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Abstract Westudyhowcontinuous timeBertrand andCournot competitions, inwhich
firms producing similar goods compete with one another by setting prices or quantities
respectively, can be analyzed as continuumdynamicmean field games. Interactions are
of mean field type in the sense that the demand faced by a producer is affected by the
others through their average price or quantity. Motivated by energy or consumer goods
markets, we consider the setting of a dynamic game with uncertain market demand,
and under the constraint of finite supplies (or exhaustible resources). The continuum
game is characterized by a coupled system of partial differential equations: a backward
Hamilton–Jacobi–Bellman partial differential equation (PDE) for the value function,
and a forward Kolmogorov PDE for the density of players. Asymptotic approximation
enables us to deduce certain qualitative features of the game in the limit of small
competition. The equilibrium of the game is further studied using numerical solutions,
which become very tractable by considering the tail distribution function instead of
the density itself. This also allows us to consider Dirac delta distributions to use
the continuum game to mimic finite N -player nonzero-sum differential games, the
advantage being having to deal with two coupled PDEs instead of N . We find that,
in accordance with the two-player game, a large degree of competitive interaction
causes firms to slow down production. The continuum system can therefore be used
qualitative as an approximation to even small player dynamic games.
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1 Introduction

Oligopoly models of markets with a small number of competitive players go back to
the classical works of Cournot [7] and Bertrand [3] in the 1800s. These have typically
been static (or one-period) models, where the existence and construction of a Nash
equilibrium have been extensively studied. We refer to Vives [21] for a survey. In
the context of nonzero-sum dynamic games between N players, each with their own
resources, the computation of a solution is a challenging problem, typically involv-
ing coupled systems of N nonlinear partial differential equations (PDEs), with one
value function per player. This is further complicated when the players’ resources are
exhaustible and the market structure changes over time as players deplete their capac-
ities and drop out of competition. See, for instance, [10] in a Cournot framework, and
[16] in a Bertrand model.

On the other hand, mean field games (MFGs) proposed by Lasry and Lions [15] and
independently byHuang et al. [12,13] allow one to handle certain types of competition
in the continuum limit of an infinity of small players by solving a coupled systemof two
PDEs. The interaction here is such that each player only sees and reacts to the statistical
distribution of the states of other players. Optimization against the distribution of other
players leads to a backward (in time) Hamilton–Jacobi–Bellman (HJB) equation; and
in turn their actions determine the evolution of the state distribution, encoded by
a forward Kolmogorov equation. We refer to the survey article [9] and the recent
monograph [1] for further background.

Our goal here is to understand the relationship between oligopoly games in the
traditional Nash equilibrium sense and their appropriately-defined mean field coun-
terpart, especially the approximation of one by the other. We look at oligopoly models
for markets with differentiated but substitutable goods, and in continuous time with
potentially randomfluctuations in demands. Thefirmshave different production capac-
ities representing their different sizes, and the fraction of firms remaining decreases
over time as smaller firms exhaust their capacities and disappear from the market.

In Cournot competition where firms choose quantities of production, an example
might be oil, coal and natural gas in the energy market, while in a Bertrand model,
where firms set prices, an example might be competition between food producers
where consumers have preference for one type of food, but reduce their demand for it
depending on the average price of substitutes.We shall see that, in the continuummean
field versions of these games, where there is an infinite number of firms, the Cournot
andBertrandmodels are equivalent, in the sense that they result in the same equilibrium
prices and quantities. However, for concreteness, we will focus our exposition on
Bertrand competition, and, throughout, we work with linear demand systems.

In dynamic oligopoly problems with a finite number of players, the HJB system
of PDEs does not admit an explicit solution, except possibly in the monopoly case,
and one needs numerical means for computing the value functions as well as the
equilibrium strategies, which of course quickly becomes infeasible as the number of
players goes beyond three. Moreover, even in the two-player case, these equations are
hard to handle when the competition is strong. To overcome this problem, we study
the market dynamics when the number of firms tends to infinity and the resulting
interactions are modeled as a MFG.
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RelatedworksGuéant et al. [8,9] have considered amean field version of aCournot
game with a quadratic cost function. Lucas and Moll [19] study knowledge growth
in an economy with many agents of different productivity levels. In similar spirit,
Lachapelle and Wolfram [14] apply the mean field approach to model congestion
and aversion in pedestrian crowds. Here the forward/backward structure comes from
that a “smart” pedestrian anticipates the future behavior of the population and reacts
accordingly; while their collective behavior determines the evolution of the crowds.
Carmona and Delarue [4] provide a probabilistic analysis of a class of stochastic
differential games for which interaction between players is of mean field type and
show that solutions of the MFG do indeed provide approximate Nash equilibria for
gameswith a large number of players. In a subsequent paper, Carmona et al. [5] discuss
the similarities and the difference between theMFG approach and control ofMcKean–
Vlasov dynamics via analysis of forward-backward stochastic differential equations.
A MFG model for analyzing systemic risk is presented in [6]. For a comprehensive
study of the uniqueness and existence of equilibrium strategies of a general class of
MFGs in the linear-quadratic framework, we refer to Bensoussan et al. [2].

Organization and Results

• In Sect. 2, we present the model for Bertrand competition with differentiated
goods and discuss the finite player and continuum limit MFG for the one-period
problem. We see that the MFG equilibrium is formally the limit of finite player
Nash equilibrium.

• In Sect. 3, we introduce the dynamic Bertrand MFG problem with exhaustible
capacities and set up the resulting forward/backward PDE system.We give explicit
calculations for the monopoly problem.

• In Sect. 4, we obtain an asymptotic expansion in powers of a parameter that rep-
resents the extent of competition between the firms in a deterministic game. This
captures the principle effects and quantifies the effect of product substitutability.

• In Sect. 5, we present the numerical solution of the forward/backward system of
PDEs that allows us to characterize the price strategies and resulting demands of
firms in the stochastic game.

• This allows us to compare and contrast the pricing strategies in the MFG approx-
imation to the N -player game in Sect. 6. Here we use the Dirac delta functions
to mimic the finite player case, and by considering the tail distribution function
instead of the density itself, numerical solutions become very tractable, especially
in the deterministic setting.

We conclude in Sect. 7.

2 Linear Demand, Continuum Limit and Static MFG

To motivate the form of demand functions we are going to use in the continuumMFG,
we first study a finite market with N firms who produce substitutable goods which
compete formarket share in a one-period game.Associated to eachfirm i ∈ {1, . . . , N }
are variables pi ∈ R, qi ∈ R+ representing the price and quantity at which firm i offers
its good for sale to the market. We denote by p the vector of prices whose i th element
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is pi , similarly the i th element of the vector q is qi . In the Cournot model, players
choose quantities as a strategic variable in non-cooperative competition with the other
firms, and the market determines the price of each good. In a Bertrand competition,
which we will use as our main focus, firms set prices, and the market determines its
demand for each type of good.

2.1 Linear Demand System

The market model is specified by linear inverse demand functions, which give prices
as a function of quantity produced, and are the basis of Cournot competition. Our
firms are suppliers, and so quantities are nonnegative. For q ∈ R

N+ , the price received
by player i is pi = Pi (q) where

Pi (q) = 1 − (qi + εq̄i ) , where q̄i = 1

N − 1

∑

j �=i

q j , i = 1, · · · , N ,

and 0 ≤ ε < N − 1. (1)

The inverse demand functions are decreasing in all of the quantities. In the linear
model (1), some of the prices pi = Pi (q)may be negative, meaning player i produces
so much that he has to pay to have his goods taken away, but we will see negative
prices do not arise in competitive equilibrium.

The parameter ε measures the degree of interaction or product substitutability, in the
sense that the price received by an individual firm decreases as the other firms increase
production of their goods. In particular, the case ε = 0 corresponds to independent
goods. In this paper, we will consider the two cases of fixed and finite N as well as
the continuum limit where N = ∞, and study how varying the interaction parameter
ε affects the competitive equilibrium.

The dependence of the price player i receives depends on the quantities produced
by his competitors through their mean q̄i . That is, the interaction is of mean field type.
In particular, the inverse demand (1) takes the form 1 − p = Aq, where A can be
written as a rank-one update to the identity matrix

A =
(
1 − ε

N − 1

)
I + ε

N − 1
11T , where 1 = (1, · · · , 1)T .

As a consequence, the demand function q = A−1(1 − p) can be computed explicitly
using the Sherman–Morrison formula [20]. However, the demands must be nonnega-
tive and so the inversion process is as follows. First order the price vector p ∈ R

N such
that p1 ≤ · · · ≤ pN , so that resulting demandswill be decreasing in the player number.
We need to find the largest n ≤ N such that player n receives nonnegative demand,
while the players above him setting higher prices will have their demands set to zero.

More specifically, for given n we invert the first n equations in (1) to give

D(n)
i (p) = an − bn pi + cn p̄

n
i , p̄ni = 1

n − 1

n∑

j �=i

p j , (2)
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where the positive coefficients (an, bn, cn) are given by

an = 1(
1 + ε n−1

N−1

) , bn = 1 + ε n−2
N−1(

1 + ε n−1
N−1

) (
1 − ε

N−1

) ,

cn = ε n−1
N−1(

1 + ε n−1
N−1

) (
1 − ε

N−1

) . (3)

Note that our assumption ε < N − 1 in (1) implies the system is invertible and that
bn > cn > 0, and we also observe that an + cn = bn .

Then we find the largest n such that D(n)
n (p) ≥ 0, and the actual demands are given

by

qi = Di (p) =
{
an − bn pi + cn p̄ni , i = 1, 2, · · · , n
0 i = n + 1, · · · , N .

(4)

These demand functions are the basis of Bertrand competition. The demand for player
i’s good, qi = Di (p), is decreasing in his own price and increasing in the prices of
his competitors, again through their mean p̄ni .

Remark 1 Such a linear demand systemcanbederived fromaquadratic utility function
of the form

U (q) =
N∑

i=1

qi − 1

2

⎛

⎝
N∑

i=1

q2i + ε

N − 1

∑

j �=i

qi q j

⎞

⎠ ,

and solving the utilitymaximization problemmaxq∈RN+ U (q)−q ·p for a representative
consumer; the first-order condition gives Eq. (1). We refer to Vives [21, Chapt. 6] for
more details.

Continuum Analog In the continuum limit N → ∞, the continuous variable
corresponding to n/N in the finite player game is denoted by η ∈ [0, 1], which is
the proportion of players who receive positive demand. The demand received by a
representative producer decreases with his own price p and increases with the average
price p̄ charged by the other producers. We define the demand function, by analogy
with (2) and (3), to be

D(η)(p, p̄) = a(η) − b(η)p + c(η) p̄, η > 0, (5)

where the continuum limits of (3) are

a(η) = 1

(1 + εη)
, b(η) = 1, c(η) = εη

(1 + εη)
, (6)

and the average price p̄ will be defined for the static game in the next section, and for
the dynamic game in Sect. 3. We note also that c(η) < b(η) = 1, and a(η) + c(η) =
b(η) = 1.
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Remark 2 In the traditional Cournot literature (see, for example, [21]), the inverse
demand functions, Pi in (1), are written as depending on the other players’ total
quantity instead of the average q̄i , which amounts to taking ε = N − 1. In this
case, the goods are termed homogeneous in the sense that the prices are the same for
each players’ goods and the one price is Pi (q) ≡ P(q) = 1 − ∑N q j . This is the
case considered in the static and dynamic games in [10]. For a Bertrand game, when
ε = N − 1, the system (1) is not invertible, and this corresponds to the classical
Bertrand “winner takes all” model in which all demand goes to the player offering the
lowest price. This type of competition typically results in a Nash equilibrium in which
players set prices equal to cost and somake zero profit. This “tough” competitive effect
is not usually seen in markets, and a differentiated (or substitutable) goods Bertrand
model is more reasonable. This is the basis of the static and dynamic games in [16].
For a discussion and comparison between the four static games (Cournot and Bertrand
with homogeneous or differentiated goods), we refer to [18].

Remark 3 In this section, we are going to associate each player with a constant mar-
ginal cost of production, even though there is no explicit production cost in the dynamic
MFG. But as we will see in Sect. 3, the exhaustibility of production capacity induces
a shadow cost that will play the role of marginal cost in this section.

2.2 Static Bertrand Games

Here we consider the static Bertrand game of N players and the continuum MFG
version of it, and show that the limit of the former’s Nash equilibrium price vector as
N → ∞ gives the solution of the latter.

2.2.1 N-Player Games

There are N players who have constant marginal costs of production 0 ≤ s1 ≤ · · · ≤
sN , which are “small enough” (made precise in (11) below) such that all the players
are active, in the sense of receiving positive demand in the Nash equilibrium computed
below. In other words, when using the demand functions (4), we only have to consider
n = N . (The case where some costs are higher and so some firms are “blockaded”
from competition and receive zero demand in equilibrium is considered in detail in
[18]).

The optimization problem faced by each firm i is

max
pi

(aN − bN pi + cN p̄i ) (pi − si ), p̄i = 1

N − 1

∑

j �=i

p j . (7)

The first order condition for each player gives

p∗
i = 1

2bN
(aN + bN si + cN p̄i ) , i = 1, · · · , N . (8)
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This is the best response of player i if the other players play prices with average p̄i .
We say (p∗

1, · · · , p∗
N ) is a Nash equilibrium when the best response equations (8)

intersect, that is

p̄i = 1

N − 1

∑

j �=i

p∗
j for all i = 1, · · · , N .

Throughout, we will not attach a ∗ to p̄.
The system of equations (8) is scalarized by averaging over the players. Summing

over i and dividing by N , we find that the average price p̄ = 1
N

∑N
i=1 p

∗
i is given by

p̄ = 1

2bN − cN

(
aN + bN s̄

(N )
)

, where s̄(N ) = 1

N

N∑

i=1

si . (9)

Note that p̄ is well-defined as bN > cN . In particular it depends on the costs only
through their average s̄(N ).

The individual Nash equilibrium prices p∗
i are given by (8), where p̄i , the average

without player i , can be written in terms of the full average p̄ as

p̄i = N

N − 1
p̄ − 1

N − 1
p∗
i ,

the difference | p̄i − p̄| being small as N → ∞. Substituting back in to (8), we obtain

p∗
i = 1

2bN + cN
N−1

(
bN si + aN + NcN

N − 1
p̄

)
. (10)

The resulting demands or quantities sold are given by q∗
i = (

aN − bN p∗
i + cN p̄i

)
.

A sufficient and necessary condition that all players receive positive demand, that is
q∗
i > 0, is that the highest cost sN is small enough. In [18, Theorem 4.1], this is shown
to be equivalent to

sN < smax
N := θN + εs̄(N−1)

θN + ε
, where θN =

(
1 − ε

N − 1

) ⎛

⎝
2 +

(
2N−3
N−1

)
ε

1 +
(
N−2
N−1

)
ε

⎞

⎠ ,

(11)

which restricts how far the highest cost sN can be from the average s̄(N−1) =
1

N−1

∑N−1
j=1 s j of the lower cost players. See [18] for further details, as well as the

Nash equilibrium in other cases where (11) does not hold.
If we assume that as more players are added the limit s̄ = limN→∞ s̄(N−1) is finite,

then we have

smax
N → 2 + εs̄

2 + ε
as N → ∞. (12)
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We shall see shortly that this limit coincides with the maximum marginal cost in the
continuum MFG.

Moreover, using the limits of aN , bN , cN as N → ∞ given in Eq. (6), with η = 1
in the case that all firms are active in equilibrium, we have

p̄ → 1

2 + ε
+ 1 + ε

2 + ε
s̄,

and so

p∗
i → 1

2

(
si + 2

2 + ε
+ ε

2 + ε
s̄

)
, and q∗

i → 1

2

(
2

2 + ε
+ ε

2 + ε
s̄ − si

)
.

(13)

We shall again recover the same result from solving the continuum MFG.

2.2.2 Continuum MFG

In the static continuum MFG, there is an infinite number of players labeled by x > 0,
with associated density M(x) and marginal cost of production s(x). (In the static
model, the label x is really not necessary: one could label the players by their costs
s and put a density M(s). However, in the dynamic game of Sect. 3, x will denote
the remaining capacities of the players, so we retain it here). As in the finite-player
example above, we suppose that the marginal costs s(x) are “small enough” (made
precise in (19) below) for all x > 0 such that all the players are active, in the sense of
receiving positive demand in the MFG solution we now compute. In other words, we
take η = 1 in the MFG demand function (5)–(6).

A player at location x optimizes his profit as though he is unable to affect the mean
price p̄:

max
p

(a(1) − p + c(1) p̄) (p − s(x)), (14)

where we have used the continuum demand function defined in (5) and (6). Given p̄,
the first order condition gives

p∗(x) = 1

2
(s(x) + a(1) + c(1) p̄) . (15)

The mean price p̄ is

p̄ =
∫ ∞

0
p∗(x)M(x) dx,

and now the continuum system (15) is scalarized by multiplying by M and integrating
over x , which leads to

p̄ = 1

2 − c(1)
(s̄ + a(1)) , where s̄ =

∫ ∞

0
s(x)M(x) dx . (16)
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Note that p̄ is well-defined as c < 1. Substituting back into (15), we find the optimal
price p∗(x):

p∗(x) = 1

2

(
s(x) + 2

2 + ε
+ ε

2 + ε
s̄

)
, (17)

which is the continuum analog of the limit of p∗
i in (13). The demands are given by

q∗(x) = D(1)(p∗(x), p̄) = a(1) − p∗(x) + c(1) p̄

= 1

2

(
2

2 + ε
+ ε

2 + ε
s̄ − s(x)

)
, (18)

which is the continuum analog of the limit of q∗
i in (13). The q∗(x) in (18) are positive

for all x > 0 if and only if

s(x) <
2 + εs̄

2 + ε
, ∀x > 0, (19)

which is the continuum analog of (11) and identical to the N → ∞ limit (12). Note
also that it turns out the profit function is simply the square of the quantity:

�(x) = q∗(x)
(
p∗(x) − s(x)

) = (
q∗(x)

)2
.

Eventually we would like to use the MFG machinery to approximate finite player
games, and oneway to do this is by taking the densityM to be a series of delta functions
centered at the points {xi | s(xi ) = si }: M = 1

N

∑N
i=1 δxi . Then, as in the discrete

case, we have p̄ = 1
N

∑N p∗(xi ) and s̄ = 1
N

∑N s(xi ). The optimal price set by the
player at xi is

p∗(xi ) = 1

2
(a(1) + si + c(1) p̄) , si = s(xi ),

where p̄ is given in (16). Comparing this with the discrete case in Eqs. (10) and (9),
we see that the only differences are (a(1), b(1), c(1)) ≈ (aN , bN , cN ) and N

N−1 ≈ 1,
which quantifies the O(N−1) approximation of the finite player static game by the
continuum MFG.

2.3 Cournot–Bertrand Equivalence as N → ∞ and in the Continuum

Next, we contrast the difference between the static N -player Cournot and Bertrand
competitions, and how the difference vanishes in the continuum limit. We focus on
interior equilibrium in which all firms participate.
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2.3.1 Comparison of Cournot and Bertrand N-Player Games

For the N -player games, let q and p be the vector of quantities and prices respectively.
We denote by P the N × N matrix with 1’s on the diagonal and ε/(N −1) everywhere
else, so that the inverse demand system (1) for the Cournot problem can be written

p = 1 − Pq, where 1 = (1, · · · , 1)T .

From this, we have q = P−1(1 − p), which gives the demand system (4) (with
n = N ) for the Bertrand problem:

q = aN1 − Qp, where Q = P−1.

We note that Q is the matrix with bN on the diagonal and −cN/(N − 1) everywhere
else, and aN1 = P−11 (which is just the observation aN + cN = bN ).

Cournot competition Here firms choose quantities, and so player i solves

max
qi

qi (1 − (Pq)i − si ),

which leads to the Nash equilibrium intersection of the first-order conditions (I +
P)q∗ = 1 − s, where s is the vector of costs. Therefore, the Cournot equilibrium
quantities are given by q∗ = (I + P)−1(1 − s), and the corresponding prices p∗

c =
1 − Pq∗ are given by

p∗
c = (I + P)−11 + P(I + P)−1s. (20)

Note that the average Cournot quantity q̄ and price p̄c satisfy (1 + ε)q̄ = (1 − p̄c),
which follows from 1TP = (1 + ε)1T ; and it is straightforward to compute

q̄ = 1 − s̄(N )

2 + ε
, p̄c = 1

2 + ε
+ 1 + ε

2 + ε
s̄(N ), (21)

where s̄(N ) is the average of the costs. One can also compute the profit of each player:

�i = q∗
i (p∗

c,i − si ) = (
q∗
i

)2
.

Bertrand competition Here, as in (7), firm i solves maxpi (pi − si )(aN − (Qp)i ),
which leads to the first order conditions, intersected to find the Nash equilibrium p∗
that solves the linear system:

(Q + bN I )p
∗ = aN1 + bN s.

Multiplying by P and using that aN1 = P−11, we have (I + bNP)p∗ = 1 + bNPs,
which gives

p∗ = (I + bNP)−11 + bNP(I + bNP)−1s,
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where we have used an obvious commutation between P and (I + bNP)−1 (both
being rank one updates of a diagonal matrix). This coincides with the prices (20) from
the Cournot competition only if bN = 1, which is true only when the number of
players goes to infinity. Indeed, since bN = 1 + O(N−1), the difference between the
Cournot and Bertrand solutions is O(N−1). The Bertrand equilibrium demands are
q∗
b = aN1 − Qp∗ and we can compute that the profit is given by:

�i = q∗
b,i (p

∗
i − si ) = 1

bN

(
q∗
b,i

)2
.

Furthermore, we also have that the average Bertrand demand q̄b is given in terms of
the average price p̄ by (1+ ε)q̄b = (1− p̄), which follows from 1TQ = (bN −cN )1T

and bN − cN = aN = 1
1+ε

. From the formula (9), we have

p̄ = 1 − ε
N−1

2 + ε − 2ε
N−1

+
1 + ε

(
N−2
N−1

)

2 + ε
(
N−3
N−1

) s̄(N ),

q̄b = 1

1 + ε

⎛

⎝1 + ε − ε
N−1

2 + ε − 2ε
N−1

−
1 + ε

(
N−2
N−1

)

2 + ε
(
N−3
N−1

) s̄(N )

⎞

⎠ ,

and so the average Bertrand price and quantity do not equal their Cournot counterparts
given in (21), but | p̄ − p̄c|, |q̄b − q̄| → 0 as N → ∞ at rate N−1.

2.3.2 Cournot Continuum MFG

This observation anticipates that the Bertrand and Cournot continuum MFGs lead
to the same equilibrium prices and quantities. To see this, consider the continuum
Cournot game where, as in Sect. 2.2.2, there is an infinite number of players labeled
by x > 0, with associated density M(x) and marginal cost of production s(x). The
optimization problem faced by a player at position x > 0 is

max
q

q (1 − q − εq̄ − s(x)) , q̄ =
∫

qM,

where the continuum inverse demand function P(q, q̄) = 1− q − εq̄ is the analog of
(1).

The first order condition gives

q∗(x) = 1

2
(1 − s(x) − εq̄) ,

and integrating with respect to M leads to

q̄ = 1

2 + ε
(1 − s̄) .
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Therefore we obtain

q∗(x) = 1

2

(
2

2 + ε
+ ε

2 + ε
s̄ − s(x)

)
,

which is the same as found from the Bertrand continuum MFG, Eq. (18).
We shall see in Appendix that Cournot–Bertrand equivalence also hold in the

dynamic MFG with exhaustible resources. We introduce the Bertrand version of this
problem in the next section.

3 Dynamic Mean Field Game with Exhaustible Capacities

We look now at a dynamic problem in which firms sell goods over time, but have
different capacities or inventories, modeling that they are of different size. As they
exhaust their supplies or reserves, they no longer participate and the market shrinks,
but the demand functions adjust consistently according to (5). In the static game
of the previous section, players were differentiated by their costs of production. In
the dynamic N -player Bertrand games considered in [16], firms have different finite
production capacities and, for simplicity, zero production costs.However, thefirmswill
be faced with nonzero shadow costs due to the exhaustibility of production capacities.
Here, we analyze the continuum mean field version of this problem. As mentioned
in the introduction, the Cournot and Bertrand models give the same result in the
continuum limit; we focus our exposition on Bertrand competition for concreteness.

There is an infinity of producers setting prices for their goods. At time t = 0, the
density of players with remaining capacity x > 0 is given by M(x), where

∫
M = 1.

Initial capacity x allows us to distinguish between bigger and smaller players. As time
evolves, some players exhaust their capacity by selling all their goods and drop out of
competition, and we denote by m(t, x) the “density” of firms with positive capacity
at time t > 0. Let η(t) be the fraction of active firms remaining at time t :

η(t) =
∫

R+
m(t, x) dx, R+ = (0,∞). (22)

In general, we expect η(t) < 1 for large enough t > 0, and it plays the role of n/N in
the discrete setting. We define the exhaustion time T of the game to be the first time
η hits zero, and all the quantities introduced in the following are defined for t < T .

Given the price p(t, x) set by one of these players at time t , the expected demand
for his good is

q(t, x) = D(η(t))(p(t, x), p̄(t)) = a(η(t)) − p(t, x) + c(η(t)) p̄(t), (23)

where the functions a and c were defined in (6), and p̄ is the average price at time t
given by

p̄(t) = 1

η(t)

∫

R+
p(t, x)m(t, x) dx . (24)

123



Appl Math Optim (2015) 71:533–569 545

The average price p̄ is the continuum counterpart of p̄ni in (2), which denotes the
average price charged by the remaining firms except the i th one. In the continuum
limit, a single firm no longer affects the average price, and hence p̄ depends on t but
not on x .

The actual demands are subject to random fluctuations and we model this with an
additive Gaussian white noise Ẇt so that the actual demand is given by q(t, x)−σ Ẇt .
The remaining capacity (or reserves) (Xt )t≥0 of any producer depletes according to
the actual demand and follows the dynamics

dXt = −q(t, Xt ) dt + σ dWt , (25)

as long as Xt > 0, and Xt is absorbed at zero. As in [9], the Brownian motion W is
specific to the agent considered, and σ ≥ 0 is a constant.

Remark 4 As an alternative interpretation to the random fluctuations of capacity
reserves, we consider the energy production market where the Cournot model is
appropriate (as remarked earlier, we will show in Appendix that the Cournot model
is equivalent to the Bertrand model in the continuum limit). Here firms determine the
extraction rates of the exhaustible resources such as oil or natural gas, and the fluc-
tuations in production capacities may be due to noisy seismic estimation of the oil or
gas well.

A firm that starts with capacity x > 0 at time t ≥ 0 sets prices over the horizon
[t, T ) to maximize the lifetime profit discounted at constant rate r > 0 over Markov
controls pt = p(t, Xt ), with the corresponding demand qt = q(t, Xt ) given by (23).
The value function of the firm is defined by

u(t, x) = sup
p

E

{∫ ∞

t
e−r(s−t) psqs1{Xs>0} ds | Xt = x

}
, x > 0.

The indicator function describes that the player is exhausted when Xt hits zero and he
no longer can produce and earn revenue.

Dynamic Programming and the HJB Equation

The associated HJB equation is

∂t u + 1

2
σ 2∂2xxu − ru + max

p≥0

[(
a(η(t)) − p + c(η(t)) p̄(t)

)
(p − ∂xu)

]
= 0.

(26)

We observe that the internal optimization is the static MFG equilibrium problem (14),
butwith effective shadow cost (or scarcity) s(x) �→ ∂xu(t, x). Thefirst-order condition
in (26) gives

p∗(t, x) = 1

2

(
a(η(t)) + ∂xu(t, x) + c(η(t)) p̄(t)

)
. (27)
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Substituting (27) into (24), we have

p̄(t) = 1

η(t)

∫

R+

1

2

(
a(η(t)) + ∂xu(t, x) + c(η(t)) p̄(t)

)
m(t, x) dx,

from which we obtain

p̄(t) = 1

2 − c(η(t))

(
a(η(t)) + 1

η(t)

∫

R+
∂xu(t, x)m(t, x) dx

)
. (28)

From (23), the optimal (equilibrium) demand is given by

q∗(t, x) = 1

2

(
a(η(t)) − ∂xu(t, x) + c(η(t)) p̄(t)

)
. (29)

Therefore, the HJB equation (26) is

∂t u + 1

2
σ 2∂2xxu − ru + 1

4

(
a(η(t)) − ∂xu + c(η(t)) p̄(t)

)2

= 0, x > 0. (30)

When a player reaches x = 0, his reserves are exhausted and he no longer earns
revenue, so we have u(t, 0) = 0. Moreover, at time T all capacities are exhausted and
u(T, x) = 0. The time T is not known a priori and has to be determined endogenously.

The average price p̄ is computed from the density m(t, x) of the distribution of
reserves Xt which evolve by dynamics (25), with q = q∗ given by (29). It is the
solution of the forward Kolmogorov equation

∂tm − 1

2
σ 2∂2xxm + ∂x

(
−1

2

(
a(η(t)) − ∂xu + c(η(t)) p̄(t)

)
m

)
= 0

m(0, x) = M(x), (31)

where p̄ depends on m through (28) and M is the given initial density of reserves.
We will distinguish between stochastic and deterministic cases:

• In the first case σ > 0, we shall assume that m is a C1,2 function and therefore
a classical solution to (31). When x is close to zero, the short-term behavior is
dominated by the Brownian motion. Once a player is driven to zero he cannot be
revived by the Brownian motion, meaning that the effect of noise is predominately
one-sided. Hence we have the boundary condition m(t, 0) = 0 because players
close to zero will “rapidly” be absorbed into zero.

• In the deterministic case σ = 0, there is no boundary condition at x = 0. In this
case we also want to consider the case where the initial distribution is a sum of
delta functions to mimic the situation of finite player games. Therefore we assume
the initial density M and the later density m exist in the sense of distributions, and
that the inner products with test functions are C1 in time.
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The system (30) and (31) is an instance of what Lasry and Lions [15] have called
a MFG. The forward/backward system of PDEs is coupled through p̄ in (28) and η

in (22). Existence, uniqueness and regularity of solutions to the MFG system is an
ongoing challenge and a subject of active research, and we do not attempt to prove
these properties here. In the following we shall assume sufficient regularity of u andm
for our asymptotic calculations to hold, but remark that the perturbation is around the
monopoly case ε = 0 which is explicitly solvable, and regularity of solution can be
seen directly. The validity of our assumptions is backed up by numerical experiments
in Sects. 5 and 6. We also note that our model does not fit into the linear-quadratic
framework studied by Bensoussan et al. [2], for which there are explicit solutions,
because of the nonlinear dependence of p̄ on the state variable and mean field term.

3.1 Lifetime Production and Total Profit

We define here two useful objects of study for analyzing the effects of competition.
The output rate Q at time t can be defined as

Q(t) =
∫

R+
q∗(t, x)m(t, x) dx . (32)

From (23), q∗(t, x) = a(η(t)) − p∗(t, x) + c(η(t)) p̄(t), and so we can also
write the output rate Q in terms of the average equilibrium price as Q(t) =
[a(η(t)) − p̄(t) + c(η(t)) p̄(t)] η(t).

In the deterministic setting, we expect that the integral of the output rate over time
to be simply the total initial capacity. We define the lifetime production to be

Lifetime production =
∫ T

0
Q(t) dt,

and this quantity is invariant under change in the level of competition. This invariance
can serve as a useful check for the numerical quality of our code when an explicit
solution is not available. The following proposition makes precise the above observa-
tion.

Proposition 1 In the deterministic setting, the lifetime production depends only on
the initial capacity distribution via

∫ T

0
Q(t) dt =

∫

R+
xM(x) dx . (33)

Proof Notice equation (31) is ∂tm = ∂x (q∗m). Hence we have

− d

dt

∫

R+
xm(t, x) dx = −

∫

R+
x∂tm dx = −

∫

R+
x
d

dx

[
q∗m

]

dx =
∫

R+
q∗(t, x)m(t, x) dx = Q(t),
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where the boundary terms in the integration-by-parts clearly vanish. Then integrating
this expression in time gives

∫ T

0
Q(t) dt =

∫ T

0

(
− d

dt

∫

R+
xm(t, x) dx

)
dt =

∫

R+
xM(x) dx .

�
We define the total profit rate �(t) by

�(t) =
∫

R+
p∗(t, x)q∗(t, x)m(t, x) dx (34)

= 1

4

((
a(η(t)) + c(η(t)) p̄(t)

)2
η(t) −

∫

R+

(
∂xu(t, x)

)2
m(t, x) dx

)
.

We will use this to demonstrate the effect of competition in Sect. 5.

3.2 Monopoly with Deterministic Demand (σ = 0)

Ultimately, our goal is to quantify the effects of market competition in the continuum
meanfield setting.We do so by studying the first-order corrections to the value function
and density in the presence of small but nonzero degree of product substitutability. In
preparation for the asymptotic expansion, we first look at the case when ε = 0, which
implies that c in (6) is identically zero, so the goods are independent and the players are
monopolists in their own markets. In this subsection, we also suppose that demand is
deterministic, so that σ = 0. Later on in Sect. 4 we will see that the monopoly solution
corresponds precisely to the zeroth order expansion in our asymptotic approximation.

From Eq. (6), when ε = 0, a is constant and equal to 1. Let (u0,m0) be the value
function and density in this case. Then Eq. (30) becomes

∂t u0 − ru0 + 1

4
(1 − ∂xu0)

2 = 0, x > 0,

with u0(t, 0) = 0. The solution is time-independent and given by u0(t, x) = u0(x)
solving

1

4
(1 − u′

0)
2 = ru0, u0(0) = 0. (35)

Proposition 2 The solution u0 to the ODE with boundary condition give in (35) is

u0(x) = 1

4r

(
1 + W

(
θ(x)

))2
, θ(x) = −e−2r x−1, (36)

where W is the Lambert W-function defined by the relation x = W(x)eW(x) with
domain x ≥ −e−1 and for x ∈ (−1/e, 0), we take the principal branchW(x) > −1.
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The economically sensible solution is given by the principal branch of W, as this
ensures that the shadow (or scarcity) cost u′

0(x) → 0 as x → ∞.

Proof One can check that−1 ≤ W(z) < 0 for z ∈ [−e−1, 0
)
, withW

(−e−1
) = −1,

and for z > −e−1

W
′(z) = W(z)

z (1 + W(z))
.

It is now clear that Eq. (36) indeed satisfies Eq. (35) and the zero boundary condition.
�

From the explicit solution of u0, we can rewrite Eq. (25) as the ordinary differential
equation (ODE)

X ′(t) = −1

2

(
1 + W

(
θ(X (t))

))
, X (0) = x0. (37)

Proposition 3 Equation (37) can be solved in closed form and the solution is given
by

X (t; x0) = x0 − 1

2
t + 1

2r
(1 − ert )W

(
θ(x0)

)
. (38)

Proof Consider the function defined by f (t) = W
(
θ(X (t))

)
. A short calculation

shows that f ′(t) = r f (t), and hence

W
(
θ(X (t))

) = W
(
θ(x0)

)
ert . (39)

Using this one can integrate the ODE (37) to get (38). �
We observe that Eq. (39) is the famous Hotelling’s rule [11]. Recall that the shadow

cost in the monopoly setting is simply

u′
0(x) = −W

(
θ(x)

)
. (40)

Then Eq. (39) says that u′
0(X (t)) = u′

0(x0)e
rt . In other words, along the optimal

extraction path, the shadow cost grows at the discounting rate r . In the case of linear
demand, Hotelling’s rule can be equivalently written as

d

dt

(
p∗(t, X (t)) − 1

2

)
= r

(
p∗(t, X (t)) − 1

2

)
, ⇒

p∗(t, X (t)) = 1

2

(
1 − ert

) + p∗(0, x0)ert .

That is, the (shifted) optimal price p∗ grows at the discount rate r along the optimal
extraction path.
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We define the hitting time τ : R+ → R+ to be the time to exhaustion in the
deterministic monopoly market starting at initial capacity x0:

τ(x0) = inf{t ≥ 0 | X (t; x0) ≤ 0}. (41)

Proposition 4 The hitting time is given explicitly by:

τ(x0) = 2x0 + 1

r

(
1 + W

(
θ(x0)

))
. (42)

Formula (42) follows directly from (38). The hitting time τ is monotonic increasing as
expected; for large x0, τ grows linearly in x0. In fact, in the deterministic setting, when
the initial density M has compact support [0, xmax], it follows that the exhaustion time
T is given by T = τ(xmax). For the density, recalling from Eq. (6) that a ≡ 1 and
c ≡ 0 when ε = σ = 0, the forward Kolmogorov equation (31) becomes

∂tm0 − 1

2
∂x

(
(1 − u′

0)m0
) = 0, (43)

with m0(0, x) = M(x).

Proposition 5 The solution to Eq. (43) is given by

m0(t, x) = 1 + W
(
θ(x)

)
e−r t

1 + W
(
θ(x)

) M
(
X (−t; x)). (44)

Proof The solution follows from the method of characteristics. For fixed (t, x), we
define the characteristic curve by the ODE

z′(s) = −1

2

(
1 + W

(
θ(z(s))

))
, z(t) = x, (45)

whose solution is precisely the monopoly capacity trajectory started at (t, x): z(s) =
X (s−t; x).Along the curve z(s), the function m̃0(s) =

(
1+W

(
θ(z(s))

))
m0(s, z(s))

is constant, and in particular we have

m0(t, x) = 1

1 + W
(
θ(x)

) m̃0(t) = 1 + W
(
θ(z(0))

)

1 + W
(
θ(x)

) M(z(0))

= 1 + W
(
θ(x)

)
e−r t

1 + W
(
θ(x)

) M
(
X (−t; x)),

using Hotelling’s rule (39) and the definition of X . �
It turns out that the integral of m0, or the proportion of remaining active firms η0,

can be computed in closed-form.
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Proposition 6 Given the distribution M : R+ → R+ of the initial capacity x0, the
proportion η0 : R+ → [0, 1] of remaining players, as defined by Eq. (22), is given by

η0(t) = 1 − F
(
τ−1(t)

)
(46)

where F denotes the cumulative distribution function (CDF) of the initial distribution
M, and τ−1 is the inverse function of τ in (42), explicitly given by

τ−1(t) = t

2
− 1

2r

(
1 − e−r t) .

Proof First we note both sides of Eq. (46) evaluate to 1 at t = 0. It suffices to show
that the time derivatives on both sides are equal for all t > 0. Using Eq. (43), we have

η′
0(t) =

∫

R+
∂tm0(t, x) dx = 1

2

∫

R+
∂x

(
(1 − u′

0)m0
)
dx

= 1

2

(
1 + W

(
θ(x)

))
m0(t, x)

∣∣∣∣
∞

0+
= −1

2
(1 − e−r t )M

(
X (−t; 0)),

where we have used that m0(t, x) → 0 as x → ∞. Now, since that X (−t; 0) =
τ−1(t), we recognize the last line is precisely the time derivative of 1 − F

(
τ−1(t)

)
,

the right-hand side of Eq. (46). �
Proposition 7 In the case of monopoly, the average equilibrium price p̄0 is given by

p̄0(t) = 1

2

(
1 − I (t)

η0(t)

)
, (47)

where I satisfies the first-order linear ODE

I ′(t) − r I (t) = −η′
0(t), I (0) =

∫

R+
W

(
θ(x)

)
M(x) dx . (48)

Proof We see from Eq. (28) with ε = 0 that the average equilibrium price is given by
(47), where, using the formula (36) for u0, we define I (t) = ∫ ∞

0 W
(
θ(x)

)
m0(t, x) dx .

Then we compute

I ′(t) =
∫

R+
W

(
θ(x)

) · ∂tm0(t, x) dx = 1

2

∫

R+
W

(
θ(x)

) · ∂x
(
(1 − u′

0)m0
)
dx

= 1

2
W

(
θ(x)

)(
1 + W

(
θ(x)

)
e−r t

)
M

(
X (t; x))

∣∣∣∣
∞

0
+ r

∫

R+
W

(
θ(x)

)
m0(t, x) dx

= −η′
0(t) + r I (t).

which gives (48). �
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This representation is convenient for numerical purposes because all we need is
to solve a first-order linear ODE to obtain the time evolution of the average equilib-
rium price p̄0. Moreover, we will see in Sect. 4 that this splitting is used to prove
certain qualitative features of first-order corrections to the game in the case of small
substitutability.

Finally, recall the output rate Q(t) defined in (32). In the monopoly setting, this
simplifies to

Q0(t) = η0(t)
(
1 − p̄0(t)

)
.

4 Small Competition Asymptotics Under Deterministic Demand

Having studied the monopoly problem where many quantities, including the value
function and density, are explicitly solvable, we are now ready to investigate the effect
of competition.We first note that ε = 0 (or equivalently a ≡ 1 and c ≡ 0 from Eq. (6))
is equivalent to stating that firms have independent goods in the sense that they operate
inmarkets without competingwith one another.When ε > 0, firms produce goods that
are actually in competition with one another. Our approach is to formally construct
a perturbation expansion around the non-competitive case for small ε > 0 to view
the effects of a small amount competition. Throughout this section, we work with
deterministic demand where σ = 0.

We will look for an approximation to the PDE system of the form

u(t, x) = u0(t, x) + ε u1(t, x) + ε2 u2(t, x) + · · · ,

m(t, x) = m0(t, x) + ε m1(t, x) + ε2 m2(t, x) + · · · . (49)

To leading order in ε, the demand coefficients a and c in (6) are given by

a(η(t)) = 1 − ε η0(t) + · · · , c(η(t)) = ε η0(t) + · · · ,

where η denotes the proportion of remaining players, and hence in the expansion

η = η0 + ε η1 + . . . , we have ηi (t) =
∫

R+
mi (t, x) dx, i = 0, 1, · · · . (50)

We also expand the average equilibrium price p̄(t) = p̄0(t) + ε p̄1(t) + · · · , where,
from (28), we find

p̄0(t) = 1

2

(
1 + 1

η0(t)

∫

R+
∂xu0(t, x) · m0(t, x) dx

)
.

4.1 First-Order Correction to Value Function

Inserting the expansion (49) for u into Eq. (30) and collecting terms independent of
ε, we recover the monopoly Eq. (35) for u0 whose solution is given by Eq. (36). We
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obtain the following equation for u1 by equating terms of order ε:

∂t u1 − 1

2

(
1 − u′

0

)
∂xu1 − ru1 = 1

2

(
1 − u′

0

)
(1 − p̄0) η0, u1(t, 0) = 0. (51)

Observe that Eq. (51) does not involve m1, and this greatly simplifies the solution
process for otherwise the forward-backward structure of MFGs typically requires an
iterative solver, with each iteration involving a finite-difference solution to somePDEs,
as we do in Sect. 5.

Proposition 8 The correction to the value function u1 is given by

u1(t, x) = −1

2

∫ τ(x)

0

(
e−rs + W

(
θ(x)

)) · (
1 − p̄0(t + s)

) · η0(t + s) ds, (52)

where τ(x) is given by Eq. (42). In particular, the first-order correction u1(t, x) is
negative for all (t, x).

Proof Using (40), Eq. (51) can be rewritten as

∂t u1 − 1

2

(
1 + W

(
θ(x)

))
∂xu1 − ru1 = 1

2

(
1 + W

(
θ(x)

))
(1 − p̄0) η0.

This is a first-order transport equation and can be solved by the method of charac-
teristics. Given fixed (t, x), we define the characteristic curve z as in (45). Then the
discounted first-order correction ũ1(s) = u1(s, z(s))e−r(s−t) satisfies the ODE along
the characteristic curve

ũ′
1(s) = 1

2

(
1 + W

(
θ(z(s))

))(
1 − p̄0(s)

)
η0(s)e

−r(s−t), ũ1(t + τ(x)) = 0.

Integrating from t to t + τ(x), we obtain

u1(t, x) = ũ1(t) = − 1
2

∫ t+τ(x)
t

(
1 + W

(
θ(z(s))

))
e−r(s−t)

(
1 − p̄0(s)

)
η0(s) ds,

using Hotelling’s rule (39). This yields (52) after a change of variable s �→ s + t . It
follows readily that u1 is negative for all (t, x) since

(1 − p̄0)η0 = 1

2
(η0 + I ) = 1

2

∫

R+

(
1 + W

(
θ(x))

))
m0(t, x) dx ≥ 0.

�

4.2 First-Order Correction to Density

Inserting the expansion (49) for m into Eq. (31) and collecting terms independent of
ε we recover Eq. (43) whose solution is given by Eq. (44). We obtain the following
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equation for m1 by equating terms of order ε:

∂tm1 − 1

2
∂x

(
(1 − u′

0)m1 + (−η0 + η0 p̄0 − ∂xu1)m0
) = 0, m1(0, x) = 0.

(53)

Proposition 9 The solution to Eq. (53) is given by

m1(t, x) =
∫ t

0

1 + W
(
θ(x)

)
e−r(t−s)

1 + W
(
θ(x)

) g
(
s, X (s − t; x)) ds, (54)

where

g(t, x) = 1

2
∂x

(
(−η0 + η0 p̄0 − ∂xu1)m0

)
,

and X (t; x) was given in Eq. (38).

Proof This follows from the method of characteristics. For fixed (t, x), we define the
characteristic curve by Eq. (45). Along the characteristic curve, the function

m̃1(s) =
(
1 + W

(
θ(z(s))

))
m1(s, z(s))

satisfies the ODE

m̃′
1(s) = g(s, z(s))

(
1 + W

(
θ(z(s))

))
, m̃1(0) = 0.

Integrating from 0 to t , and using the definition of m̃1 we obtain

m1(t, x) =
∫ t

0
g(s, z(s))

1 + W
(
θ(z(s))

)

1 + W
(
θ(x)

) ds =
∫ t

0
g(s, X (s − t; x))

1 + W
(
θ(x)

)
e−r(t−s)

1 + W
(
θ(x)

) ds.

�
We plot the first-order corrections to the value function and density in Figs. 1a and

1b respectively. Notice that the density correction is positive for large values of x , then
changes sign and becomes negative for smaller values of x . This suggests that firms
are exhausting their production capacity more slowly in the presence of competition
and hence the capacity distribution is shifted away from zero. We will see that this is
indeed the case in a later Proposition 10.

Remark 5 We observe that expansion of the form (49) may lead to negative density.
This leads us to consider a multiplicative asymptotic perturbation for m given by
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(a) (b)

(c) (d)

Fig. 1 Small substitutability expansion under deterministic demand, where r = 0.2 and the initial capacity
is chosen to following the beta distribution with shape parameters α = 2, β = 4.

m(t, x) ≈ m0(t, x)

(
1 + tanh

(
ε m1(t, x)

m0(t, x)

))
. (55)

Using that tanh x = x + O(x3) for small x , one can show that (55) agrees with
(49) up to first order in ε. Moreover, since tanh x ∈ (−1, 1) for all x , we obtain a
positivity-preserving asymptotic perturbation for m.

4.3 First-Order Correction to Demands and Capacity Trajectories

Expanding the equilibrium demand q∗ given by (29) as q∗ = q0 + ε q1 + O(ε2), we
have

q0 = 1

2

(
1 − u′

0

)
, q1 = 1

2
(−η0 + η0 p̄0 − ∂xu1) .

Solving Eq. (25) yields the first-order correction to the capacity trajectories, which we
plot in Fig. 1 for various values of ε. In Fig. 1c we plot the first order correction to
the equilibrium demand q1 and observe that it is negative. We show that this is true in
general in the following proposition.

Proposition 10 The first order correction to the equilibrium demand q is negative,
that is q1 ≤ 0 for 0 ≤ t ≤ T and x ≥ 0.
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Proof In light ofEq. (51), it suffices to show that ∂t u1−ru1 ≥ 0 since 1+W
(
θ(x)

) ≥ 0
for x ≥ 0. To this end, we first notice that e−rs +W

(
θ(x)

) ≥ 0 for 0 ≤ s ≤ τ(x) and
x ≥ 0. Now using the explicit form of u1 in Eq. (52), it suffices to show that

(−η0 + η0 p̄0)
′ − r(−η0 + η0 p̄0) ≥ 0.

First we rewrite

η0 p̄0 = 1

2

(
η0 +

∫

R+
∂xu0 · m0 dx

)
= 1

2
(η0 − I )

where I satisfies the differential Eq. (48).
It follows that (−η0 +η0 p̄0) = − 1

2 (η0 + I ). The claim follows immediately since

(−η0 + η0 p̄0)
′ − r(−η0 + η0 p̄0) = 1

2
rη0 ≥ 0.

�
The asymptotic approximation to first order demonstrates the principal effect of

competition in the continuum MFG compared with the monopoly case: demand for
the goods drop, the firms sell at a slower rate and so take longer to exhaust their
capacities, and so their density is shifted away from zero. We investigate these effects
further by numerical methods in the next two sections. Expressions for the higher
order terms in the expansions are given in Appendix.

5 Numerical Analysis

We have been able to capture many of the qualitative features of the model analytically
in the case of deterministic demand using the asymptotic expansions of the previous
section. However, in order to fully analyze the case where ε is not so small, or in the
stochastic model σ > 0, we have to solve the PDE system numerically.

In the deterministic monopoly game, the density m(t, x) becomes singular as x →
0 when players begin to exhaust their capacities. Similar problematic behavior is
expected in the case of substitutable goods, and this renders accurate numerical solution
to the forward equation difficult. It turns out, however, that the tail distribution function
η̄(t, x), defined by

η̄(t, x) =
∫ ∞

x
m(t, y) dy, (56)

is more amenable to numerical treatment. Substituting Eq. (56) into the forward Kol-
mogorov equation (31), we get for t ≥ 0 and x ≥ 0

∂t η̄(t, x) − 1

2
σ 2∂2xx η̄(t, x) − 1

2

(
a(η(t)) − ∂xu(t, x) + c(η(t)) p̄(t)

)
∂x η̄(t, x) = 0,

(57)
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with initial condition

η̄(0, x) =
∫ ∞

x
M(y) dy.

Note that while M may be singular at certain values of x (for instance certain cases
of the Beta distribution or, later when we take M to be a sum of delta functions),
η̄(0, x) is bounded and, even in the extreme example of delta functions, still piecewise
continuous.

5.1 Solution Strategy

We employ an iterative algorithm to calculate the MFG solution. Starting with initial
guesses (η0, p̄0) for (η, p̄), we follow for n = 0, 1, 2, . . . :

Step 1. Given (ηn, p̄n), solve the HJB equation (30) to calculate un :

∂t u
n + 1

2
σ 2∂2xxu

n − run + 1

4

(
a(ηn(t)) + ∂xu

n(t, x) + c(ηn(t)) p̄n(t)
)2 = 0,

un(t, 0) = 0.

We have the terminal condition un(T, x) = 0. In practice we do not know T
and choose Tmax to be significantly larger than (for instance double) its monopoly
counterpart τ(xmax). Then the strategy pn,∗ and the corresponding demand qn,∗
are given by

pn,∗(t, x) = 1

2

(
a(ηn(t)) + ∂xu

n(t, x) + c(ηn(t)) p̄n(t)
)
,

qn,∗(t, x) = 1

2

(
a(ηn(t)) − ∂xu

n(t, x) + c(ηn(t)) p̄n(t)
)
.

Step 2. Given the price pn,∗ and demand qn,∗, solve Eq. (57) for η̄n+1:

∂t η̄
n+1 − 1

2
σ 2∂2xx η̄

n+1 − qn,∗(t, x)∂x η̄n+1(t, x) = 0, η̄n+1(0, x) = η̄(0, x).

Then generate new (ηn+1, p̄n+1) from

ηn+1(t) = η̄n+1(t, 0), mn+1(t, x) = ∂x η̄
n+1(t, x), p̄n+1(t)

= 1

ηn+1(t)

∫

R+
pn,∗(t, x)mn+1(t, x) dx .

When (ηn+1, p̄n+1) is close enough to (ηn, p̄n), we call (un,mn) a solution to the
MFG. Steps 1 and 2 themselves involve PDE solvers using finite difference which we
describe in more detail.
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Step 1 Using the method of lines, we discretize the HJB equation in the space
dimension but not in time and solving the resulting system of ODEs using the fourth-
order Runge-Kutta method.

Step 2 In the stochastic case, we apply the standard finite difference method. In the
deterministic case, we can write the forward Kolmogorov equation in terms of the tail
distribution η̄ as

∂t η̄
n+1(t, x) − qn,∗(t, x)∂x η̄n+1(t, x) = 0, η̄n+1(0, x) =

∫ ∞

x
M(y) dy.

In this form, it is clear that η̄n+1 just gets transported along the characteristics

d

dt
xn+1(t) = −qn,∗(t, xn+1(t)), xn+1(0) = x0.

It therefore suffices to solve a family of ODEs with different initial x0.

5.2 Results and Observations

5.2.1 Deterministic Bertrand Games (σ = 0)

We illustrate the numerical results with one instance of the model, where we choose
ε = 0.3, r = 0.2 and assume a beta distribution with shape parameters α = 2, β = 4
for the initial capacity. See Fig. 2 for the convergence graph in this case, we note that
the iterative solver converges very rapidly, often in less than 10 iterations.

Figure 3d compares the average equilibriumprice p̄ in Bertrand competition against
the monopoly case. Figure 3c shows the proportion of remaining players in Bertrand

Fig. 2 Convergence of L1 error in the iterative solver, for deterministic Bertrand competition, with model
parameters as in Fig. 3. Here we take the final iteration of our algorithm as a proxy as the true solution, and
measure the L1 error by ‖η − ηtrue‖L1 .
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(a) (b)

(c) (d)

(e) (f)

Fig. 3 Various descriptive statistics of deterministic Bertrand competition, where r = 0.2 and the initial
capacity is assumed to follow a beta distribution with shape parameters α = 2, β = 4.

competition as well as the monopoly case. Figure 3e compares the output rate Q
in Bertrand competition against the monopoly case. Figure 3a shows the capacity
trajectories for various initial values in Bertrand competition as well as the monopoly
case.

In the presence of competition, firms are more cautious and exhaust their produc-
tion capacity more slowly, as shown in Fig. 3c and 3a. This is in accordance with
Proposition 10 where an asymptotic expansion is used to show that production is
slowed down in the presence of competition. Although each firm reduces their pro-
duction level, and hence the decrease in the output rate Q as shown in Fig. 3e, as
the game proceeds further, the production level in the presence of competition is
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actually above the monopoly level. This is because firms are more cautious in the
competitive market and find themselves with higher production capacities as the game
unfolds, even though they each chooses a smaller production level than they would in
monopoly, overall we still see an increase in the production level. This is in accordance
with Proposition 1 since the time integral of Q has to be invariant to the degree of
competition ε. Figure 3f shows the total profit rate �(t) defined in (34): it is initially
higher in the case ε = 0 of many firms producing independent goods, but declines
more quickly as resources become scarce and firms drop out than when ε > 0 and
competition enforces greater discipline in price setting close to exhaustion.

5.2.2 Stochastic Bertrand Games (σ > 0)

For σ > 0, the forward equation can no longer be solved using the method of char-
acteristics, and we need to specify the boundary conditions for η̄(t, x) and solve the
PDE using finite differences. We choose

lim
x→∞ η̄(t, x) = 0, lim

x→0
∂x η̄(t, x) = 0.

This is appropriate because we have an absorbing boundary at x = 0, that is to say,
once a firm hits zero, it is out of the game and cannot return.

Solving the full PDE using our iterative solver, we compare the average equilibrium
price in the presence of noise, with and without competition, see Fig. 4. We notice
that a high level of noise pushes down the average equilibrium price p̄ as well as
shortens the duration of game. This is expected since the effect of our stochastic term
is predominantly one-sided, once a firm exhausts their production capacity, they cannot
be revived by the Brownian motion. Moreover, a high level of noise washes out the
effects of competition, since the Brownian motion dominates the interactions between
competitive firms.

6 MFG Approximations to Deterministic Finite Player Games

Since real-world situations involve games with only a finite number of players, we
consider using the MFG framework to study the N -player game. The goal is to apply
theMFGmethodology to provide an efficient way to model situations with a moderate
to large number of players in the deterministic dynamic game where σ = 0.

The idea is to approximate an N -player game by an initial density of the form

M(x) = 1

N

N∑

i=1

δ(x − xi0),

where δ is the Dirac-delta function, and xi0 corresponds to the initial capacity of the
i th player. In the deterministic setting, we denote the hitting time of player i to reach 0
by τi , where i = 1, 2, . . . , N . The remaining proportion of active players η(t) is then
a pure jump function, with jump times given by (τi )1≤i≤N . The average equilibrium
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(a) (b)

(c) (d)

Fig. 4 Average equilibrium price p̄ and proportion of remaining players η, in the presence of noise.Dotted
lines and solid lines represent respectively the monopoly and competitive case. Initial capacity is assumed
to follow a beta distribution with shape parameters α = 2, β = 4. Other relevant model parameters are
r = 0.2, σ = 0.1 (low noise), or σ = 0.5 (high noise).

price p̄(t) will also jump across τi . We describe the algorithm we use to solve the
MFG in this setting.

6.1 Discretization Algorithm

Again the solution to the discrete MFG depends on an iterative algorithm. We modify
our scheme slightly to take advantage of the discrete nature of the problem at hand.
Starting with the initial guess u0 = u0 in (36) for the value function u,

we follow

Step 1. Given un , solve N ODEs

d

dt
xn,i (t) = −qn,∗(t, xn,i (t)), xn,i (0) = xi0.

We obtain, in particular, τ n,i for i = 1, 2, . . . , which is the hitting time of the i th
player, in the nth iteration. Then for τ n,k−1 < t ≤ τ n,k , we have

ηn(t) = ηnk = N − k + 1

N
,
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(a)

(c) (d)

(e) (f)

(b)

Fig. 5 MFG approximation to the N -player game, in the case of 10 players with initial sizes given by
(0.08, 0.14, 0.19, 0.24, 0.29, 0.34, 0.39, 0.45, 0.53, 0.66), and ε = 0.3.

p̄n(t) = 1

2 − c(ηn(t))

(
a(ηn(t)) + 1

ηn(t)

1

N

N∑

i=k

∂xu
n
(
t, xn,i (t)

))
.

Step 2. Given (ηn, p̄n), we solve the HJB PDE (30) to obtain a new guess for the
value function un+1.

We iterate until the updated approximation for (η, p̄) is close enough to the previous
iterate. See Fig. 5d, e for the average equilibrium price p̄ and output rate Q, respec-
tively, in a numerical example, with initial capacity distribution of the N -players is
specified in the caption. As N increases, we can use this discrete algorithm to approxi-
mate the continuousMFG, thus providing another way to solve theMFG PDE system.
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6.2 Comparison with Two-Player Bertrand Competition

In the two-player case, each firm has a fixed lifetime capacity of production at time
t = 0 denoted by xi (0), and where xi (t) denotes the remaining capacity at time t . Each
firm i chooses a dynamic pricing strategy, pi = pi (x(t)) where x(t) = (x1(t), x2(t)).
Given these prices, each firm i receives market demand at a rate Di (p1, p2), where
Di are given in (4) with n = N = 2. Their capacities deplete as:

dxi
dt

(t) = −Di (p1 (x(t)) , p2 (x(t))) .

The value functions of the two firms are

Vi (x1, x2) = sup
pi≥0

{∫ ∞

0
e−r t pi (x(t)) Di (p1 (x(t)) , p2 (x(t))) 1xi (t)>0 dt

}
.

As long as both players have resources, this is a duopoly. After the first player has
exhausted his capacity, the other player has a monopoly until he also runs out of
reserves. As detailed in [17], a dynamic programming argument for nonzero-sum
differential games yields that these value functions, if they have sufficient regularity,
satisfy the following system of PDEs:

sup
pi≥0

{
−D1(p1, p2)

∂Vi
∂x1

− D2(p1, p2)
∂Vi
∂x2

+ pi Di (p1, p2)

}
− rVi = 0,

(x1, x2) ∈ R
2+,

Vi |xi=0 = 0, Vi |x j=0 = u0(xi ), i = 1, 2, j �= i,

where u0 given in (36) is the monopoly value function.
In [17], the following asymptotic approximation is constructed in the small ε limit.

The value function of player i is expanded as

Vi (x1, x2) = u0(xi ) + εv
(1)
i (x1, x2) + O(ε2).

The correction v
(1)
i is given, for x1 > x2, by

v
(1)
1 (x1, x2) = 1

4r

(
e−r�(x2) (1 + r�(x2)) − e−r�(x1) (1 − r�(x2))

+ e−r(�(x1)+�(x2)) − 1
)

, (58)

where�(x) = − 1
r log (−W (θ(x))), and, for x2 ≥ x1, by reversing the roles of x1 and

x2 in (58). The solution for v
(1)
2 is the same: v(1)

2 = v
(1)
1 . From these, approximations

to the Nash equilibrium prices and demands can be computed, and hence approximate
game trajectories xi (t).
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(a) (b)

Fig. 6 MFGapproximation for two-player game (solid), comparedwith the asymptotic expansion (dashed)
and the monopoly solution (dotted). Here we take ε = 0.3.

Numerical Example In the two-player game, the two firms have sizes 0.25 and 0.75
respectively, while the continuum MFG approximation uses two (equally weighted)
delta functions centered at 0.25 and 0.75. See Fig. 6 for the capacity trajectories in
the monopoly case (dotted), computed using the two-player asymptotic expansion
(dashed), and the MFG approximation (solid).

We notice that the MFG approximation predicts a more cautious behavior since the
firms are producing at a slower pace than the two-player solution. However, while the
continuum MFG overstates the extent of competition when used to approximate the
2-player game, the trajectories are remarkably close.

7 Conclusion

We have studied nonzero-sum stochastic differential games arising from Bertrand
competitions of mean field type with linear demand functions in the limit of an infinite
number of players. By considering the case where there is a small degree of interaction
between the firms, we are able to construct an asymptotic approximation that captures
many of the qualitative features of the ordinary differential games.Numerical solutions
provide further insight into the stochastic case and when there is a higher degree of
competition. By considering the tail distribution instead of the density itself, numerical
solution becomes very tractable.

We find that, in the presence of competition, firms tend to be more cautious and
slow down their production, and hence the duration of the game increases. Moreover,
firms find themselves left with a higher production capacity as the game proceeds, and
therefore total production Q goes up even though each individual firm reduces their
production level compared to the monopoly case. This leads to a more stable output
level throughout the lifetime production profile.

Moreover, we consider the case where the initial distribution of the production
capacity is a sum of delta functions. This setting mimics the case of finite player
games and allows us to compare the MFG solution with the two-player asymptotic
solution. Surprisingly, as seen in Fig. 6, the game trajectories are quite close even
when approximating a two-player game. Therefore the continuum MFG technology
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has excellent promise in approximating very difficult nonzero-sum differential game
problems with a small number of players.

Acknowledgments Work partially supported by NSF grant DMS-1211906. The second author (RS)
thanks Olivier Guéant for preliminary conversations on this problem.

Appendix 1: Asymptotic correction of arbitrary order

In this section we give expressions for successive terms in the small ε expansions
(49) for u and m in the deterministic MFG where σ = 0. It is straightforward to
compute the expansions for the coefficients α(t) = a(η(t)) and γ (t) = c(η(t)) using
the expansion for η(t) in (50). We also expand p̄(t). The terms in the three series
are labeled αk(t), γk(t) and p̄k(t) respectively, but we do not give their cumbersome
formulas here.

Value function

Inserting the expansion of u into the PDE (30) with σ = 0, we find that the kth-order
value function correction uk satisfies the equation

∂t uk − ruk − 1

2

(
1 + W

(
θ(x)

))
∂xuk = fk(t, x), uk(t, 0) = 0, (59)

where the inhomogeneous term fk is given by

fk(t, x) = −1

4

⎧
⎨

⎩

k−1∑

i=1

ξiξk−i + 2(1 − u′
0)

⎛

⎝αk +
k∑

j=0

γ j p̄k− j

⎞

⎠

⎫
⎬

⎭ ,

ξn = αn − ∂xun +
n∑

i=0

γi p̄n−i .

Observe that fk depends only on u j and m j for 0 ≤ j < k. Having solved for these
u j and m j , the uk equations can be solved in closed-form:

uk(t, x) = −
∫ τ(x)

0
e−rs fk (t + s, X (s; x)) ds, (60)

where X (t; x) is the capacity trajectory starting from x , given by (38).

Density

The kth-order density correction mk satisfies the equation

∂tmk − 1

2
∂x

(
(1 − u′

0)mk

)
= gk(t, x), mk(0, x) = 0, (61)
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where the inhomogeneous term gk is given by

gk(t, x) = 1

2

k∑

i=1

∂x (ξimk−i ) .

Again we see that gk depends only on u j and m j for 0 ≤ j < k. Then mk can be
written as

mk(t, x) =
∫ t

0

1 + W
(
θ(x)

)
e−r(t−s)

1 + W
(
θ(x)

) gk
(
s, X (s − t; x)) ds. (62)

Appendix 2: Cournot–Bertrand Equivalence in the Stochastic Dynamic CMFG

In this section we show that in the continuummean field setting, the dynamic Cournot
game and Bertrand games are identical. We first derive the Cournot MFG PDEs.

Dynamic Cournot Mean Field Game

As in the Bertrand game described in Section 3, there is an infinity of players on x > 0
with initial density M(x). Here they choose quantities of production qt = q(t, Xt )

which deplete the remaining capacity of the producers (Xt ) following the dynamics

[dXt = −q(t, Xt ) dt + σ dWt ,]

as long as Xt > 0, and Xt is absorbed at zero. Here W is a Brownian motion, and
σ > 0 is a constant. The Cournot market model is specified by the inverse demand
function pt = 1− (qt + εq̄(t)), where % ε measures the degree of interaction, and q̄
is the mean production.Wewill denote bymc(t, x) the “density” of firms with positive
capacity at time t > 0, and by ηc(t) = ∫

R+ mc(t, x) dx the fraction of active firms
remaining. Then the average quantity is % defined in (22). Then we have

[ ¯q(t) =
∫

R+
q(t, x)mc(t, x) dx .]

The value function uc of the producers is

uc(t, x) = sup
q

E

{∫ ∞

t
e−r(s−t) psqs1{Xs>0} ds

∣∣∣∣ Xt = x

}
, x > 0. (63)

In analogy to the Bertrand game, we define the Cournot exhaustion time T c to be
the first time ηc reaches zero. The following quantities are defined for t < T c. The
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associated HJB equation is

∂t u
c + 1

2
σ 2∂2xxu

c − ruc + max
q≥0

(
1 − (

q + εq̄(t)
) − ∂xu

c
)
q = 0, x > 0.

(64)

The internal optimization is the static continuum mean field Cournot game (Section
2.3.2) with cost function s(x) �→ ∂xuc. The first-order condition gives

q∗(t, x) = 1

2

(
1 − εq̄(t) − ∂xu

c(t, x)
)
, (65)

with the optimal (equilibrium) price given by p∗(t, x) = 1
2 (1 − εq̄(t) + ∂xuc(t, x)).

Therefore, the HJB equation becomes

∂t u
c + 1

2
σ 2∂2xxu

c − ruc + 1

4

(
1 − εq̄(t) − ∂xu

c
)2

= 0, x > 0. (66)

When all the reserves are exhausted, the game is over and uc(t, 0) = 0.
The density mc(t, x) of the distribution of reserves is the solution of the forward

Kolmogorov equation

∂tm
c − 1

2
σ 2∂2xxm

c − 1

2
∂x

((
1 − εq̄(t) − ∂xu

c)mc
)

= 0, (67)

with mc(0, x) = M(x). The average demand is computed by averaging (65) with
respect to mc, which leads to

q̄(t) = 1

2 + εηc(t)

(
ηc(t) −

∫

R+
∂xu

c(t, x)mc(t, x) dx

)
. (68)

Equivalence of Bertrand and Cournot Problems

We start by recalling the Bertrand MFG equations:

0 = ∂t u + 1

2
σ 2∂xxu − ru + 1

4
(a(η(t)) − ∂xu + c(η(t)) p̄(t))2

0 = ∂tm − 1

2
σ 2∂xxm − 1

2
∂x ((a(η(t)) − ∂xu + c(η(t)) p̄(t))m)

p̄(t) = 1

2 − c(η(t))

(
a(η(t)) + 1

η(t)

∫
∂xu(t, x)m(t, x) dx

)
, (69)

where η(t) = ∫
R+ m(t, x) dx .
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If we define

q̄b(t) = 1

2 + εη(t)

(
η(t) +

∫
∂xu(t, x)m(t, x) dx

)
,

then it follows that (1 + εη)q̄b(t) = η(1 − p̄(t)) and hence

a(η(t)) + c(η(t)) p̄(t) = 1 − εq̄b(t).

Then Eqs. (69) can be written

0 = ∂t u + 1

2
σ 2∂xxu − ru + 1

4
(1 − εq̄b(t) − ∂xu)2

0 = ∂tm − 1

2
σ 2∂xxm − 1

2
∂x ((1 − εq̄b(t) − ∂xu)m) ,

and these are exactly theCournotCMFGequations (66), (67) and (68).As the boundary
conditions are the same, we have u ≡ uc, m ≡ mc and q̄ ≡ q̄b, and the Bertrand and
Cournot dynamic MFG problems are equivalent.
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