold. Let φFS, φFS
0,ε be given by (4.12),

(4.43), respectively. Then for all t ∈ [0, T ] we have

E

[
|φFS(t) − φFS

0,ε (t)|2
]

≤ CE[|̃ξ − ξ̃0ε |2] + C̃[G̃2(ε) + G2(ε)]E[|̃ξ0ε |2] + C ′G2(ε),

where C, C̃, and C ′ are positive constants.
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Proof From (4.23), (4.46), Lemma 3.3, Theorem 3.4 and Theorem 4.11, we have

E

[ ∫ T

t
|Y FS(s) − Y FS

ε (s)|2ds
]

≤ C
{
E

[ ∫ T

t
|Ỹ (s) − Ỹε(s)|2ds

]

+ sup
t≤s≤T

κ(s)E
[ ∫ T

t
|π̃(s) − π̃0,ε(s)|2ds

]}

+ G̃2(ε) sup
t≤s≤T

γ̃ 2(s)E
[ ∫ T

t
|π̃0,ε(s)|2ds

]

≤ C̃E[|̃ξ − ξ̃0ε |2] + C ′[G̃2(ε) + G2(ε)]E[|̃ξ0ε |2].

Combining (4.23), (4.46), Lemma 3.3, Theorem 3.4 and Theorem 4.11, we arrive at

E

[ ∫ T

t

∫
R0

|Z FS(s, z) − Z FS
ε (s, z)|2�(dz)ds

]

≤ CE

[ ∫ T

t

∫
R0

|Z̃(s, z) − Z̃ε(s, z)|2�(dz)ds
]

+ G2(∞) sup
t≤s≤T

γ̃ 2(s)E
[ ∫ T

t
|π̃(s) − π̃0,ε(s)|2ds

]

+ G2(ε) sup
t≤s≤T

γ̃ 2(s)E
[ ∫ T

t
|π̃(s)|2ds

]

≤ CE[|̃ξ − ξ̃0ε |2] + C ′G2(ε)E[̃ξ2] + C̃[G̃2(ε) + G2(ε)]E[|̃ξ0ε |2]

and the result follows. ��
Define the cost process in the risk-minimizing strategy for ξ̃0ε by

C0,ε(t) = φFS
0,ε (t) + Ṽ0,ε(0).

Then an obvious implication of the last theorem is the robustness of the cost process
and it is easy to show that under the same conditions of the last theorem we have for
all t ∈ [0, T ],

E[|C(t) − C0,ε(t)|2] ≤ KE[|̃ξ − ξ̃0ε |2] + K ′G2(ε) + K̃ [G̃2(ε) + G2(ε)]E[|̃ξ0ε |2],

where K , K ′, and K̃ are positive constants.
Analogously and using similar computations, one can prove the robustness of the

amount invested in the riskless asset in locally risk-minimizing strategies.

4.4 A Note on the Robustness of the Mean-Variance Hedging Strategies

A mean-variance hedging (MVH) strategy is a self-financing strategy for which we
do not impose the replication requirement. However we insist on the self-financing
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constraint. In this case we define the shortfall or loss from hedging ξ̃ by

ξ̃ − Ṽ (0) −
∫ T

0
�̃(s)d S̃(s), Ṽ (0) ∈ R, �̃ ∈ � .

In order to obtain the MVH strategy one has to minimize the latter quantity in the L2-
norm by choosing (Ṽ (0), �̃) ∈ (R,�). Schweizer [30] gives a formula for the number
of risky assets in a MVH strategy where he assumes that the so-called extended mean-
variance tradeoff process is deterministic.

In this paper, given the dynamics of the stock price process S, the process A defined
in (4.4) is continuous. Thus themean-variance tradeoff process and the extendedmean-
variance tradeoff process defined in Schweizer [30] coincide. Therefore applying The-
orem 3 and Corollary 10 in Schweizer [30] and assuming that the mean-variance
tradeoff process K is deterministic, the discounted number of risky assets in a MVH
strategy is given by

�̃(t) = χ̃ FS(t) + α(t)
(
Ṽ (t−) − Ṽ (0) −

∫ t

0
�̃(s)d S̃(s)

)
, (4.48)

where α and χ̃ FS are as defined in (4.5) and (4.10), and Ṽ is the value of the portfolio
in a locally risk-minimizing strategy. Multiplying (4.48) by S̃ we obtain the following
equation for the amount of wealth in a MVH hedging strategy

ϒ̃(t) = π̃(t) + h(t)
(
Ṽ (t−) − Ṽ (0) −

∫ t

0

ϒ̃(s)

S̃(s)
d S̃(s)

)
,

where h is given by (4.26). Since K is deterministic then a, b, r , γ , and thus h should
be deterministic. We consider the approximating stock process S̃1,ε. The amount of
wealth in a MVH strategy associated to S̃1,ε is given by

ϒ̃1,ε(t) = π̃1,ε(t) + h(t)
(
Ṽ1,ε(t−) − Ṽ1,ε(0) −

∫ t

0

ϒ̃1,ε(s)

S̃1,ε(s)
d S̃1,ε(s)

)
.

Before we show the robustness of the mean-variance hedging strategies. We present
the following lemma in which we show the boundedness in L2 of ϒ̃ .

Lemma 4.13 Assume that themean-variance tradeoff process K (4.6) is deterministic
and that (4.9) holds true. Then for all t ∈ [0, T ],

E[ϒ̃2(t)] ≤ C(T )E[̃ξ2],

where C(T ) is a positive constant depending on T .
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Proof Applying Itô isometry and Hölder inequality, we get

E[ϒ̃2(t)] ≤ E[π̃2(t)] + C ′h2(t)
(
E[Ṽ 2(t)] + E[Ṽ 2(0)]

+
∫ t

0
E[ϒ̃2(s)]{(a(s) − r(s))2 + b2(s) +

∫
R0

γ 2(s, z)�(dz)}ds
)
,

where C ′ is a positive constant. Using Lemma 3.3, Lemma 4.1, and Eq. (4.24), the
result follows applying Gronwall’s inequality. ��

In the following theorem we prove the robustness of the amount of wealth in a
MVH strategy.

Theorem 4.14 Assume the mean-variance tradeoff process is deterministic and that
(4.9) and (4.31) hold. Then for all t ∈ [0, T ],

E

[
|ϒ̃(t) − ϒ̃1,ε(t)|2] ≤ CE[|̃ξ − ξ̃1ε |2] + C̃G2(ε).

Proof We have

|ϒ̃(t) − ϒ̃1,ε(t)|
≤ |π̃(t) − π̃1,ε(t)| + |h(t)|

(
|Ṽ (t−) − Ṽ1,ε(t−)| + |Ṽ (0) − Ṽ1,ε(0)|

+
∫ t

0
|ϒ̃(s) − ϒ̃1,ε(s)||a(s) − r(s)|ds + |

∫ t

0
(ϒ̃(s) − ϒ̃1,ε(s))b(s)dW (s)|

+ |
∫ t

0

∫
|z|>ε

(ϒ̃(s) − ϒ̃1,ε(s))γ (s, z)Ñ (ds, dz)|

+ G(ε)|
∫ t

0
(ϒ̃1,ε(s) − ϒ̃(s)γ̃ (s)dB(s)|

+ |
∫ t

0

∫
|z|≤ε

ϒ̃(s)γ (s, z)Ñ (ds, dz)| + G(ε)|
∫ t

0
ϒ̃(s)γ̃ (s)dB(s)|

)
.

Using Itô isometry and Hölder inequality, we get

E[|ϒ̃(t) − ϒ̃1,ε(t)|2]
≤ E[|π̃(t) − π̃1,ε(t)|2] + C̃h2(t)

(
E[|Ṽ (t) − Ṽ1,ε(t)|2] + E[|Ṽ (0) − Ṽ1,ε(0)|2]

+
∫ t

0
E[|ϒ̃(s) − ϒ̃1,ε(s)|2]

(
|a(s) − r(s)|2 + |b(s)|2 +

∫
R0

|γ (s, z)|2�(dz)
)
ds

+ G2(ε)

∫ t

0
E[ϒ̃2(s)]γ̃ 2(s)ds

)
,

where C̃ is a positive constant. Using Theorem 4.2, Theorem 4.4, and Lemma 4.13
the result follows applying Gronwall’s inequality. ��

We proved in this section that when the mean-variance tradeoff process K defined
in (4.6) is deterministic, then the amount of wealth in aMVH strategy is robust towards
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the choice of the model. It follows immediately that the value of the portfolio and the
amount invested in the riskless asset are also robust for the mean-variance hedging
strategy. The same results hold true when we consider the stock price process S̃0,ε
or S̃2,ε. We do not present these results since they follow the same lines as for the
approximation S̃1,ε.

5 Conclusion

In this paper we consider different models for the price process. Then using BSDEJs
we proved that the locally risk-minimizing and the mean-variance hedging strategies
are robust towards the choice of the model. Our results are given in terms of estimates
containing E[|̃ξ − ξ̃

ρ
ε |2], which is a quantity well studied by Benth et al. [5] and

Kohatsu-Higa and Tankov [21].
We have specifically studied three types of approximations of the price S and we

considered the role of the filtration in our study of these approximations. It is also
possible to consider other approximations to the price S. For example we can add to
the Lévy process a scaled Brownian motion. In that case, based on the robustness of
the BSDEJs, we can also prove the robustness of quadratic hedging strategies. This
type of approximation was discussed and justified in a paper by Benth et al. [5].

As far as further investigations are concerned, we consider in another paper a
time-discretisation of these different price models and study the convergence of the
quadratic hedging strategies related to each of these time-discretised price models to
the quadratic hedging strategies related to the original continuous time model. More-
over, we are concerned with the characterization of the approximating models which
give the best convergence rates when the robustness of quadratic hedging strategies is
taken into account.
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