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Abstract This paper is concerned with semi-linear backward stochastic partial dif-
ferential equations (BSPDEs for short) of super-parabolic type. An Lp-theory is given
for the Cauchy problem of BSPDEs, separately for the case of p ∈ (1,2] and for the
case of p ∈ (2,∞). A comparison theorem is also addressed.

Keywords Backward stochastic differential equation · Stochastic partial differential
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1 Introduction

Since Bismut’s pioneering work [2–4] and Pardoux and Peng’s seminal work [26], the
theory of backward stochastic differential equations (BSDEs) is rather complete now.
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See, among others, El Karoui et al. [17], and Delbaen and Tang [6] for a rather gen-
eral Lp theory for BSDEs. As a natural generalization of BSDEs, backward stochas-
tic partial differential equations (BSPDEs) arise in many applications of probability
theory and stochastic processes, for instance in the optimal control of processes with
incomplete information, as an adjoint equation of the Duncan-Mortensen-Zakai filtra-
tion equation (for instance, see [1, 14, 15, 32, 36, 37]), and naturally in the dynamic
programming theory fully nonlinear BSPDEs as the so-called backward stochastic
Hamilton-Jacobi-Bellman equations, are also introduced in the study of controlled
non-Markovian processes (see Peng [27] and Englezos and Karatzas [13]).

In this paper, we consider the following semi-linear BSPDEs:
⎧
⎨

⎩

−du(t, x) = [L(t, x)u(t, x) + Mr (t, x)vr (t, x) + F(u, v, t, x)]dt

− vr(t, x) dWr
t , (t, x) ∈ [0, T ] × R

d ;
u(T , x) = G(x), x ∈ R

d .

(1.1)

Here and throughout this paper, we denote

L(t, x) := aij (t, x)
∂2

∂xi∂xj
, Mr (t, x) := σ jr (t, x)

∂

∂xj
, r = 1,2, . . . ,m.

We use the Einstein summation convention and fix T ∈ (0,∞) as a finite determinis-
tic time, which can be replaced by any bounded stopping time.

To the above BSPDEs, the method of stochastic flows was developed by Tang
[33] which gives a probabilistic point of view and also gives classical solutions to
BSPDEs (1.1). On the other hand, the L2 theory for BSPDEs has been established in
the framework of weak solutions (see [10, 14, 15, 36, 37], for example).

Still in the framework of weak solutions, we establish in this paper an Lp-theory
for BSPDE (1.1) which seems to be the first study for the Lp-theory of BSPDEs.
Motivated by Krylov’s seminal work [20, 21] on forward stochastic partial differen-
tial equations, we establish an Lp-theory which includes as a particular case the Lp

theory (1 < p ≤ 2) for deterministic parabolic partial differential equations (PDEs
for short).

This paper is organized as follows. In Sect. 2 we introduce the notions and define
some spaces. We discuss a kind of Banach space-valued BSDEs in Sect. 3. In Sect. 4
we construct a stochastic Banach space Hn

p which plays the same role as spaces

W
1,2
p in the theory of second-order parabolic PDEs and we also give some basic

properties of this space there. In Sect. 5 we present the Lp-theory of BSPDEs in the
whole space for p ∈ (1,2]. Specifically, we give the definition of the Lp solutions and
list the assumptions. We first solve the BSPDEs with constant-field-valued leading
coefficients and then solve the BSPDEs for the general case. In Sect. 6 we discus two
related topics: a comparison theorem and an Lp-theory for p > 2. Finally, in Sect. 7
we give some comments.

2 Preliminaries

In most of this work, we shall denote by | · | (respectively, 〈·, ·〉) the norm (respec-
tively, scalar product) in finite-dimensional Hilbert space such as R,R

k,R
k×l where
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k, l are positive integers and

|x| :=
(

k∑

i=1

x2
i

) 1
2

and |y| :=
⎛

⎝
k∑

i=1

l∑

j=1

y2
ij

⎞

⎠

1
2

for (x, y) ∈ R
k × R

k×l .

Let (�,F , {Ft }t≥0,P) be a complete filtered probability space on which is defined
an m-dimensional standard Brownian motion W = {Wt : t ∈ [0, T ]} such that {Ft }t≥0
is the natural filtration generated by W and augmented by all the P-null sets in F .
And we denote by P the σ -Algebra of the predictable sets on � × [0, T ] associated
with {Ft }t≥0.

If X = (Xt )t∈[0,T ] is an R
k-valued, adapted and continuous processes, we denote

supt∈[0,T ] |Xt | by X∗ or supt |Xt | simply. And for any p ∈ (1,∞), S p(Rk) denotes
the set of all the R

k-valued, adapted and continuous processes (Xt )t∈[0,T ] such that

‖X‖S p :=
{

E

[

sup
t

|Xt |p
]}1/p

< ∞.

Then, (S p(Rk), ‖ · ‖S p ) is a Banach space.
Define the set of multi-indices

A := {α = (α1, . . . , αd) : α1, . . . , αd are nonnegative integers}.
For any α ∈ A and x = (x1, . . . , xd) ∈ R

d, denote

|α| =
d∑

i=1

αi, xα := x
α1
1 x

α2
2 · · ·xαd

d , Dα := ∂ |α|

∂x
α1
1 ∂x

α2
2 · · · ∂x

αd

d

.

For a positive integer number l, we denote by C∞
c (Rl) (respectively, C∞

c (O) for
each open set O ⊂ R

l) the set of all infinitely differentiable functions with compact
supports on R

l (O, respectively) and by D ′ the space of real-valued Schwartz dis-
tributions on C∞

c (Rd). For simplicity, we write C∞
c for the case l = d . On R

d we
denote by S the set of all the Schwartz functions and by S′ the set of all the tempered
distributions. Note that C∞

c and S are endowed with matching topologies. For each
positive integer N and multi-indices α, we define

γα,N (f ) := sup
|x|≤N

∣
∣(∂αf )(x)

∣
∣ , f ∈ C∞

c

Then C∞
c = ⋃∞

N=1 C∞
c (B(0,N)) is the inductive limit of the complete metrizable

spaces (C∞
c (B(0,N)), γα,N ), where B(0,N) is the open ball of radius N centered

at the origin. For each α,β ∈ A, we define

ρα,β(f ) := sup
x∈Rd

∣
∣xα(∂βf )(x)

∣
∣ , d(f, g) :=

∞∑

j=1

2−j ρj (f − g)

1 + ρj (f − g)
, f, g ∈ S

where ρj is an enumeration of all the seminorms ρα,β with α,β ∈ A. Then S is a
Fréchet space equipped with the metric d(·, ·). It follows that C∞

c ⊂ S and S′ ⊂ D ′.
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We shall denote by (·, ·) not only the duality between D ′ and C∞
c but also the duality

between S and S′. Then the Fourier transform F (f ) of f ∈ S′ is given by

F (f )(ξ) = (2π)−d/2
∫

Rd

e−√−1〈x, ξ〉f (x)dx, ξ ∈ R
d,

and the inverse Fourier transform F −1(f ) is given by

F −1(f )(x) = (2π)−d/2
∫

Rd

e
√−1〈x, ξ〉f (ξ) dξ, x ∈ R

d .

It is well known that both F and F −1 map S′ onto itself. As usual, for any s ∈ R and
f ∈ S′, we denote Is(f ) := (1 − �)s/2f = F −1((1 + |ξ |2)s/2 F (f )(ξ)).

For given p ∈ (1,∞) and n ∈ (−∞,∞), we denote by Hn
p the space of Bessel

potentials, that is

Hn
p := {φ ∈ S′ : (1 − �)

n
2 φ ∈ Lp(Rd)}

with the Sobolev norm

‖φ‖n,p := ‖(1 − �)
n
2 φ‖p, φ ∈ Hn

p,

where ‖ · ‖p is the norm in Lp(Rd). It is well known that Hn
p is a Banach space with

the norm ‖ · ‖n,p and the set C∞
c is dense in Hn

p . For any p ∈ (1,∞) and n ∈ R, with
a little notional abuse we still denote by (·, ·) the dual pairing between Hn

p and H−n
p′

where 1/p′ + 1/p = 1, i.e., for any (u, v) ∈ Hn
p × H−n

p′

(u, v) = ((1 − �)
n
2 u, (1 − �)−

n
2 v) =

∫

Rd

(1 − �)
n
2 u(x)(1 − �)−

n
2 v(x) dx

where the last integral is a usual Lebesgue integral.
In contrast to Hn

p, we introduce the following so-called Besov space of functions
(c.f. [34] or [35]).

Definition 2.1 Let s > 0, p ∈ (1,∞), and q ∈ [1,∞). Define

Bs
p,q =

{

f ∈ Lp(Rd) : ‖f ‖Bs
p,q

= ‖f ‖
H

[s]−
p

+
∑

|α|=[s]−

(∫

Rd

|h|−{s}+q‖Dαf (· + 2h)

− 2Dαf (· + h) + Dαf (·)‖q
p

dh

|h|d
)1/q

< ∞
}

where s = [s]− + {s}+, with [s]− being an integer and {s}+ ∈ (0,1].

Let σ > 0, p ∈ (1,∞), q ∈ [1,∞), and s ∈ R such that σ − s > 0. Then Is(B
σ
p,q) =

Bσ−s
p,q . In fact, we can introduce spaces Bs

p,q with s ≤ 0 by defining Bs
p,q =

I−s+1(B
1
p,q), although we prefer to define the Besov space through the Littlewood-

Paley decomposition (for instance, see [35]). As to the specific structure and proper-
ties of Besov space, see [35] or [34]. In this paper, only the space Bn

p,p is involved for
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p ∈ (1,∞) and n ∈ R and for the reader’s convenience, we define the norm which is
equivalent to Definition 2.1 when n > 0:

‖f ‖Bn
p,p

:= ‖In−1f ‖B1
p,p

, f ∈ Bn
p,p.

The following lemma shows some embedding properties for the Besov spaces, whose
proof is seen in [34].

Lemma 2.1 (i) Let n ∈ R and p ∈ (1,∞), then

Bn
p,min{p,2} ↪→ Hn

p ↪→ Bn
p,max{p,2},

where ↪→ stands for topological embedding throughout this work.
(ii) Let p,q, r ∈ (1,∞), then

Bs
p,r ↪→ Bt

p,q, −∞ < s < t < ∞.

Denote by S the set of all S′-valued functions defined on �×[0, T ] such that, for
any u ∈ S and φ ∈ S, the function (u,φ) is P -measurable.

For p ∈ (1,∞), we define H
0
p := Lp(�×[0, T ]×R

d,P × B(Rd),R). Denote by

H
0
p,2 the set of the functions which are defined on � × [0, T ] × R

d and P × B(Rd)-
measurable such that

E

⎡

⎣

∫

Rd

(∫ T

0
|u(t, x)|2dt

) p
2

dx

⎤

⎦< ∞, ∀u ∈ H
0
p,2.

Observe that every element of H
0
p can be considered as an H 0

p -valued, P -
measurable process. For any n ∈ R, we define

H
n
p := {f ∈ S : (1 − �)

n
2 f ∈ H

0
p},

equipped with the norm

‖f ‖Hn
p

:=
(

E

[∫ T

0

∫

Rd

|(1 − �)
n
2 f (t, x)|p dxdt

])1/p

.

Definition 2.2 Let p ∈ (1,∞) and n ∈ R. Define

H
n
p,2 :=

{
u ∈ S : (1 − �)

n
2 u ∈ H

0
p,2

}

equipped with the norm

‖u‖H
n
p,2

:=
⎛

⎝E

⎡

⎣

∫

Rd

[∫ T

0
|(1 − �)

n
2 u(t, x)|2dt

] p
2

dx

⎤

⎦

⎞

⎠

1/p

.



180 Appl Math Optim (2012) 65:175–219

Definition 2.3 Let p ∈ (1,∞) and n ∈ R. For a function u ∈ H
n
p,2, we write u ∈

H
n
p,∞ if

(i) there exists A(u) ∈ FT × B(Rd), P × M(A(u)) = 0 where M(·) denotes the
Lebesgue measure on R

d , such that for any (ω, x) ∈ R
d × � \ A(u), (1 −

�)n/2u(·, x) is continuous on [0, T ];
(ii) ‖u‖H

n
p,∞ := (E[∫

Rd supt∈[0,T ] |(1 − �)
n
2 u(t, x)|p dx])1/p < ∞.

When we treat the general R
k-valued function u for any integer k > 1, we still

say u ∈ H
n
p if ul ∈ H

n
p for l = 1,2, . . . , k. In this way, we generalize the real-valued

function space H
n
p to R

k-valued function space. And further, we define the norm

‖u‖Hn
p

:=
(

E

[∫ T

0

∫

Rd

|(1 − �)
n
2 u(t, x)|p dxdt

])1/p

.

By this means, not only can we generalize spaces Hn
p, H

n
p, H

n
p,2 and H

n
p,∞ from

real-valued function spaces to any R
k-valued ones, but also we can generalize these

spaces from R
k-valued to any Hilbert space-valued function spaces. And we do it

when we need it.

Remark 2.1 One can check that the spaces H
n
p, H

n
p,2 and H

n
p,∞ are all Banach spaces

under the norms ‖ · ‖Hn
p
, ‖ · ‖H

n
p,2

, and ‖ · ‖H
n
p,∞, respectively. Moreover, for any

p ∈ (1,∞) and n ∈ R, H
n
p is a reflexive Banach space whose dual space is H

−n
p/(p−1),

and it coincides with the space H
n
p(T ) defined in [21] and [20]. On the other hand,

for s ∈ R, the operator (1 − �)s/2 maps isometrically Hn
p to Hn−s

p and the same is
true for spaces H

n
p, H

n
p,2, and H

n
p,∞.

In particular, as to the spaces H
n
p and H

n
p,2, we have the following lemma whose

proof is similar to that of [21, Theorem 3.10].

Lemma 2.2 Let p ∈ (1,∞) and n ∈ R. For g ∈ H
n
p (Hn

p,2, respectively), there exists
a sequence {gj , j = 1,2, . . . } in H

n
p (Hn

p,2, respectively) such that ‖g − gj‖Hn
p

→ 0
(‖g − gj‖H

n
p,2

→ 0, respectively) as j → ∞ and

gj =
j∑

i=1

1
(τ

j
i−1,τ

j
i ](t) gi

j (x),

where gi
j ∈ C∞

c and τ
j
i are stopping times such that τ

j

i−1 ≤ τ
j
i ≤ T .

For any t ∈ [0, T ), define

‖u‖Hn
p(t) := ‖u1[t,T ]‖Hn

p
for u ∈ H

n
p.

In the same way, we define ‖ · ‖H
n
p,2(t)

in H
n
p,2 and ‖ · ‖H

n
p,∞(t) in H

n
p,∞.
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For an element u of spaces like H
n
p , if it has a modification of higher regularity,

then it is always considered to be this modification. However, elements of spaces
like H

n
p are Hn

p -valued only for almost all (t,ω), not necessarily for all (t,ω) ∈
[0, T ] × �.

We end this section with introducing the Itô-Wentzell formula for distribution-
valued processes established by Krylov [22].

For p = 1,2 we denote by Sp the totality of u ∈ S such that for any R1,R2 ∈
(0,∞) and φ ∈ C∞

c , we have

∫ R2

0
sup

|x|≤R1

|(u(t, ·),φ(· − x))|p dt < ∞ a.s.

In a similar way to spaces like Hn
p , we generalize S to any Hilbert space-valued

function space.
For u,f,g ∈ S, we say that the equality

du(t, x) = f (t, x) dt + gk(t, x) dWk
t , t ∈ [0, T ], (2.1)

holds in the sense of distribution if f 1[0,T ] ∈ S1, g1[0,T ] ∈ S2 and for any φ ∈ C∞
c

with probability one we have for all t ∈ [0, T ]

(u(t, ·), φ) = (u(0, ·), φ) +
∫ t

0
(f (s, ·), φ) ds +

∫ t

0
(gk(s, ·), φ) dWk

s .

Let xt be an R
d -valued predictable process of the following form

xt =
∫ t

0
bs ds +

∫ t

0
βk

s dWk
s ,

where b and β are predictable processes such that for all ω ∈ � and s ∈ [0, T ], we
have

tr(αs) < ∞ and
∫ T

0
[|bt | + tr(αt )]dt < ∞,

with 2αij := βikβjk .

Theorem 2.3 (Theorem 1 of [22]) Assume that (2.1) holds in the sense of distribu-
tions and define

v(t, x) := u(t, x + xt ).

Then we have

dv(t, x) =
(

f (t, x + xt ) + αij ∂2

∂xi∂xj
v(t, x) + bi(t, x)

∂

∂xi
v(t, x)

+ ∂

∂xi
gk(t, x + xt )β

ik(t)

)

dt
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+
(

gk(t, x + xt ) + ∂

∂xi
v(t, x)βik(t)

)

dWk
t , t ∈ [0, T ]

holds in the sense of distribution.

Remark 2.2 In the Itô-Wentzell formula established by Krylov [22, Theorem 1], the
Wiener process (Wt )t≥0 can be any separable Hilbert space-valued process and the
processes in S therein were defined to be D ′-valued instead of being S′-valued.

3 Banach Space-Valued BSDEs

This section is concerned with Banach space-valued BSDEs. Unless stated oth-
erwise, we assume p ∈ (1,∞) and n ∈ R throughout this section. For (F,G) ∈
H

n
p × Lp(�,FT ,Hn

p), consider the BSDE

{−du(t, x) = F(t, x) dt − vk(t, x) dWk
t , (t, x) ∈ [0, T ] × R

d,

u(T , x) = G(x), x ∈ R
d .

(3.1)

Or, equivalently

u(t, x) = G(x) +
∫ T

t

F (s, x) ds −
∫ T

t

vk(s, x) dWk
s , (t, x) ∈ [0, T ] × R

d .

Definition 3.1 Assume that (F,G) ∈ H
n
p × Lp(�,FT ,Hn

p) with p ∈ (1,∞) and
n ∈ R. We say (u, v) ∈ H

n
p × H

n
p,2 is a solution of (3.1) if for any φ ∈ C∞

c and
τ ∈ [0, T ], we have

(u(τ, ·),φ) = (G,φ) +
∫ T

τ

(F (s, ·),φ) ds −
∫ T

τ

(vl(s, ·),φ) dWl
s , a.s. (3.2)

Remark 3.1 If (u, v) ∈ H
n
p × H

n
p,2 is a solution to (3.1), then for any φ ∈ H−n

p′ ,

E

[

max
t∈[0,T ]

∣
∣
∣
∣

∫ T

0
(vl, φ) dWl

s

∣
∣
∣
∣

]

≤ CE

[(∫ T

0
|(v(s, ·),φ)|2 ds

)1/2]

(using the BDG inequality)

= CE

⎡

⎣

(∫ T

0

∣
∣
∣
∣

∫

Rd

(1 − �)−n/2φ(x)(1 − �)n/2v(s, x) dx

∣
∣
∣
∣

2

ds

)1/2
⎤

⎦

(using Minkowski inequality)

≤ CE

[∫

Rd

(∫ T

0
|(1 − �)−n/2φ(x)(1 − �)n/2v(s, x)|2 ds

)1/2

dx

]
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= CE

[∫

Rd

(∫ T

0
|(1 − �)n/2v(s, x)|2 ds

)1/2 ∣
∣
∣(1 − �)−n/2φ(x)

∣
∣
∣ dx

]

≤ C‖v‖H
n
p,2

‖φ‖−n,p′

where 1/p′ + 1/p = 1. So, the process
∫ t

0
(vl(s, ·),φ) dWl

s , t ∈ [0, T ]

is a continuous martingale. Note that, throughout the paper, unless stated otherwise,
C is a positive constant and C(α,β, . . . , γ ) is a constant only depending on α,β, . . . ,

and γ .

Lemma 3.1 Assume that (F,G) ∈ H
n
p ×Lp(�,FT ,Hn

p) with p ∈ (1,∞) and n ∈ R.
We have

(i) Equation (3.1) has a unique solution (u, v) ∈ (Hn
p ∩H

n
p,∞)×H

n
p,2 which satisfies

the following inequality

‖u‖H
n
p,∞ + ‖u‖Hn

p
+ ‖v‖H

n
p,2

≤ c(p,T )[‖F‖Hn
p

+ ‖G‖Lp(�,FT ,Hn
p )]. (3.3)

(ii) For this solution, we have u ∈ C([0, T ],Hn
p ) almost surely, and for any φ ∈

H−n
p/(p−1) the following equality

(u(τ, ·),φ) = (G,φ) +
∫ T

τ

(F (s, ·),φ) ds −
∫ T

τ

(vl(s, ·),φ) dWl
s (3.4)

holds for all τ ∈ [0, T ] with probability 1.

Proof First, we prove the uniqueness of the solution. Suppose that (u1, v1) and
(u2, v2) are two solutions of (3.1) in H

n
p ×H

n
p,2, and take (u, v) = (u1 −u2, v1 −v2).

Then, for any φ ∈ C∞
c and t ∈ [0, T ]. We have

(u(t, ·),φ) =
∫ T

t

(v(s, ·),φ) dWs, a.s.

Then by the theory on BSDEs (c.f. [5, 17, 26]), we have

E

[∫ τ2

τ1

(u(t, ·),φ) dt

]

= 0 and E

[∫ τ2

τ1

(v(s, ·),φ) ds

]

= 0,

for any stopping times τ1 and τ2, 0 ≤ τ1 ≤ τ2 ≤ T . From Lemma 2.2, it follows that
(u, v) = 0 in H

n
p × H

n
p,2. This verifies the uniqueness.

For the other assertions, it is sufficient to prove the lemma for n = 0.
Indeed, assume that the lemma is true for n = k with k ∈ R. For ∀δ ∈ R, if

(F,G) ∈ H
k+δ
p × Lp(�,FT ,Hk+δ

p ) then (F ′,G′) ∈ H
k
p × Lp(�,FT ,Hk

p) with

F ′ := (1 − �)δ/2F and G′ := (1 − �)δ/2G.
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From the induction assumption, there exists (u′, v′) ∈ H
k
p,∞ × H

k
p,2, satisfying the

following

‖u′‖
H

k
p,∞ + ‖u′‖Hk

p
+ ‖v′‖

H
k
p,2

≤ c(p,T )
(
‖F ′‖Hk

p
+ ‖G′‖Lp(�,FT ,Hk

p)

)
, (3.5)

such that for any φ ∈ H−k
p/(p−1) the equality

(u′(τ, ·),φ) = (G′, φ) +
∫ T

τ

(F ′(s, ·),φ) ds −
∫ T

τ

(v′l(s, ·),φ) dWl
s ,

holds for all τ ∈ [0, T ] with probability 1. Take

u = (1 − �)−δ/2u′ and vl = (1 − �)−δ/2v′l .

In view of Remark 2.1, (u, v) ∈ H
k+δ
p × Lp(�,FT ,Hk+δ

p ). Rewrite the last equality
into the following

((1 − �)δ/2u(τ, ·),φ) = ((1 − �)δ/2G,φ) +
∫ T

τ

((1 − �)δ/2F(s, ·),φ) ds

−
∫ T

τ

((1 − �)δ/2vl(s, ·),φ) dWl
s , φ ∈ H−k

p/(p−1)

which is equivalent to

(u(τ, ·), (1 − �)δ/2φ) = (G, (1 − �)δ/2φ) +
∫ T

τ

(F (s, ·), (1 − �)δ/2φ)ds

−
∫ T

τ

(vl(s, ·), (1 − �)δ/2φ)dWl
s , φ ∈ H−k

p/(p−1).

Hence, for any φ ∈ H−k−δ
p/(p−1) the equality

(u(τ, ·),φ) = (G,φ) +
∫ T

τ

(F (s, ·),φ) ds −
∫ T

τ

(vl(s, ·),φ) dWl
s

holds for all τ ∈ [0, T ] with probability 1. Then (u, v) solves BSDE (3.1) for n =
k + δ in the sense of Definition 3.1, and satisfies the inequality (3.3) with n := k + δ

which is exactly the inequality (3.5).
In what follows, we shall use the method of finite-dimensional approximation.
Since H

0
p,∞ ⊂ H

0
p and ‖u‖H0

p
≤ C(T ,p)‖u‖

H
0
p,∞ for u ∈ H

0
p,∞, it remains to

prove the existence of the solution (u, v) in H
0
p,∞ × H

0
p,2, the assertion (ii) and the

following estimate

‖u‖
H

0
p,∞ + ‖v‖

H
0
p,2

≤ c(p,T )
(
‖F‖H0

p
+ ‖G‖Lp(�,FT ,Hn

p )

)
. (3.6)

It is known (see [16]) that the Banach space Lp(Rd) admits a Schauder basis
for p ∈ (1,∞). Let {ei : i = 1,2,3, . . . } be a Schauder basis of Lp(Rd). Then there
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exists an M ∈ (0,∞) and a unique sequence bounded linear functional ai such that
for any h ∈ Lp(Rd), we have

sup
j≥1

∥
∥
∥
∥
∥
∥

j∑

i=1

ai(h)ei

∥
∥
∥
∥
∥
∥

p

≤ M‖h‖p and lim
j→∞

∥
∥
∥
∥
∥
∥
h −

j∑

i=1

ai(h)ei

∥
∥
∥
∥
∥
∥

p

= 0.

In particular, for convenient discussion, we consider ei(x) to be finite for every x ∈
R

d and i = 1,2,3, . . . .

For each positive integer k, denote �Gk := (Gk1, . . . ,Gkk)
T and �Fk := (Fk1, . . . ,

Fkk)
T , with Gki = ai(G) and Fki = ai(F (t, ·)), i = 1,2, . . . , k. By [5], there ex-

ist uniquely Uk := (Uk1, . . . ,Ukk)
T ∈ S p(Rk) and a P -measurable process V l :=

(V l
ki) ∈ Lp(�,L2([0, T ],R

k
⊗

m)) which solve the k-dimensional vector-valued
BSDE:

Uk(t) = �Gk +
∫ T

t

�Fk(s) ds −
∫ T

t

V l
k (s) dWl

s , t ∈ [0, T ]. (3.7)

Define

uk :=
k∑

i=1

Ukiei, vl
k :=

k∑

i=1

V l
kiei,

Gk :=
k∑

i=1

Gkiei, and Fk :=
k∑

i=1

Fkiei .

(3.8)

We check that the pair (uk, vk) solves the Banach space-valued BSDE (3.1) with
(F,G) := (Fk,Gk) in the sense of Definition 3.1. Moreover, for any x ∈ R

d , the pair
(uk(·, x), v(·, x)) solves the scalar valued BSDE

{−duk(t, x) = Fk(t, x) dt − vl
k(t, x) dWl

t , t ∈ [0, T ],
uk(T , x) = Gk(x),

(3.9)

and satisfies the following estimate

E
[
sup
t≤T

|uk(t, x)|p
]
+ E

[∫ T

0
|vk(t, x)|2 dt

] p
2

≤ C

{

E
[|Gk(x)|p]+ E

[∫ T

0
|Fk(t, x)|p dt

]}

(3.10)

where C = C(T ,p) does not depend on k since the constant in the BDG inequality is
universal and does not depend on the dimension of the range space of the underlying
local martingale. Integrating both sides of the last inequality on R

d and then applying
the Fubini theorem, we get the pair (uk, vk) ∈ H

0
p,∞ × H

0
p,2 satisfies the following

inequality

‖uk‖H
0
p,∞ + ‖vk‖H

0
p,2

≤ c(p,T ){‖Fk‖H0
p

+ ‖Gk‖Lp(�,FT ,H 0
p)}. (3.11)
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On the other hand, as ‖Fk(ω, t) − F(ω, t)‖p → 0 and ‖Fk(ω, t) − F(ω, t)‖ ≤
(M +1)‖F(ω, t)‖p for (ω, t) ∈ �×[0, T ], a.e., by using the dominated convergence
theorem we have Fk → F strongly in H

0
p as k → ∞. Similarly, Gk → G strongly in

Lp(�,FT ,H 0
p) as k → ∞. Hence, there exists (u, v) ∈ H

0
p,∞ × H

0
p,2 such that it is

the strong limit of the sequence {(uk, vk)} in H
0
p,∞ × H

0
p,2 as k → ∞, and satisfies

the estimate (3.6).
Furthermore, in view of (3.7) and (3.8), we conclude that, for any φ ∈ Lp/(p−1)(Rd)

the equality

(uk(τ, ·),φ) = (Gk,φ) +
∫ T

τ

(Fk(s, ·),φ) ds −
∫ T

τ

(vl
k(s, ·),φ) dWl

s (3.12)

holds for all τ ∈ [0, T ) with probability 1. Since

E

[∫ T

0

∣
∣
∣
∣

∫ T

τ

(vl
k − vl(s, ·),φ) dWl

s

∣
∣
∣
∣dτ

]

≤ CE

[∫ T

0

(∫ T

τ

|(vk − v(s, ·),φ)|2 ds

)1/2

dτ

]

≤ C(T )E

⎡

⎣

(∫ T

0

(∫

Rd

|(vk − v)(s, x)φ(x)|dx

)2

ds

)1/2
⎤

⎦

(using Minkowski inequality)

≤ C(T )E

[∫

Rd

(∫ T

0
|(vk − v)(s, x)φ(x)|2 ds

)1/2

dx

]

≤ C(T )‖vk − v‖
H

0
p,2

‖φ‖p/(p−1) → 0 as k → ∞,

E

[∫ T

0
|(uk(τ, ·) − u(τ, ·),φ)|dτ

]

= E

[∫ T

0

∫

Rd

|(uk − u)(s, x)φ(x)|dxds

]

≤ T ‖uk − u‖
H

0
p,∞‖φ‖p/(p−1) → 0 as k → ∞,

and

E

[∫ T

0
|(Gk − G,φ)|ds

]

+ E

[∫ T

0

∣
∣
∣
∣

∫ T

τ

((Fk − F)(s, ·),φ) ds

∣
∣
∣
∣ dτ

]

→ 0

as k → ∞,

taking limits in L1(� × [0, T ],FT × B(Rd)) on both sides of (3.12), we conclude
that (3.4) holds almost everywhere in [0, T ] × �.
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Since, for any φ ∈ Lp/(p−1)(Rd), (3.12) holds for all τ ≤ T with probability 1,
the process {(uk(t, ·),φ), t ∈ [0, T ]} is continuous (a.s.). As

E sup
0≤t≤T

‖u − uk‖p

Lp(Rd )
≤ ‖u − uk‖p

H
0
p,∞

→ 0,

the process {(u(t, ·),φ), t ∈ [0, T ]} is continuous. This implies that, for any φ ∈
Lp/(p−1)(Rd), equality (3.4) holds not only in [0, T ] × � almost everywhere but
also for all τ ≤ T almost surely.

Besides, since uk ∈ C([0, T ],Lp(Rd))(a.s.) and E sup0≤t≤T ‖u − uk‖p

Lp(Rd )
→

0 as k → ∞, we have u ∈ C([0, T ],Lp(Rd))(a.s.). We complete the proof of the
lemma. �

Remark 3.2 In view of Lemma 2.2, we can approximate in H
0
p × Lp(�,FT ,H 0

p)

for p ∈ (1,2] during the proof (F,G) by a sequence (Fk,Gk) belonging to H
0
2 ×

L2(�,FT ,H 0
2 ). Moreover, we can assume that (Fk,Gk)(ω, t) is uniformly com-

pactly supported in R
d for (ω, t) ∈ � × [0, T ] a.e. After finite-dimensional approx-

imation of (Fk,Gk) in H
0
2 × L2(�,FT ,H 0

2 ) where a Hilbert basis is a Schauder
basis, the rest of our proof goes in a standard way (c.f. [5]) for p ∈ (1,2], while not
for p ∈ (2,∞).

Lemma 3.2 Let (u, v) ∈ H
n
p,∞ × H

n
p,2 be a solution of (3.1) for given F ∈ H

n
p and

G = 0. Then for any ε > 0, there exists a positive constant c = c(p,T , ε) < ∞ such
that

‖v‖H
n
p,2(t)

≤ c(p,T , ε)‖u‖Hn
p(t) + ε‖F‖Hn

p(t), t ∈ [0, T ]. (3.13)

Proof First consider the case of n = 0. Without loss of generality, we assume that the
Brownian motion is one-dimensional.

Consider the approximation sequence {(uk, vk)} defined in the proof of Lemma 3.1.
For any fixed x ∈ R

d the pair (uk(·, x), vk(·, x)) solves the following scalar valued
BSDE

{−duk(t, x) = Fk(t, x) dt − vk(t, x) dWt , t ∈ [0, T ],
uk(T , x) = 0,

and satisfies the following inequality (see (3.9) and (3.10)).

E
[
sup
t≤T

|uk(t, x)|p
]
+ E

[∫ T

0
|vk(t, x)|2 dt

] p
2

≤ C(p,T )E

[∫ T

0
|Fk(t, x)|p dt

]

.

For each η ∈ [0, T ], we have by Itô’s formula

|uk(η, x)|2 +
∫ T

η

|vk(r, x)|2 dr

= |uk(T , x)|2 + 2
∫ T

η

uk(r, x)Fk(r, x) dr

− 2
∫ T

η

uk(r, x)vk(r, x) dWr, a.s.
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Therefore,

(∫ T

η

|vk(r, x)|2 dr

)p/2

≤ c(p)

(

sup
t∈[η,T ]

|uk(t, x)|p +
[∫ T

η

|uk(r, x)Fk(r, x)|dr

]p/2

+
∣
∣
∣
∣

∫ T

η

uk(r, x)vk(r, x) dWr

∣
∣
∣
∣

p/2)

.

Noting by the BDG inequality that

E

[∣
∣
∣
∣

∫ T

η

uk(r, x)vk(r, x) dWr

∣
∣
∣
∣

p/2]

≤ c1(p)E

[(∫ T

η

|uk(r, x)vk(r, x)|2 dr

)p/4]

≤ c1(p)E

[

sup
t∈[η,T ]

|uk(t, x)|p/2
(∫ T

η

|vk(r, x)|2 dr

)p/4]

,

we have

E

[(∫ T

η

|vk(r, x)|2 dr

)p/2]

≤ c(p)E

[

sup
t∈[η,T ]

|uk(t, x)|p +
(∫ T

η

|uk(r, x)Fk(r, x)|dr

)p/2

+
∣
∣
∣
∣

∫ T

η

uk(r, x)vk(r, x) dWr

∣
∣
∣
∣

p/2]

≤ c(p)E

[

sup
t∈[η,T ]

|uk(t, x)|p +
(∫ T

η

|uk(r, x)Fk(r, x)|dr

)p/2]

+ c1(p)E

[

sup
t∈[η,T ]

|uk(t, x)|p/2
(∫ T

η

|vk(r, x)|2 dr

)p/4]

≤ c(p)E

[

sup
t∈[η,T ]

|uk(t, x)|p +
(∫ T

η

|uk(r, x)Fk(r, x)|dr

)p/2]

+ 1

2
E

[(∫ T

η

|vk(r, x)|2 dr

)p/2]

,
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and, for any ε1 > 0, there is c = c(p, ε1, T ) > 0 such that

E

[(∫ T

η

|vk(r, x)|2 dr

)p/2]

≤ c(p)E

[

sup
t∈[η,T ]

|uk(t, x)|p +
(∫ T

η

|uk(r, x)Fk(r, x)|dr

)p/2]

≤ c(p)E

[

sup
t∈[η,T ]

|uk(t, x)|p + sup
t∈[η,T ]

|uk(t, x)|p/2
(∫ T

η

|Fk(r, x)|dr

)p/2]

≤ c(p, ε1, T )E
[

sup
t∈[η,T ]

|uk(t, x)|p
]
+ ε1E

[∫ T

η

|Fk(r, x)|p dr

]

. (3.14)

On the other hand, using Corollary 2.3 of Briand et al. [5], we have almost surely

|uk(t, x)|p + c0(p)

∫ T

t

|uk(s, x)|p−21{uk(s,x)�=0}|vk(s, x)|2 ds

≤ p

∫ T

t

|uk(s, x)|p−1|Fk(s, x)|ds

− p

∫ T

t

|uk(s, x)|p−2uk(s, x)vk(s, x) dWs, t ∈ [0, T ] (3.15)

where c0(p) = p[(p − 1) ∧ 1]/2.

As (uk, vk) ∈ H
0
p,∞ × H

0
p,2, from the preceding inequality, we have almost surely

∫ T

t

|uk(s, x)|p−21{uk(s,x)�=0}|vk(s, x)|2 ds < ∞, t ∈ [0, T ],

and further,

c0(p)E

[∫ T

t

|uk(s, x)|p−21{uk(s,x)�=0}|vk(s, x)|2 ds

]

≤ pE

[∫ T

t

|uk(s, x)|p−1|Fk(s, x)|ds

]

, t ∈ [0, T ]. (3.16)

From (3.15) and (3.16), using the BDG inequality we have

E
[

sup
s∈[t,T ]

|uk(s, x)|p
]

≤ pE

[∫ T

t

|uk(s, x)|p−1|Fk(s, x)|ds

]

+ pE

[∣
∣
∣
∣

∫ T

t

|uk(s, x)|p−2uk(s, x)vk(s, x) dWs

∣
∣
∣
∣

]
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+ pE

[

sup
r∈[t,T ]

∣
∣
∣
∣

∫ r

t

|uk(s, x)|p−2uk(s, x)vk(s, x) dWs

∣
∣
∣
∣

]

≤ pE

[∫ T

t

|uk(s, x)|p−1|Fk(s, x)|ds

]

+ c(p)E

[(∫ T

t

(|uk(s, x)|p−1|vk(s, x)|)2 ds

)1/2]

≤ pE

[∫ T

t

|uk(s, x)|p−1|Fk(s, x)|ds

]

+ c(p)E

[

sup
s∈[t,T ]

|uk(s, x)|p/2

×
(∫ T

t

|uk(s, x)|p−21{uk(s,x)�=0}|vk(s, x)|2 ds

)1/2]

≤ pE

[∫ T

t

|uk(s, x)|p−1|Fk(s, x)|ds

]

+ 1

2
E
[

sup
s∈[t,T ]

|uk(s, x)|p
]

+ c(p)2

2
E

[∫ T

t

|uk(s, x)|p−21{uk(s,x)�=0}|vk(s, x)|2 ds

]

≤ c′(p)E

[∫ T

t

|uk(s, x)|p−1|Fk(s, x)|ds

]

+ 1

2
E
[

sup
s∈[t,T ]

|uk(s, x)|p
]
.

Thus, for any ε2 > 0, we have

E
[

sup
s∈[t,T ]

|uk(s, x)|p
]

≤ 2c′(p)E

[∫ T

t

|uk(s, x)|p−1|Fk(s, x)|ds

]

≤ c(p, ε2)E

[∫ T

t

|uk(s, x)|p ds

]

+ ε2E

[∫ T

t

|Fk(s, x)|p ds

]

. (3.17)

Combining the last inequality with (3.14), and letting ε1 and ε2 be small enough such
that ε2c(p, ε1, T ) + ε1 < ε, we get

E

[(∫ T

t

|vk(r, x)|2 dr

)p/2]

≤ CE

[∫ T

t

|uk(s, x)|p ds

]

+ εE

[∫ T

t

|Fk(s, x)|p ds

]

. (3.18)

Here the constant C = C(p,T , ε) is independent of k.
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Now, integrating on R
d both sides of the preceding inequality and letting k → ∞,

we get (3.13) for n = 0. The general case can be proved by induction. The proof is
complete. �

Remark 3.3 The arguments in the proof of Lemma 3.2 are more or less standard (see
pp. 115–118 of [5]).

4 A Stochastic Banach Space

In this section we shall define a stochastic Banach space which will play a crucial
role in Lp theory of BSPDEs.

Definition 4.1 For n ∈ R, p ∈ (1,∞) and a D ′-valued function u ∈ H
n
p, we say u ∈

Hn
p if uxx ∈ H

n−2
p ,u(T , ·) ∈ Lp(�,FT ,B

n−2/p
p,p ), and there exists (F, v) ∈ H

n−2
p ×

H
n−1
p such that, ∀φ ∈ C∞

c , the following equality

(u(t, ·),φ) = (u(T , ·),φ) +
∫ T

t

(F (s, ·),φ) ds −
m∑

r=1

∫ T

t

(vk(s, ·),φ) dWk
s , (4.1)

holds for all t ≤ T with probability 1.
Define Hn

p,0 := Hn
p ∩ {u : u(T , ·) = 0}, and for u ∈ Hn

p

‖u‖Hn
p

:= ‖uxx‖H
n−2
p

+ ‖F‖
H

n−2
p

+ ‖vx‖H
n−2
p

+
(

E‖u(T , ·)‖p

B
n−2/p
p,p

) 1
p

. (4.2)

Remark 4.1 By Lemma 2.1, there holds B
n−2/p
p,p ↪→ Bn−2

p,min{2,p} ↪→ Hn−2
p for p ∈

(1,∞). Thus, Lp(�,FT ,B
n−2/p
p,p ) is continuously embedded into Lp(�,FT ,Hn−2

p ).

If u ∈ Hn
p, it follows from Lemma 3.1 that u ∈ H

n−2
p,∞, v ∈ H

n−2
p,2 and

(

E sup
t≤T

‖u(t, ·)‖p

Hn−2
p

)1/p

+ ‖v‖
H

n−2
p,2

≤ ‖u‖
H

n−2
p,∞ + ‖v‖

H
n−2
p,2

≤ c(p,T )
(
‖F‖

H
n−2
p

+ ‖u(T , ·)‖
Lp(�,FT ,Hn−2

p )

)

≤ c(p,T )
(
‖F‖

H
n−2
p

+ ‖u(T , ·)‖
Lp(�,FT ,B

n−2/p
p,p )

)
.

Remark 4.2 From Remarks 4.1 and 3.1, the fact that u ∈ Hn
p implies, in some sense

{u(t, x)}0≤t≤T is a semi-martingale of drift F(t, x)0≤t≤T and diffusion v(t, x)0≤t≤T .

Further, by Lemma 2.2 and the estimates in Remark 4.1, Doob-Meyer decomposition
theorem implies the uniqueness of (F, v). Therefore, the norm (4.2) is well defined.
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Without confusions, we shall always say that F and v are the drift term and diffusion
term of u respectively. In the following, we denote the diffusion term v of u by Du.

On the other hand, it is worth noting that the elements of Hn
p are assumed to be

defined for all (ω, t) and take values in D ′, and that Hn
p is a normed linear space

in which we identify two elements u1 and u2 if ‖u1 − u2‖Hn
p

= 0. In view of Defi-
nition 4.1, for any p,q ∈ (1,∞) and n, r ∈ R, if u ∈ Hn

p and ‖u‖H r
q

< ∞, one can
check that u ∈ H r

q and that, in particular, ‖u‖Hn
p

= 0 implies ‖u‖H r
q

= 0.

Theorem 4.1 The spaces Hn
p and Hn

p,0 equipped with norm (4.2) are Banach spaces.
Moreover, we have

‖u‖Hn
p

≤ C(p,T )‖u‖Hn
p
, E

[
sup
t≤T

‖u(t, ·)‖p

Hn−2
p

]
≤ C(p,T )‖u‖p

Hn
p
. (4.3)

Proof The second inequality of (4.3) is given in Remark 4.1. Since

‖u‖Hn
p

= ‖(1 − �)u‖
H

n−2
p

≤ ‖u‖
H

n−2
p

+ ‖u‖Hn
p

≤ T 1/p
(
E
[
sup
t≤T

‖u(t, ·)‖p

Hn−2
p

])1/p + ‖u‖Hn
p
,

we have the first inequality of (4.3).
It remains for us to show the completeness of Hn

p . Let {uj } be a Cauchy sequence
in Hn

p. Then it is also a Cauchy sequence in H
n
p , and there exists u ∈ H

n
p such that

lim
j→∞‖u − uj‖Hn

p
= 0.

Furthermore, {ujxx} is a Cauchy sequence in H
n−2
p and

lim
j→∞‖ujxx − uxx‖H

n−2
p

= 0.

For uj (T ),Fj , and the corresponding uj , there exist u(T ) ∈ Lp(�,FT ,B
n−2/p
p,p ) ⊂

Lp(�,FT ,Hn−2
p ) and F ∈ H

n−2
p such that

lim
j→∞‖u(T ) − uj (T )‖

Lp(�,FT ,B
n−2/p
p,p )

= 0,

lim
j→∞‖u(T ) − uj (T )‖

Lp(�,FT ,Hn−2
p )

= 0,

and

lim
j→∞‖F − Fj‖H

n−2
p

= 0.

Let vj be the diffusion term of uj . Using the argument from Remark 4.1, we conclude
that there is v ∈ H

n−1
p ∩ H

n−2
p,2 such that

lim
j→∞‖vx − (vj )x‖H

n−2
p

= 0 and lim
j→∞‖v − vj‖H

n−2
p,2

= 0.
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Since for any φ ∈ C∞
c the equality

(uj (t, ·),φ) = (uj (T , ·),φ) +
∫ T

t

(Fj (s, ·),φ) ds −
m∑

k=1

∫ T

t

(vk
j (s, ·),φ) dWk

s (4.4)

holds for all t ≤ T with probability 1, by taking on both sides limits in L1([0, T ] ×
�,FT × B(Rd)), we show that for any φ ∈ C∞

c equality (4.1) holds in [0, T ] × �

almost everywhere.
Furthermore, (4.3) implies that for u (at least for a modification of u), we have

lim
j→∞E

[
sup
t≤T

‖u(t, ·) − uj (t, ·)‖p

Hn−2
p

]
= 0.

Since the processes {(uj (t, ·),φ), t ∈ [0, T ]}, j = 1,2, . . . are all continuous, it fol-
lows that {(u(t, ·),φ), t ∈ [0, T ]} is continuous. Therefore, for any φ ∈ C∞

c , equality
(4.3) not only holds in [0, T ] × � almost everywhere but also for all τ ≤ T almost
surely. Hence, u ∈ Hn

p and uj converges to u in Hn
p. So, Hn

p is a Banach space.
In a similar way, we can check the completeness of Hn

p,0. The proof is complete. �

Remark 4.3 The estimate (4.3) can be verified for u1(t,T ], t ∈ [0, T ). Especially, we
have

E sup
s∈(t,T ]

‖u(s, ·)‖p

Hn−2
p

≤ C(p,T )‖u‖p

Hn
p(t)

with ‖u‖Hn
p(t) := ‖u1(t,T ]‖Hn

p
.

Now, we show an embedding result about the stochastic Banach space Hn
p.

Proposition 4.2 For u ∈ Hn
p and v = Du, the following assertions hold:

(i) If β := n − d/p > 0, then u ∈ Lp((0, T ],P , Cβ(Rd)) satisfying

E

[∫ T

0
‖u(t, ·)‖p

Cβ (Rd )
dt

]

≤ C(n,d,p)‖u‖p

Hn
p

≤ C(T ,n, d,p)‖u‖p
Hn

p
,

where Cβ(Rd) is the Zygmund space which is different from the ordinary Hölder
spaces Cβ(Rd) only if β is an integer. In particular, if p ∈ (1,2] and β > 1, we
also have

E

[∫ T

0
‖v(t, ·)‖p

Cβ−1(Rd )
dt

]

≤ C(T ,n, d,p)‖u‖p
Hn

p
.

(ii) If n > l and n − d/p = l − d/q, then

E

[∫ T

0
‖u(t, ·)‖p

l,q dt

]

≤ C(l, n, d,p)‖u‖p

Hn
p

≤ C(T , l, n, d,p)‖u‖p
Hn

p
.



194 Appl Math Optim (2012) 65:175–219

In particular, if p ∈ (1,2], we also have

E

[∫ T

0
‖v(t, ·)‖p

l−1,q dt

]

≤ C(T , l, n, d,p)‖u‖p
Hn

p
.

(iii) If q ≥ p and θ ∈ (0,1), then for

n ≥ l − d

q
+ d

p
+ 2(1 − θ),

we have u ∈ Lp/θ ((0, T ],H l
q) (a.s.) and

E

[(∫ T

0
‖u(t, ·)‖p/θ

l,q dt
)θ
]

≤ C(T ,n, l, q, d,p, θ)‖u‖p
Hn

p
.

In particular, if

q > p and n ≥ l + d

p
+ 2q − 2p − d

q
,

by taking θ = pq−1, we have

E

[(∫ T

0
‖u(t, ·)‖q

l,q dt
)p/q

]

≤ C(T ,n, l, q, d,p)‖u‖p
Hn

p
.

Proof By Lemma 3.1 and Theorem 4.1, the assertions (i) and (ii) are straightforward
in view of the classical Sobolev embedding theorems, which say that under conditions
in (i) and (ii), we have Hn

p ⊂ Cβ(Rd) and Hn
p ⊂ Hl

q, respectively. On the other hand,
from the Sobolev embedding theorems, we get

‖f ‖l,q ≤ C(l, d, q,p)‖f ‖l+d/p−d/q,p ≤ C(l, d, q,p, θ)‖f ‖1−θ
n′−2,p

‖f ‖θ
n′,p,

where n′ := l + d/p − d/q + 2(1 − θ) ≤ n. Hence,

E

[(∫ T

0
‖u(t, ·)‖p/θ

l,q dt
)θ
]

≤ CE

[(∫ T

0
‖u(t, ·)‖(1−θ)p/θ

n′−2,p
‖u(t, ·)‖p

n′,p dt
)θ
]

≤ CE

[(∫ T

0
‖u(t, ·)‖(1−θ)p/θ

n−2,p ‖u(t, ·)‖p
n,p dt

)θ
]

≤ CE

[

sup
t≤T

‖u‖(1−θ)p

n−2,p

(∫ T

0
‖u(t, ·)‖p

n,p dt
)θ
]

≤ C
(
E
[
sup
t≤T

‖u‖p

n−2,p

]
+ ‖u‖p

Hn
p

)

≤ C‖u‖p
Hn

p
.

The last inequality is derived from Theorem 4.1, and C = C(T ,n, l, q, d,p, θ). The
proof is complete. �
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5 Lp Solution of BSPDEs

5.1 Assumptions and the Notion of the Solution to BSPDEs

Let B(Rd) be the Banach spaces of bounded and continuous functions on R
d ,

C|n|−1,1(Rd) the Banach space of all (|n|−1) times continuously differentiable func-
tions with all the (up to the (|n| − 1)th order) partial derivatives being bounded and
all the (|n| − 1)th order partial derivatives being Lipschitz continuous on R

d , and
C|n|+γ (Rd) the usual Hölder space. The space B |n|+γ of Krylov [21] is defined as
follows.

B |n|+γ =
⎧
⎨

⎩

B(Rd) if n = 0,

C|n|−1,1(Rd) if n = ±1,±2, . . . ,

C|n|+γ (Rd) otherwise.

Here, n ∈ (−∞,∞), and γ ∈ [0,1) is fixed such that γ = 0 if n is an integer; γ > 0
otherwise is so small that there is no integer in [|n|, |n| + γ ].

Consider the following semi-linear BSPDE:

⎧
⎨

⎩

−du(t, x) = [aij (t, x)uxixj (t, x) + σ ik(t, x)vk
xi (t, x) + F(u, v, t, x)]dt

− vl(t, x)dWl
t , (t, x) ∈ [0, T ] × R

d;
u(T , x) = G(x), x ∈ R

d .

(5.1)

Here and in the following, denote

uxixj := ∂2

∂xi∂xj
u, uxi := ∂

∂xi
u, vk

xi := ∂

∂xi
vk,

ux := ∇u = (ux1 , . . . , uxd ), uxx := (uxixj )1≤i,j≤d ,

and

αij := 1

2

m∑

k=1

σ ikσ jk.

Assumption 5.1 (Super-parabolicity) There exists a positive constant λ such that

[aij (t, x) − αij (t, x)]ξ iξ j ≥ λ|ξ |2 (5.2)

holds almost surely for all x, ξ ∈ R
d and t ∈ [0, T ].

Assumption 5.2 There exists an increasing function κ : [0,∞) → [0,∞) such that
k(s) ↓ 0 as s ↓ 0 and

d∑

i,j=1

|aij (t, x) − aij (t, y)| +
d∑

i=1

m∑

k=1

|σ ik(t, x) − σ ik(t, y)| ≤ κ(|x − y|) (5.3)

holds almost surely for all (t, x, y) ∈ [0, T ] × R
d × R

d .
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Assumption 5.3 The functions aij (t, x) and σ ik(t, x) are real-valued P × B(Rd)-
measurable, such that

aij (t, ·), σ ik(t, ·) ∈ B |n|+γ , and ‖aij (t, ·)‖B |n|+γ + ‖σ ik(t, ·)‖B |n|+γ ≤ �, (5.4)

almost surely for i, j = 1, . . . , d, k = 1, . . . ,m, and t ∈ [0, T ].

Assumption 5.4 F(0,0, ·, ·) ∈ H
n
p. For (u, v) ∈ Hn+2

p × Hn+1
p , F (u, v, t, ·) is an

Hn
p -valued P -measurable process such that there is a continuous and decreasing

function � : (0,∞) → [0,∞) such that for any ε > 0, we have

‖F(u1, v1, t, ·) − F(u2, v2, t, ·)‖n,p

≤ ε(‖u1 − u2‖n+2,p + ‖v1 − v2‖n+1,p) + �(ε)(‖u1 − u2‖n,p + ‖v1 − v2‖n,p),

u1, u2 ∈ Hn+2
p and v1, v2 ∈ Hn+1

p , (5.5)

holds for any (t,ω) ∈ [0, T ] × �.

Remark 5.1 Assumption 5.4 holds for the following (u, v)-linear functional:

F(u, v, t, x) := bi(t, x)uxi (t, x) + c(t, x)u(t, x) + ςk(t, x)vk(t, x)

for (u, v, t, x) ∈ Hn+2
p × Hn+1

p × [0, T ] × R
d , if all the coefficients bi, c and ςk

satisfy Assumption 5.3 like the components of a and σ . For any f ∈ C∞
c (R1+d+2m),

the following nonlinear functional:

F(u, v, t, x) := I−n[f (Inu, In∇u, Inv, In+1/2 v)](t, x)

for (u, v, t, x) ∈ Hn+2
p × Hn+1

p × [0, T ] × R
d , also satisfies Assumption 5.4. In fact,

we recall that Is = (1−�)s/2 for s ∈ R and note that, for any (φ,ϕ) ∈ Hn+2
p ×Hn+1

p

‖In+1/2ϕ‖p ≤ ‖ϕ‖1/2
n,p‖ϕ‖1/2

n+1,p ≤ ε‖ϕ‖n+2,p + ε−1‖ϕ‖n,p,

‖In∇φ‖p ≤ C(n,d)‖φ‖n+1,p ≤ C(n,d)‖φ‖1/2
n,p‖φ‖1/2

n+2,p

≤ ε‖φ‖n+2,p + ε−1C(n,p)‖φ‖n,p, ∀ε > 0.

Therefore, for any u1, u2 ∈ Hn+2
p and v1, v2 ∈ Hn+1

p , we have

‖I−n[f (Inu1, In∇u1, Inv1, In+1/2 v1)](t, ·)
− I−n[f (Inu2, In∇u2, Inv2, In+1/2 v2)](t, ·)‖n,p

= ‖[f (Inu1, In∇u1, Inv1, In+1/2 v1)](t, ·)
− f (Inu2, In∇u2, Inv2, In+1/2 v2)](t, ·)‖p

≤ L
(‖In(u1 − u2)‖p + ‖In∇(u1 − u2)‖p

+ ‖In(v1 − v2)‖p + ‖In+1/2(v1 − v2)‖p

)
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≤ L
{[

1 + L(1 + C(n,p))ε−1](‖u1 − u2‖n,p + ‖v1 − v2‖n,p)

+ L−1ε
(‖u1 − u2‖n+2,p + ‖v1 − v2‖n+1,p

)}

≤ ε
(‖u1 − u2‖n+2,p + ‖v1 − v2‖n+1,p

)

+ L
[
1 + L(1 + C(n,p))ε−1] (‖u1 − u2‖n,p + ‖v1 − v2‖n,p

)
,

with L being a positive constant depending only on f , and ε > 0 being arbitrary. We
expect that the Lp-theory to be established in this work includes some fully nonlinear
BSPDEs. In the proof of Theorem 5.5, the well-posedness of our BSPDE (5.1) only
requires (5.5) to hold for some small positive number ε. Assumption 5.4 is therefore
formulated to expose this fact, though it seems quite technical.

Remark 5.2 Assumption 5.4 implies that F(u, v, t, x) is Lipchitz continuous with
respect to (u, v) ∈ Hn+2

p × Hn+1
p for any (t,ω) ∈ (0, T ] × �, that is there is C > 0

such that

‖F(u1, v1, t, ·) − F(u2, v2, t, ·)‖n,p

≤ C(‖u1 − u2‖n+2,p + ‖v1 − v2‖n+1,p), u1, u2 ∈ Hn+2
p and v1, v2 ∈ Hn+1

p .

Further, with � ≡ 0, it implies that F does not depend on the pair (u, v).

Definition 5.1 We call u ∈ Hn+2
p a solution of BSPDE (5.1) if for any φ ∈ C∞

c , the
equality

(u(τ, ·),φ) = (G,φ) +
∫ T

τ

(aij (t, ·)uxixj (t, ·) + σ ik(t, ·)(Du)k
xi (t, ·)

+ F(u,Du, t, ·),φ) dt −
∫ T

τ

((Du)l(t, ·),φ) dWl
t , (5.6)

holds for all τ ∈ [0, T ] with probability 1. As usual, we also call (u,Du) a solution
pair of BSPDE (5.1).

Remark 5.3 Assume that (u, v) belongs to H
n+2
p × H

n+1
p with u(T , ·) ∈ Lp(�,FT ,

B
n+2−2/p
p,p ), and further that the equality

(u(τ, ·),φ) = (G,φ) +
∫ T

τ

(aij (t, ·)uxixj (t, ·) + σ ik(t, ·)vk
xi (t, ·) + F(u, v, t, ·),φ) dt

−
∫ T

τ

(vl(t, ·),φ) dWl
t , ∀(t, φ) ∈ [0, T ) × C∞

c (5.7)

holds with probability 1. Then by Lemma 3.1, u has a modification, still denoted by
itself, such that the pair (u, v) ∈ H

n
p,∞ ×H

n
p,2 solves the Banach space-valued BSDE

(3.1) with F(t, ·) := aij (t, ·)uxixj (t, ·)+σ ik(t, ·)vk
xi (t, ·)+F(u(t, ·), v(t, ·), t, ·), t ∈

[0, T ], belonging to H
n+2
p . Hence, by Lemma 3.1 for any φ ∈ C∞

c , (5.7) holds for all
τ ∈ [0, T ] with probability 1. Hence u ∈ Hn

p.
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Note that Definition 5.1 includes as a particular case the notion of weak solution
to deterministic parabolic PDEs. For example, consider the particular case:

{− ∂
∂t

u = �u + f,

u(T ) = uT .
(5.8)

By reversing the time, we have the following proposition (see [24]).

Proposition 5.1 For any f ∈ Lp([0, T ] × R
d), and uT ∈ B

2−2/p
p,p with p ∈ (1,∞),

there exists a unique weak solution u ∈ W
1,2
p (T ) to (5.8) with terminal data u(T ) =

uT . In addition,

‖u‖
W

1,2
p

≤ C(d,p,T )(‖f ‖Lp((0,T )×Rd ) + ‖uT ‖
B

2−2/p
p,p

), (5.9)

where

‖u‖
W

1,2
p

:= ‖uxx‖Lp((0,T )×Rd ) + ‖ux‖Lp((0,T )×Rd ) + ‖u‖Lp((0,T )×Rd )

+ ‖ut‖Lp((0,T )×Rd ).

In Proposition 5.1, the space W
1,2
p can be replaced with H2

p in an equivalent way.
This fact also explains why the Besov space Bn

p,p is used for the terminal value in
Definition 4.1.

5.2 The Case of Space-Invariant Leading Coefficients

Consider the following BSPDE

⎧
⎨

⎩

−du(t, x) = [aij (t)uxixj (t, x) + σ ik(t)vk
xi (t, x) + F(t, x)]dt

− vl(t, x) dWl
t , (t, x) ∈ [0, T ] × R

d ;
u(T , x) = G(x), x ∈ R

d

(5.10)

where (F,G) ∈ H
n
p × Lp(�,FT ,Hn+1

p ), with p ∈ (1,2] and n ∈ R.

Theorem 5.2 Assume that the coefficients aij and σ il i, j = 1, . . . , d, l = 1, . . . ,m,

are P -measurable real-valued functions which are defined on � × [0, T ] and
bounded by a positive constant �, and also that they satisfy the super-parabolicity
condition 5.1. Take (F,G) ∈ H

n
p × Lp(�,FT ,Hn+1

p ),p ∈ (1,2], n ∈ R. Then, we
have

(i) BSPDE (5.10) has a unique solution u ∈ Hn+2
p and for this solution, we have

‖u‖Hn+2
p

≤ C(T ,n, d,p,λ,�)(‖G‖
Lp(�,FT ,Hn+1

p )
+ ‖F‖Hn

p
);

(ii) we have u ∈ C([0, T ],Hn
p) almost surely and

‖u‖H
n
p,∞ + ‖Du‖H

n
p,2

≤ C(T ,n, d,p,λ,�)(‖F‖Hn
p

+ ‖G‖
Lp(�,FT ,Hn+1

p )
);
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(iii) in particular, for the case G ≡ 0, there is a constant C(d,p,λ,�) which does
not depend on T , such that

‖uxx‖Hn
p

+ ‖(Du)x‖Hn
p

≤ C(d,p,λ,�) ‖F‖Hn
p
,

‖u‖Hn+2
p

≤ C(d,p,λ,�) ‖F‖Hn
p
.

In view of Lemma 3.1 and Remark 5.3, the assertions for p = 2 can be deduced
from [10, 14, 36], while Theorem 5.2 for p ∈ (1,2) seems to be new. The proof of
Theorem 5.2 will appeal to a harmonic analysis result which is due to Krylov [19,
Theorem 2.1].

Lemma 5.3 Let H be a Hilbert space, p ∈ [2,∞), −∞ ≤ a < b ≤ ∞, g ∈
Lp((a, b) × R

d ,H). Then

∫

Rd

∫ b

a

[∫ t

a

|∇Tt−sg(s, ·)(x)|2H ds

]p/2

dtdx

≤ C(d,p)

∫

Rd

∫ b

a

|g(t, x)|pH dtdx (5.11)

where Tt := e�t , t ≥ 0, is the semigroup corresponding to the heat equation ∂u
∂t

=
�u in R

d .

Remark 5.4 The assertion of Lemma 5.3 is not true for p < 2.

We have the following more general version.

Proposition 5.4 Let aij (t) satisfy the strong ellipticity condition, i.e. there exist two
positive constants λ1 and �1 such that

�1|ξ |2 ≥ aij (t)ξ iξ j ≥ λ1|ξ |2 (5.12)

holds for all ξ ∈ R
d , t ≥ 0 with probability 1. Assume that g ∈ H

n
p with p ∈ [2,∞)

and n ∈ R. Then, the SPDE
{
dη(t, x) = aij (t)ηxixj (t, x)dt + gl(t, x)dWl

t , (t, x) ∈ [0, T ] × R
d,

η(0, x) = 0, x ∈ R
d ,

(5.13)

has a unique solution η ∈ H
n+1
p such that for any φ ∈ C∞

c , the equality

(η(τ, ·),φ) =
∫ τ

0
(aij (t)ηxixj (t, ·),φ)dt +

∫ τ

0
(gl(t, ·),φ)dWl

t , (5.14)

holds for all τ ∈ (0, T ] with probability 1, and there holds the following estimate

‖ηx‖Hn
p

≤ C(d,p,λ1,�1)‖g‖Hn
p
. (5.15)
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Proof In view of [21, Theorem 4.10], SPDE (5.13) has a unique solution. It remains
to prove the estimate (5.15). It is sufficient to prove the estimate for n = 0, and other
cases can be proved by induction.

We follow a standard procedure which is due to Krylov (for instance, see [21,
Theorem 4.10, pp. 205–206]).

First, for the model case a := (aij )1≤i,j≤d = I , it can be checked that

η(t, x) =
∫ t

0
Tt−rg

l(r, x)dWl
r a.s.,

and thus,

ηx(t, x) =
∫ t

0
∇Tt−rg

l(r, x)dWl
r a.s.,

where Tt := e�t , t ≥ 0, is the semigroup corresponding to the heat equation ∂u
∂t

= �u

in R
d . From Lemma 5.3, we get

‖ηx‖H0
p

= E

∫

Rd

∫ T

0

∣
∣
∣
∣

∫ t

0
∇Tt−rg

l(s, x)dWl
s

∣
∣
∣
∣

p

dtdx

≤ C(p)E

∫

Rd

∫ T

0

[∫ t

0
|∇Tt−sg(s, ·)(x)|2ds

]p/2

dtdx

≤ C(d,p)‖g‖H0
p
.

For the general case, we can take a ≥ I, otherwise we take a nonrandom time change.
Take σ(t) = σ ∗(t) ≥ 0 as a solution of the matrix equation σ 2(t)+ 2I = 2a. Further-
more, we also assume that there is a d-dimensional Wiener process (Bt )t≥0 indepen-
dent of (Ft )0≤T .

Then, like the model case, the equation

dζ(t, x) = �ζ(t, x)dt + gl

(

t, x −
∫ t

0
σ(s) dBs

)

dWl
t ,

with the zero initial condition has a unique solution ζ ∈ H
0
p satisfying (5.14) and

(5.15). Note that the predictable σ -algebra P is replaced by σ -algebra generated by
Ft ∨ σ(Bs; s ≤ t) here. In particular, as our norms are all translation invariant with
respect to the space variable, we have

‖ζx‖H0
p

≤ C(d,p)‖g‖H0
p
.

From Theorem 2.3 it follows that the field Y(t, x) := ζ(t, x + ∫ t

0 σ(s)dBs), (t, x) ∈
[0, T ] × R

d solves the SPDE

dY (t, x) = aij (t)Yxixj (t, x) dt + gl(t, x) dWl
t + Yxi (t, x)σ ij (t) dB

j
t , Y (0, x) = 0.

For any φ ∈ C∞
c and t ≥ 0,

(η(t, ·),φ) = E[(Y (t, ·),φ)|Ft ] = E

[(

ζ

(

t, · +
∫ t

0
σ(s)dBs

)

, φ

)∣
∣
∣Ft

]

a.s.
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Therefore,

(ηx(t, ·),φ) = E

[(

ζx

(

t, · +
∫ t

0
σ(s)dBs

)

, φ

)∣
∣
∣
∣Ft

]

a.s.

As C∞
c is separable and dense in H 0

p/(p−1), it follows that

‖ηx(t, ·)‖p

H 0
p

≤ E
[‖ζx(t, ·)‖p

H 0
p
|Ft

]
a.s.

Hence,

‖ηx‖H0
p

≤ ‖ζx‖H0
p

≤ C(d,p)‖g‖H0
p
.

By considering the possible nonrandom time change, we get (5.15) for n = 0. �

Proof of Theorem 5.2 Without loss of generality, assume that m = 1.
Step 1. We use the duality method to prove assertion (i).
Consider the following SPDE:
⎧
⎨

⎩

dη(t, x) = [aij (t)ηxixj (t, x) + f (t, x)]dt

+ [−σ i(t)ηxi (t, x) + g(t, x)]dWt , (t, x) ∈ [0, T ] × R
d,

η(0, x) = 0, x ∈ R
d ,

(5.16)

where (f, g) ∈ (H−n−2
2 ∩H

−n−2
p′ )× (H−n−1

2 ∩H
−n−1
p′ ), and 1/p + 1/p′ = 1. In view

of [21, Theorem 4.10], SPDE (5.16) has a unique solution u ∈ H
−n
q such that

‖η‖
H

−n
q

≤ C(T ,d, q,λ,�)(‖f ‖
H

−n−2
q

+ ‖g‖
H

−n−1
q

),

‖ηxx‖H
−n−2
q

≤ C(d, q,λ,�)(‖f ‖
H

−n−2
q

+ ‖g‖
H

−n−1
q

), (5.17)

E sup
t∈[0,T ]

‖η(t, ·)‖
H−n−1

q
≤ C(T ,d, q,λ,�)(‖f ‖

H
−n−2
q

+ ‖g‖
H

−n−1
q

)

for q = 2,p′. For the moment, assume that

(F,G) ∈ (Hn
p ∩ H

n
2) × (Lp(�,FT ,Hn+1

p ) ∩ L2(�,FT ,Hn+1
2 )).

For p = 2, BSPDE (5.10) has a unique pair (u, v) ∈ H
n+2
2 × H

n+1
2 such that (see

[36])

‖u‖
H

n+2
2

+ ‖v‖
H

n+1
2

≤ C(T ,d,λ,�)[‖F‖H
n
2
+ ‖G‖

L2(�,FT ,Hn+1
2 )

],

and for any φ ∈ C∞
c and τ ∈ [0, T ]

(u(τ, ·),φ) = (G,φ) +
∫ T

τ

(aij (t)uxixj (t, ·) + σ i(t)vxi (t, ·) + F(t, ·),φ)dt

×
∫ T

τ

(v(t, ·),φ)dWt , a.s. (5.18)
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Furthermore, keeping in mind the existence of (u, v) ∈ H
n+2
2 × H

n+1
2 , we conclude

that (at least for a modification of u) for any φ ∈ C∞
c , the equality (5.18) holds for all

τ ∈ [0, T ] with probability 1. From Remark 5.3, we have u ∈ Hn+2
2 .

The parallelogram rule yields the following

∫

Rd

(1 − �)
n+1

2 u(t, x)(1 − �)−
n+1

2 η(t, x)dx

= 1

4
{‖(1 − �)

n+1
2 u(t, ·) + (1 − �)−

n+1
2 η(t, ·)‖2

L2(Rd )

× ‖(1 − �)
n+1

2 u(t, ·) − (1 − �)−
n+1

2 η(t, ·)‖2
L2(Rd )

}.

Applying Itô’s formula to compute the square of the norm (see [23, Theorem 3.1]),
we get

E

∫ T

0
(u(t, ·), f (t, ·)) + (v(t, ·), g(t, ·))dt

= (G,η(T , ·)) + E

∫ T

0
(F (t, ·), η(t, ·))dt

≤ ‖G‖
Lp(�,FT ,Hn+1

p )
‖η(T )‖

Lp′
(�,FT ,H−n−1

p′ )
+ ‖F‖Hn

p
‖η‖

H
−n

p′

≤ (‖G‖
Lp(�,FT ,Hn+1

p )
+ ‖F‖Hn

p
)(‖η(T )‖

Lp′
(�,FT ,H−n−1

p′ )
+ ‖η‖

H
−n

p′ )

≤ C(T ,λ,�,d,p)(‖G‖
Lp(�,FT ,Hn+1

p )
+ ‖F‖Hn

p
)(‖f ‖

H
−n−2
p′ + ‖g‖

H
−n−1
p′ ).

Note that (F,G) ∈ (Hn
p ∩ H

n
2) × (Lp(�,FT ,Hn+1

p ) ∩ L2(�,FT ,Hn+1
2 )).

For (F,G) ∈ H
n
p × Lp(�,FT ,Hn+1

p ), we choose a sequence (F k,Gk) ∈ (Hn
p ∩

H
n
2) × (Lp(�,FT ,Hn+1

p ) ∩ L2(�,FT ,Hn+1
2 )), k = 1,2, . . . , such that

‖Fk − F‖Hn
p

+ ‖Gk − G‖
Lp(�,FT ,Hn+1

p )
→ 0 as k → ∞. (5.19)

Denote by (uk, vk) the unique solution pair to BSPDE (5.10) for (F,G) := (F k,Gk).
Thus,

E

∫ T

0
(uk(t, ·), f (t, ·)) + (vk(t, ·), g(t, ·))dt

= (Gk, η(T , ·)) + E

∫ T

0
(F k(t, ·), η(t, ·))dt

≤ C(T ,d,p,λ,�)(‖Gk‖
Lp(�,F k

T ,Hn+1
p )

+ ‖Fk‖Hn
p
)(‖f ‖

H
−n−2
p′ + ‖g‖

H
−n−1
p′ ),

where C(T ,d,p,λ,�) is independent of k. Noting that H
−n−2
2 ∩ H

−n−2
p′ and

H
−n−1
2 ∩ H

−n−1
p′ are dense in H

−n−2
p′ and H

−n−1
p′ respectively, and that (f, g) ∈
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(H−n−2
2 ∩ H

−n−2
p′ ) × (H−n−1

2 ∩ H
−n−1
p′ ) is arbitrary, from the last inequality, we have

‖uk‖
H

n+2
p

+ ‖vk‖
H

n+1
p

≤ C(T ,d,p,λ,�)[‖Fk‖Hn
p

+ ‖Gk‖
Lp(�,F k

T ,Hn+1
p )

]. (5.20)

Moreover,

‖uk‖Hn+2
p

= ‖uk
xx‖Hn

p
+ ‖aijuk

xixj + σ ivk
xi + Fk‖Hn

p

+ ‖vk
x‖Hn

p
+ ‖Gk‖

Lp(�,FT ,B
n+2−2/p
p,p )

≤ C(n,d,p,λ,�)[‖uk
xx‖Hn

p
+ ‖vk‖

H
n+1
p

+ ‖Fk‖Hn
p

+ ‖Gk‖
Lp(�,FT ,Hn+1

p )
]

≤ C(n,d,p,λ,�)[‖uk‖
H

n+2
p

+ ‖vk‖
H

n+1
p

+ ‖Fk‖Hn
p

+ ‖Gk‖
Lp(�,FT ,Hn+1

p )
]

≤ C(T ,n, d,p,λ,�)[‖Fk‖Hn
p

+ ‖Gk‖
Lp(�,FT ,Hn+1

p )
]

and this combined with uk ∈ Hn+2
2 , implies uk ∈ Hn+2

p for k = 1,2,3, . . . .

From (5.19), (5.20) and the last inequality, it follows that uk is a Cauchy se-
quence in Hn+2

p . By Theorem 4.1, there exists u ∈ Hn+2
p such that ‖uk − u‖Hn+2

p
→

0, as k → ∞, and there holds the following estimate

‖u‖Hn+2
p

≤ C(T ,n,p, d,λ,�)[‖G‖
Lp(�,FT ,Hn+1

p )
+ ‖F‖Hn

p
].

Denote v := Du. It is obvious that ‖vk −v‖
H

n+1
p

→ 0, as k → ∞. In view of Remark

4.1, one can check that v ∈ H
n+1
p ∩ H

n
p,2. By taking limits one can check that u ∈

Hn+2
p is a solution of BSPDE (5.10).
Now we prove the uniqueness of the solution. Suppose that F = 0, G = 0 and

u ∈ Hn+2
p solving BSPDE (5.10). It is sufficient to show u = 0, which is immediate

from the last estimate with F = 0 and G = 0.
Step 2. We prove assertion (ii).
Note that Lp(�,FT ,Hn+1

p ) is continuously embedded into Lp(�,FT ,Hn
p).

From Lemma 3.1, it follows that u ∈ H
n
p,∞, v ∈ H

n
p,2, and u ∈ C([0, T ],Hn

p) almost
surely. In fact, in view of Lemma 3.1 and Theorem 4.1, we have

‖u‖H
n
p,∞ + ‖v‖H

n
p,2

≤ C(T ,p)(‖aijuxixj + σ ikvk
xi + F‖Hn

p
+ ‖G‖Lp(�,FT ,Hn

p ))

≤ C(T ,p,λ,�)(‖uxx‖Hn
p

+ ‖vx‖Hn
p

+ ‖F‖Hn
p

+ ‖G‖Lp(�,FT ,Hn
p ))

≤ C(T ,p,λ,�)(‖u‖Hn+2
p

+ ‖F‖Hn
p

+ ‖G‖Lp(�,FT ,Hn
p ))

≤ C(T ,n, d,p,λ,�)(‖F‖Hn
p

+ ‖G‖
Lp(�,FT ,Hn+1

p )
).



204 Appl Math Optim (2012) 65:175–219

Step 3. We prove assertion (iii) using the duality method.
Consider G = 0. For (f, g) ∈ (H−n

p′ ∩ H
−n
2 ) × (H−n+1

p′ ∩ H
−n+1
2 ), the Hessian ηxx

of the corresponding solution solves SPDE (5.16) with (f, g) being replaced with
(fxx, gxx). For the SPDE with (f, g), we have the following analogue to (5.17):

‖ηxx‖H
−n

p′ ≤ C(d,p,λ,�)(‖f ‖
H

−n

p′ + ‖g‖
H

−n+1
p′ ).

Furthermore, proceeding identically as in the proof of assertion (i), we have

E

∫ T

0
(uxixj (t, ·), f (t, ·)) + (vxixj (t, ·), g(t, ·))dt

= E

∫ T

0
(u(t, ·), fxixj (t, ·)) + (v(t, ·), gxixj (t, ·))dt

= E

∫ T

0
(F (t, ·), ηxixj (t, ·))dt

≤ ‖F‖Hn
p
‖ηxx‖H

−n

p′

≤ C(λ,�,d,p)‖F‖Hn
p
(‖f ‖

H
−n

p′ + ‖g‖
H

−n+1
p′ ), for i, j = 1, . . . , d.

Hence, by the arbitrariness of (f, g) and the denseness of (H−n
p′ ∩ H

−n
2 ) × (H−n+1

p′ ∩
H

−n+1
2 ) in H

−n
p′ × H

−n+1
p′ it follows that

‖uxx‖Hn
p

+ ‖vxx‖H
n−1
p

≤ C(d,p,λ,�) ‖F‖Hn
p
. (5.21)

On the other hand, let ζ(t, x) := u(t, x + ∫ t

0 σ(s)dWs). By Theorem 2.3, we have

⎧
⎨

⎩

−dζ(t, x) = [(aij (t) − αij (t))ζ(t, x)xixj + F(t, x + ∫ t

0 σ(s)dWs)]dt

− [σ iζxi (t, x) + v(t, x + ∫ t

0 σ(s)dWs)]dWt , (t, x) ∈ [0, T ] × R
d;

ζ(T , x) = 0, x ∈ R
d .

(5.22)
We consider the dual SPDE

⎧
⎨

⎩

dψ(t, x) = (aij (t) − αij (t))ψxixj (t, x) dt

+ h(t, x) dWt , (t, x) ∈ [0, T ] × R
d;

ψ(0, x) = 0, x ∈ R
d

(5.23)

where h ∈ H
−n
p′ ∩H

−n
2 , 1/p′ + 1/p = 1. In view of Proposition 5.4, we conclude that

SPDE (5.23) has a unique solution ψ ∈ H
−n+1
p′ satisfying

‖ψx‖H
−n

p′ ≤ C(d,p,λ,�)‖h‖
H

−n

p′ .

Moreover, we have

E

∫ T

0

(

σ iζxixj (t, ·) + vxj

(

t, · +
∫ t

0
σ(s) dWs

)

, h(t, ·)
)

dt
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= E

∫ T

0

(

σ iζxi (t, ·) + v

(

t, · +
∫ t

0
σ(s) dWs

)

, hxj (t, ·)
)

dt

= E

∫ T

0

(

ψxj (t, ·),F
(

t, · +
∫ t

0
σ(s) dWs

))

dt

≤ ‖ψx‖H
−n

p′

∥
∥
∥
∥F

(

·, · +
∫ t

0
σ(s) dWs(·)

)∥
∥
∥
∥

Hn
p

≤ C(d,p,λ,�)‖h‖
H

−n

p′ ‖F‖Hn
p

for j = 1, . . . , d. (5.24)

Since h is arbitrary and H
−n
p′ ∩ H

−n
2 is dense in H

−n
p′ , we have

∥
∥
∥
∥σ

iζxix(·, ·) + vx

(

·, · +
∫ t

0
σ(s) dWs

)∥
∥
∥
∥

Hn
p

≤ C(d,p,λ,�)‖F‖Hn
p
,

which yields

‖σ iuxix + vx‖Hn
p

≤ C(d,p,λ,�)‖F‖Hn
p
.

Therefore,

‖vx‖Hn
p

≤ ‖σ iuxix‖Hn
p

+ ‖σ iuxix + vx‖Hn
p

≤ C(d,p,λ,�)‖F‖Hn
p
, (5.25)

which, combined with (5.21), implies the assertion (iii).
The proof is complete. �

Remark 5.5 Our assumptions listed in Theorem 5.2 are required by [21, Theorem
4.10] for the dual SPDE (5.16) to have a unique solution. In the whole proof, Propo-
sition 5.4 is used only in Step 3 to prove assertion (iii) of Theorem 5.2. In particular,
using the sharp harmonic analysis result (Lemma 5.3), Krylov established the Lq -
theory ([21, Theorem 4.10]) for q ≥ 2, which implies via duality the assertions of
Theorem 5.2.

Remark 5.6 If the assumptions of Theorem 5.2 are satisfied for both q1 and q2 in-
stead of p, where q1, q2 ∈ (1,2], then the solutions in Hn+2

q1
and Hn+2

q2
coincide.

Indeed, we need only to take (F k,Gk) ∈ (Hn
q1

∩ H
n
2 ∩ H

n
q2

) × (Lq1(�,FT ,Hn+1
q1

) ∩
L2(�,FT ,Hn+1

2 ) ∩ Lq2(�,FT ,Hn+1
q2

)) during the proof of Theorem 5.2. Then the

approximating solutions in Hn+2
q1

and Hn+2
q2

coincide in Hn+2
2 . This implies the so-

lutions to (5.10) in Hn+2
q1

and Hn+2
q2

coincide.

Remark 5.7 For the case p ∈ (2,∞), consider the following BSPDE

⎧
⎨

⎩

−du(t, x) = [aij (t)uxixj (t, x) + σ ik(t)vxi (t, x) + F(t, x)]dt

− vk(t, x)dWk
t , (t, x) ∈ [0, T ] × R

d ,

u(T , x) = G(x), x ∈ R
d,

(5.26)
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and SPDE:
⎧
⎨

⎩

dη(t, x) = [aij (t)ηxixj (t, x) + f (t, x)]dt

− σ ik(t)ηxi (t, x)dWk
t , (t, x) ∈ [0, T ] × R

d ,

η(0, x) = 0, x ∈ R
d,

(5.27)

where f ∈ H
−n−2
p′ , (F,G) ∈ H

n
p × Lp(�,FT ,Hn+1

p ), 1/p + 1/p′ = 1, n ∈ R and

(aij )1≤i,j≤d and (σ ik)1≤i≤d,1≤k≤m are the same as Theorem 5.2. If a = I and σ = 0,

one can check that η(t, x) = ∫ t

0 e�(t−s)f (s, x)ds ∈ H
−n
p′ is the unique solution of

(5.27) in the sense of [20, 21]. For the general a and σ, by applying the Itô-Wentzell
formula and the technical method used in Proposition 5.4, we can conclude that (5.27)
has a unique solution η ∈ H

−n
p′ . It is crucial that σ is invariant in the space variable.

Then through a procedure similar to the proof of Theorem 5.2, we can conclude
that BSPDE (5.26) has a unique solution pair (u, v) such that u ∈ H

n+2
p ∩ H

n
p,∞,

v(·, · + ∫ ·
0 σk(s)dWk

s ) ∈ H
n
p,2 and for any φ ∈ C∞

c , the equality

(u(τ, ·),φ) = (G,φ) +
∫ T

τ

(aij (t)uxixj (t, ·) + σ ik(t)vk
xi (t, ·) + F(t, ·),φ)dt

−
∫ T

τ

(vk(t, ·),φ)dWk
t ,

holds for all τ ∈ [0, T ] with probability 1. For this solution pair, we have u ∈
C([0, T ],Hn

p) almost surely and

‖u‖
H

n+2
p

+ ‖u‖H
n
p,∞ + ‖v′‖H

n
p,2

≤ C(T ,n, d,p,λ,�)
(
‖G‖

Lp(�,FT ,Hn+1
p )

+ ‖F‖Hn
p

)

where v′ = v(·, · + ∫ ·
0 σk(s)dWk

s ). In particular, when G = 0, we have ‖u‖
H

n+2
p

≤
C(d,p,λ,�) ‖F‖Hn

p
.

5.3 The Case of General Variable Leading Coefficients

Now we deal with the general case.

Theorem 5.5 Suppose that the Assumptions 5.1–5.4 are all satisfied. Consider
G ∈ Lp(�,FT ,Hn+1

p ) with p ∈ (1,2] and n ∈ R. Then BSPDE (5.1) has a unique

solution u ∈ Hn+2
p , satisfying the following inequality

‖u‖Hn+2
p

≤ C(T ,n, κ,�, d,p,λ,�)
(
‖F(0,0, ·, ·)‖Hn

p
+ ‖G‖

Lp(�,FT ,Hn+1
p )

)
. (5.28)

The following lemma can be found in [21, Lemma 5.2].

Lemma 5.6 Let ζ ∈ C∞
c (Rd) be a nonnegative function such that

∫
ζ(x)dx = 1 and

define ζk(x) = kdζ(kx), k = 1,2,3, . . . . Then for any u ∈ Hn
p, p ∈ (1,∞), and any

n ∈ R, we have
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(i) ‖au‖n,p ≤ C‖a‖B |n|+γ ‖u‖n,p where C = C(d,p,n, γ );
(ii) ‖u ∗ ζk‖n,p ≤ ‖u‖n,p, ‖u − u ∗ ζk‖n,p → 0 as k → ∞.

Applying Lemma 3.2, we get a priori result about the solution of BSPDE (5.1),
which is given in the following lemma. It will play a key role in the proof of Theorem
5.5 and distinguish our proof of BSPDEs from that of SPDEs in Krylov [20, 21].

Lemma 5.7 Let u ∈ Hn+2
p,0 be a solution to BSPDE (5.1). Let the Assumptions 5.1–

5.4 be satisfied. Then for any ε > 0, there exists a constant C = C(T ,p, ε) such that

‖Du‖H
n
p,2(t)

≤ ε[‖uxx‖Hn
p(t) + ‖(Du)x‖Hn

p(t) + ‖F(0,0, ·, ·)‖Hn
p(t)]

+ C(T ,p, ε,�,�)‖u‖Hn
p(t), t ∈ [0, T ).

Proof Denote v := Du. By Lemma 3.2, for any ε̄ > 0, there exists a constant C =
C(T ,p, ε̄) such that

‖v‖H
n
p,2

≤ ε̄‖Lu + Mkvk + F(u, v, ·, ·)‖Hn
p

+ C(T ,p, ε̄)‖u‖Hn
p

≤ ε̄C(�)(‖uxx‖Hn
p

+ ‖vx‖Hn
p

+ ‖F(0,0, ·, ·)‖Hn
p
)

+ ε̄(�(1) + 1)(‖u‖Hn
p

+ ‖v‖Hn
p
) + C(T ,p, ε̄)‖u‖Hn

p
.

Since

‖v‖Hn
p

≤ T (2−p)/2‖v‖H
n
p,2

,

we choose ε̄ sufficiently small so that 1 − ε̄(�(1) + 1)T (2−p)/2 > 1/2. Therefore,

‖v‖H
n
p,2

≤ 2ε̄C(�)[‖uxx‖Hn
p

+ ‖vx‖Hn
p

+ ‖F(0,0, ·, ·)‖Hn
p
]

+ 2ε̄(�(1) + 1)‖u‖Hn
p

+ 2C(T ,p, ε̄)‖u‖Hn
p

≤ 2ε̄C(�)[‖uxx‖Hn
p

+ ‖vx‖Hn
p

+ ‖F(0,0, ·, ·)‖Hn
p
] + C(T ,p, ε̄, �(1))‖u‖Hn

p
.

This shows that the lemma is true for t = 0. Replacing H
n
p with H

n
p(t), we can prove

the lemma for any t ∈ [0, T ) similarly. �

We have the following result about the perturbed leading coefficients.

Theorem 5.8 Let Assumptions 5.1–5.4 be satisfied. Then there exists a constant ε ∈
(0,1) depending only on d,p,λ and � such that if the inequality

‖(a(t, ·) − ā(t))ij (u1)xixj ‖n,p + ‖(σ (t, ·) − σ̄ (t, ·))ik(v1)
k
xi ‖n,p

≤ ε(‖(u1)xx‖n,p + ‖(v1)x‖n,p) + K0(‖u1‖n,p + ‖v1‖n,p),

∀(u1, v1) ∈ Hn+2
p × Hn+1

p , t ≥ 0, (5.29)

holds for some constant K0 and some pair (ā, σ̄ ) which satisfies the assumptions in
Theorem 5.2, there exists a unique solution u ∈ Hn+2

p,0 to (5.1) with G = 0. Moreover,
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we have

‖u‖Hn+2
p

≤ C(T ,K0, �, d,p,λ,�)‖F(0,0, ·, ·)‖Hn
p
. (5.30)

In particular, C is independent of T if K0 = 0 and � ≡ 0.

Proof Step 1. We first prove that there is a generic constant ε ∈ (0,1) such that the
inequality (5.29) yields the estimate (5.30) for any solution u ∈ Hn+2

p,0 to BSPDE
(5.1). Denote v := Du and rewrite BSPDE (5.1) into the following form:

⎧
⎨

⎩

−du(t, x) = [L̄u(t, x) + M̄kvk(t, x) + (L − L̄)u(t, x) + (M − M̄)kvk(t, x)

+ F(u, v, t, x)]dt − vk(t, x)dWk
t , (t, x) ∈ [0, T ] × R

d ;
u(T , x) = 0, x ∈ R

d

(5.31)
where

L̄ = āij ∂2

∂xi∂xj
, M̄k = σ̄ ik ∂

∂xi
, k = 1, . . . ,m.

In view of Theorem 5.2, we have

‖u‖Hn+2
p

≤ C(d,p,λ,�)‖(L − L̄)u + (M − M̄)kvk + F(u, v, ·, ·)‖Hn
p

≤ C(d,p,λ,�)[ε(‖uxx‖Hn
p

+ ‖vx‖Hn
p
) + K0(‖u‖Hn

p
+ ‖v‖Hn

p
)

+ ‖F(0,0, ·, ·)‖Hn
p

+ ε1(‖uxx‖Hn
p

+ ‖vx‖Hn
p
) + (�(ε1) + ε1)(‖u‖Hn

p
+ ‖v‖Hn

p
)]

≤ C(d,p,λ,�)[(ε + ε1)(‖uxx‖Hn
p

+ ‖vx‖Hn
p
)

+ (K0 + �(ε1) + ε1)(‖u‖Hn
p

+ ‖v‖Hn
p
) + ‖F(0,0, ·, ·)‖Hn

p
].

Note that the above still holds if H
n
p is replaced by H

n
p(t) for t ∈ [0, T ). Furthermore,

if K0 = 0 and � ≡ 0, the map F does not depend on (u, v) and we get instead that

‖u‖Hn+2
p

≤ C(d,p,λ,�)[ε(‖uxx‖Hn
p

+ ‖vx‖Hn
p
) + ‖F‖Hn

p
],

which implies the last assertion of Theorem 5.8 by taking ε small enough such that
C(d,p,λ,�)ε < 1/2.

Now, fix t ∈ [0, T ). Then, noting that ‖v‖Hn
p(t) ≤ T (2−p)/2‖v‖H

n
p,2

(t), from
Lemma 5.7, we conclude that for any ε2 > 0, there exists a constant C =
C(T ,p, ε2, �) such that

‖v‖Hn
p(t)

≤ ε2(‖uxx‖Hn
p(t) + ‖vx‖Hn

p(t) + ‖F(0,0, ·, ·)‖Hn
p(t)) + C2(T ,p, ε2, �,�)‖u‖Hn

p(t).
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Thus, it follows that

‖u‖Hn+2
p (t)

≤ C1(d,p,λ,�){[ε + ε1 + (K0 + �(ε1) + ε1)ε2](‖uxx‖Hn
p(t) + ‖vx‖Hn

p(t))

+ [(K0 + �(ε1) + ε1)ε2 + 1]‖F(0,0, ·, ·)‖Hn
p(t)

+ (K0 + �(ε1) + ε1)(1 + C2(T ,p, ε2, �))‖u‖Hn
p(t)}.

Taking ε1 = ε, ε2 = ε/(K0 + �(ε) + ε + 1) and ε = 1/(4C1 + 1), we get

‖u‖Hn+2
p (t)

≤ 5‖F(0,0, ·, ·)‖Hn
p(t) + C(T ,p,d,λ,�,K0, �(ε))‖u‖Hn

p(t),

which immediately implies the following inequality

‖u‖p

Hn+2
p (t)

≤ C(T ,p,d,λ,�,K0, �(ε))(‖F(0,0, ·, ·)‖p

Hn
p(t)

+ ‖u‖p

Hn
p(t)

).

Since (see Remark 4.3)

E sup
s∈[t,T ]

‖u(s, ·)‖p
Hn

p
≤ C(p,T )‖u‖p

Hn+2
p (t)

,

we have

‖u‖p

Hn+2
p (t)

≤ C(T ,p,d,λ,K0,�,�(ε))

(

‖F(0,0, ·, ·)‖p

Hn
p(t)

+ E

∫ T

t

‖u(s, ·)‖p
Hn

p
ds

)

≤ C(T ,p,d,λ,K0,�,�(ε))

(

‖F(0,0, ·, ·)‖p

Hn
p(t)

+
∫ T

t

‖u‖p

Hn+2
p (s)

ds

)

.

Using Gronwall inequality, we get the desired estimation (5.30).
Step 2. We use the standard method of continuity to prove the existence of the

solution u ∈ Hn+2
p . For θ ∈ [0,1], we consider the BSPDE

{−du = (Lθu + Mk
θ v

k + (1 − θ)F (u, v, t, x))dt − vkdWk
t

u(T , ·) = 0
(5.32)

where

Lθ := θ L̄ + (1 − θ)L and Mk
θ = θ M̄k + (1 − θ)Mk.

Note that the priori estimate (5.30) holds with the constant C being independent of
θ. Assume that BSPDE (5.32) has a unique solution u ∈ Hn+2

p,0 for θ = θ0. Theorem

5.2 shows that this assumption is true for θ0 = 1. For any u1 ∈ Hn+2
p,0 , the following

BSPDE
⎧
⎨

⎩

−du = {Lθ0u + Mk
θ0

vk + (1 − θ0)F (u, v, t, x) + (θ − θ0)[(L̄ − L)u1

+ (M̄k − Mk)(Du1)
k + F(u1,Du1, t, x)]}dt − vkdWk

t ,

u(T , ·) = 0,

(5.33)



210 Appl Math Optim (2012) 65:175–219

has a unique solution u in Hn+2
p,0 , and we can define the solution map as follows

Rθ0 : Hn+2
p,0 → Hn+2

p,0 , u1 �→ u.

Then for any ui ∈ Hn+2
p,0 , i = 1,2, we have

‖Rθ0u2 − Rθ0u1‖Hn+2
p

≤ C|θ − θ0|‖(L̄ − L)(u2 − u1) + (M̄k − Mk)(Du2 − Du1)
k

+ F(u2,Du2, t, x) − F(u1,Du1, t, x)‖Hn
p

≤ C̄|θ − θ0|‖u1 − u2‖Hn+2
p

,

where C̄ does not depend on θ and θ0. If C̄|θ − θ0| < 1/2, Rθ0 is a contraction
mapping and it has a unique fixed point u ∈ Hn+2

p,0 which solves BSPDE (5.32). In this

way if (5.32) is solvable for θ0, then it is solvable for θ satisfying C̄|θ − θ0| < 1/2.

In finite number of steps starting from θ = 1, we get to θ = 0. This completes the
proof. �

Lemma 5.9 Under the Assumptions 5.1–5.4, there exists an ε = ε(n, γ, d,p,λ,�) >

0 such that if κ(∞−) < ε, then the condition of Theorem 5.8 is satisfied . In this case,
by Theorem 5.8 we conclude that there exists a unique solution u ∈ Hn+2

p,0 to BSPDE
(5.1) with the zero terminal condition satisfying the following inequality

‖u‖Hn+2
p

≤ C(T ,�, d,p,λ,�)‖F(0,0, ·, ·)‖Hn
p
.

Proof Define ā(t) = a(t,0) and σ̄ (t) = σ(t,0). It follows from Lemma 5.6 that, for
any (u1, v1) ∈ Hn+2

p × Hn+1
p , we have

‖(a − ā)ij (t, ·)(u1)ij‖n,p + ‖(σ − σ̄ )ik(t, ·)(v1)
k
i ‖n,p

≤ C(n,d,p, γ )
(‖(a − ā)(t, ·)‖B |n|+γ ‖(u1)xx‖n,p

+ ‖(σ − σ̄ )(t, ·)‖B |n|+γ ‖(v1)x‖n,p

)
. (5.34)

In view of (5.29), there exists a constant ε1 = ε1(n, γ, d,p,λ,�) such that if

‖a(t, ·) − ā(t)‖B |n|+γ ‖(u1)xx‖n,p + ‖σ(t, ·) − σ̄ (t)‖B |n|+γ ‖(v1)x‖n,p ≤ ε1,

∀t ∈ [0, T ], (5.35)

the condition (5.29) in Theorem 5.8 is satisfied. With a standard method (c.f. [21,
Lemma 6.6, pp. 215–216]), we can check that if ε in our lemma is sufficiently small,
(5.35) holds true. This complete the proof. �

To prove Theorem 5.5, we need a generalization of the Littlewood-Paley inequal-
ity, which is due to Krylov [19].
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Lemma 5.10 Let p ∈ (1,∞), n ∈ (−∞,+∞), δ > 0, and ζk ∈ C∞, k =
1,2,3, . . . . Assume that for any multi-index α and x ∈ R

d

sup
x∈Rd

∑

k

|Dαζk(x)| ≤ M(α),

where M(α) is constant. Then there exists a constant C = C(d,n,M) such that, for
any f ∈ Hn

p,

∑

k

‖ζkf ‖p
n,p ≤ C‖f ‖p

n,p.

If in addition
∑

k

|ζk(x)|p ≥ δ,

then for any f ∈ Hn
p,

‖f ‖p
n,p ≤ C(d,n,M, δ)

∑

k

‖ζkf ‖p
n,p.

Proof of Theorem 5.5 Step 1. Without loss of generality, assume that G = 0.

In fact, by Theorem 5.2, there exists a unique solution ū ∈ Hn+2
p for the equation

{−du = �udt − vkdWk
t , t ∈ [0, T ];

u(T , x) = G(x)
(5.36)

satisfying the estimate

‖ū‖Hn+2
p

≤ C(T ,p,d,λ,�)‖G‖
Lp(�,FT ,Hn+1

p )
.

Without loss of generality, we consider (ū(t, ·),Dū(t, ·)) ∈ Hn+2
p × Hn+1

p for any
(t,ω) ∈ [0, T ] × �. Setting (u, v) := (ũ + ū, ṽ + v̄), we need only to consider the
BSPDE

−dũ(t, x) = [aij (t, x)ũxixj (t, x) + σ ik(t, x)ṽk
xi (t, x) + F̄ (ũ, ṽ, t, x)]dt

− ṽk(t, x)dWk
t

where

F̄ (ũ, ṽ, t, x) = F(ũ + ū, ṽ + v̄, t, x) + aij (t, x)ūxixj (t, x)

+ σ ik(t, x)v̄k
xi (t, x) − �ū(t, x).

It can be checked that F̄ satisfies the same condition as F.

Step 2. We give a priori estimate for the solution u ∈ Hn+2
p,0 to BSPDE (5.1).

For ε > 0 in Lemma 5.9, by Assumption 5.2, there exists ε0 > 0 such that κ(s) < ε

for any s ∈ [0, ε0]. Let {ζl : l = 1,2,3, . . . } be a standard partition of unity in R
d such
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that, for any l, the support of ζl lies in the ball B(xl, ε0/4). For any l, take a function
ηl ∈ C∞

c valued in [0,1] such that the support of ηl lies in Bl(xl, ε0/2) and ηl = 1 on
Bl. Denote v := Du. Then we get
⎧
⎨

⎩

−d(uζl)(t, x) = [L̃l (t, x)(ζlu)(t, x) + M̃k
l (t, x)(ζlv

k)(t, x) + F̃ (t, x)]dt

− ζl(x)vk(t, x)dWk
t

(uζl)(T , x) = 0
(5.37)

where

L̃l (t, x) := ηl(x)L(t, x) + (1 − ηl(x))L(t, xl),

M̃k
l (t, x) := ηl(x)Mk(t, x) + (1 − ηl(x))Mk(t, xl),

F̃ (t, x) := −2(ζl)xi a
ij uxj (t, x) − (ζl)xixj a

ij u(t, x)

− (ζl)xi σ ikvk(t, x) + ζlF (u, v, t, x).

From Theorem 4.1 and Lemma 5.9, we get

‖uζl‖H
n+2
p

+ ‖vζl‖H
n+1
p

≤ C(T ,�,λ,�,d,p)‖F̃‖Hn
p
.

Applying Lemma 5.10 and 5.6, we can get such conclusions as
∑

l

‖ζlF (ω, t)‖p
n,p ≤ C‖F(ω, t)‖p

n,p,

∑

l

‖(ζl)xixj a
ij u(ω, t)‖p

n,p ≤ C‖aiju(ω, t)‖p
n,p ≤ C‖u‖p

n,p,

‖u(ω, t)‖n,p ≤ C
∑

l

‖ζlu(ω, t)‖n,p ≤ C‖u(ω, t)‖n,p, (ω, t) ∈ � × [0, T ] a.e.

Integrating each term on � × [0, T ], we have

‖u‖Hn+2
p

≤ C(T ,n, κ, d,p,λ,�)(‖F(u, v, ·, ·)‖Hn
p

+ ‖u‖
H

n+1
p

+ ‖v‖Hn
p
)

≤ C1(T , κ,n, d,p,λ,�)(ε1‖u‖Hn+2
p

+ ‖F(0,0, ·, ·)‖Hn
p

+ (1 + �(ε1))‖u‖Hn
p

+ ‖v‖Hn
p
)

where ε1 > 0 is arbitrary. Then, noting that ‖v‖Hn
p

≤ T (2−p)/2‖v‖H
n
p,2

, from Lemma
5.7, we conclude that for any ε2 > 0, there exists a constant C = C(T ,p, ε2, �) such
that

‖v‖Hn
p

≤ ε2(‖u‖Hn+2
p

+ ‖F(0,0, ·, ·)‖Hn
p
) + C2(T ,p, ε2, �,�)‖u‖Hn

p
.

By choosing ε1 + ε2 small enough such that C1(T , κ,n, d,p,λ,�)(ε1 + ε2) < 1/2,

we get

‖u‖Hn+2
p

≤ C(T ,κ,�,n, d,p,λ,�)(‖F(0,0, ·, ·)‖Hn
p

+ ‖u‖Hn
p
). (5.38)
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In view of Theorem 4.1 and Remark 4.3, we can show in a similar way the following
inequality

E‖u(t, ·)‖p
n,p ≤ C‖F(0,0, ·, ·)‖p

Hn
p

+ C

∫ T

t

E‖u(s, ·)‖p
n,pds

for all t ∈ [0, T ]. Using Gronwall’s inequality, we have

‖u‖p

Hn
p

≤ C‖F(0,0, ·, ·)‖p

Hn
p
,

which along with (5.38) implies the following estimate

‖u‖Hn+2
p

≤ C(T ,κ,�,n, d,p,λ,�)‖F(0,0, ·, ·)‖Hn
p
. (5.39)

Step 3. In the end, proceeding identically as in Step 2 in the proof of Theorem 5.8,
we can prove the existence and uniqueness of the solution. The proof is complete.

�

Corollary 5.11 Let the assumptions of Theorem 5.5 be satisfied. We assume that the
assumptions are not only satisfied for p but also for q ∈ (1,2]. Then the solution u in
Theorem 5.5 belongs to Hn+2

q .

Proof We can prove our corollary by completing the Step 3 of the proof of Theorem
5.5. The difference from Step 2 in the proof of Theorem 5.8 lies that we use the Picard
iteration this time instead of the contraction mapping principle. Assume that for some
θ = θ0, equation (5.32) with zero terminal condition admits a unique solution u ∈
Hn+2

p,0 (T )∩Hn+2
q,0 . By the way, this assumption is satisfied for θ0 = 1 by Theorem 5.2

and Remark 5.6. Set u0 = 0 and take iterations ul = Rθ0ul−1, l = 1,2,3, . . . . Then
there exists a constant δ > 0 independent of θ0 such that if θ ∈ [θ0 −δ, θ0 +δ]∩[0,1],
ul is a cauchy sequence both in Hn+2

p,0 and Hn+2
p,0 and for these θs the solutions in

Hn+2
p,0 and Hn+2

p,0 coincide. In finite steps from θ = 1, we get to θ = 0. This completes
the proof. �

6 Two Related Topics

The proofs of the following results are similar to that of the SPDE in [21], and will
be sketched only.

6.1 Comparison Theorem

The following theorem shows that the solution to BSPDE (5.1) is continuous w.r.t. the
leading coefficients aij and σ ik, the non-homogeneous drift term F, and the terminal
value G.
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Theorem 6.1 Assume that for l = 1,2,3, . . . , we are given a
ij
l , σ ik

l ,Fl, and Gl ver-
ifying the same assumptions as aij , σ ik,F and G in Theorem 5.5 with the same con-
stants λ,� and the same functions κ, �. Let ζ(x) ∈ C∞

c be a real function taking
values in [0,1] such that ζ(x) = 1 if |x| ≤ 1 and ζ(x) = 0 if |x| ≥ 2. Define ζr (x) =
ζ(x/r) for r = 1,2,3, . . . . And we also assume that, for r = 1,2,3, . . . , i, j =
1, . . . , d, k = 1, . . . ,m, t ∈ [0, T ], and ω ∈ �,

‖ζr{aij (t, ·) − a
ij
l (t, ·)}‖n,p + ‖ζr{σ ik(t, ·) − σ ik

l (t, ·)}‖n,p → 0 (6.1)

as l → ∞. Furthermore, assume E‖Gl − G‖p

n+1,p → 0 and

‖F(u, v, ·, ·) − Fl(u, v, ·, ·)‖Hn
p

→ 0, (6.2)

whenever u ∈ Hn+2
p and v := Du. If we take the function u from Theorem 5.5 and for

any l define ul ∈ Hn+2
p as the unique solution of the following BSPDE

⎧
⎨

⎩

−dul(t, x) = [aij
l (t, x)ulxixj (t, x) + σ ik

l (t, x)vk
lxi (t, x) + Fl(ul, vl, t, x)]dt

− vk
l (t, x)dWk

t , (t, x) ∈ [0, T ] × R
d,

ul(T , x) = Gl(x), x ∈ R
d,

(6.3)
where vl := Dul, then we have ‖u − ul‖Hn+2

p
→ 0 as l → ∞.

Proof Let ūl = u − ul and v̄l = v − vl. Then we have

⎧
⎨

⎩

−dūl(t, x) = [aij
l (t, x)ūlxixj (t, x) + σ ik

l (t, x)v̄k
lxi (t, x) + fl(ūl, v̄l)]dt

− v̄k
l (t, x)dWk

t , (t, x) ∈ [0, T ] × R
d ,

ūl(T , x) = Ḡl(x), x ∈ R
d,

(6.4)

where

fl(ūl, v̄l) = (aij − a
ij
l )uxixj + (σ ik − σ ik

l )vxi + F(u, v) − Fl(u − ū, v − v̄).

Then by Theorem 5.5, we obtain

‖u − ul‖Hn+2
p

≤ CJl,

where C is independent of l and

Jl = ‖(aij − a
ij
l )uxixj ‖Hn

p
+ ‖(σ ik − σ ik

l )vxi ‖Hn
p

+ ‖F(u, v) − Fl(u, v)‖Hn
p

+ (E‖Gl − G‖p

n+1,p)1/p. (6.5)

By our assumptions, we have

lim sup
l→∞

Jl ≤ lim sup
l→∞

{‖(aij − a
ij
l )uxixj ‖Hn

p
+ ‖(σ ik − σ ik

l )vxi ‖Hn
p
}. (6.6)

Then the following is standard (for reference, see the proof of Theorem 5.7 of [21]
pp. 209–210).
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For any φ ∈ C∞
c , let r be so large that φζr = φ. Then, by Lemma 5.6, we get

‖(aij − a
ij
l )uxixj ‖n,p ≤ C‖(u − φ)xixj ‖n,p + ‖(aij − a

ij
l )φxixj ‖n,p,

‖(aij − a
ij
l )φxixj ‖n,p = ‖(aij − a

ij
l )ζrφxixj ‖n,p ≤ C‖(aij − a

ij
l )ζr‖n,p‖φ‖B |n|+2+γ ,

(6.7)

where the constants C’s are independent of r and l. Thus,

lim sup
l→∞

‖(aij − a
ij
l )uxixj ‖n,p ≤ C‖(u − φ)xixj ‖n,p for (t,ω) ∈ [0.T ] × �, a.e.,

and the arbitrariness of φ implies the left-hand side above is zero. Then by Lemma
5.6 and the dominated convergence theorem, we conclude that

lim
l→∞‖(aij − a

ij
l )uxixj ‖Hn

p
= 0.

Similarly, we can get liml→∞ ‖(σ ik − σ ik
l )vxi ‖Hn

p
= 0. �

Remark 6.1 From Lemma 2.2, it follows that the condition (6.2) holds for any u ∈
Hn+2

p if and only if it is satisfied for u(t, x) ≡ φ,vk(t, x) ≡ φk with any φ,φk ∈
C∞

c , k = 1, . . . ,m.

Corollary 6.2 Take ζl from Lemma 5.6. Under the assumptions of Theorem 5.5, for
l = 1,2,3, . . . , we define

(al, σl) = (a, σ )(t, ·) ∗ ζl(x), Gl = G ∗ ζl(x),

and also

Fl(u, v, t, x) = F(u, v, t, ·) ∗ ζl(x) =
∫

Rd

F (u(x), v(x), t, x − y)ζl(y)dy.

Then the assumptions of Theorem 6.1 are satisfied, and if we take ul ∈ Hn+2
p as the

unique solution of BSPDE (6.4), we have ‖u − ul‖Hn+2
p

→ 0 as l → ∞.

As the proof of the corollary is just a verification, which is very similar to [21,
Corollary 5.10], it is omitted here.

Theorem 6.3 Under the assumptions of Theorem 5.5, let u be the solution of BSPDE
(5.1) for n = 0. And further, assume that

F(u, v, t, x) = bi(t, x)uxi + c0(t, x)u(t, x) + ck(t, x)vk(t, x) + f (t, x),

where bi(t, x), c0(t, x), ck(t, x), k = 1, . . . ,m are bounded P × B(Rd)-measurable
functions on [0, T ]×�×R

d and f (t, x) ≥ 0. Also assume that G ≥ 0 almost surely.
Then u(t, ·) ≥ 0 for all t ∈ [0, T ] almost surely.
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Proof First, we take two nonnegative sequences (f l)l≥1 in L∞(�×[0, T ],P ,H 0
2 )∩

H
0
p and (Gl)l≥1 in L2(�,FT ,H 1

2 )∩Lp(�,FT ,H 1
p) such that ‖f l −f ‖H0

p
→ 0 and

‖Gl − G‖Lp(�,FT ,H 1
p) → 0 as l → ∞. Next, Corollary 6.2 allows us to assume that

Gl, f l and all the other coefficients are infinitely differentiable in x.

After those above, by Theorem 6.1 we get an approximating solutions ul of u.

In this case the assumptions of Theorem 5.5 are satisfied for p = 2, and any n ≥ 0.

Then, Corollary 5.11, yields ul ∈ H r
2 for any r ≥ 0. Furthermore, in this case the

assumptions of [10, Theorem 5.1], [15, Theorem 6.1] and [33, Theorem 6.1] are all
satisfied, and the comparison theorems there all imply ul ≥ 0 (a.e. (t, x,ω)). By
taking limits, we get u ≥ 0 (a.e. (t, x,ω)). On the other hand, in light of Lemma 3.1,
it follows that u ∈ C([0, T ],H 0

p) a.s., which implies u ≥ 0 (at least for a modification
of u) for all t ∈ [0, T ] almost surely. �

6.2 Lp Theory for p > 2

When p < 2, the assertion of Lemma 5.3 is not true in general. This fact makes
the Lp-theory we have established in Sect. 5 require the assumption p ∈ (1,2]
and Krylov’s seminal work [20, 21] require p ∈ [2,∞). However, if we consider
SPDEs (5.27) where the diffusion is homogeneous in the unknown variable, the har-
monic result (Lemma 5.3) can be avoided, which could allow us to get further results.

Consider the following BSPDE

⎧
⎨

⎩

−du(t, x) = [aij (t, x)uxixj (t, x) + σ ik(t)vk
xi (t, x) + F(u,σ iuxi + v, t, x)]dt

− vk(t, x)dWk
t , (t, x) ∈ [0, T ] × R

d;
u(T , x) = G(x), x ∈ R

d .

(6.8)

Definition 6.1 We call (u, v) a solution pair of BSPDE (6.8) in H
n+2
p × H

n
p,2 if

u ∈ H
n
p, v(·, · + ∫ ·

0 σk(s)dWk
s ) ∈ H

n
p,2 and for any φ ∈ C∞

c , the equality

(u(τ, ·),φ) = (G,φ) +
∫ T

τ

(aij (t, ·)uxixj (t, ·) + σ ik(t)vk
xi (t, ·)

+ F(u,σ iuxi + v, t, ·),φ)dt −
∫ T

τ

(vk(t, ·),φ)dWk
t ,

∀(t, φ) ∈ [0, T ) × C∞
c (6.9)

holds for all τ ∈ [0, T ] with probability 1.

For the case p > 2, we have presented some results in Remark 5.7 on BSPDEs
with constant-field-valued coefficients. Through a procedure similar to the case p ∈
(1,2] we get the following result.

Proposition 6.4 For p > 2 and n ∈ R, suppose that a and σ satisfy Assumptions
5.1–5.3 with σ being invariant in the space variable. Let F(0,0, ·, ·) ∈ H

n
p. For any
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(h, g) ∈ H
n+2
p ×H

n
p,2, F (h,g, t, ·) is an Hn

p -valued P -measurable process such that
there is a continuous and decreasing function � : (0,∞) → [0,∞) and a constant
L > 0 such that for any ε > 0, we have

‖F(h̄, ḡ, ·, ·) − F(h′, g′, ·, ·)‖Hn
p(t)

≤ ε‖h̄ − h′‖
H

n+2
p (t)

+ �(ε)‖h̄ − h′‖Hn
p(t) + L‖ḡ − g′‖H

n
p,2(t)

,

h̄, h′ ∈ H
n+2
p and ḡ, g′ ∈ H

n
p,2, (6.10)

holds for any t ∈ [0, T ). Consider G ∈ Lp(�,FT ,Hn+1
p ). Then BSPDE (6.8) has a

unique solution pair (u, v) in H
n+2
p × H

n
p,2. For this solution pair, we have

‖u‖
H

n+2
p

+ ‖v′‖H
n
p,2

≤ C(T ,n, κ,�, d,p,λ,�)(‖F(0,0, ·, ·)‖Hn
p

+ ‖G‖
Lp(�,FT ,Hn+1

p )
)

where v′(t, x) = v(t, x + ∫ t

0 σk(s)dWk
s ), (t, x) ∈ [0, T ] × R

d .

Here, we only give a sketch of the proof. First, take ζ(t, x) = u(t, x + ∫ t

0 σk(s)dWk
s ).

By Theorem 2.3, we can rewrite the BSPDE (6.8)

⎧
⎨

⎩

−dζ(t, x) = [āij (t, x)ζxixj (t, x) + F(ζ,σ iζxi + v′, t, x + ∫ t

0 σk(s)dWk
s )]dt

− (σ kiζxi (t, x) + v′k(t, x))dWk
t , (t, x) ∈ [0, T ] × R

d ;
ζ(T , x) = Ḡ(x), x ∈ R

d,

(6.11)
where ā(t, x) := a(t, x + ∫ t

0 σk(s)dWk
s ) − 1

2σσ T and Ḡ = G(x + ∫ T

0 σk(s)dWk
s ).

Actually the estimate about v are deduced from Lemma 3.1. The proof of the other
assertions are very similar to those seen in Sect. 5.3.

7 Comments

In the framework of weak solutions, we establish in this paper an Lp-theory for
BSPDE (1.1) which seems to be the first study for the Lp-theory of BSPDEs. Mo-
tivated by Krylov’s seminal work [20, 21] on forward stochastic partial differential
equations, we establish an Lp-theory which includes as a particular case the Lp-
theory (1 < p ≤ 2) for deterministic parabolic PDEs. As the Lp-theory for SPDEs
essentially relies on the sharp harmonic result Lemma 5.3 for the case p ∈ [2,∞), the
Lp-theory for the Cauchy problem of BSDPEs obtained via duality herein requires
p ∈ (1,2]. For p > 2, we give some separate results.

Finally, we would like to make the following remarks:

(1) In this work, we establish the Lp-theory for BSPDEs (1.1) with the unknown
random field u being scalar valued. In a similar way, we can also present the
corresponding Lp-theory for systems of backward stochastic partial differential
equations with the unknown random field u taking values in a Euclidean space,
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on the basis of the Lp-theory for systems of SPDEs obtained by Mikulevicius and
Rozovskii [25], which is left as an exercise to the interested reader. As a particular
nonlinear system of BSPDEs, the two-dimensional backward stochastic Navier-
Stokes equation is studied by Qiu, Tang and You [31].

(2) The super-parabolicity and bounded assumptions on the coefficients are required
in this work. For the degenerate, unbounded and irregular cases, refer to [8, 12,
15, 28–30, 33].

(3) In this work, our BSPDE (1.1) is addressed in the whole space. For BSPDEs in
domains, refer to [7, 11, 28]. In particular, strong solution to the Cauchy-Dirichlet
problem of BSPDEs is considered in [11]. However, to the best of our knowledge,
when p �= 2 the corresponding Lp-theory for BSPDEs in domains is still blank.

(4) For the critical case p = 1, Lp-theory for BSDEs is given in [5]. In [29], we
discuss the L1-theory for BSPDEs and obtain some similar properties to those
for BSDEs.

(5) In unbounded control with stochastic coefficients, quadratic BSPDE arises. Bor-
rowing the techniques of Kobylanski’s seminal work [18], Du and Chen [9] gives
a fairly complete theory for quadratic BSPDEs.

Acknowledgements All the three authors would like to thank both anonymous referees for their valu-
able comments and suggestions on the original manuscript of this work.
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