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Abstract We discuss L p-estimates for finite difference schemes approximating par-
abolic, possibly degenerate, SPDEs, with initial conditions from W m

p and free terms
taking values in W m

p . Consequences of these estimates include an asymptotic expan-
sion of the error, allowing the acceleration of the approximation by Richardson’s
method.
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1 Introduction

In this paper spatial finite difference schemes for parabolic stochastic partial differen-
tial equations (SPDEs) are considered. In the literature finite difference approximations
for deterministic partial differential equations are well studied, we refer the reader to
[1], to recent results in [3], and the references therein. There is a growing number
of publications on finite difference schemes also for SPDEs, see e.g. [2,10,22], and
their references. In recent papers, see e.g. [6,7,9,11], L2-theory is used to estimate
in W m

2 -norms the error of finite difference approximations for the solutions of par-
abolic SPDEs. Hence error estimates in supremum norms are proved via Sobolev’s
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embedding if 2m is larger than the dimension d of the state space R
d . Therefore to

get estimates in supremum norm, in these papers unnecessary spatial smoothness of
the coefficients of the equation are required. Moreover, the smoothness conditions in
these papers depend on the dimension of the state space. Our aim is to overcome this
problem and generalize the results of [7] by giving W m

p -norm estimates, assuming
that the initial condition is in W m

p and the free terms are W m
p -valued processes. This

forces us to give up part of generality, but important examples, like the Zakai equation
in case of uncorrelated noises, are included. Since bounded functions, or more gener-
ally, functions with polynomial growth, can be seen as elements of suitable weighted
Sobolev spaces with arbitrarily large integrability exponent p, for equations with such
data we get dimension-invariant conditions on the smoothness of the coefficients.

It should be noted that the L p- and Lq(L p)-theory of SPDEs are well developed,
see e.g. [12,15,16]. Their results, however, will not be used, as these theories deal
with uniformly parabolic SPDEs, while the equations in this paper may degenerate
and become first order SPDEs.

Following the idea seen in [14], to estimate the solutions of finite difference schemes
we consider them in the whole space rather than on a grid. Through the estimates
obtained for their Sobolev norms on the whole space, this allows us to estimate their
supremum norm on a grid. For the finite difference approximations not only their
convergence is proved, but also power series expansion in the mesh size is obtained.
As in [9], this allows us to accelerate the rate of convergence, using the well known
Richardson extrapolation, introduced in [20].

Finally, let us introduce some notation used throughout the paper. We consider a
complete probability space (�,F , P), which is equippedwith a filtrationF = (Ft )t≥0
and carries a sequence of independent Ft -Wiener martingales (wr )∞r=1. We use the
notation P for the σ -algebra of the predictable subsets of � × [0, T ]. It is assumed
that F0 contains every P-zero set. For p ≥ 2 and m ≥ 0, W m

p denotes the Sobolev
space with exponent p and order m. For integer m, this is the space of functions whose
generalized partial derivatives up to order m are in L p, for non integer real m, W m

p is
a fractional Sobolev space, or, as often cited in the literature, Bessel potential space,
for the definition we refer to [21]. The Sobolev spaces of l2-valued functions will be
denoted by W m

p (l2). We use the notation

Di = ∂

∂xi
, ∂v =

d∑

i=1

vi Di

for v ∈ (v1, . . . , vd) ∈ R
d , and

Dα = Dα1
1 Dα2

2 . . . Dαd
d

for multi-indices α = (α1, . . . , αd) ∈ {0, 1, . . .}d of length

|α| := α1 + α2 + · · · + αd .
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Derivatives are understood in the generalized sense unless otherwise noted. The sum-
mation convention with respect to repeated indices is used thorough the paper, where
it is not indicated otherwise.

The paper is organized as follows. Formulation of the problem and the statements
of the main results are collected in Sect. 2. The appropriate estimate for the finite
difference scheme is derived in Sect. 3, and it is used in the proof of the main results
in Sect. 4.

2 Formulation of the Results

We consider the SPDE

dut (x) = {Di (a
i j
t (x)D j ut (x)) + bi

t (x)Di ut (x) + ct (x)ut (x) + ft (x)} dt

+(μir
t Di ut (x) + νr

t (x)ut (x) + gr (x)) dwr
t (2.1)

for (t, x) ∈ [0, T ] × R
d =: HT , with the initial condition

u0(x) = ψ(x) x ∈ R
d , (2.2)

with the summation convention here and in the rest of the paper is used with respect
to the repeated indices i , j and r .

The initial value ψ is an F0-measurable random variable with values in W 1
p for a

fixed p ≥ 2. For all i, j = 1, 2, . . . , d the coefficients ai j = a ji , bi and c are real-
valuedP×B(Rd)-measurable bounded functions, andμi = (μir )∞r=1 and ν = (νr )∞r=1
are l2-valued P × B(Rd)-measurable bounded functions on � × HT . The free terms
f = ( ft )t≥0 and g = (gt )t≥0 are W 1

p-valued and W 1
p(l2) -valued adapted processes.

Let m ∈ [1,∞) Set

Fm,p(t) =
(∫ t

0
| ft |p

W m
p

dt

)1/p

, Gm,p(t) =
(∫ t

0
|gt |p

W m
p (l2)

dt

)1/p

,

and let K > 0 be a constant. We make the following assumptions.

Assumption 2.1 The derivatives of the coefficients bi and c in x ∈ R
d up to order

�m�, and the derivatives of ai j in x up to order �m� + 1 are functions, bounded by K .
The l2-valued functions μi and ν satisfy either of the following:

(i) their derivatives in x up to order �m�+ 1 are functions, in magnitude bounded by
K .

(ii) μ = (μi )d
i=1 = 0 and the derivatives of ν in x up to order �m� are functions, in

magnitude bounded by K .

Assumption 2.2 Almost surely ψ ∈ W m
p , and either

(i) Fm,p(T ) + Gm+1,p(T ) < ∞ (a.s.), or
(ii) μ = 0 and Fm,p(T ) + Gm,p(T ) < ∞ (a.s.).
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Assumption 2.3 Almost surely the matrix valued function

ãi j
t (x) := ai j

t (x) − 1
2μ

ir
t (x)μ

jr
t (x), i, j = 1, . . . , d

is positive semidefinite for each (t, x) ∈ HT .

The notion of (generalised) solution is defined as follows.

Definition 2.1 A W 1
p-valued adapted weakly continuous process (ut )t∈[0,T ] is a solu-

tion of (2.1)–(2.2) on the interval [0, τ ] for a stopping time τ ≤ T , if almost surely

(ut , ϕ) = (ψ, ϕ) +
∫ t

0
{−(ai j

s D j us, Diϕ) + (bi
s Di us + csus + fs, ϕ)} ds

+
∫ t

0
(μir

s Di us + νr
s us + gr

s , ϕ) dwr
s , (2.3)

for all t ∈ [0, τ ], ϕ ∈ C∞
0 (Rd), where (v, ϕ) denotes the integral

∫

Rd
v(x)ϕ(x) dx

for functions ϕ and v on Rd , when vϕ ∈ L1(R
d).

Existence and uniqueness theorems for degenerate SPDEs are established in [19]
and [4]. We will need a slight generalization of these results, which will be proven at
the end of Sect. 3.

Theorem 2.1 Let Assumptions 2.1, 2.2 and 2.3 hold. Then (2.1)–(2.2) has a unique
solution u = (ut )t∈[0,T ] on [0, T ]. Moreover, u is a W m

p -valued weakly continuous

process, it is strongly continuous with values in W m−1
p , and for all l ∈ [0, m] and

q > 0

E sup
t∈[0,T ]

|u(t)|q
Wl

p
≤ N (E |ψ |q

Wl
p
+ E Fq

l,p(T ) + EGq
l+κ,p). (2.4)

where κ = 0 if (μi ) = 0 and κ = 1 otherwise, and N is a constant depending only
on T , d, K , p, and m.

While Theorem 2.1 is stated for a general equation of the form (2.1)–(2.2), all of
the subsequent results will only be proven under the restriction μ = 0.

To introduce thefinite difference schemes approximating (2.1) first let�0,�1 ⊂ R
d

be two finite sets, the latter being symmetric to the origin, and 0 ∈ �1 \ �0. Denote

� = �0 ∪ −�0 ∪ �1

and |�| = ∑
λ∈� |λ|. On � we make the following assumption.
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Assumption 2.4 If any subset �′ ⊂ � is linearly dependent, then �′ is linearly
dependent over the rationals.

Let Gh denote the grid

Gh = {h(λ1 + · · · + λn) : λi ∈ �, n = 1, 2, . . .},

for h > 0, and define the finite difference operators

δh,λϕ(x) = (1/h)(ϕ(x + hλ) − ϕ(x))

and the shift operators

Th,λϕ(x) = ϕ(x + hλ)

for λ ∈ � and h �= 0. Notice that δh,0ϕ = 0 and Th,0ϕ = ϕ. For a fixed h > 0
consider the finite difference equation

duh
t (x) = (Lh

t (x)uh
t (x) + ft (x)) dt + (νr

t (x)uh
t (x) + gr

t (x)) dwr
t , (2.5)

for (t, x) ∈ [0, T ] × Gh , with the initial condition

uh
0(x) = ψ(x) (2.6)

for x ∈ Gh , where

Lh
t ϕ =

∑

λ∈�0

δ−h,λ(a
λ
hδh,λϕ) +

∑

γ∈�1

p
γ

h δh,γ ϕ +
∑

γ∈�1

c
γ

h Th,γ ϕ

for functions ϕ on Gh . The coefficients aλ
h , p

γ

h , and c
γ

h are P × B(Rd)-measurable
bounded functions on � × [0, T ] ×R

d , with values in R, and p0h = 0 is assumed. All
of them are supposed to be defined for h = 0 as well, and to depend continuously on
h.

Note that Assumption 2.4 ensures thatGh ∩ B is finite for any bounded set B ⊂ R
d .

This condition is necessary for (2.5) to be useful from a practical point of view.
One can look for solutions of the above scheme in the space of adapted stochastic

processes with values in l p,h , the space of real functions φ on Gh such that

|φ|p
l p,h

=
∑

x∈Gh

|φ(x)|phd < ∞.

The similar space is defined for l2-valued functions andwill be denoted by l p,h(l2). For
a fixed h Eq. (2.5) is an SDE in l p,h , with Lipschitz coefficients, by the boundedness
of aλ

h, p
γ

h , c
γ

h , and νr . Hence if almost surely

|ψ |p
l p,h

+
∫ T

0
| ft |p

l p,h
+ |gt |p

l p,h(l2)
dt < ∞,
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then (2.5)–(2.6) admits a unique l p,h-valued solution (uh
t )t∈[0,T ].

Remark 2.1 By well-known results on Sobolev embeddings, if m > k + d/p, there
exists a bounded operator J from W m

p to the space of functions with bounded and
continuous derivatives up to order k such that Jv = v almost everywhere. In the rest
of the paper we will always identify functions with their continuous modifications if
they have one, without introducing new notation for them. It is also known, and can
be easily seen, that if Assumption 2.4 holds and m > d/p, then the for v ∈ W m

p the
restriction of Jv onto the grid Gh is in l p,h , moreover,

|Jv|l p,h ≤ C |v|W m
p
, (2.7)

where C is independent of v and h.

Remark 2.2 The h-dependency of the coefficients may seem artificial and in fact does
not mean any additional difficulty in the proof of Theorems 2.2–2.4 below. However,
we will make use of this generality to extend our results to the case when the data in
the problem (2.1)–(2.2) are in some weighted Sobolev spaces.

Clearly

δh,λϕ(x) → ∂λϕ(x)

as h → 0 for smooth functions ϕ, so in order to get that our finite difference oper-
ators approximate the corresponding differential operators, we make the following
assumption.

Assumption 2.5 We have, for every i, j = 1, . . . , d

ai j =
∑

λ∈�0

aλ
0λ

iλ j , (2.8)

bi =
∑

γ∈�1

p
γ
0 γ i , c =

∑

γ∈�1

c
γ
0 , (2.9)

and for P × dt × dx-almost all (ω, t, x) we have

aλ
h ≥ 0, p

γ

h ≥ 0 for every λ ∈ �0, γ ∈ �1, h ≥ 0. (2.10)

Remark 2.3 The restriction (2.8) together with aλ
0 ≥ 0 is not too severe, we refer the

reader to [17] for a detailed discussion about matrix-valued functions which possess
this property.

Example 2.1 Suppose that the matrix (ai j ) is diagonal. Then taking �0 = {ei : i =
1 . . . d} and �1 = {0} ∪ {±ei : i = 1 . . . d}, where (ei ) is the standard basis in R

d ,
one can set

a
ei
h = aii , p

ei
h = bi + θ i , p

−ei
h = θi , c

0
h = c, p0h = c

±ei
h = 0,
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with any θ i ≥ max(0,−bi ), i = 1 . . . d.

Example 2.2 Suppose that (ai j ) is aP⊗B(Rd)-measurable function of (ω, t, x), with
values in a closed bounded polyhedron in the set of symmetric non-negative d × d
matrices, such that its first and second order derivatives in x ∈ R

d are continuous
in x and are bounded by a constant K . Then it is shown in [17] that one can obtain
a finite set �0 ⊂ R

d and P ⊗ B(Rd)-measurable, bounded, nonnegative functions
aλ
0, λ ∈ �0 such that (2.8) holds, and the first order derivatives of (aλ

0)
1/2 in x are

bounded by a constant N depending only on K , d and the polyhedron. Such situation
arises in applications when, for example, (ai j

t (x)) is a diagonally dominant symmetric
non-negative definite matrix for each (ω, t, x), which by definition means that

2aii
t (x) ≥

d∑

j=1

|ai j
t (x)|, for all i = 1, 2, . . . , d, and (ω, t, x),

and hence it clearly follows that (ai j ) takes values in a closed polyhedron in the set of
symmetric non-negative d × d matrices. Clearly, this polyhedron can be chosen to be
bounded if (ai j ) is a bounded function. Moreover, in the case d = 2 explicit formulas
are given in [18] to represent diagonally dominant symmetric non-negative definite
matrices (ai j ) in the form (2.8).

The coefficients of the first and zero order terms, i.e., pγ

h and c
γ

h can be chosen as
in Example 2.1.

If (ai j ) does not depend on x , and it is a bounded P-measurable function of (ω, t)
with values in the set of diagonally dominant symmetric non-negative definitematrices,
then we can take

�0 := {ei , ei + e j , ei − e j : i, j = 1, 2, . . . , d}, �1 = {0} ∪ �0 ∪ −�0,

where (ei )
d
i=1 is the standard basis in Rd , and set

aλ
h =

⎧
⎪⎨

⎪⎩

ai j − ∑
j �=i |ai j | if λ = ei

1
2

∑
j �=i (a

i j )+ ifλ = ei + e j
1
2

∑
j �=i (a

i j )− ifλ = ei − e j

,

p
γ

h =
⎧
⎨

⎩

± 1
2bi + θ i ifγ = ±ei

θ i j ifγ = ±(ei + e j )

θ i j ifγ = ±(ei − e j )

,

c0h = c, p0h = c
γ

h = 0 for γ ∈ �1 \ {0},

with any constants θ i j ≥ κ and θ i ≥ κ − 1
2 |bi |, for i, j = 1, . . . , d, where κ is any

nonnegative constant, and a± := (|a| ± a)/2 for a ∈ R. Then clearly, �0, �1, aλ
h , p

γ

h
and ch satisfy Assumptions 2.4, 2.5 above, and Assumption 2.6 below.

Since the compatibility condition (2.8)–(2.9) will always be assumed, any subse-
quent conditions will be formulated for the coefficients in (2.5), which then automat-
ically imply the corresponding properties for the coefficients in (2.1).

123



84 Appl Math Optim (2015) 72:77–100

Assumption 2.6 The coefficients aλ
h (resp., pγ

h , c
γ

h , ν), and their partial derivatives in
the variable (h, x) up to order �m� + 1 (resp., �m�) are functions bounded by K .

Assumption 2.7 The initial value ψ is in W m
p , and the free terms f and g are W m

p -
valued and W m

p (l2)-valued processes, respectively, such that almost surely Fm,p(T )+
Gm,p(T ) < ∞.

We are now about to present the main results. The first three theorems correspond
to similar results in the L2 setting from [7]. The key role in their proof is played by
Theorem 3.1 below, which presents an upper bound for the W m

p norms of the solutions
to (2.5)–(2.6). After obtaining this estimate, Theorems 2.2 through 2.4 can be proved
in the same fashion as their counterparts in the L2 setting. Therefore, in Sect. 4 only
a sketch of the proof will be provided in which we highlight the main differences; for
the complete argument we refer to [7].

Theorem 2.2 Let k ≥ 0 be an integer and let Assumptions 2.4 through 2.7 hold
with m > 2k + 3 + d/p. Then there are continuous random fields u(1), . . . u(k) on
[0, T ] × R

d , independent of h, such that almost surely

uh
t (x) =

k∑

j=0

h j

j ! u( j)
t (x) + hk+1rh

t (x) (2.11)

for t ∈ [0, T ] and x ∈ Gh, where u(0) = u, rh is a continuous random field on
[0, T ] × R

d , and for any q > 0

E sup
t∈[0,T ]

sup
x∈Gh

|rh
t (x)|q + E sup

t∈[0,T ]
|rh

t |qlp,h
≤ N (E|ψ |qW m

p
+ EFq

m,p(T ) + EGq
m,p(T ))

with N = N (K , T, m, p, q, d, |�|).

Oncewe have the expansion above,we can useRichardson extrapolation to improve
the rate of convergence. For a given k set

(c0, c1, . . . , ck) = (1, 0, 0, . . . , 0)V −1, (2.12)

where V denotes the (k + 1) × (k + 1) Vandermonde matrix V = (V i j ) =
(2−(i−1)( j−1)), and define

vh =
k∑

i=0

ci u
hi ,

where hi = h/2i .
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Theorem 2.3 Let k ≥ 0 be an integer and let Assumptions 2.4 through 2.7 hold with
m > 2k + 3 + d/p. Then for every q > 0 we have

E sup
t∈[0,T ]

sup
x∈Gh

|ut (x) − vh
t (x)|q + E sup

t∈[0,T ]
|ut − vh

t |qlp,h

≤ hq(k+1)N (E|ψ |qW m
p

+ EFq
m,p(T ) + EGq

m,p(T ))

with N = N (K , T, m, k, p, q, d, |�|).
Theorem 2.4 Let (hn)

∞
n=1 ∈ lq be a nonnegative sequence for some q ≥ 1. Let k ≥ 0

be an integer and let Assumptions 2.4 through 2.7 hold with m > 2k + 3+ d/p. Then
for every ε > 0 there exists a random variable ξε such that almost surely

sup
t∈[0,T ]

sup
x∈Gh

|ut (x) − vh
t (x)| ≤ ξεhk+1−ε

for h = hn.

Remark 2.4 We can use hi = h/ni , i = 1 . . . k, with any set of different integers
ni , with n1 = 1. Then changing the matrix V to Ṽ = (Ṽ i j ) = (n− j+1

i ) in (2.12),
Theorems 2.3–2.4 remain valid. The choice ni = i , for example, yields a more coarse
grid, and can reduce computation time.

Choosing p large enough, in some cases one can get rid of the term d/p in the
conditions of the theorems above, thus obtaining dimension-invariant conditions. To
this end, first denote the function ρs(x) = 1/(1 + |x |2)s/2 defined on R

d for all
s ≥ 0. We say that a function F on R

d has polynomial growth of order s if the L∞
norm of Fρs is finite. For any integer m ≥ 0, the set of functions on R

d which have
polynomial growth of order s and whose derivatives up to order m are functions and
have polynomial growth of order s is denoted by Pm

s , and its equipped with the norm

‖F‖Pm
s

= |Fρs |W m∞ < ∞.

The similar space is defined for l2-valued functions and is denoted by Pm
s (l2). Note

that for any integers m > k ≥ 0, if F ∈ Pm
s , then its partial derivatives up to order k

exist in the classical sense and along with F are continuous functions. The polynomial
growth property of order s for functions on Gh can also be defined analogously, the
set of such functions is denoted by Ph,s .

Let s ≥ 0 and m be a nonnegative integer. Consider again the equation

dut (x) = (Di (a
i j
t (x)D j ut (x)) + bi

t (x)D j ut (x) + ct (x)ut (x) + ft (x)) dt

+(νr
t (x)ut (x) + gr (x)) dwr

t (2.13)

for (t, x) ∈ [0, T ] × R
d , with the initial condition

u0(x) = ψ(x) x ∈ R
d , (2.14)
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where we keep all our measurability conditions from (2.1)–(2.2). However, instead of
the integrability conditions on ψ, ft , gt , we now assume the following.

Assumption 2.8 The initial data ψ is an F0 × B(Rd)-measurable mapping from
� × R

d to R, such that ψ ∈ Pm
s (a.s.). The free data f and g are P × B(Rd)-

measurable mappings from � × [0, T ] × R
d to R and l2, respectively. Moreover,

almost surely ( ft ) is a Pm
s -valued process and (gt ) is a Pm

s (l2)-valued process, such
that

∣∣‖ ft‖Pm
s

+ ‖gt‖Pm
s (l2)

∣∣
L∞[0,T ] < ∞.

Definition 2.2 A P ×B(Rd)-measurable mapping u from �×[0, T ]×R
d toR such

that (ut )t∈[0,T ] is almost surely a P1
s -valued bounded process, is called a classical

solution of (2.13)–(2.14) on [0, T ], if almost surely u and its first and second order
partial derivatives in x are continuous functions of (t, x) ∈ [0, T ] × R

d , and almost
surely

ut (x) = ψ(x) +
∫ t

0
[Di (a

i j
s (x)D j us(x)) + bi

s(x)D j us(x) + cs(x)us(x) + fs(x)] ds

+
∫ t

0
[νr

s (x)us(x) + gr
s (x)] dwr

s

for all (t, x) ∈ [0, T ] ×R
d for a suitable modification of the stochastic integral in the

right-hand side of the equation.

If m ≥ 1, then as noted above the initial condition and free terms are continuous
in space. This makes it reasonable to consider the finite difference scheme (2.5)–(2.6)
as an approximation for the problem (2.13)–(2.14).

Theorem 2.5 Let k ≥ 0 be integer, and let s > s ≥ 0 be real numbers. Suppose that
Assumptions 2.4 2.5, 2.6, and 2.8 hold with m > 2k + 3.

(i) Equation (2.13)–(2.14) admits a unique Pm−1
s -valued classical solution

(ut )t∈[0,T ].
(ii) For fixed h the corresponding finite difference Eqs. (2.5)–(2.6) admits a unique

Ph,s -valued solution (uh
t )t∈[0,T ].

(iii) Suppose furthermore p
γ

h ≥ κ for γ ∈ �1, for some constant κ > 0, and

�0 ∪ −�0 ⊂ �1.

Then there are continuous random fields u(1), . . . u(k) on [0, T ]×R
d , independent

of h, such that almost surely

uh
t =

k∑

j=0

h j

j ! u( j)
t (x) + hk+1rh

t (x)
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for t ∈ [0, T ] and x ∈ Gh, where u(0) = u, rh is a continuous random field on
[0, T ] × R

d , and for any q > 0

E sup
t∈[0,T ]

sup
x∈Gh

|rh
t (x)ρs(x)|q + E sup

t∈[0,T ]
|rh

t ρs |qlp,h

≤ N
(
E‖ψ‖q

Pm
s

+ E
∣∣‖ ft‖Pm

s
+ ‖gt‖Pm

s (l2)
∣∣q
L∞[0,T ]

)

with some N = N (K , T, m, s, s, q, d, |�|, κ).

(iv) Let (hn)
∞
n=1 ∈ lq be a nonnegative sequence for some q ≥ 1. Then for every

ε, M > 0 there exists a random variable ξε,M such that almost surely

sup
t∈[0,T ]

sup
x∈Gh ,|x |≤M

|ut (x) − vh
t (x)| ≤ ξε,M hk+1−ε

for h = hn.

This theorem will be proved in Sect. 4.

Remark 2.5 Condition p
γ

h ≥ κ in assertion (iii) of the above theorem is harmless,
similarly to the second part of (2.10). As seen in Examples 2.1 and 2.2, we can always
satisfy this additional requirement by adding a sufficiently large constant to pγ

h .

3 Estimate on the Finite Difference Scheme

First let us collect some properties of the finite difference operators. Throughout this
section we consider a fixed h > 0 and use the notation uα = Dαu. It is easy to see
that, analogously to the integration by parts,

∫

Rd
v(δh,λu) dx =

∫

Rd
(δh,−λv)u dx = −

∫

Rd
(δ−h,λv)u dx, (3.1)

when v ∈ Lq/q−1 and u ∈ Lq for some 1 ≤ q ≤ ∞, with the convention 1/0 = ∞
and ∞/(∞ − 1) = 1. The discrete analogue of the Leibniz rule can be written as

δh,λ(uv) = u(δh,λv) + (δh,λu)(Th,λv). (3.2)

Finally, we will also make use of the simple identities

Th,αδh,βu = δh,α+βu − δh,αu, (3.3)

vvλ = (1/2)(δλ(v
2) − h(δλv)2), (3.4)

and the estimate

|δh,λv|L p ≤ |
∫ 1

0
∂λv(· + θhλ) dθ |L p ≤ |λ||v|W 1

p
, (3.5)

valid for p ∈ [1,∞] and v ∈ W 1
p , h �= 0 and λ ∈ R

d .
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Lemma 3.1 For any p ≥ 2, λ ∈ R
d , h �= 0 and real function v on R

d we can write

δh,λ(|v|p−2v) = Fh,λ
p (v)δh,λv,

where Fh,λ
p (v) ≥ 0, and for p > 2, q = p/(p − 2) and for all v ∈ L p(R

d)

|Fh,λ
p (v)|qLq

≤ (p − 1)q |v|p
L p

. (3.6)

Proof The derivative of the function G(r) = |r |p−2r is

G ′(r) = (p − 1)|r |p−2 ≥ 0,

so we have

δh,λ(|v|p−2v)(x) = (1/h)G((1 − θ)v(x) + θv(x + λh))|1θ=0

=
∫ 1

0
G ′((1 − θ)v(x) + θv(x + λh))δh,λv(x) dθ = Fh,λ

p (v)δh,λv(x).

By Jensen’s inequality and the convexity of the function |r |p,

|Fh,λ
p (v)|qLq

≤ (p − 1)q
∫

Rd

∫ 1

0
θ |v(x + λh)|p + (1 − θ)|v(x + λh)|p dθ dx .

Hence (3.6) follows by Fubini’s theorem and the shift invariance of the Lebesgue
measure. ��
Lemma 3.2 Let m be a nonnegative integer, and let α be a multi-index of length m.
Then the following statements hold.

(i) Let a be a nonnegative function on R
d such that its generalised derivatives up to

order m + 1 are functions, in magnitude bounded by a constant K . If m ≥ 1 then
let the first order generalised derivatives of σ := √

a be also functions, bounded
by K . Then for u ∈ W m

p , p ∈ [2,∞), λ ∈ R
d and h �= 0

∫

Rd
|Dαu|p−2Dαu Dαδ−h,λ(aδh,λu) dx ≤ N |u|p

W m
p
. (3.7)

(ii) Let p be a nonnegative function on R
d such that its generalised derivatives up to

order m ∨ 1 are functions bounded by K . Let p = 2k for an integer k ≥ 1. Then
for u ∈ W m

p , λ ∈ R
d and h > 0

∫

Rd
|Dαu|p−2Dαu Dα(pδh,λu) dx ≤ N |u|p

W m
p
. (3.8)

The constant N in the above estimates depend only on m, p, d, K and |λ|.
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Proof Recall the notation uα = Dαu. For real functions v and w defined on R
d we

write v ∼ w if their integrals over Rd are the same. We use the notation v � w if
v = w + F with a function F whose integral over Rd can be estimated by N |u|p

W m
p
,

where N is a constant depending only onm, K , p, d and |λ|. To prove (3.7) we consider
first the case m = 0. By (3.1) and Lemma 3.1

|u|p−2uδ−hλ(aδh,λu) ∼ −δh,λ(|u|p−2u)aδh,λu

= −Fh,λ
p (u)a(δh,λu)2 ≤ 0, (3.9)

where F is the functional obtained from Lemma 3.1. Consequently, (3.7) holds for
m = 0. Assume now m ≥ 1. Then it is easy to see that

|Dαu|p−2Dαu Dαδ−h,λ(aδh,λu) � I1 + I2, (3.10)

with

I1 := |uα|p−2uα

∑

(α′,α′′)∈A

δ−h,λDα′
aDα′′

δh,λu

I2 := |uα|p−2uαδ−h,λ(aδh,λuα),

where A is the set of ordered pairs of multi-indices (α′, α′′) such that |α′| = 1 and
α′ + α′′ = α. By (3.1) and Lemma 3.1

I1 ∼ −2Fh,λ
p (uα)σδh,λuα

∑

(α′,α′′)∈A

Dα′
σδh,λuα′′

≤ εFh,λ
p (uα)a(δh,λuα)2 + ε−1d K 2Fh,λ

p (uα)(δh,λuα′′)2 (3.11)

for every ε > 0, where the simple inequality 2yz ≤ εy2 + ε−1z2 is used with y =
σδh,λuα and z = ∑

(α′,α′′)∈A Dα′
σδh,λuα′′ . Using (3.9) with uα in place of u we get

I2 � −Fh,λ
p (uα)a(δh,λuα)2.

Combining this with (3.11) with sufficiently small ε, from (3.10) we obtain

I � N Fh,λ
p (uα)

∑

(α′,α′′)∈A

(δh
λuα′′)2

≤ N |Fh,λ
p (uα)|q + N |

∑

(α′,α′′)∈A

(δh
λuα′′)2|p/2,

with q = p/(p − 2), which gives (3.7), due to the estimates (3.6) and (3.5).To prove
(3.8) notice that for p = 2k

J := |Dαu|p−2Dα u Dα(pδh,λu) = (Dαu)p−1Dα(pδh,λu)

� (Dαu)p−1pδh,λuα.
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Hence we can repeatedly use (3.4) and the nonnegativity of pλ
h to get

u p−1
α pδh,λuα ≤ (1/2)u p−2

α pδh,λu2
α

≤ (1/4)u p−4
α pδh,λu4

α ≤ · · · ≤ (1/2k)pδh,λu2k

α .

By (3.1), pδh,λu p
α has the same integral overRd as δh,−λpu p

α , and hence (3.8) follows,
since |δh,−λp| ≤ K |λ| by (3.5). ��
Corollary 3.1 Let m ≥ 1 be an integer and p = 2k for some integer k ≥ 1, and
let Assumptions 2.6 and 2.7, along with the condition (2.10) be satisfied. Then for
u ∈ W m

p , f ∈ W m
p , g ∈ W m

p (l2) and for all multi-indices α of length |α| ≤ m we have

∫

Rd
(p − 1)|uα|p−2uα(x)Dα(Lh

t u(x) + f (x))

+(1/2)(p − 1)(p − 2)|uα|p−2(x)|Dα(νr (x)u(x) + gr (x))|2dx

≤ N (|u|p
W m

p
+ | f |p

W m
p

+ |g|p
W m

p (l2)
) (3.12)

for P × dt-almost all (ω, t) ∈ � × [0, T ], where N is a constant depending only on
d, p, m, |�|, and K .

Proof Using the notation of the preceding proof, by Hölder’s inequality

u p−1
α Dα(c

γ

h Th,γ u) + u p−1
α fα + u p−2

α |Dα(νr u + gr )|2 � N (| f |p
W m

p
+ |g|p

W m
p (l2)

).

The remaining two terms are estimated in Lemma 3.2. ��
The following is a stochastic version of Gronwall’s lemma, for its proof we refer

to [5].

Lemma 3.3 Let (yt )t∈[0,T ], (Ft )t∈[0,T ], and (Gt )t∈[0,T ] be two nonnegative adapted
processes, and let (mt )t∈[0,T ] be a continuous local martingale such that for a constant
N almost surely

dyt ≤ N (yt + Ft )dt + dmt

for all t ∈ [0, T ]. Assume furthermore that for some p ≥ 2 almost surely

d〈m〉t ≤ N (y2t + Gt y2−(2/p)
t )dt.

Then for every q ≥ 0 there exists a constant C, depending only on N, q, p, and T ,
such that

E sup
t≤T

yq
t ≤ CEyq

0 + CE

(∫ T

0
Ft dt

)q

+ CE

(∫ T

0
G p/2

t dt

)q

.
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Consider (2.5) without restricting it to the grid Gh , that is,

duh
t = (Lh

t uh
t + ft )dt + νr

t uh
t + gr

t )dwr
t , t ∈ (0, T ], x ∈ R

d (3.13)

with the initial condition

uh
0(x) = ψ(x), x ∈ R

d . (3.14)

The solution of (3.13)–(3.14) is understood in the spirit of Definition 2.1.

Definition 3.1 An L p(R
d)-valued continuous adaptedprocess (uh

t )t∈[0,T ] is a solution
to (3.13)–(3.14) on [0, τ ] for a stopping time τ ≤ T if almost surely

(uh
t , ϕ) = (ψ, ϕ) +

∫ t

0
(Lh

s uh
s + fs, ϕ) ds +

∫ t

0
(νr

s uh
s + gs, ϕ) dwr

s (3.15)

for all t ≤ τ and ϕ ∈ C∞
0 (Rd).

Assumption2.6 implies that the operatorsu → Lh
t u andu → (br

t u)∞r=1 are bounded
linear operators from W m

p to W m
p and to W m

p (l2), respectively, with operator norm
uniformly bounded in (t, ω). Therefore if Assumption 2.7 is also satisfied, (3.13) is
a SDE in the space W m

p with Lipschitz continuous coefficients. As such, it admits a
unique continuous solution.

Theorem 3.1 Let Assumptions 2.6 and 2.7 hold with m ≥ 1, and let condition
(2.10) be satisfied. Then (3.13)–(3.14) has a unique continuous W m

p -valued solution

(uh
t )t∈[0,T ], and for each q > 0 there exists a constant N = N (d, q, p, m, K , T, |�|)

such that

E sup
t≤T

|uh
t |qW m

p
≤ N (E|ψ |qW m

p
+ EFq

m,p(T ) + EGq
m,p(T )) (3.16)

for all h > 0.

Proof By the preceding argument, we need only prove estimate (3.16). First let m and
p be as in the conditions of Corollary 3.1, and fix a q > 1. Let α be a multi-index
such that |α| ≤ m. If we apply Itô’s formula to |Dαuh |p

L p
by Lemma 5.1 in [13], one

can notice that the term appearing in the drift is the left-hand side of (3.12), with uh

in place of u. Using Corollary 3.1 and summing over |α| ≤ m we get

d|uh
t |p

W m
p

≤ N (|u|p
W m

p
+ | f |p

W m
p

+ |g|p
W m

p
) dt + dmh

t

with some N depending only on p, m, d, |�|, and K , where

dmh
t = (p − 1)

∫

Rd
|∂αuh

t |p−1∂α(νr
t uh

t + gr
t ) dx dwr

t
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with α used as a repeated index. It is clear that

d〈mh〉t

= (p − 1)2
∞∑

r=1

(∫

Rd
|δαuh

t |p−1∂α(νr
t uh

t + gr
t )dx

)2

dt

≤ N ((|uh
t |p

W m
p
)2 + |g|2W m

p (l2)|uh
t |2p−2

W m
p

) dt,

so Lemma 3.3 can be applied to the function |uh
t |p

W m
p
and the power q/p, which proves

(3.16) for integer m, p = 2k .
Note that (3.16) is equivalent to

[E sup
t≤T

|uh
t |qW m

p
] 1

q ≤ N ([E|ψ |qW m
p
] 1

q + [EFq
m,p]

1
q + [EGq

m,p]
1
q ),

which implies

[E
(∫ T

0
|uh

t |rW m
p

) q
r

] 1
q ≤ N ([E|ψ |qW m

p
] 1

q + [EFq
m,p]

1
q + [EGq

m,p]
1
q ), (3.17)

for any r > 1, with another constant N , independent from r . In other words, this
means that for the special case of m and p considered so far the solution operator

(ψ, f, g) → uh

continuously maps �m
p × Fm

p × Gm
p to Um

p , where

�m
p = Lq(�, W m

p ),

Fm
p = Lq(�, L p([0, T ], W m

p )),

Gm
p = Lq(�, L p([0, T ], W m

p (l2))),

Um
p = Lq(�, Lr ([0, T ], W m

p )).

Let us denote the complex interpolation space between any Banach spaces A0 and
A1 with parameter θ by [A0, A1]θ . Recall the following interpolation properties (see
1.9.3, 1.18.4, and 2.4.2 from [21])

(i) If a linear operator T is continuous from A0 to B0 and from A1 to B1, then it
is also continuous from [A0, A1]θ to [B0, B1]θ , moreover, its norm between the
interpolated spaces depends only on θ and its norm between the original spaces.

(ii) For a measure space M and 1 < p0, p1 < ∞,

[L p0(M, A0), L p1(M, A1)]θ = L pθ (M, [A0, A1]θ ),

where 1/pθ = (1 − θ)/p0 + θ/p1.
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(iii) For m0, m1 ∈ R, 1 < p0, p1 < ∞,

[W m0
p0 , W m1

p1 ]θ = W mθ
pθ

,

where mθ = (1 − θ)m0 + θm1, and 1/pθ = (1 − θ)/p0 + θ/p1.

Now take any p ≥ 2, and take p0 ≤ p ≤ p1 such that p0 = 2k and p = 2k+1 for
k ∈ N, and set θ ∈ [0, 1] such that 1/p = (1 − θ)/p0 + θ/p1. By property (ii) we
have

�m
p = [�m

p0 , �
m
p1 ]θ , Fm

p = [Fm
p0 ,Fm

p1 ]θ ,
Gm

p = [Gm
p0 ,Gm

p1 ]θ , Um
p = [Um

p0 ,Um
p1 ]θ ,

and therefore by (i) the solution operator is continuous for any p ≥ 2 and integer
m ≥ 1.

For arbitrary m ≥ 1, p ≥ 2, set θ = �m�/�m�. Then properties (ii) and (iii) imply
that

�m
p = [��m�

p , ��m�
p ]θ , Fm

p = [F�m�
p ,F�m�

p ]θ ,
Gm

p = [G�m�
p ,G�m�

p ]θ , Um
p = [U�m�,U�m�

p ]θ .

If Assumptions 2.6 and 2.7 hold, then the solution operator is continuous from�
�m�
p ×

F�m�
p × G�m�

p to U�m�
p , and from �

�m�
p ×F�m�

p × G�m�
p to U�m�

p . Applying property (i)
again therefore yields (3.17) for m, p. Letting r → ∞ and keeping in mind that uh is
a continuous in W m

p -valued process, using Fatou’s lemma we get (3.16) when q > 1.
Hence for q > 1 we obtain

E(1A sup
t≤τ∧τn

|uh
t |ql ) ≤ N E |1A1τn>0ψ |qW m

p
+ NE(1A Fq

m,p(τ ∧ τn))

+ NE(1AGq
m,p(τ ∧ τn))

for every stopping time τ ≤ T , integer n ≥ 1, and A ∈ F0, where

τn := inf{t ∈ [0, T ] : Rm,p(t) ≥ n},
Rp

m,p(t) := |ψ |p
W m

p
+

∫ t

0
| fs |p

W m
p

+ |gs |p
W m

p
ds,

and N is a constant depending only on K , T , m, q, d and |�|. By virtue of Lemma
3.2 from [8] this implies

E( sup
t≤τ∧τn

|uh
t |qW m

p
) ≤ N (E|ψ |qW m

p
+ EFq

m,p(τ ∧ τn) + EGq
m,p(τ ∧ τn))

for any q > 0 with a constant N = N (K , T, p, d, m, |�|). We finish the proof by
letting here n → ∞. ��
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Proof of Theorem 2.1 By rewriting the equation in the non-divergence form, the the-
orem for integer m follows from Theorem 2.1 in [4]. Thus we need only prove it
when m is non integer. From [4], we know that under the conditions of the theorem,
(2.1)–(2.2) admits a unique solution u. Moreover, it is W �m�

p -valued, and

E sup
t∈[0,T ]

|u|q
Wl

p
≤ N (E|ψ |q

Wl
p
+ EFq

l,p(T ) + EGl+κ , pq(T )) (3.18)

holds for l = 0, 1, . . . , �m� and q > 0, where κ = 0 when (μi ) = 0 and κ = 1
when (μi ) is not identically zero. Assume first that q > 1. Then following the same
interpolation arguments as above, we find that (3.18) holds for all l ∈ [0, �m�], with
ess sup in place of sup on the left-hand side. Then by substituting (1− �)(m−1)/2φ in
place of φ in (2.3), we obtain that for any φ ∈ C∞

0 , almost surely for all t ∈ [0, T ],

((1 − �)(m−1)/2ut , φ) = ((1 − �)(m−1)/2ψ, φ)

+
∫ t

0

d∑

i=1

(Fi
s, Diφ) + (F0

s , φ) ds +
∫ t

0
(Gk

s , φ) dwk
s ,

where, due to estimates such as

|(1 − �)(m−1)/2(ai j D jv)|L p ≤ K |v|W m
p
,

Fi and G = (Gk)∞k=1 are predictable processes with values in L p, such that

∫ T

0

(
d∑

i=0

|Fi
t |L p + |Gt |L p(l2)

)
dt < ∞.

��
Using Itô’s formula for the L p norm from [13], we find that (1 − �)(m−1)/2u is a

strongly L p-valued process, and thus u is a strongly continuous W m−1
p -valued process.

Hence almost surely

((1 − �)m/2ut , ϕ) = ((1 − �)(m−1)/2ut , (1 − �)1/2ϕ) (3.19)

is continuous in t ∈ [0, T ] for all ϕ ∈ C∞
0 . Let� denote the set of those C∞

0 functions
which belong to the unit ball of L p∗ , where p∗ = p/(p − 1). Then

sup
t∈[0,T ]

|ut |W m
p

= sup
t∈[0,T ]

sup
ϕ∈�

((1 − �)m/2ut , ϕ) = sup
ϕ∈�

sup
t∈[0,T ]

((1 − �)m/2ut , ϕ)

= sup
ϕ∈�

ess supt∈[0,T ]((1 − �)m/2ut , ϕ j ) ≤ ess supt∈[0,T ]|ut |W m
p

< ∞ (a.s.).

This, the continuity in t ∈ [0, T ] of the expression in (3.19) and the denseness of
C∞
0 in W −m

p∗ imply that almost surely u is a W m
p -valued weakly continuous process.
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Consequently, (3.18) holds for all l ∈ [0, m] and q > 1. Hence using Lemma 3.2 from
[8] in the same way as at the end of the proof of Theorem 3.1, we obtain (3.18) for all
l ∈ [0, m] and q > 0.

4 Proof of the Main Results

Proof of Theorems 2.2,2.3,2.4 To prove Theorem 2.2, first consider the functions

F(h) = δh,λφ(x) =
∫ 1

0
∂λφ(x + hθλ) dθ,

G(h) = δh,λδh,λψ(x) =
∫ 1

0

∫ 1

0
∂λ∂λψ(x + hλ(θ1 + θ2))dθ1dθ2

for fixed φ ∈ W n+l+2
p , ψ ∈ W n+l+3

p , n, l ≥ 0. Applying Taylor’s formula at h = 0
up to n + 1 terms we get that

|δh,λφ −
n∑

i=0

hi Ai∂
i+1
λ φ|Wl

p
≤ N |h|n+1|φ|W n+l+2

p
,

|δ−h,λδh,λψ −
n∑

i=0

hi Bi∂
i+2
λ ψ |Wl

p
≤ N |h|n+1|ψ |Wl+n+3

p

with constants Ai = 1/(i + 1)! and

Bi =
{
0 if i is odd

2
(i+2)! if i is even

,

where N = N (|�|, d, l, n) is a constant. Similarly, or in fact equivalently to the first
inequality, we have

|Th,λϕ −
n∑

i=0

hi

i ! ∂ i
λϕ|Wl

p
≤ N |h|n+1|ϕ|W n+l+1

p

for ϕ ∈ W n+l+1
p , where ∂0λ denotes the identity operator. Without going into details, it

is clear that, due to Assumption 2.6, from these expansions one can obtain operators
L

(i)
t for integers i ∈ [0, �m�] such that L0

t φ = ∂i ai j∂ jφ + bi∂iφ + cφ,

|L(i)
t φ|Wl

p
≤ N |φ|Wl+i+1

p
for i odd, i + l ≤ �m�, (4.1)

|L(i)
t φ|Wl

p
≤ N |φ|Wl+i+2

p
for i even, i + l ≤ �m�, (4.2)
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and

|
(

Lh
t −

n∑

i=0

hi

i ! L
(i)
t

)
φ|Wl

p
≤ N |h|n+1|φ|W n+l+3

p
forn + l < �m� (4.3)

with N = N (|�|, K , d, p, m). The random fields u( j) in expansion (2.11) can then
be obtained from the system of SPDEs

du( j)
t =

⎛

⎝L
(0)
t u( j)

t +
j∑

l=1

( j
l

)
L

(l)
t u( j−l)

t

⎞

⎠ dt + νr
t (x)u( j)

t (x) dwr
t (4.4)

u( j)
0 = 0, j = 1, . . . , k, (4.5)

where v(0) = u, the solution of (2.1)–(2.2) whenμ = 0. The following theorem holds,
being the exact analogue of Theorem 5.1 from [7]. It can be proven inductively on j ,
by a straightforward application of Theorem 2.1 and (4.1)–(4.2). ��
Theorem 4.1 Let k ≥ 1 be an integer, and let Assumptions 2.5, 2.6 and 2.7 hold with
m ≥ 2k + 1. Then there is a unique solution u(1), . . . , u(k) of (4.4)–(4.5). Moreover,
u( j) is a W m−2 j

p -valued weakly continuous process, it is strongly continuous as a

W m−2 j−1
p -valued process, and

E sup
t∈[0,T ]

|u( j)
t |q

W m−2 j
p

≤ N (E|ψ |qW m
p

+ EFq
m,p(T ) + EGq

m,p(T ))

for j = 1, . . . , k, for any q > 0, with a constant N = N (K , m, p, q, T, |�|).
Set

rh
t (x) = uh

t (x) −
k∑

j=0

h j

j ! u( j)
t (x),

for t ∈ [0, T ] and x ∈ R
d , where uh is the solution of (3.13)–(3.14). Then it is not

difficult to verify that rh is the solution, in the sense of Definition 3.1, of the finite
difference equation

rh
t (x) = (Lh

t rh
t (x) + Fh

t (x)) dt + νr
t (x)rh

t (x) dwr
t , t ∈ (0, T ], x ∈ R

d

with initial condition rh
0(x) = 0 for x ∈ R

d , where

Fh
t =

k∑

j=0

h j

j !

⎛

⎝Lh
t −

k− j∑

i=0

hi

i ! L
(i)
t

⎞

⎠ u( j)
t .

Hence by applying Theorem 3.1 we get
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E sup
t∈[0,T ]

|rh
t |q

W m−2k−3
p

≤ NE

(∫ t

0
|Ft |p

W m−2k−3
p

dt

)q/p

.

Now using m − 2k − 3 > d/p, for the left-hand side we can write

E sup
t∈[0,T ]

sup
x∈Gh

|rh
t (x)|q + E sup

t∈[0,T ]
|rh

t |qlp,h
≤ NE sup

t∈[0,T ]
|rh

t |q
W m−2k−3

p
,

while (4.3) and the theorem above yield

E sup
t∈[0,T ]

|Fh
t |q

W m−2k−3
p

≤ Nhq(k+1)
k∑

j=0

E sup
t∈[0,T ]

|u( j)
t |q

W m−2 j
p

≤ Nhq(k+1)(E|ψ |qW m
p

+ EFq
m,p(T ) + EGq

m,p(T )),

where N denotes some constants which depend only on K , m, d, q, p, T and |�|.
Putting these inequalities together we obtain the estimate

E sup
t∈[0,T ]

sup
x∈Gh

|rh
t (x)|q + E sup

t∈[0,T ]
|rh

t |qlp,h

≤ Nhq(k+1)(E|ψ |qW m
p

+ EFq
m,p(T ) + EGq

m,p(T )), (4.6)

for all h > 0 with a constant N = N (K , m, d, q, p, T, |�|). Thus we have the
following theorem.

Theorem 4.2 Let k ≥ 0 be an integer and let Assumptions 2.5, 2.6 and 2.7 hold
with m > 2k + 3 + d/p. Then there are continuous random fields u(1), . . . u(k) on
[0, T ] × R

d , independent of h, such that almost surely

uh
t (x) =

k∑

j=0

h j

j ! u( j)
t (x) + rh

t (x) (4.7)

for all t ∈ [0, T ] and x ∈ R
d , where u(0) = u, uh is the solution of (3.13)–(3.14),

and rh is a continuous random field on [0, T ] ×R
d , which for any q > 0 satisfies the

estimate (4.6).

Proof ByTheorems 2.1, 3.1 and 4.1 uh , u(0), u(1),…,u(k) areW m−1
p -valued continuous

processes. Since due to our assumption m − 1 > d/p, by Sobolev’s theorem on
embedding W m

p (Rd) into Cb(R
d) we get that these random fields are continuous in

(t, x) ∈ [0, T ] × R
d . (Remember that we always identify the functions with their

continuous version when they have one.) Hence (4.7) holds by the definition of rh ,
and estimate (4.6) is proved above. ��

To finish the proof of Theorem 2.2 we need only show that if Assumption 2.4 holds
then under the conditions of Theorem 4.2 the restriction of the solution uh of (3.13)–
(3.14) onto [0, T ]×Gh is a continuous l p-valued process which solves (2.5)–(2.6). To
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this end note that under the conditions of Theorem 4.2 uh is a continuous W m−1
p valued

process, and if Assumption 2.4 also holds then by (2.7) its restriction to [0, T ] × Gh

is a continuous l p-valued process. To see that this process satisfies (2.5)–(2.6) we fix
a point x ∈ Gh and take a nonnegative smooth function ϕ with compact support in
R

d such that its integral over Rd is one. Define for each integer n ≥ 1 the function
ϕ(n)(z) = ndϕ(n(z − x)), z ∈ R

d . Then by Definition 3.1 we have for uh , the solution
of (2.5)–(2.6), that almost surely

(uh
t , ϕ(n)) = (ψ, ϕ(n)) +

∫ t

0
(Lh

t uh
s + fs, ϕ

(n)) ds +
∫ t

0
(νr

s uh
s + gr

s , ϕ
(n)) dwr

s

for all t ∈ [0, T ] and for all n ≥ 1. Letting here n → ∞, for each t ∈ [0, T ] we get

uh
t (x) = ψ(x) +

∫ t

0
(Lh

s uh
s (x) + fs(x)) ds +

∫ t

0
(νr

t uh
s (x) + gr

s (x)) dwr
s (4.8)

almost surely, since uh , ψ , f , ν, g and the coefficients of Lh are continuous in x ,
due to Sobolev’s theorem on embedding W m

p (Rd) into Cb(R
d) in the case m > d/p.

Note that both uh
t (x) and the random field on the the right-hand side of Eq. (4.6)

are continuous in t ∈ [0, T ]. Therefore we have this equality almost surely for all
t ∈ [0, T ] and x ∈ Gh . The proof of Theorem 2.2 is complete.

The extrapolation result, Theorem 2.3, follows from Theorem 2.2 by standard cal-
culations, and hence Theorem 2.4 on the rate of almost sure convergence follows by
a standard application of the Borel–Cantelli Lemma.

Proof of Theorem 2.5 Let ρ(x) = ρs(εx) = 1/(1 + |εx |2)s/2, where ε > 0 is to
be determined later and choose p large enough so that 1 > d/p—and therefore
m > 2k + 3 + d/p—and Assumption 2.7 holds for ψρ, fρ and gρ in place of
ψ , f and g, respectively. After some calculations one gets that u is the solution of
(2.13)–(2.14) if and only if uρ is the solution of the equation

dvt (x) = (Di â
i j
t (x)D jvt (x) + b̂i

t (x)Divt (x) + ĉt (x)vt (x) + ftρ(x)) dt

+(νr
t (x)vt (x) + gr

t ρ(x)) dwr
t (4.9)

for (t, x) ∈ [0, T ] × R
d , with the initial condition

v0(x) = ψρ(x), (4.10)

for x ∈ R
d , where the coefficients are given by

âi j = ai j ,

b̂i = bi
t − 2

d∑

j=1

ai j D jρ

ρ
for i �= 0,
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ĉ = c −
d∑

i, j=1

ai j Di D jρ

ρ
−

d∑

i, j=1

Di a
i j D jρ

ρ
−

d∑

i=1

b̂i Diρ

ρ
.

��
Due to our choice of ρ, these coefficients still satisfy the conditions of Theorem

2.1 from [4]. Applying this theorem, we obtain a W m
p -valued unique solution v. Using

Sobolev embedding, we get that v/ρ—which is a solution of (2.13) - is a Pm−1
p -valued

process.
One can similarly transform the finite difference equations, using (3.2)–(3.3). It

turns out that uh is a solution of (2.5)–(2.6) if and only if uhρ is a solution of the
equation

vh
t (x) = {L̂h

t (x)vh
t (x) + ftρ(x)) dt + (νr

t (x)vh
t (x) + gr

t ρ(x)) dwr
t (4.11)

for (t, x) ∈ [0, T ] × Gh with initial condition

vh
0 (x) = ψρ(x), (4.12)

for x ∈ Gh , where

L̂h
t ϕ =

∑

λ∈�0

δ−h,λ(â
λ
hδh,λϕ) +

∑

γ∈�1

p̂
γ

h δh,γ ϕ +
∑

γ∈�1

ĉ
γ

h Th,γ ϕ,

with

âλ
h = aλ

h,

p̂
γ

h = p
γ

h + (Th,−λa
λ)δh,−λρ − (Th,λa

−λ)δh,λρ

ρ
,

ĉλh = cλh
ρ

Th,λρ
− (δh,−λa

λ)δh,−λρ − aλδh,−λδh,λρ + p̂λδh,λρ

Th,λρ
,

where aλ is understood to be 0 when not defined.
As it was mentioned earlier, the restriction to Gh of the continuous modifications

ofψρ, fρ, gρ are in l p,h , l p,h-valued, and l p,h(l2)-valued processes, respectively. The
coefficients above are bounded, so as we have already seen, there exists a unique l p,h-
valued solution vh , in particular, it is bounded. Therefore vh/ρ is a solution of (2.5)
and has polynomial growth.

By choosing ε small enough, |δh,λρ/ρ| can be made arbitrarily small, uniformly
in x ∈ R

d , λ ∈ �, |h| < 1. In particular, we can choose it to be small enough such
that p̂γ

h ≥ 0. Moreover, all of the smoothness and boundedness properties of the
coefficients are preserved. Therefore (4.11)–(4.12) is a finite difference scheme for
the Eqs. (4.9)–(4.10) such that it satisfies Assumptions 2.4 through 2.7. Claims (iii)
and (iv) then follow from applying Theorems 2.2 and 2.4.
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