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Abstract This paper deals with a mean-variance problem for finite horizon semi-
Markov decision processes. The state and action spaces are Borel spaces, while the
reward functionmay be unbounded. The goal is to seek an optimal policywithminimal
finite horizon reward variance over the set of policies with a given mean. Using the
theory of N -step contraction, we give a characterization of policies with a given mean
and convert the second order moment of the finite horizon reward to a mean of an
infinite horizon reward/cost generated by a discrete-time Markov decision processes
(MDP)with a two dimension state space and a new one-step reward/cost under suitable
conditions. We then establish the optimality equation and the existence of mean-
variance optimal policies by employing the existing results of discrete-time MDPs.
We also provide a value iteration and a policy improvement algorithms for computing
the value function and mean-variance optimal policies, respectively. In addition, a
linear program and the dual program are developed for solving the mean-variance
problem.
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1 Introduction

Risk control is an important issue in practical applications and thus there have been
many risk measures developed for reflecting risk features of systems [3,4,12,14,16,
22]. As is known, one of the common and popular risk measures is the variance,
which is often used to characterize the stability of random rewards/costs. The typical
applications of the variance are the well-known mean-variance problems arising in
finance and economics, which can be roughly classified into three groups according to
the goals: (i) minimizing the variance subject to a constraint that its expected reward
be equal to or at least some level [1,8,11,25,31,32], (ii) maximizing the expected
reward subject to a constraint that its variance not exceed some level [21, p. 408], and
(iii) maximizing the variance penalized reward where the variance is incorporated as a
penalty in the objective function [5,6,26,28–30]. The earlier works on mean-variance
problems were due to Markowitz’s portfolio allocation analysis [17,18], where an
investor seeks the lowest risk level that is quantified by the variance of the return after
specifying his/her acceptable return level. Nowadays, the mean-variance problems
have received increasing attentions and have been widely studied for various dynamic
systems described by stochastic differential equations [1,15,29–31], Markov decision
processes (MDPs) [7,9,10,16,20], and so on.

This paper is devoted to a mean-variance problem in semi-Markov decision
processes (SMDPs). In the literature on MDPs, there are three kinds of variances,
namely, the finite horizon reward variance [5,24,27], the infinite horizon discounted
reward variance [6,9,24], and the limiting average variance [6–8,10,11,16,20,21,25,
28,32]. Collins [5] considers finite horizon variance penalized discrete-time MDPs
(DTMDPs) with finite states and actions, where it is assumed that there are no accu-
mulated rewards and only a terminal reward. They formulate the variance penalized
reward as a convex function of the distribution of the state at terminal time, and solve
the problem by a convex analysis technique. Sobel [24] studies the finite horizon
and infinite horizon discounted reward variances for DTMDPs as well as the infinite
horizon discounted reward variance for SMDPs. They derive formulas for these vari-
ances via a formula of the distribution function of the discounted reward. However,
the optimality results such as the existence of mean-variance optimal policies have
not been given therein. Van Dijk and Sladký [27] treat the finite horizon reward vari-
ance for continuous-time Markov reward chains, where explicit expressions for the
mean and variance are provided, but the presentation is restricted to the uncontrolled
case and, as pointed out by the authors, it will be challenging to extend the results
to the controlled case. Filar et al. [6] investigate the variance penalized problems for
discounted finite DTMDPs, in which the variance measures are the “stage-wise vari-
ance” and the “discount normalized variance” rather than the precise variance of the
total discounted reward. Guo et al. [9] discuss the discounted reward variance for finite
continuous-time MDPs (CTMDPs), where they minimize the variance over a set of
all deterministic stationary policies with a given expected reward. They show that the
mean-variance problem can be transformed to an equivalent discounted optimization
problem, and further prove that a mean-variance optimal policy and the efficient fron-
tier can be obtained by policy iteration methods with a finite number of iterations.
For the limiting average variance, there are a lot of works related to this issue; see,
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for instance, [6,25,28] for finite DTMDPs; [10,11,16,32] for DTMDPs with general
state space and unbounded rewards/costs; [8] for finite multi-chain CTMDPs; [7,20]
for CTMDPs with denumerable state spaces, Borel action spaces and unbounded
rewards/costs; and [23] for uncontrolled semi-Markov processes with finite states.
The methods used to deal with the limiting average variance problems are the dynamic
programming and nonlinear programming approaches. In the dynamic programming
approach [7,8,10,11,16,20,32], the limiting average variance is converted to a mean
by the central limit theorem forMarkov processes [10, p.175] and the martingale tech-
nique. However, in the nonlinear programming approach [5,6,25,28], the problems are
formulated as appropriate nonlinear programs in the space of state-action frequencies
(or called occupancy measures).

As indicated above, most of the current works are concentrated on limiting aver-
age variance, while only a few address finite or infinite horizon discounted reward
variance, especially finite horizon ones in continuous-time. This paper selects a finite
horizon mean-variance problem in SMDPs, for which the state and action spaces are
assumed to be Borel spaces, and the reward rate function may be unbounded. We
aim at minimizing the variance of the finite horizon total reward in all deterministic
Markov policies with a given mean. Our motivation is threefold. First, finite horizon
optimization problems are a class of basic problems since, as we know, the lifetime
of most systems in the real world is finite. Second, SMDPs are a sort of more general
stochastic control models than DTMDPs and CTMDPs, in which the sojourn times
are allowed to follow an arbitrary probability distribution, while the ones in DTMDPs
are a fixed constant and the ones in CTMDPs are exponentially distributed. Third,
although finite horizon variance penalized problems have been studied for DTMDPs
in Collins [5], the associated arguments and techniques in [5] for the case of only
terminal rewards are not suitable to the case of continuously accumulated rewards,
due to which the finite horizon total reward mean-variance in SMDPs is an unsolved
and novel problem.

In this paper, we adopt the dynamic programming approach to solve our mean-
variance problem. That is, we shall convert the variance to a mean with a new
reward/cost function and then apply the existing results of MDPs with a mean. How-
ever, in contrast to infinite horizon discount or limiting average mean-variance prob-
lems, finite horizon rewardmean-variance problems appearmore complicated because
the time horizon should be now considered. In order to conduct the conversion of the
finite horizon reward variance to a mean, we therefore first show that the mean of the
finite horizon total reward generated by SMDPs coincides with the mean of an infinite
horizon total reward of a DTMDPwith a two dimension state space of time-state pairs
and a one-step reward function derived from the reward rate for SMDPs (see Theorem
3.1(a)). Then, using the theory of N -step contraction, we succeed in characterizing
policies with a given mean and converting the second order moment of the finite hori-
zon reward to a mean of an infinite horizon reward/cost of a DTMDP with a new
one-step reward/cost under suitable conditions (see Theorems 3.1(b) and 3.2). Based
on the treatments above, we formulate our mean-variance problem to an equivalent
infinite horizonDTMDP with a two dimension state space, new admissible action sets
and a new transition law, and further establish the optimality equation and the exis-
tence of a mean-variance optimal policy by using the existing theory of DTMDPs. We
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also provide the value iteration and the Howard’s policy improvement algorithms for
computing the value function and mean-variance optimal policies, respectively (see
Theorem 3.3).Moreover, we develop a linear program (LP) and the dual program (DP)
for solving our mean-variance problem. It is worthwhile to remark that the key point
of obtaining the LP and DP lies in that the finite horizon total reward variance have
been transformed as an equivalent expected infinite horizon reward of a DTMDP.

This paper proceeds as follows. Section 2 introduces the control model and the
optimality problem. After giving technical preliminaries in Sect. 3, we state our main
results on the existence and computation of mean-variance optimal policies in Sect. 4.
A linear program and the dual program for solving the mean-variance problem are
developed in Sect. 5. Finally, concluding remarks are made in Sect. 6.

2 Problem Formulation

We consider an SMDP model with a set of data as below
{
E, A, {A(x), x ∈ E}, Q(·, · | x, a), r(x, a)

}
, (2.1)

consisting of

(a) a Borel space E , called the state space and endowed with the Borel σ -algebra
B(E);

(b) a Borel space A, called the action set and endowed with the Borel σ -algebra
B(A);

(c) a family {A(x), x ∈ E} of nonempty measurable subsets A(x) of A, where each
A(x) denotes the set of admissible actions at state x ∈ E ;

(d) a semi-Markov kernel Q(·, ·|x, a), a stochastic kernel on R+×E given K , where
R+ = [0,+∞), and K = {(x, a) | x ∈ E, a ∈ A(x)} denotes the set of feasible
state-action pairs and is assumed to be in B(E × A);

(e) a real-value measurable function r(x, a) on K , called the reward rate.

Remark 2.1 According to the Radon-Nikodym theorem, the semi-Markov kernel Q
can be partitioned as shown below:

Q(t, D|x, a) =
∫

D
F(t |x, a, y)p(dy|x, a) ∀t ∈ R+, D ∈ B(E), (x, a) ∈ K ,

(2.2)

where F(·|x, a, y) denotes the sojourn time distribution in state x when action a is
chosen and the next state is to be y, and p(·|x, a) is the transition law of the system
states.

To better understand the meaning of the data above, we describe how an SMDP
evolves. In an SMDP, a controller observes the system states continuously in time.
If the system jumps to x ∈ E at time t , an action a ∈ A(x) is chosen according to
some policy. As a consequence of this action choice, two things occur: first, the system
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jumps to y after a sojourn time s in x with the probability Q(ds, dy | x, a); second,
rewards are continuously accumulated at rate r(x, a) until next jump. Since the time
horizon is finite, we have to consider also the jump times besides the post-jump states
when making decisions in a finite horizon SMDP. So, a (deterministic Markov) policy
f is a measurable function from R+ × E to A such that f (t, x) ∈ A(x) for every
(t, x) ∈ R+ × E , where (t, x) represents the current jump time and the current state.
The set of all policies is denoted by F . Of course, we assume that F is nonempty.

For each n ≥ 0, we denote by Tn the nth jump time point of the SMDP, and by
Xn the post jump state of the SMDP on [Tn, Tn+1). Then, �n+1 := Tn+1 − Tn plays
the role of sojourn time at state Xn . Given a semi-Markov kernel Q, an initial time-
state pair (t, x) ∈ R+ × E and a policy f ∈ F , by the Ionescu Tulcea theorem,
we can construct a probability space (�,F , P f

(t,x)), on which the stochastic process
{Tn, Xn, n ≥ 0} is defined, such that

P f
(t,x)(T0 = t, X0 = x) = 1, (2.3)

P f
(t,x)(�n+1 ≤ s, Xn+1 ∈ B | T0, X0, . . . , Tn, Xn) = Q(s, B | Xn, f (Tn, Xn)),

(2.4)

for each s ∈ R+, B ∈ B(E) and n ≥ 0.
Let T∞ := limk→∞ Tk be the explosive time of the SMDP. Note that T∞ may be

finite. We do not intend to consider the controlled process after the moment T∞. For
each t < T∞ and f ∈ F , let

Z(t) =
∑
n≥0

I{Tn≤t<Tn+1}Xn, W (t) =
∑
n≥0

I{Tn≤t<Tn+1} f (Tn, Xn)

denote the underlying continuous-time state and action processes, respectively, where
ID stands for the indicator function on the set D. In the sequel, we consider a T -
horizon SMDP (with a fixed T ∈ R+). To make the T -horizon SMDP sensible, we
need to avoid the possibility of an infinite number of jumps during the interval [0, T ].
Assumption 2.1 For all (t, x) ∈ [0, T ] × E and f ∈ F , P f

(t,x)({T∞ > T }) = 1.

Assumption 2.1 above is trivially fulfilled inDTMDPswith that T∞ = ∞.We suppose
that Assumption 2.1 holds throughout the paper. Now, for each f ∈ F , we define the
mean of the finite horizon total reward under f by

V ( f, t, x) := E f
(t,x)

[ ∫ T

t
r(Z(s),W (s))ds

]
, (t, x) ∈ [0, T ] × E, (2.5)

and the variance of the finite horizon total reward under f by

σ 2( f, t, x) := E f
(t,x)

[ ∫ T

t
r(Z(s),W (s))ds − V ( f, t, x)

]2
, (t, x) ∈ [0, T ] × E .

(2.6)
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Moreover, for a given function g on [0, T ] × E , let Fg denote the set of all policies
with a mean g, i.e., Fg := { f ∈ F |V ( f, t, x) = g(t, x), for all (t, x) ∈ [0, T ] × E}.
We always assume that Fg �= ∅ in the paper. Then, our mean-variance optimization
problem is as follows:

(MV ) : minimize σ 2( f ) over f ∈ Fg. (2.7)

That is, our aim is at finding a policy f ∗ ∈ Fg such that

σ 2( f ∗, t, x) = inf
f ∈Fg

σ 2( f, t, x) ∀(t, x) ∈ [0, T ] × E .

Such a policy f ∗, when it exists, is called mean-variance optimal.

Remark 2.2 (a) The criteria functions V ( f, t, x) and σ 2( f, t, x) can be interpreted as
the mean and variance when we start at some jump time t in state x , respectively.
In general, the criteria functions should have been of the from V ( f, 0, x) and
σ 2( f, 0, x). Therefore, our criteria functions here generalize the usual ones in the
existing studies.

(b) Note that, when taking g(t, x) = sup f ∈F V ( f, t, x), the problem (MV ) in (2.7)
becomes seeking an optimal policywithmaximalmean andminimal variance. This
type of mean-variance problems have been widely studied for limiting average
variance [7,8,10,11,16,20,32].

In next sections, we devote ourselves to exploring conditions for the existence
of mean-variance optimal policies, and developing methods for computing a mean-
variance optimal policy.

3 Technical Preliminaries

To investigate the problem (MV ) in (2.7), we need a framework. First, let w(·) be a
measurable function on E satisfying w ≥ 1. For every real-valued function u on E ,
we define its w-norm by

‖u‖w := sup
x∈E

|u(x)|/w(x).

The functionw is usually referred to as a weight function. LetBw(E) := {u : ‖u‖w <

∞} be the Banach space of w-bounded Borel-measurable functions on E . Similarly,
we define the Banach spaces Bw([0, T ] × E) and Bw([0, T ] × K ) likewise, where
w is viewed as weight functions defined on the spaces [0, T ] × E and [0, T ] × K ,
respectively, i.e.,w(t, x) := w(x) orw(t, x, a) := w(x) for all (t, x, a) ∈ [0, T ]×K .
Furthermore, let

B0
w([0, T ] × E) := {l ∈ Bw([0, T ] × E)|l(T, x) = 0 ∀x ∈ E},

B0
w([0, T ] × K ) := {l ∈ Bw([0, T ] × K )|l(T, x, a) = 0 ∀(x, a) ∈ K }.
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Then, for l ∈ B0
w([0, T ] × K ) and f ∈ F , define an operator H f

l onB0
w([0, T ] × E)

as follows:

H f
l u(t, x) := l(t, x, f ) +

∫

E

∫ T−t

0
u(t + s, y)Q(ds, dy | x, f (t, x)),

for u ∈ B0
w([0, T ] × E), (t, x) ∈ [0, T ] × E , where l(t, x, f ) := l(t, x, f (t, x)).

Our works rely on the theory of N -step contraction. To this end, we shall impose
some assumptions on the data of our model.

Assumption 3.1 There exist constants δ > 0 and ε > 0 such that

F(δ|x, a, y) ≤ 1 − ε ∀ (x, a) ∈ K , y ∈ E,

with F(·|x, a, y) as in (2.2).

Assumption 3.2 There exist a weight function w ≥ 1 on E , constants M > 0 and
b1 > 0 such that, for each (x, a) ∈ K ,

(a) |r(x, a)| ≤ Mw(x);

(b)
∫
E w(y)p(dy|x, a) ≤ w(x) + b1, with p(·|x, a) as in (2.2).

Remark 3.1 (a) Assumption 3.1 implies Assumption 2.1 in view of Proposition 2.1
in [13], due to which Assumption 2.1 will be omitted whenever Assumption 3.1
is satisfied. Moreover, note that the constant δ in Assumption 3.1 above may be
smaller than the time horizon T (which is arbitrarily fixed), and thus Assumption
3.1 can be widely verified; for example, it is obviously satisfied in the model of
DTMDPs.

(b) In fact, Assumption 3.1 has been frequently used in SMDPs so as to avoid the
possibility of infinitely many transitions within any (rather than a fixed) finite
time; see, for instance, [12] for a probability criterion, [19] for expected finite
horizon reward criteria, and [21] for discounted and average reward criteria.

The following lemma is fundamental to our main results.

Lemma 3.1 Suppose Assumption 3.1 and 3.2(b) hold. Let f ∈ F be an arbitrary
policy, l ∈ B0

w([0, T ] × K ) be a reward/cost function, and

Jl( f, t, x) := E f
(t,x)

[ ∞∑
k=0

l(Tk ∧ T, Xk, f )

]
, (t, x) ∈ [0, T ] × E .

Then, the following assertions are true.

(a) H f
l is an N-step contraction from B0

w([0, T ] × E) to itself for some N ≥ 1.

(b) Jl( f ) is the unique solution in B0
w([0, T ] × E) to the equation u = H f

l u.
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Proof (a) First, we verify that H f
l maps B0

w([0, T ] × E) to itself under Assumption
3.2(b). To see this, pick u ∈ B0

w([0, T ] × E) and observe that

|H f
l u(t, x)| ≤ ‖l‖ww(x) +

∫

E

∫ T−t

0
Q(ds, dy | x, f (t, x))‖u‖ww(y)

≤ ‖l‖ww(x) + ‖u‖w

∫

E
w(y)F(T − t | x, f (t, x), y)p(dy|x, f (t, x))

≤ ‖l‖ww(x) + ‖u‖w(w(x) + b1)

≤
[
‖l‖w + ‖u‖w(1 + b1)

]
w(x).

Moreover, since H f
l u(T, x) = 0 for each x ∈ E , it follows that H f

l u ∈ B0
w([0, T ] ×

E).
We now show that H f

l is an N -step contraction from B0
w([0, T ] × E) to itself for

some N ≥ 1. To do so, define

Fδ(t) =
⎧⎨
⎩
0, t < 0,
1 − ε, 0 ≤ t < δ,

1, t ≥ δ.

Then, for any u, v ∈ B0
w([0, T ] × E), under Assumption 3.2(b), we have

|H f
l u(t, x) − H f

l v(t, x)|

≤ ‖u − v‖w

∫

E

∫ T−t

0
w(y)Q(ds, dy | x, f (t, x))

≤ ‖u − v‖w

∫

E
w(y)F(T − t | x, f (t, x), y)p(dy|x, f (t, x))

≤ Fδ(T − t)‖u − v‖w(w(x) + b1), (t, x) ∈ [0, T ] × E .

Furthermore, for each (t, x) ∈ [0, T ] × E , we get

|(H f
l )2u(t, x) − (H f

l )2v(t, x)|

≤ ‖u − v‖w

∫

E

∫ T−t

0
Fδ(T − t − s)(w(x) + b1)Q(ds, dy | x, f (t, x))

≤ ‖u − v‖w

∫

E

∫ T−t

0
Fδ(T − t − s)(w(x) + b1)

F(dy|x, f (t, x), y)p(dy | x, f (t, x)).
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We next verify

∫ T−t

0
Fδ(T − t − s)F(dy|x, f (t, x), y) ≤ F (2)

δ (T − t)

:=
∫ T−t

0
Fδ(T − t − s)dFδ(s),∀ y ∈ E .

Indeed, if (T − t) < δ, it is clear that

∫ T−t

0
Fδ(T − t − s)F(dy|x, f (t, x), y) ≤ (1 − ε)2 = F (2)

δ (T − t),∀ y ∈ E;

if (T − t) ≥ δ, a straightforward calculation shows that

∫ T−t

0
Fδ(T − t − s)F(dy|x, f (t, x), y) ≤ (1 − ε) + εFδ(T − t − δ)

= F (2)
δ (T − t),∀ y ∈ E .

Hence, we obtain

∣∣∣(H f
l )2u(t, x) − (H f

l )2v(t, x)
∣∣∣ ≤ F (2)

δ (T − t)‖u − v‖w(w(x) + 2b1),

(t, x) ∈ [0, T ] × E .

Similarly, an induction argument yields that, for any n ≥ 2,

∣∣∣(H f
l )nu(t, x) − (H f

l )nv(t, x)
∣∣∣

≤ F (n)
δ (T − t)‖u − v‖w(w(x) + nb1), (t, x) ∈ [0, T ] × E,

where F (n)
δ is the n-fold convolution of Fδ , defined by

F (n)
δ (t) =

∫ t

0
F (n−1)

δ (t − s)dFδ(s), t ∈ R+.

On the other hand, it follows from Assumption 3.1 and the argument of the proof of
Theorem 1 in Mamer [19] that for any n > k and s > 0,

F (n)
δ (s) ≤ (1 − εk)n/k�,

where k is a nonnegative integer satisfying k > s/δ, and n/k� denotes the largest
integer not larger than n/k. Hence, noting that F (n)

δ (T − t) ≤ F (n)
δ (T ) for every

t ∈ [0, T ], we obtain

‖(H f
l )nu − (H f

l )nv‖w ≤ (1 − εk
∗
)n/k∗�(1 + nb1)‖u − v‖w,
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for a nonnegative integer k∗ satisfying k∗ > T/δ, and every n > k∗. Choosing N
large enough so that (1 − εk

∗
)N/k∗�(1 + Nb1) < 1 establishes that H f

l is an N -step
contraction with respect to the metric generated by ‖ · ‖w.

(b) First, given the semi-Markov kernel Q, an initial time-state pair (t, x) ∈ [0, T ]×
E and a policy f ∈ F , we observe that {Tn ∧ T, Xn, n ≥ 0} is in fact a Markov chain
defined on the probability space (�,F , P f

(t,x)), which has a two-dimension state space
[0, T ] × E and a transition law

Q(B × C | t, x, f ) :=
∫ T−t

0
IB(t + s)Q(ds,C |x, f (t, x)), (3.1)

for B × C ∈ B([0, T ] × E), (t, x) ∈ [0, T ] × E . Then, under Assumptions 3.1 and
3.2(b), by induction we can show that

∫

[0,T ]×E
w(y)Q(n)(ds, dy | t, x, f (t, x))

=
∫

E

∫ T−t

0
w(y)Q(n)(ds, dy | x, f (t, x))

≤ F (n)
δ (T − t)(w(x) + nb1)

≤ (1 − εk
∗
)n/k∗�(1 + nb1)w(x),

for every n > k∗, where k∗ is as in the proof of part (a). Applying this result yields

∣∣∣Jl( f, t, x)
∣∣∣ =

∣∣∣∣∣
∞∑
n=0

∫

[0,T ]×E
l(s, y, f (s, y))P f

(t,x)((Tn ∧ T ) ∈ ds, Xn ∈ dy)

∣∣∣∣∣

≤
∞∑
n=0

∫

[0,T ]×E
‖l‖ww(y)Q(n)(ds, dy | t, x, f )

≤ ‖l‖w

∞∑
n=0

F (n)
δ (T − t)(1 + nb1)w(x)

≤ ‖l‖ww(x)
∞∑
n=0

(1 − εk
∗
)n/k∗�(1 + nb1).

Since 0 < (1 − εk
∗
) < 1, by the properties of the infinite series and the D’alembert

test, it is clear that the series
∑∞

n=0(1−εk
∗
)n/k∗�(1+nb1) converge to some constant

L . Thus, we obtain that

|Jl( f, t, x)| ≤ L‖l‖ww(x) ∀(t, x) ∈ [0, T ] × E,

which together with Jl( f, T, x) = 0 immediately leads to that Jl( f ) ∈ B0
w([0, T ] ×

E).
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Furthermore, it follows from the properties (2.3– 2.4) and the fact l(T, x, a) = 0
that

Jl ( f, t, x) = E f
(t,x)[l(T0 ∧ T, X0, f )] + E f

(t,x)

⎡
⎣E f

(t,x)

⎡
⎣

∞∑
k=1

l(Tn ∧ T, Xk , f )|T1, X1

⎤
⎦
⎤
⎦

= l(t, x, f ) +
∫

[0,T ]×E
Q(d(t + s), dy | t, x, f )

× E f
(t,x)

⎡
⎣

∞∑
k=1

l(Tn ∧ T, Xk , f )|T1 = t + s, X1 = y

⎤
⎦

= l(t, x, f ) +
∫

E

∫ T−t

0
Q(ds, dy | x, f (t, x))E f

(t+s,y)

⎡
⎣

∞∑
k=0

l(Tn ∧ T, Xk , f )

⎤
⎦

= l(t, x, f ) +
∫

E

∫ T−t

0
Q(ds, dy | x, f (t, x))Jl ( f, t + s, y),

which indicates that Jl( f ) = H f
l Jl( f ). This fact together with part (a) achieves the

proof. ��
Now, as the usual treatments for the mean-variance problems [7–11,16,20], we

shall characterize policies in Fg and transform the finite horizon reward variance to
a mean. These will be done in the rest of this section. First, we demonstrate how to
distinguish a policy in Fg .

Theorem 3.1 Suppose Assumptions 3.1 and 3.2 hold.

(a) For each (t, x) ∈ [0, T ] × E and f ∈ F, we have

V ( f, t, x) = Jr̃ ( f, t, x) := E f
(t,x)

[ ∞∑
m=0

r̃(Tm ∧ T, Xm, f )

]
, (3.2)

with the function r̃(t, x, a) defined by

r̃(t, x, a) := r(x, a)

∫ T−t

0

(
1 − Q(s, E |x, a)

)
ds ∀(t, x, a) ∈ [0, T ] × K .

Furthermore, V ( f ) is the unique solution in B0
w([0, T ] × E) to the equation

V ( f ) = H f
r̃ V ( f ).

(b) Apolicy f ∈ F is in Fg if and only if f (t, x) ∈ Ag(t, x) for all (t, x) ∈ [0, T ]×E,
where

Ag(t, x) :=
{
a ∈ A(x)|g(t, x) = r̃(t, x, a) +

∫

E

∫ T−t

0
Q(ds, dy | x, a)g(t + s, y)

}
.

(3.3)
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Proof (a) We first prove V ( f ) ∈ B0
w([0, T ] × E). It is obvious that V ( f, T, x) = 0.

Moreover, we have

|V ( f, t, x)|

≤ E f
(t,x)

[∫ T

t

∣∣∣r(Z(s),W (s))
∣∣∣ds
]

= E f
(t,x)

[ ∞∑
m=0

∫ T∧Tm+1

T∧Tm

∣∣∣r(Z(s),W (s))
∣∣∣ds
]

=
∞∑

m=0

E f
(t,x)

[
|r(Xm , f (Tm ∧ T, Xm))|(T − Tm)+ ∧ (Tm+1 − Tm)

]

=
∞∑

m=0

E f
(t,x)

[
|r(Xm , f (Tm ∧ T, Xm))|E f

(t,x)

[
(T − Tm)+ ∧ (Tm+1 − Tm)|Tm , Xm

]]

=
∞∑

m=0

E f
(t,x)

[
|r(Xm , f (Tm ∧ T, Xm))|

∫ (T−Tm )+

0

(
1 − Q(s, E |Xm , f (Tm ∧ T, Xm)

)
ds
]

=
∞∑

m=0

E f
(t,x)

[
|r(Xm , f (Tm ∧ T, Xm))|

∫ T−Tm∧T

0

(
1 − Q(s, E |Xm , f (Tm ∧ T, Xm)

)
ds
]

=
∞∑

m=0

E f
(t,x)

[
|r̃(Tm ∧ T, Xm , f (Tm ∧ T, Xm))|

]
= J|r̃ |( f, t, x), (3.4)

where the first equality follows from the property (2.3) andAssumption 2.1, the second
equality is due to the monotone convergence theorem, and the fourth equality is by the
property (2.4). Now, taking l(t, x, a) = |r̃(t, x, a)|, noting that |r̃ | ∈ B0

w([0, T ]× K )

under Assumption 3.2(a), and using a manner as in the proof of Lemma 3.1(b) above,
we can show that J|r̃ |( f ) is in B0

w([0, T ] × E) and so is V ( f ). Moreover, since the
right hand side of (3.4) is finite, using the argument similar to (3.4) above and the
dominated convergence theorem gives that

V ( f, t, x) = E f
(t,x)

[ ∞∑
m=0

r̃(Tm ∧ T, Xm, f )

]
= Jr̃ ( f, t, x).

The rest statement of part (a) immediately follows from Lemma 3.1(b).
(b) It is a straightforward result of part (a). ��
Next, we give an example to show how to determine a policy in Fg with the help

of Theorem 3.1(b), in which Fg may have more than one element.

Example 3.1 Consider a T -horizon SMDP with some T > 0. The state space E =
{1, 2}, the action set A(1) = {1, 2, 3}, A(2) = {4, 5}, the sojourn time distribution

F(s|x, a, y) = 1 − e−m(x)s , and the transition law p(y|x, a) = a

m(x)
+ δ{x}(y) for

x, y ∈ E , a ∈ A(x) and some function m(x) satisfying m(1) ≥ 3,m(2) ≥ 5. We
consider a bit more general reward rates - nonhomogeneous reward rates r(t, x, a),
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for which Theorem 3.1 still holds with appropriate adjustments. More specifically, for
every t ∈ [0, T ], the reward rates are given by r(t, 1, 1) = 2,

r(t, 1, 2) =

⎧⎪⎨
⎪⎩
1 + e−6(T−t), 0 ≤ t ≤ T

2
,

3,
T

2
< t ≤ T,

r(t, 1, 3) =

⎧⎪⎨
⎪⎩
10, 0 ≤ t ≤ T

2
,

2e−6(T−t),
T

2
< t ≤ T,

and r(t, 2, 4) = 7 + e−6(T−t), r(t, 2, 5) = 8. Then, for (t, x) ∈ [0, T ] × E , we have

Ag(t, x) =
{
a ∈ A(x)|g(t, x)

=
∫ T

t
e−m(x)(u−t) [r(u, x, a) + ag(u, y) − ag(u, x) + m(x)g(u, x)] du

}
,

which is equivalent to

Ag(t, x) =
{
a ∈ A(x)|gt (t, x) + r(t, x, a) + ag(t, y) − ag(t, x) = 0

}
,

where gt (t, x) denotes the derivative of g(t, x) with respect to time t .
Now, take the mean reward function g(t, x) as follows:

g(t, 1) = 3(T − t) − 1

6

(
1 − e−6(T−t)

)
,

g(t, 2) = 3(T − t) + 5

6

(
1 − e−6(T−t)

)
, ∀ t ∈ [0, T ].

Then, one can verify f 1(t, x) and f 2(t, x) are both in Ag(t, x) for every (t, x) ∈
[0, T ] × E , where the two policies f 1, f 2 are defined by

f 1(t, 1) = 1, f 1(t, 2) = 5, ∀ t ∈ [0, T ];

and

f 2(t, 1) = 2, t ∈
[
0,

T

2

]
; f 2(t, 1) = 3, t ∈

(
T

2
, T

]
; f 2(t, 2) = 4, t ∈ [0, T ],

respectively. Hence, by Theorem 3.1(b), we have f 1, f 2 ∈ Fg .

To transform the finite horizon reward variance to a mean, we require an additional
condition below.

Assumption 3.3 There exists a constant b2 > 0 such that

∫

E
w2(y)p(dy|x, a) ≤ w2(x) + b2 ∀ (x, a) ∈ K , (3.5)

where the weight function w(·) is as in Assumption 3.2.
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Remark 3.2 By taking the square root of both sides of (3.5) and using Jensen’s inequal-
ity, we have

∫

E
w(y)p(dy|x, a) ≤ w(x) +√b2 ∀ (x, a) ∈ K .

Thus, Assumption 3.3 implies Assumption 3.2(b).

It should be remarked here that, under Assumptions 3.1 and 3.3, a similar argument
to the proof of Lemma 3.1(a) indicates that the operator H f

l is an N -step contraction
fromB0

w2([0, T ]× E) toB0
w2([0, T ]× E) for some N ≥ 1 and l ∈ B0

w2([0, T ]×K ).
To conduct the transformation of the variance to a mean, we will also use the following
notation. Let

cg(t, x, a) := 2r2(x, a)

∫ T−t

0
s(1 − Q(s, E | x, a))ds

+ 2r(x, a)

∫

E

∫ T−t

0
sg(t + s, y)Q(ds, dy | x, a) (3.6)

for all (t, x, a) ∈ Kg := {(t, x, a) | t ∈ [0, T ], x ∈ E, a ∈ Ag(t, x)}, and let S( f )
denote the second order moment of the finite horizon total reward, that is,

S( f, t, x) := E f
(t,x)

[ ∫ T

t
r(Z(s),W (s))ds

]2
, (t, x) ∈ [0, T ] × E .

Obviously, S( f, t, x) = σ 2( f, t, x)+g2(t, x) for each f ∈ Fg and (t, x) ∈ [0, T ]×E .
Therefore, the problem (MV ) in (2.7) is equivalent to minimizing S( f ) over Fg . This
fact implies that we can convert the second order moment S( f ) to a mean instead
of the variance σ 2( f ) to a mean, which, however, will bring some convenience and
simplicity for our presentation.

Theorem 3.2 Under Assumptions 3.1–3.3, the following assertions hold for each
f ∈ Fg.

(a) S( f ) is the unique solution in B0
w2([0, T ] × E) to the equation u = H f

cgu.

(b) S( f, t, x) = Jcg ( f, t, x) := E f
(t,x)

[ ∞∑
k=0

cg(Tk ∧ T, Xk, f )
]
, (t, x) ∈ [0, T ]× E.

Proof (a) For each f ∈ F and x ∈ E , it is obvious that S( f, T, x) = 0. To complete
the proof of S( f ) ∈ B0

w2([0, T ] × E), we let

R(t, x, a) := r2(x, a)

∫ T−t

0
2s(1 − Q(s, E | x, a))ds, (t, x, a) ∈ [0, T ] × K .

Indeed, using the properties of the product of two infinite series, Cauchy-Schwartz
inequality, the properties (2.3–2.4), and Assumptions 3.1–3.3, we have
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S( f, t, x)

= E f
(t,x)

[∫ T

t
r(Z(s),W (s))ds

]2

= E f
(t,x)

[ ∞∑
n=0

∫ T∧Tn+1

T∧Tn
r(Z(s),W (s))ds

]2

= E f
(t,x)

[ ∞∑
n=0

r(Xn , f (Tn ∧ T, Xn))[(T − Tn)+ ∧ (Tn+1 − Tn)]
]2

≤ E f
(t,x)

[ ∞∑
n=0

∣∣∣r(Xn , f (Tn ∧ T, Xn))

∣∣∣[(T − Tn)+ ∧ �n+1]
]2

= E f
(t,x)

⎡
⎣

∞∑
n=0

∑
k+l=n

∣∣∣r(Xk , f (Tk ∧ T, Xk ))
∣∣∣
[
(T − Tk )

+ ∧ �k+1

]

×
∣∣∣r(Xl , f (Tl ∧ T, Xl ))

∣∣∣
[
(T − Tl )

+ ∧ �l+1

]⎤⎦

=
∞∑
n=0

∑
k+l=n

E f
(t,x)

[∣∣∣r(Xk , f (Tk ∧ T, Xk ))
∣∣∣
[
(T − Tk )

+ ∧ �k+1

]

×
∣∣∣r(Xl , f (Tl ∧ T, Xl ))

∣∣∣
[
(T − Tl )

+ ∧ �l+1

]]

≤
∞∑
n=0

∑
k+l=n

√
E f

(t,x)

[
|r(Xk , f (Tk ∧ T, Xk ))|[(T − Tk )+ ∧ �k+1]

]2

×
√
E f

(t,x)

[
|r(Xl , f (Tl ∧ T, Xl ))|[(T − Tl )+ ∧ �l+1]

]2

≤
∞∑
n=0

∑
k+l=n

√
E f

(t,x)

[
r2(Xk , f (Tk ∧ T, Xk ))

∫ (T−Tk )+

0
2s(1 − Q(s, E | Xk , f (Tk ∧ T, Xk )))ds

]

×
√
E f

(t,x)

[
r2(Xl , f (Tl ∧ T, Xl ))

∫ (T−Tl )+

0
2s(1 − Q(s, E | Xl , f (Tl ∧ T, Xl )))ds

]

≤
∞∑
n=0

∑
k+l=n

√
E f

(t,x)

[
r2(Xk , f (Tk ∧ T, Xk ))

∫ T−Tk∧T

0
2s(1 − Q(s, E | Xk , f (Tk ∧ T, Xk )))ds

]

×
√
E f

(t,x)

[
r2(Xl , f (Tl ∧ T, Xl ))

∫ T−Tl∧T

0
2s(1 − Q(s, E | Xl , f (Tl ∧ T, Xl )))ds

]

=
∞∑
n=0

∑
k+l=n

√
E f

(t,x)

[
R(Tk ∧ T, Xk , f (Tk ∧ T, Xk ))

]√
E f

(t,x)

[
R(Tl ∧ T, Xl , f (Tl ∧ T, Xl ))

]

=
∞∑
n=0

∑
k+l=n

√∫

[0,T ]×E
R(s, y, f )Q(k)(ds, dy | t, x, f )

×
√∫

[0,T ]×E
R(s, y, f )Q(l)(ds, dy | t, x, f )

≤ M2T 2
∞∑
n=0

∑
k+l=n

√
F(k)
δ (t)(w2(x) + kb2)

√
F(l)
δ (t)(w2(x) + lb2)
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≤ M2T 2
∞∑
n=0

(w2(x) + nb2)
∑

k+l=n

√
F(k)
δ (t)

√
F(l)
δ (t)

≤ M2T 2w2(x)
∞∑
n=0

(1 + nb2)
∑

k+l=n

√
(1 − εk

∗
)k/k∗�+l/k∗�

≤ M2T 2w2(x)
∞∑
n=0

(1 + nb2)
∑

k+l=n

√
(1 − εk

∗
)n/k∗�−2

≤ M2T 2w2(x)
√

(1 − εk
∗
)−2
[
1 +

∞∑
n=1

n(1 + nb2)
√

(1 − εk
∗
)n/k∗�

]

≤ M2T 2(1 − εk
∗
)−1
[
1 +

∞∑
n=1

n(1 + nb2)(1 − εk
∗
)

n/k∗�
2
]
w2(x),

where Q(·, · | t, x, f ) and k∗ are as in the proof of Lemma 3.1(b). Since 0 < (1 −
εk

∗
) < 1, by the properties of the infinite series and the D’alembert test, it is clear

that the series
∑∞

n=1 n(1 + nb2)(1 − εk
∗
)

n/k∗�
2 converge to some constant L . Thus,

we obtain

S( f, t, x) ≤ M2T 2(1 − εk
∗
)−1(1 + L)w2(x) ∀(t, x) ∈ [0, T ] × E,

which implies that S( f ) ∈ B0
w2([0, T ] × E) for each f ∈ F .

We now show that S( f ) satisfies S( f ) = H f
cg S( f ) for each f ∈ Fg . To this end,

fix any (t, x) ∈ [0, T ] × E and f ∈ Fg . Then, we see that

S( f, t, x) = E f
(t,x)

[∫ T

t
r(Z(s),W (s))ds

]2

= E f
(t,x)

[∫ T∧T1

t
r(Z(s),W (s))ds +

∫ T

T∧T1
r(Z(s),W (s))ds

]2

= E f
(t,x)

[∫ T∧T1

t
r(Z(s),W (s))ds

]2
+ E f

(t,x)

[∫ T

T∧T1
r(Z(s),W (s))ds

]2

+2E f
(t,x)

[(∫ T∧T1

t
r(Z(s),W (s))ds

)(∫ T

T∧T1
r(Z(s),W (s))ds

)]
.

For simplicity, let

L1 = E f
(t,x)

[∫ T∧T1

t
r(Z(s),W (s))ds

]2
,

L2 = 2E f
(t,x)

[(∫ T∧T1

t
r(Z(s),W (s))ds

)(∫ T

T∧T1
r(Z(s),W (s))ds

)]
,

L3 = E f
(t,x)

[∫ T

T∧T1
r(Z(s),W (s))ds

]2
.
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We next compute L1, L2 and L3, respectively. First, noting that Z(t) = X0 = x for
all t < T1, we obtain

L1 = r2(x, f (t, x))E f
(t,x)

[
T ∧ T1 − t

]2

= r2(x, f (t, x))
∫ ∞

0
2sP f

(t,x)

(
T ∧ T1 − t > s

)
ds

= 2r2(x, f (t, x))
∫ ∞

0
sP f

(t,x)

(
T > t + s, T1 > t + s

)
ds

= 2r2(x, f (t, x))
∫ T−t

0
s(1 − Q(s, E | x, f (t, x)))ds.

Using the properties (2.3–2.4) as well as the fact f ∈ Fg yields

L2 = 2r(x, f (t, x))E f
(t,x)

[
(T ∧ T1 − t)

(∫ T

T∧T1
r(Z(s),W (s))ds

)]

=2r(x, f (t, x))E f
(t,x)

[
E f

(t,x)

[
(T ∧ T1−t)

(∫ T

T∧T1
r(Z(s),W (s))ds

)
|T1, X1

]]

=2r(x, f (t, x))E f
(t,x)

[
(T ∧ T1−t)E f

(t,x)

[(∫ T

T∧T1
r(Z(s),W (s))ds

)
|T1, X1

]]

= 2r(x, f (t, x))
∫

E

∫ T−t

0
Q(du, dy | x, f (t, x))(T ∧ (t + u) − t)

×E f
(t,x)

[(∫ T

t+u
r(Z(s),W (s))ds

)
|T1 = t + u, X1 = y

]

= 2r(x, f (t, x))
∫

E

∫ T−t

0
uE f

(t+u,y)

[(∫ T

t+u
r(Z(s),W (s))ds

)]

Q(du, dy | x, f (t, x))

= 2r(x, f (t, x))
∫

E

∫ T−t

0
uV ( f, t + u, y)Q(du, dy | x, f (t, x))

= 2r(x, f (t, x))
∫

E

∫ T−t

0
sg(t + s, y)Q(ds, dy | x, f (t, x)).

Moreover, it follows from the properties (2.3–2.4) again that

L3 = E f
(t,x)

[∫ T

T∧T1
r(Z(s),W (s))ds

]2

= E f
(t,x)

[
E f

(t,x)

[(∫ T

T∧T1
r(Z(s),W (s))ds

)2
|T1, X1

]]

=
∫

E

∫ T−t

0
Q(du, dy | x, f (t, x))E f

(t,x)

[(∫ T

T∧T1
r(Z(s),W (s))ds

)2
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|T1 = t + u, X1 = y]

=
∫

E

∫ T−t

0
Q(du, dy | x, f (t, x))E f

(t+u,y)

[(∫ T

t+u
r(Z(s),W (s))ds

)2]

=
∫

E

∫ T−t

0
Q(ds, dy | x, f (t, x))S( f, t + s, y).

Thus, we have

S( f, t, x) = cg(t, x, f )

+
∫

E

∫ T−t

0
S( f, t + s, y)Q(ds, dy | x, f (t, x)), (t, x) ∈ [0, T ] × E,

i.e., S( f ) = H f
cg S( f ) for f ∈ Fg .

By Theorem 3.1(a), we see that for all f ∈ Fg , g = V ( f ) ∈ B0
w([0, T ]×E), which

together with Assumption 3.2 implies that cg(·, ·, f ) ∈ B0
w2([0, T ] × E). Therefore,

under Assumptions 3.1 and 3.3, applying Lemma 3.1(a) with replacing w2(·) by w(·)
reveals that H f

cg is an N -step contraction from B0
w2([0, T ] × E) to itself for some

N ≥ 1. Hence, by the Banach’s Fixed Point Theorem, H f
cg has a unique fixed point in

B0
w2([0, T ] × E), and so the proof is complete.

(b) Since cg(·, ·, f ) is in B0
w2([0, T ] × E) for all f ∈ Fg , using the analog of the

proof of Lemma 3.1 yields that Jcg ( f, t, x) := E f
(t,x)

[∑∞
k=0 cg(Tk ∧ T, Xk, f )

]
is

in B0
w2([0, T ] × E) and also satisfies the equation u = H f

cgu. Hence, by part (a),
Jcg ( f, t, x) = S( f, t, x). ��

Remark 3.3 (a) Since we shall minimize S( f ), it is appropriate to interpret cg in
Theorem 3.2 (b) as a cost function rather than a reward function.

(b) Note that the constraint of “ f ∈ Fg” (rather than “ f ∈ F”) is essential in
converting the variance to a mean here. The success of such a conversion indi-
cates the potential of developing a LP to solve our mean-variance problem;
see Sect. 5 for details. Moreover, it is natural to consider the constraint of
“ f ∈ F≥g := { f ∈ F |V ( f, t, x) ≥ g(t, x), for all (t, x) ∈ [0, T ] × E}”, for
which case the conversion technique in the proof of Theorem 3.2 possibly fails
because it is unknown how to obtain the one-step cost function “cg”.

(c) It seems difficult to express the variance (or the second order moment) of finite
horizon total rewards as a convex function of occupancy measures. Hence, the
nonlinear programming approach [5,6,25,28] cannot work in our setup. However,
if we consider the “stage-wise variance” as in Filar et al. [6], i.e.,

σ̂ 2( f, t, x) :=
∫ T

t
E f

(t,x)

[
r(Z(s),W (s)) − E f

(t,x)

[
r(Z(s),W (s))

]]2
ds

∀ (t, x) ∈ [0, T ] × E,
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the nonlinear programming approach may be performable, but it is still difficult
to deal with since the time horizon introduces a special dimension with additional
complexity, which is very different from the infinite horizon cases [6].

4 Existence and Computation of Mean-Variance Optimal Policies

As mentioned above, the problem (MV ) in (2.7) is equivalent to minimizing S( f )
over Fg . Thus, in view of Theorem 3.2(b), we can solve the problem (MV ) via the
following DTMDP

{
[0, T ] × E, {Ag(t, x), (t, x) ∈ [0, T ] × E},Q(·, · | t, x, a), cg(t, x, a)

}
, (4.1)

with Ag(t, x) as in (3.3), Q as in (3.1), and cg as in (3.6). The set of feasible state-
action pairs now is Kg = {(t, x, a) | t ∈ [0, T ], x ∈ E, a ∈ Ag(t, x)}. In general,
we shall assume Kg contains the graph of a measurable function. However, this is
implied by the fact that Fg �= ∅. In the following, we employ the current works
on infinite horizon DTMDPs to solve such a DTMDP. For this purpose, we define
dynamic programming operators H f and H∗ on B0

w2([0, T ] × E) as follows: for

f ∈ Fg , u ∈ B0
w2([0, T ] × E), (t, x) ∈ [0, T ] × E ,

H f u(t, x) := cg(t, x, f (t, x)) +
∫

E

∫ T−t

0
u(t + s, y)Q(ds, dy | x, f (t, x)),

H∗u(t, x) := inf
a∈Ag(t,x)

[
cg(t, x, a) +

∫

E

∫ T−t

0
u(t + s, y)Q(ds, dy | x, a)

]
.

Moreover, for all (t, x) ∈ [0, T ] × E , let

σ 2
g (t, x) := inf

f ∈Fg
σ 2( f, t, x), Sg(t, x) := inf

f ∈Fg
S( f, t, x)

be the value functions (depending on g). Obviously, Sg(t, x) = σ 2
g (t, x) + g2(t, x).

In the meantime, to ensure the existence of a mean-variance optimal policy, we need
somemore assumptions, which are similar to Assumption 8.3.1 and Assumption 8.3.3
in [10] for infinite horizon discounted DTMDPs.

Assumption 4.1 For each (t, x) ∈ [0, T ] × E ,

(a) A(x) is compact;
(b) The reward rate r(x, a) is continuous in a ∈ A(x);
(c) The function u′(t, x, a) := ∫E

∫ T−t
0 Q(ds, dy | x, a)u(t + s, y) is continuous in

a ∈ A(x) for every function u inB0([0, T ]× E), whereB0([0, T ]× E) denotes
the Banach space of real-valued bounded measurable functions u on [0, T ]× E ,
with u(T, x) = 0.

(d) The function w′(t, x, a) := ∫E w2(y)Q(T − t, dy | x, a) is continuous in a ∈
A(x), with w as in Assumption 3.2.
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Remark 4.1 Assumption 4.1 is a set of compact-continuity conditions important for
the existence of mean-variance optimal policies, and in particular, it is satisfied when
A(x) is finite for each x ∈ E .

Lemma 4.1 UnderAssumption4.1, for each (t, x) ∈ [0, T ]×E,wehave the following
statements.

(a) u′(t, x, a) := ∫
E

∫ T−t
0 Q(ds, dy | x, a)u(t + s, y) is continuous in a ∈ A(x)

for every function u in B0
w2([0, T ] × E).

(b) Ag(t, x) is compact.
(c) The cost function cg(t, x, a) is continuous in a ∈ Ag(t, x).

Proof (a) Using a similar argument to the proof of Lemma 8.3.7 in [10], part (a)
follows from Assumption 4.1(c–d).

(b) Fix (t, x) ∈ [0, T ]×E . To show Ag(t, x) is compact, it suffices to prove Ag(t, x) is
closed because Ag(t, x) ⊂ A(x) and A(x) is compact. Indeed, let {an} ⊂ Ag(t, x)
such that an → a ∈ A(x). Then, for each n, we have

g(t, x) = r(x, an)
∫ T−t

0

(
1 − Q(s, E |x, an)

)
ds

+
∫

E

∫ T−t

0
Q(ds, dy | x, an)g(t + s, y).

Note that, by thedominated convergence theoremand the continuity ofQ(s, E |x, ·)
(implied by Assumption 4.1(c)),

∫ T−t
0

(
1 − Q(s, E |x, a)

)
ds is continuous a ∈

A(x). Moreover, since g ∈ B0
w([0, T ] × E) ⊂ B0

w2([0, T ] × E), by part (a),∫
E

∫ T−t
0 Q(ds, dy | x, a)g(t + s, y) is continuous in a ∈ A(x). Thus, let n → ∞

in the above equality, under Assumption 4.1, we obtain

g(t, x) = r(x, a)

∫ T−t

0

(
1 − Q(s, E |x, a)

)
ds

+
∫

E

∫ T−t

0
Q(ds, dy | x, a)g(t + s, y),

which shows that a ∈ Ag(t, x).
(c) Recall that

cg(t, x, a) = 2r2(x, a)

∫ T−t

0
s(1 − Q(s, E | x, a))ds

+ 2r(x, a)

∫

E

∫ T−t

0
sg(t + s, y)Q(ds, dy | x, a), (t, x, a) ∈ Kg.

First, by the dominated convergence theorem and the continuity of Q(s, E |x, ·),∫ T−t
0 s

(
1 − Q(s, E |x, a)

)
ds is continuous a ∈ A(x). Second, noting that
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v(t, x) = tg(t, x) ∈ B0
w([0, T ] × E) ⊂ B0

w2([0, T ] × E), by part (a),∫
E

∫ T−t
0 sg(t + s, y)Q(ds, dy | x, a) is continuous in a ∈ A(x). Thus, using

these facts together with Assumption 4.1(b), we conclude that cg(t, x, a) is con-
tinuous in a ∈ Ag(t, x).

��
Remark 4.2 (a) Lemma 4.1 in fact provides a set of compact-continuity results on the

new data of the converted DTMDP model (4.1), while Assumption 4.1 is a set of
compact-continuity hypotheses on the primitive data of the original SMDP model
(2.1), which are more easily verified in practice.

(b) From the proof of Lemma 4.1(b), we see that, to ensure Ag(t, x) to be compact-
valued, the reward rate r(x, ·) should be continuous rather than be lower semi-
continuous, and the continuity of u′(t, x, ·) andw′(t, x, ·) in Assumption 4.1(c–d)
on A(x) cannot be weaken to that on Ag(t, x).

We now state our main results.

Theorem 4.1 Under Assumptions 3.1–4.1, the following assertions hold.

(a) (σ 2
g + g2) is the unique solution inB0

w2([0, T ] × E) to the optimality equation:

(σ 2
g + g2)(t, x) = H∗(σ 2

g + g2)(t, x), (t, x) ∈ [0, T ] × E . (4.2)

(b) A policy f ∈ Fg is mean-variance optimal if and only if it attains the minimum
of the right-side of (4.2), i.e., (σ 2

g + g2) = H f (σ 2
g + g2).

(c) A mean-variance optimal policy f ∗ ∈ Fg exists.
(d) The value function σ 2

g can be obtained by the value iteration algorithm:

σ 2
g = lim

n→∞ Sn − g2,with Sn+1 := H∗Sn, S0 := 0.

(e) A mean-variance optimal policy f ∗ ∈ Fg can be calculated by the
Howard’s policy improvement algorithm below:

Howard’s policy improvement algorithm

1. For a given g, compute Ag(t, x), and then get Fg by Theorem 3.1(b).
2. Choose f0 ∈ Fg arbitrarily and set k = 0.
3. Compute S( fk) = σ 2( fk)+ g2 as the unique solution to the equation u = H fk u

in B0
w2([0, T ] × E).

4. Obtain fk+1 as a minimizer of S( fk) = H∗S( fk) such that H fk+1
cg S( fk) =

H∗S( fk) (where we set fk+1(t, x) = fk(t, x) for some (t, x) if possible).
5. If fk+1 = fk , then stop since fk+1 is mean-variance optimal by Theorem 4.1(b).

Else set k = k + 1 and go to step 3.

Proof (a) Under Assumptions 3.1–4.1, using Lemma 4.1, the measurable selection
theorem, and a similar argument to the proof of Lemma 3.1(a) yield thatH∗ is an
N -step contraction from B0

w2([0, T ] × E) to itself for some N ≥ 1. Hence, by
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Banach’s Fixed Point Theorem,H∗ has a unique fixed point u∗ inB0
w2([0, T ]×E),

i.e., u∗ = H∗
cgu

∗. To prove part (a) we need to show that: (a1) Sg ∈ B0
w2([0, T ]×

E), and (a2) Sg = u∗. However, (a1) is an immediate result of Theorem 3.2(a).
Thus, it remains to prove (a2), which can be verified in a similar way as in the
proof of [10, Theorem 8.3.6].

(b) Observe that H f = H f
cg , and thus, by Theorem 3.2(a), S( f ) or (σ 2( f ) + g2) is

the unique solution in B0
w2([0, T ] × E) to the equation u = H f u for f ∈ Fg . If

a policy f ∈ Fg satisfies (σ 2
g + g2) = H f (σ 2

g + g2), we then have σ 2( f ) = σ 2
g ,

which shows that f ∈ Fg is mean-variance optimal. The converse is obvious.
(c) It follows from Sg = H∗Sg , Lemma 4.1 and the measurable selection theorem that

there exists an f ∗ ∈ Fg such that Sg = H f ∗
Sg . This fact together with part (b)

implies that S( f ∗, t, x) = Sg(t, x). Obviously, such an f ∗ ∈ Fg is mean-variance
optimal.

(d) By Banach’s Fixed Point Theorem, there exists a function u ∈ B0
w2([0, T ] × E)

withu = H∗u andu = limn→∞(H∗)n0.However, by part (a),weobtainσ 2
g +g2 =

limn→∞(H∗)n0, which proposes the value iteration algorithm.
(e) It is from Theorem 7.5.1 in [2].

��

Remark 4.3 (The weakly continuous case.) In view of Assumption 4.1(c), our dis-
cussions above in fact work in the “strongly continuous” context. In some applica-
tions, however, one wishes to work in the “weakly continuous” context, in which
case Assumption 4.1(c) is replaced by that the function u′(t, x, a) is continuous on
[0, T ] × K for every continuous function u ∈ B0([0, T ] × E). In this situation,
to obtain the related results in Theorem 4.1, we have to strengthen other parts of
Assumption 4.1 as follows: (a) A(x) is compact, and x �→ A(x) is continuous;
(b) The reward rate r(x, a) is continuous on K ; (d) The function w′(t, x, a) :=∫
E w2(y)Q(T − t, dy | x, a) is continuous on K , andw(·) is continuous.Moreover, to

ensure (t, x) �→ Ag(t, x) is continuous, we should further require that g(t, x) are con-
tinuous in (t, x). Under the new set of hypotheses, Theorem 4.1 remains valid, and in
addition,we get that Sg(t, x) andσ 2

g (t, x) are continuous functions inB0
w2([0, T ]×E).

For more details on the “weakly continuous” case, refer to [2, Section 7.3] or [10, Sec-
tion 8.5].

5 Linear Programming for the Mean-Variance Problem

In this section,we further develop a linear programand the dual program for solving the
problem (MV ) from computational aspects. The key idea is to use the characterization
of the function Sg as the largest solution inB0

w2([0, T ]×E) to the inequality u ≤ H∗u.
We are now interested in computing a so-called mean-variance γ -optimal policy by
linear programming, where γ (·, ·) is an initial distribution for the jump time and state
such that

∫
[0,T ]×E w2(x)γ (dt, dx) < ∞.

A policy f ∈ Fg is called mean-variance γ -optimal if σ 2( f ∗, γ ) = inf f ∈Fg σ 2

( f, γ ), where σ 2( f, γ ) := ∫
[0,T ]×E σ 2( f, t, x)γ (dt, dx). Clearly, the variance
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σ 2( f, γ ) is well-defined and finite for each f ∈ Fg . Since minimizing the vari-
ance σ 2( f, γ ) is equivalent to minimizing the second order moment S( f, γ ) :=∫
[0,T ]×E S( f, t, x)γ (dt, dx) over Fg , our mean-variance optimization problem can
be formulated as:

(MVγ ) : minimize S( f, γ ) over f ∈ Fg, (5.1)

which is equivalent to the following formulation:

(P)

⎧⎪⎪⎨
⎪⎪⎩

maximize
∫
[0,T ]×E u(t, x)γ (dt, dx),

subject to:
u(t, x) − ∫E

∫ T−t
0 u(t + s, y)Q(ds, dy | x, a) ≤ cg(t, x, a) ∀(t, x, a) ∈ Kg,

u ∈ B0
w2([0, T ] × E).

(5.2)

In general, we prefer to solve the problem using its dual formulation. However, it is
difficult to directly derive the dual program from the primal LP (P) above. To tackle
the difficulty, we rewrite the constraint

u(t, x) −
∫

E

∫ T−t

0
u(t + s, y)Q(ds, dy | x, a) ≤ cg(t, x, a) ∀(t, x, a) ∈ Kg

in (5.2) as

u(t, x) −
∫

[0,T ]×E
u(s, y)Q(ds, dy | t, x, a) ≤ cg(t, x, a) ∀(t, x, a) ∈ Kg (5.3)

in the “discrete-time” version, which leads to the dual program:

(D)

⎧⎪⎪⎨
⎪⎪⎩

minimize
∫
Kg

cg(t, x, a)η(dt, dx, da),

subject to:
η̂(B × C) − ∫Kg

Q(B × C | t, x, a)η(dt, dx, da) = γ (B × C),

B × C ∈ B([0, T ] × E), η ∈ Mw2(Kg),

where η̂ is the projection of η on [0, T ] × E , B([0, T ] × E) denotes the Borel
σ–algebra on the product space [0, T ] × E , and Mw2(Kg) represents the set of
nonnegative finite measures η on [0, T ] × E × A concentrated on Kg satisfying∫
[0,T ]×E w2(x)η̂(dt, dx) < ∞.
The dual program (D) is feasible. In fact, for a policy f ∈ Fg , we define the

occupancy measure η̂
f
γ on [0, T ] × E by

η̂ f
γ (	) := E f

γ

[ ∞∑
m=0

I	(Tm ∧ T, Xm)

]
=

∞∑
m=0

P f
γ

(
(Tm ∧ T, Xm) ∈ 	

)
(5.4)
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for each 	 ∈ B([0, T ] × E). Let

η f
γ (dt, dx, da) := η̂ f

γ (dt, dx)δ{ f (t,x)}(da) (5.5)

be ameasure onKg . Then, using a similarmanner as in the proof of Lemma 3.1, we can

show that such a measure η
f
γ is in Mw2(Kg) under Assumptions 3.1–3.3. Moreover,

η
f
γ is feasible for (D). Indeed, for every B × C ∈ B([0, T ] × E), we have

η̂ f
γ (B × C)

= P f
γ ((T0 ∧ T, X0) ∈ B × C)

+
∞∑

m=1

E f
γ

[
P f

γ

(
(Tm ∧ T, Xm) ∈ B × C |Tm−1 ∧ T, Xm−1

)]

= γ (B × C) +
∞∑

m=1

∫

[0,T ]×E
P f

γ

(
(Tm−1 ∧ T, Xm−1) ∈ (dt, dx)

)

× P f
γ

(
(Tm ∧ T, Xm) ∈ B × C |Tm−1 ∧ T = t, Xm−1 = x

)

= γ (B × C) +
∫

[0,T ]×E
Q(B × C | t, x, f (t, x))

∞∑
m=1

P f
γ

(
(Tm−1 ∧ T, Xm−1) ∈ (dt, dx)

)

= γ (B × C) +
∫

[0,T ]×E
Q(B × C | t, x, f (t, x))η̂ f

γ (dt, dx)

= γ (B × C) +
∫

Kg

Q(B × C | t, x, a)η f
γ (dt, dx, da).

The next theorem shows that the linear programs (P) and (D) actually help to find
an optimal solution of the problem (MVγ ). More precisely, the value of both linear
programs coincide and yield the optimal value of the problem (MVγ ). We denote by
val(P) and val(D) the maximal and minimal values of (P) and (D), respectively.

Theorem 5.1 Suppose Assumptions 3.1–4.1 hold. Then:

(a) (P) has an optimal solution u∗ ∈ B0
w2([0, T ] × E), and u∗ = Sg, and

val(P) =
∫

[0,T ]×E
Sg(t, x)γ (dt, dx) = val(D).

(b) (D) has an optimal solution η∗ ∈ Mw2(Kg), and there exists a policy f ∗ ∈ Fg
such that

val(D) =
∫

Kg

cg(t, x, a)η∗(dt, dx, da) =
∫

[0,T ]×E
S( f ∗, t, x)γ (dt, dx).
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In particular, the policy f ∗ is mean-variance γ -optimal.

Proof (a) Note that the constraints in (5.2) are equivalent to u ≤ H∗u. By Theorem
4.1(a), Sg is the unique solution in B0

w2([0, T ] × E) to the equation u = H∗u,
which shows that Sg is feasible for (P). Moreover, let u ∈ B0

w2([0, T ] × E) be
any feasible solution for (P). Then u ≤ H∗u and by iterating the operatorH∗ we
obtain

u ≤ (H∗)nu → Sg, as n → ∞,

i.e., u ≤ Sg , and so
∫
udγ ≤ ∫ Sgdγ . Hence, Sg is an optimal solution to (P).

(b) By Theorem 4.1, there exists a mean-variance optimal policy f ∗ ∈ Fg . Let η∗ :=
η
f ∗
γ as in (5.5). Then, as shown above, η∗ is inMw2(Kg) and is feasible for (D).

Since f ∗ ∈ Fg is optimal, by weak duality we get

val(P) ≤ val(D) ≤
∫

Kg

cgdη∗ =
∫

S( f ∗)dγ =
∫

Sgdγ = val(P),

which implies that

val(D) =
∫

Kg

cgdη∗ =
∫

S( f ∗)dγ.

The proof is achieved.
��

6 Concluding Remarks

In previous sections, we have studied a finite horizon reward mean-variance problem
for SMDPs by the dynamic programming approach. The optimality is over the class of
all deterministic Markov policies. After characterizing policies with a given mean and
transforming the finite horizon reward variance to a mean, we establish the existence
and computation of mean-variance optimal policies under reasonable conditions. A
linear program and the dual program have also been developed for solving the mean-
variance problem. It is worth mentioning that our results can be reduced to those for
DTMDPs and CTMDPs with control only at jumps when the semi-Markov kernel Q
has some special structures. Moreover, our technique and treatments are suitable to the
case of infinite horizon or first passage reward mean-variance for SMDPs. However,
it seems challenging to deal with finite horizon reward mean-variance problems for
CTMDPs with control continuously in time.

In our dynamic programming approach, there are two basic steps: one is to char-
acterize policies with a given mean, another is to transform the finite horizon reward
variance to a mean. One can observe that the consideration of deterministic Markov
policies and the constraint on policies with a givenmean are essential in the two steps,
respectively. Thus, a natural question arises: can we drop the two restrictions? More
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clearly, does our technique framework fit the case of randomized history-dependent
policies or the case with a constraint that the mean be at least (rather than equal to)
some level? Unfortunately, the answer may be no. In our point of view, the nonlinear
programming approaches proposed in [5,6,25,28] might be an alternative appropriate
direction to this question. However, in contrast to the infinite horizon cases [6,25,28],
a special dimension of time horizons has to be introduced that will bring additional
complexity. In addition, finite horizon variance penalized problems for SMDPs as well
as CTMDPs with control continuously in time are also a new topic. Furthermore, it
would be interesting to consider finite horizon mean-variance problems for piecewise
deterministic Markov controlled processes that are a more general and important class
of stochastic control problems. All of these issues deserve careful thought and further
research.
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