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Abstract This paper presents a general existence and uniqueness result for mean
field games equations on graphs (G-MFG). In particular, our setting allows to take
into account congestion effects of almost any form. These general congestion effects
are particularly relevant in graphs in which the cost to move from one node to another
may for instance depend on the proportion of players in both the source node and
the target node. Existence is proved using a priori estimates and a fixed point argu-
ment à la Schauder. We propose a new criterion to ensure uniqueness in the case
of Hamiltonian functions with a complex (non-local) structure. This result gener-
alizes the discrete counterpart of uniqueness results obtained in Lasry and Lions
(C. R.Acad. Sci. Paris 343(10):679–684, 2006). Lions (http://www.college-de-france.
fr/default/EN/all/equ_der/audio_video.jsp, 2014).

Keywords Mean field games · Discrete state space · Congestion effect

1 Introduction

Mean field games have been introduced in 2006 by J.-M. Lasry and P.-L. Lions [29–31]
as the limit of a large class of stochastic differential games when the number of players
increases toward infinity. Independently and almost simultaneously, Huang et al. [25]
proposed a similar framework for games with a large number of identical players. The
idea underlying the introduction of mean field games is that, in the case of a large
number of players, interactions are such that each player only considers the statistical
distribution of the others to make his decisions. From a mathematical point of view,
considering empirical state distributions instead of all the individual states allows to
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consider games that were untractable before the introduction of mean field games. In
the case of a finite number M of players, finding a Nash-equilibrium is indeed almost
impossible, as it involves a coupled system of M nonlinear Hamilton–Jacobi–Bellman
partial differential equations. Mean field games equations however boil down to two
coupled equations: a backward Hamilton–Jacobi–(Bellman) equation for the value
function and a forward Kolmogorov transport equation for the state distribution.

Research on mean field games has developed1 since 2006 and we can divide the
literature into three parts.

The first and wider part consists in papers on mean field game theory. A lot of
papers are dedicated to proving existence and/or uniqueness for a particular class of
mean field games. For instance, the case of linear-quadratic games has been widely
studied by Bardi in [4,5] and by Bensoussan et al. in [7]. Mean field games with
quadratic Hamiltonian have been studied by Guéant in [23]. A specific case where
closed form solution are exhibited has also been studied in [20]. A priori estimates to
prove existence have been proposed byGomes et al. in [18].2 The long termbehavior of
solutions has also been studied by Cardaliaguet et al. for different classes of mean field
games (see [10,11]). The convergence of gameswith a finite number of players towards
mean field games has also been an important research topic (see [17] in addition to
already cited papers). Recently, Carmona and Delarue proposed a very interesting
probabilistic analysis of mean field games in [12], and provided a comparison between
controlled McKean-Vlasov dynamics and mean field games in [13].

In parallel with this first strand of research focussed on mean field game equa-
tions and their properties, a literature emerged on numerical methods to approximate
the solution of mean field game equations. Achdou et al. proposed finite-difference
schemes in [2,3] to approximate the solution of the coupled system of partial dif-
ferential equations involved in mean field games. They also consider the case of the
planning problem where the terminal condition on the value function is replaced by
a terminal condition on the state distribution (see [1]). Gradient methods have been
proposed by Lachapelle et al. in [26] in the case of potential games. The case of mean
field games with quadratic Hamiltonian has also been considered, for which specific
monotone numerical methods have been proposed in [21,22].

The last part of the literature on mean field games is dedicated to applications. The
first applications were shown in [19] and [24], mainly to economics. Other economic
applications have been considered since then and an important example is the paper by
Lucas and Moll [33]. These two economists indeed proposed a growth theory model
based on mean field games. Chan and Sircar proposed a competition model for oil
producers using mean field game equations in [15]. Financial applications are also
present in the literature. For instance, Carmona et al. proposed a mean field game
model of systemic risk—see[14]. Lachapelle et al. also proposed a stylized mean field
game model to understand price formation on financial markets—see[28]. Finally,
applications to population dynamics have also been presented in papers on numerical
methods (see also [27] for an example with congestion).

1 see [9] and [6] for a general appraisal.
2 Gomes also studied discrete (in time) mean field games in [16].
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In the literature, mean field games have most often been considered on continuous
state spaces. As in [17], we consider in this paper the opposite case of a discrete state
space. More precisely, we consider mean field games on graphs and we do not focus
on a particular structure for the graph, that is for the possibility to go from one node to
another. The discrete counterpart of the mean field game partial differential equations
are 2N ordinary differential equations, where N is the cardinal of the state space (the
number of nodes in the graph).

The goal of the paper is to provide existence and uniqueness of a solution to these
G-MFG equations. As far as existence is concerned, our framework is very general
and allows for almost any local or non-local congestion effects. The result is obtained
using a priori estimates and a Schauder fixed point argument. Our result on uniqueness
is more general than the discrete counterpart of any existing result in the case of a
continuous state space. The usual monotonicity property required for games with no
congestion effect (see [31]) is indeed generalized with the additional requirement of
a structural hypothesis on the Hamiltonian function of the problem, in order to deal
with congestion (see also [32] for another result on partial differential equations in the
specific case of local congestion).

In the first section, we introduce the framework and the hypotheses on the pay-
off and cost functions. G-MFG equations are then introduced. In Sect. 2, we prove
the existence of a C1 solution to G-MFG equations using a priori bounds obtained
through a comparison principle and a fixed point argument à la Schauder. Section 3
is dedicated to our uniqueness result for the solutions of G-MFG equations. Under
additional smoothness assumptions for the Hamiltonian function and using the same
kind of method as the one proposed in [31,32], we prove uniqueness under a structural
assumption on the Hamiltonian function.

2 Mean Field Games on Graphs

2.1 Notations

We consider a directed graph G whose nodes are indexed by integers from 1 to N . For
each node i ∈ N = {1, . . . , N } we introduce V(i) ⊂ N \ {i} the set of nodes j for
which a directed edge exists from i to j . The cardinal of this set is denoted by di and
called the out-degree of the node i . Reciprocally, we denote by V−1(i) ⊂ N \ {i} the
set of nodes j for which a directed edge exists from j to i .

We suppose that there is a continuum of anonymous and identical players of size
1. At any time, each player is located at a given node of the graph and hence G is the
state space of our mean field game.

The process modeling the position of each player is a Markov chain in continuous
time. Instantaneous transition probabilities at time t are described by a collection of
feedback control functions λt (i, ·) : V(i) → R+ (for each node i ∈ N ). Throughout
the text, we assume that the controls are in the admissible set A defined by:

A =
{
(λt (i, j))t∈[0,T ],i∈N , j∈V(i) deterministic |∀i ∈ N ,∀ j ∈ V(i), t

�→ λt (i, j) ∈ L∞(0, T )
}
,
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where T > 0 is the final time of the game.
At the macroscopic level, the distribution of the players on the graph G is described

by a function t �→ m(t) = (m(1, t), . . . , m(N , t)), where m(i, t) simply stands for
the proportion of the total population of players located at node i at time t .

At any time t , each player can pay a cost to choose the values of the transi-
tion probabilities. We assume that the instantaneous cost of a player is given by
L(i, (λi, j ) j∈V(i), m(t)) if he is located at node i and if he sets the value of λ(i, j)
to λi, j (for all j ∈ V(i)).

At time t , each player also earns a certain instantaneous payoff from its position
on the graph. We denote by f (i, m(t)) the instantaneous payoff of a player located at
node i at time t .

Remark 1 We assume that the functions L(i, ·, ·) and f (i, ·) do not depend on t .
Adding a time dependence does not add technical difficulties.

At time T , each player has a terminal payoff depending on his position on the graph.
We denote by g(i, m(T )) the terminal payoff of a player located at node i at time T .

The assumptions made on the functions L(i, ·, ·), f (i, ·) and g(i, ·) are the follow-
ing:

• Continuity: ∀i ∈ N , the functions L(i, ·, ·) : Rdi+ ×R
N+ → R+, f (i, ·) : RN+ → R

and g(i, ·) : RN+ → R are continuous.
• Convexity of the cost functions: ∀i ∈ N ,∀μ ∈ R

N+ ,L(i, ·, μ) is a strictly convex
function.

• Asymptotic super-linearity of the cost functions:

∀i ∈ N ,∀K > 0, lim
λ∈Rdi+ ,|λ|→+∞

inf
μ∈[0,K ]N

L(i, λ, μ)

|λ| = +∞.

Remark 2 As far as the variable μ is concerned, there is no real need to define the
functions outside of PN = {(μ1, . . . , μN ) ∈ R

N+ ,
∑N

i=1 μi = 1} for our existence
result. However, as we need to differentiate functions with respect to the each compo-
nent of the state distribution for our uniqueness result, we prefer to define functions
on RN+ .

Associated to the cost functions L(i, ·, ·), we define the Hamiltonian functions
H(i, ·, ·) by:

∀i ∈ N , (p, μ) ∈ R
di × R

N+ �→ H(i, p, μ) = sup
λ∈Rdi+

λ · p − L(i, λ, μ).

We recall (see for instance [8]) that:

• ∀i ∈ N , H(i, ·, ·) is a continuous function.
• ∀i ∈ N ,∀μ ∈ R

N+ , H(i, ·, μ) is a C1 function and ∇pH(i, ·, ·) is a continuous
function with:

∀p ∈ R
di ,∀μ ∈ R

N+ ,∇pH(i, p, μ) = argmax
λ∈Rdi+

λ · p − L(i, λ, μ).
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2.2 Mean Field Game Equations

Following the notations introduced above, for a given admissible control3 λ ∈ A
and a given function m : t ∈ [0, T ] �→ (m(1, t), . . . , m(N , t)) ∈ PN we define the
intertemporal payoff function Jm : [0, T ] × N × A → R by:

Jm(i, t, λ) = E

[∫ T

t
(−L(Xs, λs(Xs, ·), m(s)) + f (Xs, m(s))) ds + g (XT , m(T ))

]
,

for (Xs)s∈[t,T ] a Markov chain on G, starting from i at time t , with instantaneous
transition probabilities given by (λs)s∈[t,T ].

From this, we can adapt the definition of a (symmetric) Nash-MFG equilibrium to
our context:

Definition 1 (Nash-MFG symmetric equilibrium) A differentiable function m : t ∈
[0, T ] �→ (m(1, t), . . . , m(N , t)) ∈ PN is said to be a Nash-MFG equilibrium, if
there exists an admissible control λ ∈ A such that:

∀λ̃ ∈ A,∀i ∈ N , Jm(i, 0, λ) ≥ Jm(i, 0, λ̃),

and

∀i ∈ N ,
d

dt
m(i, t) =

∑

j∈V−1(i)

λt ( j, i)m( j, t) −
∑

j∈V(i)

λt (i, j)m(i, t).

In that case, λ is called an optimal control.

The first equation corresponds to the absence of profitable unilateral deviation for a
player, given a trajectory of the state distribution. The second equation is a coherence
equation, stating that the evolution of the state distribution is coherent with the choice
of the agents.

Now, let us define the G-MFG equations associated to the above mean field game
with an initial distribution m0 ∈ PN :

Definition 2 (The G-MFG equations) The G-MFG equations consist in a system of
2N equations, the unknown being t ∈ [0, T ] �→ (u(1, t), . . . , u(N , t), m(1, t), . . . ,
m(N , t)).

The first half of these equations are Hamilton–Jacobi equations and consist in the
following system:

∀i ∈ N ,
d

dt
u(i, t) + H (

i, (u( j, t) − u(i, t)) j∈V(i), m(1, t), . . . , m(N , t)
)

+ f (i, m(1, t), . . . , m(N , t)) = 0,

with u(i, T ) = g(i, m(1, T ), . . . , m(N , T )).

3 We call λ a control although it is an abuse of terminology since the controls consist in the values of λ.
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The second half of these equations are forward transport equations:

∀i ∈ N ,
d

dt
m(i, t) =

∑

j∈V−1(i)

∂H( j, ·, m(1, t), . . . , m(N , t))

∂ pi

× (
(u(k, t) − u( j, t))k∈V( j)

)
m( j, t)

−
∑

j∈V(i)

∂H(i, ·, m(1, t), . . . , m(N , t))

∂ p j

(
(u(k, t)

− u(i, t))k∈V(i)
)

m(i, t),

with (m(1, 0), . . . , m(N , 0)) = m0.

As usual in the mean field game literature, u is the value function of players. In
other words, we expect to have u(i, t) = supλ∈A Jm(i, t, λ) for m solving the above
equations.4

In what follows, existence and uniqueness of solutions to the G-MFG equations are
studied. We first start with existence and our proof is based on a Schauder fixed-point
argument and a priori estimates to obtain compactness. Then, we present a criterion
to ensure uniqueness of C1 solutions.

3 Existence Result

For the existence result, we first start with a lemma stating that, for a fixed m, the N
Hamilton–Jacobi equations amongst the G-MFG equations obey a comparison prin-
ciple:

Lemma 1 (Comparison principle) Let m : [0, T ] → PN be a continuous function.
Let u : t ∈ [0, T ] �→ (u(1, t), . . . , u(N , t)) be a C1 function that verifies:

∀i ∈ N , − d

dt
u(i, t) − H (

i, (u( j, t) − u(i, t)) j∈V(i), m(1, t), . . . , m(N , t)
)

− f (i, m(1, t), . . . , m(N , t)) ≤ 0,

with u(i, T ) ≤ g(i, m(1, T ), . . . , m(N , T )).
Let v : t ∈ [0, T ] �→ (v(1, t), . . . , v(N , t)) be a C1 function that verifies:

∀i ∈ N , − d

dt
v(i, t) − H (

i, (v( j, t) − v(i, t)) j∈V(i), m(1, t), . . . , m(N , t)
)

− f (i, m(1, t), . . . , m(N , t)) ≥ 0,

with v(i, T ) ≥ g(i, m(1, T ), . . . , m(N , T )).
Then, ∀i ∈ N ,∀t ∈ [0, T ], v(i, t) ≥ u(i, t).

4 We do not prove any verification theorem. As we obtain a smooth solution in Theorem 1, there is in fact
no technical issue.
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Proof Let us consider for a given ε > 0, a point (i∗, t∗) ∈ [0, T ] × N such that

u(i∗, t∗) − v(i∗, t∗) − ε(T − t∗) = max
(i,t)∈[0,T ]×N

u(i, t) − v(i, t) − ε(T − t).

If t∗ ∈ [0, T ), then d
dt (u(i∗, t) − v(i∗, t) − ε(T − t))

∣∣
t=t∗ ≤ 0. Also, by defini-

tion of (i∗, t∗), ∀ j ∈ V(i∗), u(i∗, t∗) − v(i∗, t∗) ≥ u( j, t∗) − v( j, t∗) and hence, by
definition ofH(i∗, ·, ·):

H (
i∗, (v( j, t∗) − v(i∗, t∗)) j∈V(i∗), m(1, t∗), . . . , m(N , t∗)

)

≥ H (
i∗, (u( j, t∗) − u(i∗, t∗)) j∈V(i∗), m(1, t∗), . . . , m(N , t∗)

)
.

Combining these inequalities we get:

− d

dt
u(i∗, t∗) − H (

i∗, (u( j, t∗) − u(i∗, t∗)) j∈V(i∗), m(1, t∗), . . . , m(N , t∗)
)

− f (i∗, m(1, t∗), . . . , m(N , t∗))

≥ − d

dt
v(i∗, t∗) − H (

i∗, (v( j, t∗) − v(i∗, t∗)) j∈V(i∗), m(1, t∗), . . . , m(N , t∗)
)

− f (i∗, m(1, t∗), . . . , m(N , t∗)) + ε.

But this is in contradiction with the hypotheses on u and v.
Hence t∗ = T and max(i,t)∈[0,T ]×N u(i, t)− v(i, t)− ε(T − t) ≤ 0 because of the

assumptions on u(i, T ) and v(i, T ).
This being true for any ε > 0, we have that max(i,t)∈[0,T ]×N u(i, t) − v(i, t) ≤ 0.

�
This lemma allows to provide a bound to any solution u of the N Hamilton–

Jacobi equations and this bound is then used to obtain compactness in order to apply
Schauder’s fixed point theorem.

Theorem 1 (Existence) Under the assumptions made in Sect. 1, there exists a C1

solution (u, m) of the G-MFG equations.

Proof Let m : [0, T ] → PN be a continuous function.
Let then consider the solution u : t ∈ [0, T ] �→ (u(1, t), . . . , u(N , t)) to the

Hamilton–Jacobi equations:

∀i ∈ N ,
d

dt
u(i, t) + H (

i, (u( j, t) − u(i, t)) j∈V(i), m(1, t), . . . , m(N , t)
)

+ f (i, m(1, t), . . . , m(N , t)) = 0,

with u(i, T ) = g(i, m(1, t), . . . , m(N , t)).
This function u is a well defined C1 function with the following bound coming

from the above lemma:

sup
i∈N

‖u(i, ·)‖∞ ≤ sup
i∈N

‖g(i, ·)‖∞ + T sup
i∈N ,μ∈PN

|H(i, 0, μ)| + T sup
i∈N ,μ∈PN

| f (i, μ)|.
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Using this bound and the properties onH, we can define a function m̃ : [0, T ] → PN

by:

∀i ∈ N ,
d

dt
m̃(i, t) =

∑

j∈V−1(i)

∂H( j, ·, m(1, t), . . . , m(N , t))

∂ pi

× (
(u(k, t) − u( j, t))k∈V( j)

)
m̃( j, t)

−
∑

j∈V(i)

∂H(i, ·, m(1, t), . . . , m(N , t))

∂ p j

× (
(u(k, t) − u(i, t))k∈V(i)

)
m̃(i, t),

with (m̃(0, 1), . . . , m̃(0, N )) = m0 ∈ PN .
dm̃
dt is bounded, the bounds depending only on the functions f (i, ·), g(i, ·) and

H(i, ·, ·), i ∈ N .
As a consequence, if we define � : m ∈ C([0, T ],PN ) �→ m̃ ∈ C([0, T ],PN ), �

is a continuous function (from classical ODE theory) with �(C([0, T ],PN )) a rela-
tively compact set (because of Ascoli’s Theorem and the uniform Lipschitz property
we just obtained).

Hence, because C([0, T ],PN ) is convex, by Schauder’s fixed point theorem, there
exists a fixed point m to �. If we then consider u associated to m by the Hamilton–
Jacobi equations as above, (u, m) is a C1 solution to the G-MFG equations. �

4 Uniqueness

Coming now to uniqueness, we use similar ideas as those used in [30,31] or [32] in
the case of PDEs to obtain a criterion close to the one obtained in [32] but adapted to
graphs and generalized to non-local congestion.

Before stating the theorem, let us introduce a few notations.Mr,c is the set of real
matrices with r rows and c columns. In the particular case of square matrices,Mr,r is
denoted by Mr . We also say the a square matrix M ∈ Mr is positive, and we write
M ≥ 0, if ∀y ∈ R

r , y′My ≥ 0 where y′ denotes the transpose of y.

Theorem 2 (Uniqueness) Assume that g is such that:

∀(ν, μ) ∈ PN × PN ,

N∑
i=1

(g(i, ν1, . . . , νN ) − g(i, μ1, . . . , μN ))(νi − μi )

≥ 0 �⇒ ν = μ.

Assume that f is such that:

∀(ν, μ) ∈ PN × PN ,

N∑
i=1

( f (i, ν1, . . . , νN ) − f (i, μ1, . . . , μN ))(νi − μi )

≥ 0 �⇒ ν = μ.
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Assume that H is such that ∀i ∈ N ,∀ j ∈ V(i), ∂H
∂p j

(i, ·, ·) is a C1 function on

R
di × R

N+ .

Let us define A : (q1, . . . , qN , μ) ∈ ∏N
i=1 R

di × PN �→ (
αi j (qi , μ)

)
i, j ∈ MN

defined by:

αi j (qi , μ) = − ∂H
∂μ j

(i, qi , μ).

Let us also define, ∀i ∈ N , Bi : (qi , μ) ∈ R
di × PN �→

(
β i

jk(qi , μ)
)

j,k
∈ MN ,di

defined by:

β i
jk(qi , μ) = μi

2

∂2H
∂μ j∂qik

(i, qi , μ).

Let us also define, ∀i ∈ N , Ci : (qi , μ) ∈ R
di × PN �→

(
γ i

jk(qi , μ)
)

j,k
∈ Mdi ,N

defined by:5

γ i
jk(qi , μ) = μi

2

∂2H
∂μk∂qi j

(i, qi , μ).

Let us finally define, ∀i ∈ N , Di : (qi , μ) ∈ R
di × PN �→

(
δi

jk(qi , μ)
)

j,k
∈ Mdi

defined by:

δi
jk(qi , μ) = μi

∂2H
∂qi j∂qik

(i, qi , μ).

Assume that ∀(q1, . . . , qN , μ) ∈ ∏N
i=1 R

di × PN :

M(q1, . . . , qN , μ)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A(q1, . . . , qN , μ) B1(q1, μ) · · · · · · · · · B N (qN , μ)

C1(q1, μ) D1(q1, μ) 0 · · · · · · 0
... 0

. . .
. . .

...
...

...
. . .

. . .
. . .

...
...

...
. . .

. . . 0
C N (qN , μ) 0 · · · · · · 0 DN (qN , μ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≥ 0.

Then, if (̂u, m̂) and (ũ, m̃) are two C1 solutions of the G-MFG equations, we have
m̂ = m̃ and û = ũ.

5 Matrices Bi s and Ci s are transpose of one another.
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Proof The proof of this result consists in computing in two different ways the value
of

I =
∫ T

0

N∑
i=1

d

dt
((̂u(i, t) − ũ(i, t))(m̂(i, t) − m̃(i, t))) dt.

We first know directly that

I =
N∑

i=1

(g(i, m̂(T )) − g(i, m̃(T )))(m̂(i, T ) − m̃(i, T )).

Now, differentiating the product we get:

I = −
∫ T

0

N∑
i=1

( f (i, m̂(t)) − f (i, m̃(t)))(m̂(i, t) − m̃(i, t))dt +
∫ T

0

N∑
i=1

(m̂(i, t) − m̃(i, t))

×
[
H(i, (ũ(k, t) − ũ(i, t))k∈V(i), m̃(t)) − H(i, (̂u(k, t) − û(i, t))k∈V(i), m̂(t))

]
dt

+
∫ T

0

N∑
i=1

(̂u(i, t) − ũ(i, t))

⎡
⎣ ∑

j∈V−1(i)

H
∂pi

( j, (̂u(k, t) − û( j, t))k∈V( j), m̂(t))m̂( j, t)

−
∑

j∈V(i)

H
∂p j

(i, (̂u(k, t) − û(i, t))k∈V(i), m̂(t))m̂(i, t)

−
∑

j∈V−1(i)

H
∂pi

( j, (ũ(k, t) − ũ( j, t))k∈V( j), m̃(t))m̃( j, t)

+
∑

j∈V(i)

H
∂p j

(i, (ũ(k, t) − ũ(i, t))k∈V(i), m̃(t))m̃(i, t)

⎤
⎦ dt.

After reordering the terms we get:

I = −
∫ T

0

N∑
i=1

( f (i, m̂(t)) − f (i, m̃(t)))(m̂(i, t) − m̃(i, t))dt +
∫ T

0

N∑
i=1

(m̂(i, t) − m̃(i, t))

×
[
H(i, (ũ(k, t) − ũ(i, t))k∈V(i), m̃(t)) − H(i, (̂u(k, t) − û(i, t))k∈V(i), m̂(t))

]
dt

+
∫ T

0

N∑
i=1

m̂(i, t)
∑

j∈V(i)

((̂u( j, t) − ũ( j, t)) − (̂u(i, t) − ũ(i, t)))
∂H
∂ p j

× (
i, (̂u(k, t) − û(i, t))k∈V(i), m̂(t)

)
dt

−
∫ T

0

N∑
i=1

m̃(i, t)
∑

j∈V(i)

((̂u( j, t) − ũ( j, t)) − (̂u(i, t) − ũ(i, t)))
∂H
∂ p j

× (
i, (ũ(k, t) − ũ(i, t))k∈V(i), m̃(t)

)
dt,
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i.e.:

I = −
∫ T

0

N∑
i=1

( f (i, m̂(t)) − f (i, m̃(t)))(m̂(i, t) − m̃(i, t))dt + J,

where

J =
∫ T

0

N∑
i=1

(m̂(i, t) − m̃(i, t))

×
[
H(i, (ũ(k, t) − ũ(i, t))k∈V(i), m̃(t)) − H(i, (̂u(k, t) − û(i, t))k∈V(i), m̂(t))

]
dt

+
∫ T

0

N∑
i=1

∑

j∈V(i)

((̂u( j, t) − ũ( j, t)) − (̂u(i, t) − ũ(i, t)))

×
[

m̂(i, t)
∂H
∂ p j

(
i, (̂u(k, t) − û(i, t))k∈V(i), m̂(t)

)

− m̃(i, t)
∂H
∂ p j

(
i, (ũ(k, t) − ũ(i, t))k∈V(i), m̃(t)

) ]
dt.

Now, ifwe define uθ (t) = ũ(t)+θ (̂u(t)−ũ(t)) andmθ (t) = m̃(t)+θ(m̂(t)−m̃(t)),
then we have:

J =
∫ T

0

N∑
i=1

(m̂(i, t) − m̃(i, t))
∫ 1

0

×
[ ∑

j∈V(i)

− ∂H
∂p j

(i, (uθ (k, t) − uθ (i, t))k∈V(i), mθ (t)) × ((̂u( j, t) − ũ( j, t)) − (̂u(i, t)

− ũ(i, t))) +
N∑

j=1

− ∂H
∂μ j

(i, (uθ (k, t) − uθ (i, t))k∈V(i), mθ (t))(m̂( j, t) − m̃( j, t))

]
dθdt

+
∫ T

0

N∑
i=1

∑

j∈V(i)

∫ 1

0

[
(m̂(i, t) − m̃(i, t))

∂H
∂ p j

(
i, (uθ (k, t) − uθ (i, t))k∈V(i), mθ (t)

)

+ mθ (i, t)
∑

l∈V(i)

((̂u(l, t) − ũ(l, t)) − (̂u(i, t) − ũ(i, t)))
∂2H

∂ pl∂ p j

×
(

i, (uθ (k, t) − uθ (i, t))k∈V(i), mθ (t)
)

+ mθ (i, t)
N∑

l=1

(m̂(l, t) − m̃(l, t))
∂2H

∂μl∂ p j

(
i, (uθ (k, t) − uθ (i, t))k∈V(i), mθ (t)

) ]

× dθ × ((̂u( j, t) − ũ( j, t)) − (̂u(i, t) − ũ(i, t)))dt.
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We see that the first group of terms cancels with the third one and we can write J as:

J =
∫ T

0

∫ 1

0
V (t)M((uθ (k, t) − uθ (1, t))k∈V(1), . . . , (u

θ (k, t)

− uθ (N , t))k∈V(N ), mθ (t))V (t)′dθdt,

where

V (t) = (m̂(t) − m̃(t), ((̂u(k, t) − ũ(k, t)) − (̂u(1, t) − ũ(1, t)))k∈V(1), . . . ,

((̂u(k, t) − ũ(k, t)) − (̂u(N , t) − ũ(N , t)))k∈V(N )).

Hence J ≥ 0 and we have:

∫ T

0

N∑
i=1

( f (i, m̂(t)) − f (i, m̃(t)))(m̂(i, t) − m̃(i, t))dt

+
N∑

i=1

(g(i, m̂(T )) − g(i, m̃(T )))(m̂(i, T ) − m̃(i, T )) ≥ 0.

Using the hypotheses on f and g we get m̂ = m̃.
The comparison principle stated in Lemma 1 then brings û = ũ and the result is

proved. �
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