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Abstract We investigate the relation between optimal control and controllability for
a phase field system modeling the solidification process of pure materials in the case
that only one control force is used. Such system is constituted of one energy balance
equation, with a localized control associated to the density of heat sources and sinks
to be determined, coupled with a phase field equation with the classical nonlinearity
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1 Introduction and Main Result

Let� ⊂ R
3 be a bounded open set with a regular boundary � and O ⊂ � be a (small)

nonempty open subset. For T > 0, we consider the cylindrical domain Q = �×(0, T )
in R

4 with lateral boundary � = � × (0, T ); by ν = ν (x) we denote the outward
unit normal vector to � at a point x ∈ �.

Let us consider the following phase field system, which is usually used to model
the solidification process of certain pure materials occurring in a region �:

∣
∣
∣
∣
∣
∣
∣
∣
∣

ut −�u + lφt = v1O in Q,
φt −�φ − (

aφ + bφ2 − φ3
)− u = 0 in Q,

∂u

∂ν
= ∂φ

∂ν
= 0 on �,

u (0) = u0, φ (0) = φ0 in �.

(1.1)

Here, the function u = u (x, t) is related to the temperature of the material; φ =
φ(x, t) is the phase field functions used to identify the level of solid crystallization
present at point x ∈ � and time t ∈ [0, T ]; 1O denotes the characteristic function of O;
v is a control function to be determined, which physically corresponds to the density
of heat sources and sinks to be applied in O to control the solidification process; this
is what we call control force. The given constants l > 0, a > 0 and b depend on the
physical properties of the involved material; l in particular is related to the latent heat.
The initial data u0 and φ0 are suitable given functions.

As for the boundary conditions in (1.1), it is important to remark that for the phase
field φ the homogeneous Neumann boundary condition is the natural condition to
be imposed. This is so because it corresponds to the physical requirement that there
is no flux of phases at the boundary. Moreover, since the values of φ determine the
material phase, the imposition of Dirichlet type boundary conditions for φ would mean
that specific phases for material on the boundary should be maintained during the
solidification process, which is not an usual situation in practice. As for the boundary
conditions for the temperature, other possibilities could be considered, with similar
analysis (see, for instance, Benicasa et al. [1–3] and Moroşanu [4,5]).

Our main goal is to establish the connection between a controllability property and
optimal control problem for the system (1.1). More specifically, we want to show for
this system that the control v of the local null controllability is actually the limit of
a sequence of optimal controls. For this, we will also study a controllability problem
for the mentioned system.

System (1.1) is said to be exactly controllable for trajectories at time T > 0 if, for
any data {u0, φ0} and any globally defined trajectory {̃u, φ̃} (corresponding to the data
{̃u0, φ̃0} and ṽ), there exists a control v such that the corresponding solution of (1.1)
is also globally defined in [0, T ] and satisfies

u(·, T ) = ũ(·, T ) and φ(·, T ) = φ̃(·, T ) in �. (1.2)

When the trajectory is null, i.e., {̃u, φ̃} = {0, 0} (associated to ṽ = 0 and {̃u0, φ̃0} =
{0, 0}), the above definition is the formulation of the so-called null controllability for
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(1.1). This is equivalent to say that, for each {u0, φ0}, there exists v such that the
corresponding solution {u, φ} satisfies

u(·, T ) = φ(·, T ) = 0 in �. (1.3)

Before we describe in more detail our mathematical conclusions, let us comment
on the importance of the phase field technique as a modeling strategy.

Phase field models are diffuse interface models for phase change, that is, those
considering that the solid and liquid regions are separated by intermediate regions with
positive width and their own physical structure. These intermediate regions are called
mushy zones or transitions layers when the width may be small and are determined
by the values of some specific variables called phase fields; this means in particular
that the level sets of such fields separate the different phase regions. This kind of
modeling is perhaps the most successful way to model phase change because there is
incorporation of several important physical phenomena. A frequent realistic situation
in which the separation among the phases involve complex geometries (dendrites, for
instance) or low regularities.

Numerical simulations of such models, although difficult, are still possible. Some
papers that dealt with several numerical aspects related to phase field models are for
instance Benincasa and Moroşanu [1], Cheng and Warren [6], Hamide et al. [7], He
and Kasagi [8], Moroşanu [4,9], Rosam et al. [10], Sun and Beckermann [11], Tan
and Huang [12] and Zhao et al. [13].

Some papers showing the modeling flexibility of the phase field methodology and
its mathematical richness are Ahmad et al. [14], Benincasa et al. [2,3], Boldrini and
Vaz [15], Caginalp et al. [16–19], Cherfils et al. [20], Colli et al. [21], Gilardi et
al. [22,23], Jiménez-Casas [24], Karma [25], Krejcí et al. [26,27], Laurençot et al.
[28], McFadden et al. [29], Moroşanu [30], Nestler et al. [31], Penrose and Fife [32],
Planas [33] and Stiner [34]. The asymptotic behavior in time of the solutions for some
phase field models has been treated for instance in Aizicovici et al. [35,36], Bates
and Zheng [37], Brochet et al. [38], Jiang [39], Kapustyan et al. [40], Röger and
Tonegawa [41] and Sprekels and Zheng [42].

Next, we will briefly comment on some mathematically rigorous results that have
some connections to ours.

The present model was studied by Hoffman and Jiang [43], where they were able
to prove existence, uniqueness and regularity of solutions. Moreover, they also proved
the existence a optimal control v minimizing the cost functional

Fε(u, φ; v) = 1

2

∫

�

(

|u(x, T )− ud |2 + |φ(x, T )− φd |2
)

dx + ε

2

T∫

0

∫

O
|v|2dxdt,

(1.4)

where ε > 0 and the functions ud , φd are given.
Related to this issue, and considering one control in each equation, we can mention

the work [44] by Wang and Wang, which, by means of Carleman inequality, the authors
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have shown the existence of a pair of optimal time controls and the maximum principle
for a phase field system.

Concerning controllability questions, to compare ours to other results, we must
firstly observe that we can rewrite the equations of the system (1.1) as

∣
∣
∣
∣

ut −�u + f (u, φ) = −l�φ + v1O in Q,
φt −�φ + g (φ) = u in Q,

(1.5)

where now

f (u, φ) = lu + l
(

aφ + bφ2 − φ3
)

and g (φ) = −
(

aφ + bφ2 − φ3
)

. (1.6)

In [45], Barbu proved local exact controllability of (1.5) to the stationary solutions
by using two control forces. That is, he put an additional control term in the second
equation in (1.5) (the phase field equation). However, the inclusion of a control term
in the phase field equation can not be easily done in practice; in fact, in most usual
realistic situations, only the temperature can be subjected to some control. Besides,
Dirichlet boundary conditions were used in those papers.

In the more realistic setting of only one control force, but still with Dirichlet bound-
ary conditions, Ammar-Khodja et al. [46] proved the exact controllability to the trajec-
tories for a system similar to (1.5) in the case when f ≡ 0 and g is such that g (0) = 0
and

lim|s|→∞
g (s)

|s| ln3/2 (1 + |s|) = 0. (1.7)

In [47], Gonzáles-Burgos and Pérez-García proved the null controllability, the exact
controllability to the trajectories and the approximate controllability for (1.5) in the
case when f = f (u,∇u, φ,∇φ), under certain suitable conditions, and g also satis-
fying (1.7). So, they generalized the result in [46] and also improved the result in [45].

We point out that the function g given in (1.6) does not satisfy (1.7), and thus the
results used in [47] does not seem directly applicable to our case. However, the authors
in [47] commented that their controllability results, at least locally and with Dirichlet
boundary conditions, may be adapted for system (1.5).

In this paper, before to establish a connection between a certain optimal control
problem and the controllability one of the system (1.1), we state local controllability
properties for (1.1) in the Theorems 4.1 and 4.2. Note that we are dealing with the
more realistic Neumann boundary condition for the phase field and with a classical
nonlinearity derived from the two-wells potential. This controllability result improves
the one in [45], but we cannot say the same with respect to the results in [46] and [47],
since theirs and ours nonlinearities and boundary conditions are different.

To prove Theorems 4.1 and 4.2, we will adapt the ideas from [47], whose strategy
consists, firstly, to linearize the problem and then to introduce a fictitious control in the
second equation (phase field equation) of this linearized one. So we will prove the null
controllability of this linear system with two controls. To obtain this control property,
we will get an observability estimate for the solution of the corresponding adjoint
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system as a consequence of suitable Carleman and energy inequalities. In a second
step, we will eliminate the control in the phase field equation and will construct,
by using the parabolic regularizing effect of the problem, a control v that gives a
controllability of linearized problem. Finally, we will apply the Kakutani fixed point
theorem and we will deduce the claimed controllability result for the nonlinear phase
field system (1.1).

It is important to note that the control that leads to solution of a system to any
desired target states may not be unique. In this way, to build the desired control v in
Theorems 4.1 and 4.2 (see Sect. 3) we will make use of minimization of functionals
Jε (see 3.16).

In this work, we will establish that the sequence of solutions of optimal control
problem which minimize the functionals (1.4) converges to solution of the controlla-
bility problem obtained in the Theorems 4.1 and 4.2. This result is, in our opinion,
interesting from a computational point of view, since in practice is easier to treat with
the functionals Fε (see 1.4) than ones Jε (see 3.16). In numerical approximations
context and using the same type of ours cost functionals Fε , we can cite the paper [48]
by Cao, where this kind of limit behavior for an optimal control problem associated
to linear parabolic equations, was analyzed and simulations were presented.

The rest of the present work is organized as follows. In Sect. 2, we fix the notation
and recall certain known results to be used later on. Section 3 is dedicated to obtain
null controllability for the linearized system. In the first part of Sect. 3 it is obtained
null controllability for the linearized system by using two control functions. In the
second part, we eliminate one of these controls to obtain null controllability for the
linearized system by using only one control function. In Sect. 4 it is proved the local null
controllability for the nonlinear system and then we get the local exact controllability
to stationary trajectories. Finally, in Sect. 5 it is obtained a connection between the
proposed optimal control problem and the controllability one.

2 Preliminaries

In this section some definitions, notations and technical results involving regularity of
a linear parabolic system are presented. These results will be used latter.

Here we will use standard notations for Sobolev spaces, i.e., given 1 ≤ p ≤ +∞,
k ∈ N and any open set V ∈ R

n , we denote the usual Sobolev space by

W k
p(V) = { f ∈ L p(V) : Dα f ∈ L p(V), |α| ≤ k} and Hk(V) = W k

2 (V).

Properties for such spaces can be found for instance in Adams [49].
To study the Eq. (1.1), we will need the following functional spaces: let any 1 ≤

r ≤ ∞, T ∈ (0,∞), B a Banach space, δ ∈ [0, T ) and any open set V ∈ R
n , we

denote

Lr (0, T ; B) = {

f : (0, T ) → B : ‖ ‖ f (t)‖B ‖Lr ((0,T )) < +∞}

,

W 2,1
r (δ, T ;V) =

{

f ∈ Lr (δ, T ; W 2
r (V)) : ft ∈ Lr (V × (0, T ))

}

,

W 2,1
r (Q) = W 2,1

r (0, T ;�).

123



544 Appl Math Optim (2014) 70:539–563

For results concerning the last two spaces, we refer for instance to Ladyzenskaja
and Solonnikov [50] and Mikhaylov [51]. Here we recall a result that sometimes is
called the Lions–Peetre embedding theorem (see [52, p. 24]); it is also consequence
of Lemma 3.3, p. 80, in Ladyzhenskaya [50]:

Lemma 2.1 Let V ⊂ R
3 an open and bounded domain satisfying the cone property

and let Q(δ, T ;�) = �× (δ, T ), with 0 ≤ δ < T < ∞. Then W 2,1
r (Q(δ, T ;�)) ⊂

L p(Q(δ, T ;�)) with compact and continuous embedding for

(i) p <

(
1

r
− 2

5

)−1

if r < 5/2,

(ii) 1 ≤ p < ∞ if r = 5/2,
(iii) p = ∞ if r > 5/2.

We will also need the following Hilbert spaces:

W (0, T ) = { f ∈ L2(0, T ; H1(�)) : ft ∈ L2(0, T ; (H1(�))′)}

and

V =
{

f ∈ H2 (�) : ∂ f

∂ν
= 0 on�

}

.

In the sequel, C denotes a generic positive constant; sometimes we will explicitly
write its dependence on parameters; for instance, when we write C = C (�, T ), we
means that C only depends only on � and T .

Next, we present a result on existence, uniqueness and regularity of solutions of
the following liner parabolic system:

∣
∣
∣
∣
∣
∣
∣
∣
∣

ut −�u + lu + αφ = −l�φ + f1 in Q,
φt −�φ + βφ = u + f2 in Q,
∂u

∂ν
= ∂φ

∂ν
= 0 on �,

u (0) = u0, φ (0) = φ0 in �.

(2.1)

Proposition 2.2 Let l > 0 a constant and α, β ∈ L∞(Q) be given.

(i) If u0, φ0 ∈ L2(�) and f1, f2 ∈ L2(0, T ; (H1(�))′), then there exists a unique
weak solution {u, φ} ∈ [W (0, T )]2 of (2.1) in the following sense

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

T∫

0

[〈ut , v〉 + (∇u,∇v)+ l (u, v)+ (αφ, v)] dt

=
T∫

0

[l (∇φ,∇v)+ 〈 f1, v〉] dt in Q,

T∫

0

[〈φt , ϕ〉 + (∇φ,∇ϕ)+ (βφ, ϕ)] dt =
T∫

0

[(u, ϕ)+ 〈 f2, ϕ〉] dt in Q,

u (0) = u0, φ (0) = φ0 in �,

(2.2)
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for all {v, ϕ} ∈ [H1(�)]2, where 〈·, ·〉 denotes the pairing between (H1(�))′ and
H1(�) and (·, ·) denotes the inner product in L2(�).
Besides, this solution satisfies the estimate

‖{u, φ}‖[W (0,T )]2 ≤ C‖{u0, φ0}‖[L2(�)]2 + ‖{ f1, f2}‖[L2(0,T ;(H1(�)))′]2 ,

for some constant C = C
(

�, T, l, ‖α‖L∞(Q), ‖β‖L∞(Q)
)

> 0.

(ii) If u0, φ0 ∈ W 2−2/r
r (�) ∩ V and f1, f2 ∈ Lr (Q) for some r ∈ [2,∞), then the

weak solution {u, φ} of (2.1) belongs to [W 2,1
r (Q)]2 and satisfies the estimate

‖{u, φ}‖[W 2,1
r (Q)]2 ≤ C(‖{u0, φ0}‖[W 2−2/r

r (�)]2 + ‖{ f1, f2}‖[Lr (Q)]2),

for some constant C = C
(

�, T, l, ‖α‖L∞(Q), ‖β‖L∞(Q)
)

> 0.

The first part [item (i)] of the last proposition is proved by using Faedo-Galerkin
method. The second part [item (ii)] is proved by using (i) and a ’bootstrap’ argument.

By combining the local regularity of heat equation and a ’bootstrap’ argument the
following local regularity result is obtained for the linear parabolic system (2.1).

Proposition 2.3 Let l > 0 a constant, α ∈ L∞(Q), β ∈ L∞(Q), u0, φ0 ∈ L2(�)

and f1, f2 ∈ L2(0, T ; (H1(�))′) be given and let {u, φ} ∈ [W (0, T )]2 be the corre-
spondent unique solution of (2.1). Let V ⊂ � and O ⊂⊂ � be two open sets and let
r ∈ [2,∞) given.

(i) If f1, f2 ∈ Lr (δ, T ; Lr (�)) for some δ ∈ (0, T ), then {u, φ} ∈ [W 2,1
r (δ′, T ;�)]2

for any δ′ ∈ (δ, T ) and there exists constants C1 > 0, C2 > 0 depending on �,
l, ‖α‖L∞(Q), ‖β‖L∞(Q), independents of T such that

‖{u, φ}‖[W 2,1
r (δ′,T ;�)]2

≤ eC1T C2

(

1 + 1

δ′ − δ

)K
(‖{ f1, f2}‖[Lr (δ,T ;Lr (�))]2 + ‖{u, φ}‖[W (0,T )]2

)

,

where K > 0 is a constant.
(ii) If f1, f2 ∈ Lr (0, T ; Lr (V)) and u(x, 0) = φ(x, 0) = 0 in �, then {u, φ} ∈

[W 2,1
r (0, T ;V ′)]2 for any V ′ ⊂⊂ V ⊂ � and there exists a constant C =

C
(

�, l, ‖α‖L∞(Q), ‖β‖L∞(Q)
)

> 0 independent of T such that

‖{u, φ}‖[W 2,1
r (0,T ;V ′)]2

≤ C(1 + T )
(‖{ f1, f2}‖[Lr (0,T ;Lr (V))]2 + ‖{u, φ}‖[W (0,T )]2

)

.

(iii) If f1, f2 ∈ Lr (0, T ; Lr (�\O′)) and u(x, 0) = φ(x, 0) = 0 in �, then {u, φ} ∈
[W 2,1

r (0, T ;�\O)]2 for any O ⊂⊂ O′ ⊂⊂ � and there exists a constant C =
C
(

�, l, ‖α‖L∞(Q), ‖β‖L∞(Q)
)

> 0 independent of T such that

‖{u, φ}‖[W 2,1
r (0,T ;�\O)]2

≤ C(1 + T )
(

‖{ f1, f2}‖[Lr (0,T ;Lr (0,T ;�\O′))]2 + ‖{u, φ}‖[W (0,T )]2

)

.
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(iv) Assume that hypothesis in part (ii) are satisfied. Suppose also that f2, u ∈
Lr (0, T ; W 1,r (V)), ∇β ∈ Lγ (Q)3, with γ given by

γ =
{

max {r, 5/2} if r �= 5/2,
ε + 5/2 (for any ε > 0) if r = 5/2.

Then φ ∈ Lr (0, T ; W 3
r (V ′)) and φt ∈ Lr (0, T ; W 1

r (V ′)) for any V ′ ⊂⊂ V ⊂ �

and there exists a constant C = C
(

�, l, ‖α‖L∞(Q), ‖β‖L∞(Q)
)

> 0 independent
of T such that

‖φ‖Lr (0,T ;W 3
r (V ′)) + ‖φt‖Lr (0,T ;W 1

r (V ′)) ≤ C(1 + T )2(1 + ‖∇β‖Lγ (Q))

×
(

‖ f1‖Lr (0,T ;Lr (V) + ‖{ f2, u}‖Lr (0,T ;W 1,r
r (V) + ‖φ‖W (0,T )

)

.

3 Null Controllability for the Linear Phase Field System

In this section we will adapt the ideas from [47] to prove the null controllability for a
linear phase field system. Here, the strategy consists in to introduce a fictitious control
in the second equation (phase field equation) of the linearized system and prove the null
controllability of this linear system with two controls. To obtain this control property,
we will get an observability estimate for the solution of the corresponding adjoint
system as a consequence of suitable Carleman and energy inequalities. In a second
step, we will eliminate the control in the phase field equation and will construct,
by using the parabolic regularizing effect of the problem, a control v that gives a
controllability of linearized problem.

The aim of this section is to prove the null controllability property for the following
linear phase field system:

∣
∣
∣
∣
∣
∣
∣
∣
∣

ut −�u + lu + αφ = −l�φ + v1O in Q,
φt −�φ + βφ = u in Q,
∂u

∂ν
= ∂φ

∂ν
= 0 on �,

u (0) = u0, φ (0) = φ0 in �,

(3.1)

where α, β ∈ L∞ (Q). For this, we will study, initially, the null controllability for the
auxiliary linear system with two control forces:

∣
∣
∣
∣
∣
∣
∣
∣
∣

ut −�u + lu + αφ = −l�φ + v11O in Q,
φt −�φ + βφ = u + v21O in Q,
∂u

∂ν
= ∂φ

∂ν
= 0 on �,

u (0) = u0, φ (0) = φ0 in �.

(3.2)

After that we will eliminate the control in the phase field equation (3.2)2 and will
construct a control v that gives a null controllability of (3.1). We divide it into two
subsection.
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3.1 Null Controllability for Linear Phase Field System with Two Controls

For the linear phase field system (3.2) we have the following null controllability result:

Theorem 3.1 Let T > 0 and initial data u0, φ0 ∈ L2 (�) be given, then there exist
two control functions v1, v2 ∈ L2 (Q) such that the solution {u, φ} of (3.2) satisfies
(1.3). Furthermore, there exists a constant C = C(T, ‖α‖L∞(Q) , ‖β‖L∞(Q)) > 0
such that

‖{v1, v2}‖[L2(O×(0,T ))]2 ≤ C ‖{u0, φ0}‖[L2(�)]2 . (3.3)

The proof of this theorem is a consequence of the suitable observability property
for the following adjoint system:

∣
∣
∣
∣
∣
∣
∣
∣
∣

−ϕt −�ϕ + βϕ + αψ = −l�ψ in Q,
−ψt −�ψ + lψ = ϕ in Q,
∂ϕ

∂ν
= ∂ψ

∂ν
= 0 on �,

ϕ (T ) = ϕ0, ψ (T ) = ψ0 in �.

(3.4)

Precisely, we have to prove the observability result:

Theorem 3.2 Let T > 0 and initial data ϕ0, ψ0 ∈ L2 (�) be given, then there exists
a positive constant C such that

‖{ϕ (0) , ψ (0)}‖2
[L2(�)]2 ≤ C

∫

O×(0,T )

(

|ϕ|2 + |ψ |2
)

dxdt. (3.5)

Proof The proof of this observability result combines a suitable Carleman and energy
estimates for the solution of the adjoint system. We set

ξ (x, t) = eλη(x)

t (T − t)
, ρ (x, t) = eλη(x) − e

2λ‖η‖C(�)

t (T − t)
,

ρ̃ (x, t) = e−λη(x) − e
2λ‖η‖C(�)

t (T − t)
,

(3.6)

where λ > 0 and the function η ∈ C2
(

�
)

is such that

η > 0 in �, η = 0 on � and ∇η �= 0 in �\O′, (3.7)

with O′ ⊂⊂ O being an arbitrary fixed subdomain of�. We refer to [53] for the proof
of the existence of a function satisfying (3.7).

The following Carleman estimate for the solutions of (3.4) holds:
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Lemma 3.3 Let functions ξ, ρ and ρ̃ be defined as in (3.6). Then there exists a number
λ̂ > 0 such that for an arbitrary λ > λ̂, there exists a positive function s0 = s0 (λ)

such that for every s ≥ s0 the solutions of problem (3.4) satisfy the following inequality

∫

Q

[
(

s3ξ − C1 − C2T 2 − C1C2T 2l2
∥
∥eλη

∥
∥∞ s

) |ϕ|2 + s

ξ
|∇ϕ|2

]
(

e2sρ + e2sρ̃) dxdt

+
∫

Q

[(

s3ξ − C2T 4 ‖α‖∞
) |ψ |2 + sξ |∇ψ |2] (e2sρ + e2sρ̃) dxdt

≤ C2T 4
∫

O×[0,T ]

s3ξ3 |ϕ|2 (e2sρ + e2sρ̃) dxdt + C1

∫

O×[0,T ]

s3ξ3 |ψ |2 (e2sρ + e2sρ̃) dxdt

+ C1C2T 2l2
∥
∥eλη

∥
∥

2
∞

∫

O×[0,T ]

s4ξ3 |ψ |2 (e2sρ + e2sρ̃) dxdt, (3.8)

where the constants C1 > 0 depends continuously on λ and the constant C2 > 0
depends continuously on λ and ‖β‖∞ .

Proof of the Lemma 3.3 By applying the Carleman inequality (see [53]) in (3.4)2 we
can guarantee the existence of a number λ̂1 > 0 and of a positive function s1 = s1 (λ)

such that

∫

Q

[
1

sξ

(

|ψt |2 + |�ψ |2
)

+ sξ |∇ψ |2 + s3ξ3 |ψ |2
] (

e2sρ + e2sρ̃
)

dxdt

≤ C1

⎛

⎜
⎝

∫

Q

|ϕ|2
(

e2sρ + e2sρ̃
)

dxdt +
∫

O×[0,T ]

s3ξ3 |ψ |2
(

e2sρ + e2sρ̃
)

dxdt

⎞

⎟
⎠ ,

(3.9)

for λ > λ̂1 and s ≥ s1, where the positive constant C1 depends continuously on λ.
On the other hand, we see that the first equation of (3.4) is equivalent to

yt −�y + βy = − [t (T − t)]t ϕ − αt (T − t) ψ − lt (T − t)�ψ, (3.10)

where y = t (T − t) ϕ.
Thus, by applying once again the Carleman inequality to Eq. (3.10), we obtain the

existence of a number λ̂2 > 0 and of a positive function s2 = s2 (λ) such that

∫

Q

[
1

sξ

(

|yt |2 + |�y|2
)

+ sξ |∇ y|2 + s3ξ3 |y|2
] (

e2sρ + e2sρ̃
)

dxdt

≤ C2T 2
∫

Q

|ϕ|2
(

e2sρ + e2sρ̃
)

dxdt + C2T 4 ‖α‖∞
∫

Q

|ψ |2
(

e2sρ + e2sρ̃
)

dxdt
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+ C2T 2l2
∫

Q

t (T − t) |�ψ |2
(

e2sρ + e2sρ̃
)

dxdt

+ C2T 4
∫

O×[0,T ]

s3ξ3 |ϕ|2
(

e2sρ + e2sρ̃
)

dxdt, (3.11)

for λ > λ̂2 and s ≥ s2,where the positive constant C2 depends continuously on λ and
‖β‖∞ .

Since t (T − t) = eλη/ξ with λ > 0 and η ≥ 0 in �, we have by (3.9) that
∫

Q

t (T − t) |�ψ |2 (e2sρ + e2sρ̃) dxdt ≤ ∥
∥eλη

∥
∥∞ s

∫

Q

1

sξ
|�ψ |2 (e2sρ + e2sρ̃) dxdt

≤ C1
∥
∥eλη

∥
∥∞

⎛

⎜
⎝

∫

Q

s |ϕ|2 (e2sρ + e2sρ̃) dxdt +
∫

O×[0,T ]

s4ξ3 |ψ |2 (e2sρ + e2sρ̃) dxdt

⎞

⎟
⎠ ,

(3.12)

for λ > λ̂1 and s ≥ s1.

Taking λ̂ = max
{

λ̂1, λ̂2
}

and s0 = max {s1, s2} , for λ > λ̂ and s ≥ s0 we can
replace (3.12) in (3.11) to obtain

∫

Q

(
s

ξ
|∇ϕ|2 + s3ξ |ϕ|2

)(

e2sρ + e2sρ̃
)

dxdt

≤ C2T 2
∫

Q

|ϕ|2
(

e2sρ + e2sρ̃
)

dxdt + C2T 4 ‖α‖∞
∫

Q

|ψ |2
(

e2sρ + e2sρ̃
)

dxdt

+ C1C2T 2l2
∥
∥eλη

∥
∥∞

⎛

⎜
⎝

∫

Q

s |ϕ|2
(

e2sρ + e2sρ̃
)

dxdt

+
∫

O×[0,T ]

s4ξ3 |ψ |2
(

e2sρ + e2sρ̃
)

dxdt

⎞

⎟
⎠

+ C2T 4
∫

O×[0,T ]

s3ξ3 |ϕ|2
(

e2sρ + e2sρ̃
)

dxdt. (3.13)

By combining (3.9) and (3.13), we get the inequality (3.8). ��
In order to complete to proof of Theorem 3.2, it is sufficient to show the existence

of a positive constant C such that

‖{ϕ (0) , ψ (0)}‖2
[L2(�)]2 ≤ C

∫

Q

(

|ϕ|2 + |ψ |2
)

dxdt. (3.14)
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This can be easily done by means of classical energy estimates. In fact, by multiplying
the Eq. (3.4)1 by εϕ (ε > 0 to be chosen), (3.4)2 by ψ, integrating in � and adding
the obtained equations we can deduce that

−1

2

d

dt

∫

�

(

ε |ϕ|2 + |ψ |2) dx +
∫

�

[
ε

2
|∇ϕ|2 +

(

1 − εl2

2

)

|∇ψ |2
]

dx + l
∫

�

|ψ |2 dxdt

≤
(

1 + ε ‖α‖∞
2

+ ε ‖β‖∞
)∫

�

|ϕ|2 dxdt + 1 + ε ‖α‖∞
2

∫

�

|ψ |2 dx . (3.15)

Taking ε < 2/ l2 and integrating (3.15) in time from 0 to t , it follows that

∫

�

(

|ϕ (0)|2 + |ψ (0)|2
)

dx ≤ C
∫

�

(

|ϕ (t)|2 + |ψ (t)|2
)

dx

+ C

t∫

0

∫

�

(

|ϕ (x, τ )|2 + |ψ (x, τ )|2
)

dxdτ.

By majorizing the last integral by taking t = T in it, and then integrating in time from
0 to T , we obtain (3.14) and this concludes the proof of Theorem 3.2.

Now, we return to the proof of Theorem 3.1.
Proof of the Theorem 3.1 In view of the observability inequality (3.5), the null con-
trollability result of the linearized system can be proved as the limit of an approximate
controllability property. Let us first discuss the approximate controllability property.

Given u0, φ0 ∈ L2 (�) and ε > 0, we introduce the following functional:

Jε :
[

L2 (�)
]2 → R

Jε {ϕ0, ψ0} = 1

2

T∫

0

∫

O

(

ϕ2 + ψ2
)

dxdt + ε ‖{ϕ0, ψ0}‖[L2(�)]2

+
∫

�

[u0ϕ (0)+ φ0ψ (0)] dx, (3.16)

where {ϕ,ψ} is the solution of the adjoint system (3.4) with data {ϕ0, ψ0} .
The functional Jε is continuous and strictly convex in L2(�), and it is also coercive.

More precisely, arguing as in [54], it can be seen that

lim inf‖{ϕ0,ψ0}‖[L2(�)]2 →∞
Jε {ϕ0, ψ0}

‖{ϕ0, ψ0}‖[L2(�)]2
≥ ε. (3.17)

In this way, Jε has a unique minimizer in [L2 (�)]2. Let us denote it by {ϕ̂0,ε, ψ̂0,ε}.
Proceeding as in [54], it can be checked that the pair of controls

{

v1,ε, v2,ε
} =
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{ϕ̂ε, ψ̂ε}, where {ϕ̂ε, ψ̂ε} is the solution of (3.4) associated to minimizer {ϕ̂0,ε, ψ̂0,ε}
is such that the solution {u, φ} of (3.2) satisfies

‖{uε (T ) , φε (T )}‖[L2(�)]2 ≤ ε. (3.18)

The null-controllability property can be obtained as the limit when ε tends to zero
of the approximate controllability property above. However, to pass to the limit, we
need a uniform bound on the control. To get this bound, we observe that, by (3.5),

Jε {ϕ0, ψ0} = 1

2

T∫

0

∫

O

(

ϕ2 + ψ2
)

dxdt

−√
C

⎛

⎝

T∫

0

∫

O

(

ϕ2 + ψ2
)

dxdt

⎞

⎠

1/2

‖{u0, φ0}‖[L2(�)]2 . (3.19)

On the other hand,

Jε{ϕ̂0,ε, ψ̂0,ε} ≤ Jε{0, 0} = 0. (3.20)

By writing (3.19) for {ϕ̂0,ε, ψ̂0,ε}, the minimizer of Jε in L2(�), and combining
with (3.20), we deduce that

∥
∥
{

v1,ε, v2,ε
}∥
∥[L2(O×(0,T ))]2 ≤ 2

√
C ‖{u0, φ0}‖[L2(�)]2 , ∀ε > 0.

In other words,
{

v1,ε, v2,ε
}

remains bounded in [L2 (O × (0, T ))]2 as ε → 0. In this
way, by extracting subsequences, we deduce that, as ε → 0,

{

v1,ε, v2,ε
} → {v1, v2} weakly in [L2 (O × (0, T ))]2, (3.21)

for some pair {v1, v2} ∈ [L2 (O × (0, T ))]2.

It is easy to see that the limit {v1, v2} is such that the solution {u, φ} of (3.2) satisfies
(1.3). Moreover, by the lower semicontinuity of the norm with respect to the weak
topology and in view of (3.21), we get

‖{v1, v2}‖[L2(O×(0,T ))]2 ≤ lim inf
ε→0

∥
∥
{

v1,ε, v2,ε
}∥
∥[L2(O×(0,T ))]2

≤ 2
√

C ‖{u0, φ0}‖[L2(�)]2 ,

this completes the proof of Theorem 3.1. ��

3.2 Null Controllability for the Linear Phase Field System with One Control

For the linear phase field system (3.1), the following null controllability result holds:
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Theorem 3.4 let T > 0, r ≥ 2 and data u0, φ0 ∈ W 2−2/r
r (�) ∩ V be given,

then there exists a control function v ∈ Lr (Q) such that the solution {u, φ} of
(3.1) belongs to [W 2,1

r (Q)]2 and satisfies (1.3). Moreover, there exists a constant
C = C(T, ‖α‖L∞(Q) , ‖β‖L∞(Q)) > 0 such that

‖v‖Lr (O×(0,T )) ≤ C ‖{u0, φ0}‖[L2(�)]2 (3.22)

and

‖{u, φ}‖[W 2,1
r (Q)]2 ≤ C ‖{u0, φ0}‖[W 2−2/r

r (�)]2 . (3.23)

Proof Let with O1 be a regular nonempty open subset of� such that O1 ⊂⊂ O ⊂ �.
Let v̂1, v̂2 ∈ L2 (Q) be two controls provided by Theorem 3.1 associated to O1
and the solution {̂u, φ̂} of (3.2). We consider a function ζ ∈ C∞ ([0, T ]) such that
ζ ≡ 1 in [0, T/3] , ζ ≡ 0 in [2T/3, T ] , 0 ≤ ζ ≤ 1 and

∣
∣ζ ′ (t)

∣
∣ ≤ C/T in [0, T ] ,

and we introduce the change of variables

u = U + ζu and φ = �+ ζφ,

where
{

u, φ
}

solves

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ut −�u + lu + αφ = −l�φ in Q,
φt −�φ + βφ = u in Q,
∂u

∂ν
= ∂φ

∂ν
= 0 on �,

u (0) = u0, φ (0) = φ0 in �.

Notice that, the proof of the null controllability of (3.1) is reduced to find a control
v that solves the null controllability for the following system:

∣
∣
∣
∣
∣
∣
∣
∣
∣

Ut −�U + lU + α� = −l��− ζ ′u + v1O in Q,
�t −��+ β� = U − ζ ′φ in Q,
∂U

∂ν
= ∂�

∂ν
= 0 on �,

U (0) = �(0) = U (T ) = �(T ) = 0 in �.

(3.24)

Let us consider O2, O3 and O4 three regular open subsets of � such that O1 ⊂⊂
O2 ⊂⊂ O3 ⊂⊂ O4 ⊂⊂ O and a function θ ∈ D (O4) satisfying θ ≡ 1 in O2. We
Take

� = (1 − θ) �̂, U = (1 − θ) Û + θζ ′φ + 2∇θ · ∇�̂+ �̂�θ (3.25)

and

v = θζ ′u − 2l∇θ · ∇�̂− l�̂�θ + 2∇θ · ∇Û + Û�θ

+
(

d

dt
−�+ l

)
(

θζ ′φ + 2∇θ · ∇�̂+ �̂�θ
)

, (3.26)
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where {Û , �̂} defined by

û = Û + ζu and φ̂ = �̂+ ζφ

solves the problem

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Ût −�Û + lÛ + α�̂ = −l��̂− ζ ′u + v11O1 in Q,
�̂t −��̂+ β�̂ = Û − ζ ′φ + v21O1 in Q,
∂Û

∂ν
= ∂�̂

∂ν
= 0 on �,

Û (0) = �̂ (0) = Û (T ) = �̂ (T ) = 0 in �,

(3.27)

and {̂u, φ̂} being the solution of (3.2) (with null initial data and O1 instead O) satisfying
(1.3). Notice that the solution {̂u, φ̂} can be determined by Theorem 3.1.

It is easy to see that the control function v given by (3.26) (together with {U,�})
solves (3.24). Consequently, the control v (together with u = U +ζu andφ = �+ζφ)
gives the null controllability of system (3.1).

Proceeding as in [47], we can obtain the estimates (3.22) and (3.23) as a consequence
of the parabolic results in Sect. 2. ��

4 Controllability for the Nonlinear Phase Field System

The main aim of this section is to obtain controllability properties for the nonlinear
phase field system (1.1).

In order to use the results of the previous section, we begin by considering the
following local null controllability result:

Theorem 4.1 Let T > 0 be given, then there exists r0 > 0 such that for any data
{u0, φ0} ∈ [W 2−2/s

s (�) ∩ V ]2, with s > 5/2, satisfying

‖{u0, φ0}‖[W 2−2/s
s (�)]2 < r0, (4.1)

there exists a control function v ∈ L2 (O × (0, T )) such that the solution {u, φ} of
(1.1) satisfies (1.3).

Before starting the proof of the theorem, let us observe that system (1.1) can be
rewritten as

∣
∣
∣
∣
∣
∣
∣
∣
∣

ut −�u + lu + h(φ)φ = −l�φ + v1O in Q,
φt −�φ + g̃(φ)φ = u in Q,
∂u

∂ν
= ∂φ

∂ν
= 0 on �,

u (0) = u0, φ (0) = φ0 in �,

(4.2)

with

h(σ ) = l
(

a + bσ − σ 2
)

and g̃(σ ) = −
(

a + bσ − σ 2
)

.
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Next, we consider

X := L2(0, T ; H1(�))× L5/2(0, T ; W 1
5/2(�))

and

�R(σ ) =
{

σ if |σ | ≤ R,
R sgn(σ ) if |σ | > R,

(4.3)

where R > 0 is an arbitrary constant.
For each {z, ξ} ∈ X , let us consider the linear system

∣
∣
∣
∣
∣
∣
∣
∣
∣

ut −�u + lu + αξφ = −l�φ + v1O in Q,
φt −�φ + βξφ = u in Q,
∂u

∂ν
= ∂φ

∂ν
= 0 on �,

u (0) = u0, φ (0) = φ0 in �,

(4.4)

where

αξ = h(�R(ξ)) and βξ = g̃(�R(ξ)).

We note that

αξ ∈ L∞(Q) and βξ ∈ L∞(Q) ∩ L5/2(0, T ; W 1
5/2(�)),

with

‖αξ‖L∞(Q) = max|σ |≤R{|h(σ )|} =: αR,

‖βξ‖L∞(Q) = max|σ |≤R{|̃g(σ )|} =: βR .

By using the previous notations and remarks, we return to Theorem 4.1 to prove it.

Proof of Theorem 4.1 First of all, for each pair {z, ξ} ∈ X let us apply Theorem 3.4
to find a control v such that the solution (uz,ξ , φz,ξ ) of system (4.4) with control v and
potentials αξ and βξ is such that uz,ξ (x, T ) = φz,ξ (x, T ) = 0 in �.

Since u0, φ0 ∈ W 2−2/s
s (�) ∩ V (s > 5/2) and, for each {z, ξ} ∈ X , we have

αξ ∈ L∞(Q) and βξ ∈ L∞(Q) ∩ L5/2(0, T ; W 1
5/2(�)), we can apply Theorem

3.4, with r = 2 (this implies that γ = 5/2), to guarantee the existence of control
vz,ξ ∈ L2(Q) such that the corresponding solution

{

uz,ξ , φz,ξ
}

of system (4.4) satisfies

uz,ξ ∈ Ls(0, T ; W 1
s (�)) ∩ C0(Q), φz,ξ ∈ W 2,1

s (Q),

with

‖uz,ξ‖Ls (0,T ;W 1
s (�))∩C0(Q) + ‖φz,ξ‖W 2,1

s (Q) ≤ C1‖ {u0, φ0} ‖[W 2−2/s
s (�)]2 , (4.5)

123



Appl Math Optim (2014) 70:539–563 555

where C1 = C1(�,O, T, ‖αξ‖L∞(Q), ‖βξ‖L∞(Q)) > 0 and

uz,ξ (T ) = φz,ξ (T ) = 0 in �.

Besides, the control function v satisfies the estimate

‖vz,ξ‖Ls (0,T ;W 1
s (O))∩C0(O×[0,T ]) ≤ C2‖ {u0, φ0} ‖[L2(Q)]2 , (4.6)

where C2 = C2(�,O, T, ‖αξ‖L∞(Q), ‖βξ‖L∞(Q), ‖βξ‖L5/2(0,T ;W 1
5/2(�)

) > 0.

In the sequel, for each fixed pair {z, ξ} ∈ X , we will denote by {uv, φv} the solution
of (4.4) associated to control v and potentials αξ and βξ . By simplicity, the dependence
of {z, ξ} will be omitted here.

Now, for each pair {z, ξ} ∈ X , we define the family of control functions

AR {z, ξ} = {v ∈ L2(Q) : {uv, φv} ∈
(

Ls(0, T ; W 1
s (�)) ∩ C0(Q)

)

× W 2,1
s (Q)uv(x, T ) = φv(x, T ) = 0 in � and v satisfies (4.6)}.

Then, we can consider the multi-valued mapping

�R : X → X

where �R {z, ξ} is the family of pairs {uv, φv} ∈ (

Ls(0, T ; W 1
s (�)) ∩ C0(Q)

) ×
W 2,1

s (Q) such that v ∈ AR {z, ξ} and {uv, φv} satisfies (4.5).
Let us apply Kakutani’s fixed point theorem to �R . For this, we observe that:

(i) �R {z, ξ} �= ∅ for all {z, ξ} ∈ X .
Let be given {z, ξ} ∈ X ; by our previous discussion on the linear system (4.4)
and the fact that[(

Ls(0, T ; W 1
s (�)) ∩ C0(Q)

)× W 2,1
s (Q)

]

⊂ X , we can conclude that there

exists {uv, φv} ∈ �R(z, ξ).
(ii) �R {z, ξ} is a convex set for all {z, ξ} ∈ X .

This follows directly from linearity of system (4.4).
(iii) �R {z, ξ} is closed for all {z, ξ} ∈ X .

For this, let us fix an arbitrary pair {z, ξ} ∈ X . Let {un, φn} ∈ �R {z, ξ}, ∀n ∈ N,
such that {un, φn} → {u, φ} in X . Let us denote by vn the control function
associated to {un, φn} for each n ∈ N. We have that {un, φn} satisfies (4.5) and
consequently there exists a subsequence (that we will denote again by ({un, φn})
by simplicity) such that

{un, φn} → {u, φ} weakly in
(

Ls(0, T ; W 1
s (�)) ∩ C0(Q

)

)× W 2,1
s (Q).

Since vn satisfies (4.6), for all n ∈ N, we have the existence of a subsequence
(that we will denote again by (vn) by simplicity) such that

vn → v weakly in L2(O × (0, T )).
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By using the previous convergences to pass to the limit n → ∞ (in a subsequence
if necessary) in (4.4) we obtain that {u, φ} is the solution of (4.4) with control
v and potentials αξ and βξ . Furthermore, we get u(T ) = φ(T ) = 0 in � and
{u, φ} ∈ �R {z, ξ}. So we conclude that �R {z, ξ} is closed.

(iv) �R {z, ξ} is uniformly bounded for all {z, ξ} ∈ X .
This follows from estimate (4.5).

(v) �R : X → X is a compact mapping.
Let B ⊂ X a bounded set and AR(B) = ∪ {AR {z, ξ} : (z, ξ) ∈ B}.
Let us consider an arbitrary {uv, φv} ∈ �R(B). Since B is bounded, it follows, by
estimate (4.6), that AR(B) is uniformly bounded in L2(Q). By applying Propo-
sition 2.2 (with r = 2, f1 = v1O, f2 ≡ 0) and using estimate (4.6), we obtain

‖ {uv, φv} ‖[W 2,1
2 (Q)]2 ≤ C‖ {u0, φ0} ‖[H1(�)]2 ,

with C = C(�,O, T, αR, βR). Besides, by (4.5),

‖φv‖[W 2,1
s (Q)]2 ≤ C‖ {u0, φ0} ‖[W 2−2/s

s (�)]2 ,

with C = C(�,O, T, αR, βR).
Since {uv, φv} ∈ �R(B) is arbitrary, the previous inequalities imply that
�R(B) is bounded in [W 2,1

2 (Q)]2. Moreover, W 2,1
2 (Q) ⊂ L2(0, T ; H1(�)) and

W 2,1
s (Q) ⊂ L5/2(0, T ; W 1

5/2(�)) with compact imbeddings, because s > 5/2.
Consequently, �R(B) is relatively compact in X . Thus, �R(B) : X → X is
compact.

(vi) �R : X → X is upper hemicontinuous.

Here we need to show that for each bounded linear real-valued function μ on X ,
i.e., μ ∈ X ′, the real-valued function

X → R

{z, ξ} �→ sup
{u,φ}∈�R{z,ξ}

〈μ, {u, φ}〉

is upper semicontinuous. In other words, we need to show that the set

Bk,μ =
{

{z, ξ} ∈ X : sup
{u,φ}∈�R{z,ξ}

〈μ, {u, φ}〉 ≥ k

}

is closed in X , for all μ ∈ X ′ and all k ∈ R (see Doubova et al. [55]).
For this, let us fix arbitraries μ ∈ X ′ and k ∈ R. Let be ({zn, ξn}) a sequence in

Bk,μ such that {zn, ξn} → {z, ξ} in X . In this way, we have

ξn → ξ strongly in L5/2(Q),
αξn = l

(

a + b�R(ξn)−�R(ξn)
2
) → αξ strongly in L5/4(Q),

βξn = − (

a + b�R(ξn)−�R(ξn)
2
) → βξ strongly in L5/4(Q).
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Observe that αξ , βξ ∈ L∞(Q) by definition of α, β.
Now, for each n ∈ N, �R {zn, ξn} is closed and relatively compact in X , then it is

a compact set. Thus, there exists {un, φn} ∈ �R(zn, ξn) such that

k ≤ sup
(u,φ)∈�R{zn ,ξn}

〈μ, {u, φ}〉 = 〈μ, {un, φn}〉 (4.7)

By definitions of �R {zn, ξn} and AR {zn, ξn} , there exists a control function
vn ∈ L2(Q) such that {un, φn} ∈ (

Ls(0, T ; W 1
s (�)) ∩ C0(Q)

) × W 2,1
s (Q) is solu-

tion of (4.4) with control vn and potentials αξn = h(�R(ξn)) and βξn = g̃(�R(ξn)).
Furthermore un(T ) = φn(T ) = 0 in � and vn, {un, φn} satisfy (4.6) and (4.5),
respectively.

Since (vn) and ({un, φn}) are uniformly bounded sequences in L2(Q) and
(

Ls(0, T ; W 1
s (�)) ∩ C0(Q)

) × W 2,1
s (Q), respectively, then, considering a subse-

quence if it is necessary, we have that

{un, φn} → {̂u, φ̂} weakly in
(

Ls(0, T ; W 1
s (�)) ∩ C0(Q)

)× W 2,1
s (Q),

vn → v̂ weakly in L2(O × (0, T )).

By using the previous convergences to pass to the limit, as n → ∞, in prob-
lem (4.4), we obtain that (̂u, φ̂) satisfies this problem with control v̂ and potentials
αξ = h(�R(ξ)) and βξ = g̃(�R(ξ)). Besides, û(T ) = φ̂(T ) = 0 in � and v̂, {̂u, φ̂}
satisfy (4.6) and (4.5), respectively. Thus,

v̂ ∈ AR {z, ξ} and {̂u, φ̂} ∈ �R {z, ξ} .

Next, by passing to the limit in (4.7), since {̂u, φ̂} ∈ �R {z, ξ}, we obtain

k ≤ 〈μ, {̂u, φ̂}〉 ≤ sup
{u,φ}∈�R(z,ξ)

〈μ, {u, φ}〉.

Thus {z, ξ} ∈ Bk,μ, which implies that Bk,μ is a closed set and then �R is upper
hemicontinuous.

Since hypotheses of Kakutani’s fixed point theorem are satisfied by�R : X → X ,
we conclude that there exists at least a fixed point {u, φ} ∈ X of �R , that is, there
exists a control v ∈ L2(O×(0, T )) such that {u, φ} ∈ (Ls(0, T ; W 1

s (�)) ∩ C0(Q)
)×

W 2,1
s (Q) is the corresponding solution of problem (4.4) with potentials cφ =

h(�R(φ)) and eφ = g̃(�R(φ)). Moreover, v and {u, φ} satisfy (4.6) and (4.5), resp.,
and u(x, T ) = φ(x, T ) = 0 in �.

To complete the proof, we just need to show that �R(u) = u and �R(φ) = φ. By
using (4.5) we have

‖u‖L∞(Q) + ‖φ‖L∞(Q) ≤ C(‖u‖C0(Q) + ‖φ‖W 2,1
s (Q))

≤ C1(�,O, T, R)‖{u0, φ0}‖[W 2−2/s
s (�)]2 .
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By taking δ = R/C1(�,O, T, R) > 0, we obtain from last inequality that if
‖{u0, φ0}‖[W 2−2/s

s (�)]2 ≤ δ, then �R(u) = u and �R(φ) = φ. This proves the theo-
rem. ��

Notice that the null controllability can be read as the exact controllability to the
trajectory {̃u, φ̃} = {0, 0} (associated to ṽ = 0 and {̃u0, φ̃0} = {0, 0}). In particular
for the null stationary trajectory {̃u, φ̃} = {0, 0} (associated to ṽ = 0).

Considering {ud , φd} a steady-state (equilibrium) solution to system (1.1), i.e.,

∣
∣
∣
∣
∣
∣
∣

−�ud = 0 in �,

−�φd − (

aφd + bφ2
d − φ3

d

)− ud = 0 in �,
∂ud

∂ν
= ∂φd

∂ν
= 0 on �,

(4.8)

we can proceed as in the proof of Theorem 4.1 to obtain the following result:

Theorem 4.2 Let be T > 0 given. If {ud , φd} is a solution of (4.8), then there exists
r0 > 0 such that for any data {u0, φ0} ∈ [W 2−2/s

s (�)∩ V ]2, with s > 5/2, satisfying

‖{u0 − ud , φ0 − φd}‖[W 2−2/s
s (�)]2 < r0, (4.9)

there exists a control function v ∈ L2(O × (0, T )) satisfying

‖v‖L2(O×(0,T )) ≤ C ‖{u0 − ud , φ0 − φd}‖[L2(�)]2 (4.10)

such that the associated solution {u, φ} of (1.1) satisfies

u(·, T ) = ud and φ(·, T ) = φd in �. (4.11)

5 Optimal Control and Controllability

Our goal in this section is to establish a connection between optimal control problem
obtained in [43] and the exact controllability for trajectories achieved in the Theorem
4.2.

According to Remark 5.1 in [43], we have the following result:

Theorem 5.1 Let T > 0 and {u0, φ0} ∈ [W 2−2/s
s (�) ∩ V ]2 be given. If {ud , φd} ∈

[L2(�)]2, then for each fixed ε > 0 there exists a optimal control vε ∈ L2(O×(0, T )),
which minimizes the cost functional Fε given in (1.4). That is, vε ∈ L2(O × (0, T ))
is such that the corresponding solution {uε, φε} of (1.1) satisfies

Fε(uε, φε; vε) = inf
v∈L2(O)

Fε(u, φ; v), (5.1)

where {u, φ} is the corresponding solution of (1.1) with v.
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The next result gives us a relation between optimal control problem and exact
controllability one. More precisely, it establishes that a sequence of solutions of optimal
control problems (5.1) converges to solution of the exact controllability obtained in
Theorem 4.2.

Theorem 5.2 Let T > 0 and {u0, φ0, ud , φd} satisfying the conditions of Theorem 4.2.
For each ε > 0 consider {uε, φε, vε} the solution of optimal control problem (5.1)
associated to {u0, φ0, ud , φd}. Then, as ε → 0, the following convergences hold:

{uε, φε, vε} → {

u∗, φ∗, v∗} weakly in [W 2,1
2 (Q)]2 × L2 (O × (0, T )) (5.2)

and

{uε, φε} → {

u∗, φ∗} strongly in [L9(Q)]2, (5.3)

where {u∗, φ∗, v∗} is the solution of the exact controllability problem obtained in
Theorem 4.2.

Proof We fix an arbitrary (small) ε > 0 and let us take {ud , φd} and {u0, φ0} satisfying
the hypotheses of Theorem 4.2. In this way, we have a control function v ∈ L2(O ×
(0, T )) such that the associated solution {u, φ} of (1.1) satisfies (4.11). By other hand,
Theorem 5.1 assures us the existence of a optimal control vε ∈ L2(O × (0, T )). Let
us denote by {uε, φε} the corresponding solution of (1.1). Then, by (5.1), we have

Fε(uε, φε; vε) ≤ Fε(u, φ; v).

By the last inequality and (4.11)

‖{uε, φε}(T )− {ud , φd}‖2
[L2(�)]2 + ε‖vε‖2

L2(O×(0,T ))
≤ ‖{u, φ}(T )− {ud , φd}‖2

[L2(�)]2 + ε‖v‖2
L2(O×(0,T ))

= ε‖v‖2
L2(O×(0,T )).

The last inequality and (4.10) imply that

uε(T ) → ud strongly in L2(�),

φε(T ) → φd strongly in L2(�)

and that ‖vε‖L2(O×(0,T )) is bounded. Then, there exists v∗ ∈ L2(O × (0, T )) such
that

vε → v∗ weakly in L2(O × (0, T ))

Next, by Theorem 3.1 in [43], we have that ‖{uε, φε}‖[W 2,1
2 (Q)]2 is bounded. Then,

there exists {u∗, φ∗} ∈ [W 2,1
2 (Q)]2
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uε → u∗ weakly in W 2,1
2 (Q),

φε → φ∗ weakly in W 2,1
2 (Q),

which implies

uε → u∗ strongly in L9(Q),
φε → φ∗ strongly in L9(Q).

To conclude the proof of the theorem, it remains to show that u∗(T ) = ud and
φ∗(T ) = φd . In fact, let us consider any function w ∈ C∞ (

Q
)

such that supp w ⊂⊂
�× (0, T ].

By multiplying first equation of the system satisfied by {uε, φε}, i.e (1.1), byw and
integrating by parts in Q, we have

∫

�

uε(T )w(T )dx −
T∫

0

∫

�

uεwt dxdt +
T∫

0

∫

�

∇uε · ∇wdxdt + l

T∫

0

∫

�

(φε)twdxdt

=
T∫

0

∫

O
vεwdxdt.

By using the previous weak convergences, we obtain

∫

�

udw(T )dx −
T∫

0

∫

�

u∗wt dxdt +
T∫

0

∫

�

∇u∗ · ∇wdxdt + l

T∫

0

∫

�

φ∗
t wdxdt

=
T∫

0

∫

O
v∗wdxdt.

Since {u∗, φ∗} satisfies (1.1), by multiplying it by w and integrating by parts in Q,
we have

∫

�

u∗(T )w(T )dx −
T∫

0

∫

�

u∗wt dxdt +
T∫

0

∫

�

∇u∗ · ∇wdxdt + l

T∫

0

∫

�

φ∗
t wdxdt

=
T∫

0

∫

O
v∗wdxdt.

Being w arbitrary, we conclude that u∗(T ) = ud . By similar procedure we obtain
φ∗(T ) = φd . This concludes the proof. ��
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