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Abstract Let X be a random vector with distribution μ on R
d and � be a mapping

from R
d to R. That mapping acts as a black box, e.g., the result from some computer

experiments for which no analytical expression is available. This paper presents an
efficient algorithm to estimate a tail probability given a quantile or a quantile given
a tail probability. The algorithm improves upon existing multilevel splitting methods
and can be analyzed using Poisson process tools that lead to exact description of
the distribution of the estimated probabilities and quantiles. The performance of the
algorithm is demonstrated in a problem related to digital watermarking.

Keywords Monte Carlo simulation · Rare event · Metropolis-Hastings ·
Watermarking

1 Introduction

To help motivate the work we present in this paper, consider the very concrete exam-
ple of digital watermarking that represents a new field of application for rare event
analysis. Digital watermarking is a set of techniques for embedding information in
digital files, such as audio files, images, or video files. Ideally, this embedding should
minimally distort the original, be robust to corruption, be hard to remove, and most
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importantly, be preserved when the file is copied. Digital watermarking with these
properties enable ownership attribution of digital media that is essential for digital
rights management. For example, watermarking is used for copy protection by optical
disk players to prevent and deter unauthorized copying of digital media by refusing to
record any watermarked content (see [17] Digital Rights Management site for DVD
copy). The probability of refusing to play back a file that has not been watermarked
(probability of false alarm) should be very small. In 1997, the standards group for
DVD copyright protection called for technologies capable of producing at most one
false alarm in 400 hours of operations. As the detection rate was one decision per ten
seconds, this implies a probability of false alarm of about 7 × 10−6. Since 2001, con-
sumer electronics manufacturers claim no error in “316,890 years”, or equivalently
a false positive probability of 1 × 10−12. A fundamental problem in developing and
evaluating watermarking for digital rights management is to estimate the probability
of false positive by the watermarking detection scheme.

Formally, suppose that selecting a “random” (i.e., unwatermarked) digital file is
equivalent to drawing a random element X from a distribution μ on the probability
space (�, F ,P). For that vector X, let �(X) be a score that is large when a watermark
is detected, i.e., the device considers the file as watermarked if �(X) > q , where q

is a fixed given threshold. Because of the complexity of many decoding schemes, we
view � as a black box, that is, we do not have an analytic expression for � but we can
readily evaluate �(X) for any given instance X. Then given a threshold q , we seek to
estimate the probability of false alarm, defined as the tail probability p = P(�(X) >

q) when X ∼ μ.
A Crude Monte Carlo (CMC) that uses an i.i.d. N -sample X1, . . . ,XN to esti-

mate p by the fraction p̂mc = #{i : �(Xi) > q}/N is not practical when p is very
small. Indeed, in order to obtain a reasonable precision of the estimate given by the
relative variance V (p̂mc)/p

2, which is approximately equal to 1/(Np), one needs to
select a sample size N of order p−1. For instance, a random sample of one trillion
observations is needed to estimate a target probability of 10−12.

Importance sampling, which draws samples according to π and weights each ob-
servation X = x by w(x) = dμ(x)/dπ(x) can decrease the variance of the estimated
probability which in turn greatly reduces the need for such large sample sizes. We
refer to [22] for a discussion on variance reduction techniques in general and to [6]
for the application of importance sampling in the context of rare events estimation.
Unfortunately, when � is a black box, these weights cannot be computed, and hence
importance sampling is not available to us.

Multilevel splitting, introduced by Kahn and Harris [18] and Rosenbluth and
Rosenbluth [24], is a powerful algorithm for rare events simulations. The basic idea
of multilevel splitting, adapted to our problem, is to fix a set of increasing levels
−∞ = L0 < L1 < L2 < · · · < Lm = q , and to decompose the tail probability

P(�(X) > q) =
m∏

j=1

P(�(X) > Lj |�(X) > Lj−1).

Each conditional probability pj = P(�(X) > Lj |�(X) > Lj−1) is estimated sep-
arately. We refer the reader to the paper by Glasserman et al. [14] for an in-depth
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review of the importance splitting method and a detailed list of references. Two prac-
tical issues associated with the implementation of multilevel splitting are the need for
computationally efficient algorithms for estimating the successive conditional proba-
bilities, and the optimal selection of the sequence of levels.

Recently Cérou et al. [8] bridged multilevel splitting for Markovian processes and
particle methods for Feynman-Kac models, thus introducing a rigorous mathemati-
cal framework for linking the sample used to estimate pj to the one needed to es-
timate pj+1. Within the context of Markovian processes, Cérou and Guyader [7]
proposed an algorithm to adaptively select the levels in an optimal way.

Extensions of the multilevel splitting methods beyond the Markovian process con-
text include the problem of estimating the tail probability p = P(�(X) > q). To our
knowledge, the first instance in which static rare event simulation using splitting was
proposed is [2] (see also [3]). But Au and Beck call it “Subset simulation” and do not
make any connection with splitting, which is why people in the rare event commu-
nity do not mention this work afterwards. The next work where a reversible transition
kernel was introduced to deal with such static rare events is [13]. The paper of Cérou
et al. [10] proposes to adaptively select the levels using the (1 − p0)-quantiles of the
conditional distributions of �(X) given that �(X) > Lj . The analysis of the statis-
tical properties of p̃, the tail probability estimate of Cérou et al. [10], reveals that
when the number of particles N tends to infinity, the expectation and variance are
respectively

E[p̃] = p + O(N−1) and V (p̃) = p2

N

(
(1 − p0) · logp

p0 · logp0

)
+ o(N−1).

It is noteworthy that a very similar approach has been independently proposed by
Rubinstein [25] and Botev and Kroese [4] in the context of combinatorial optimiza-
tion, counting and sampling, demonstrating the performance of this algorithm via an
extensive simulation study (see also [5]). It bears also a resemblance to the “Nested
Sampling” approach (see [12, 27, 28]) which was proposed in the context of sampling
from general distributions and estimating their normalising constants.

This paper presents a refinement of the adaptive multilevel algorithm: at each
iteration j , define the new level Lj as the minimum of �(·) evaluated on the N

particles, remove the particle that achieves the minimum, and use the Metropolis-
Hastings algorithm to rebranch the removed particle according to the conditional
distribution of �(X) knowing that {�(X) > Lj }. This is a crucial step of the al-
gorithm. Ideally, we would like to exactly sample from the conditional distribution
of �(X)|{�(X) > Lj }. In practice, this is impossible. Nevertheless, we will analyze
our algorithm under that very strong assumption. To avoid any misunderstanding, we
will call this the idealized algorithm. Even if it does not completely match with the
algorithm used in practice, it gives us an insight about the optimal performance this
latter could reach. In particular, we will show that our idealized algorithm improves
the current state-of-the-art algorithms.

The analysis of the idealized algorithm uses a novel technique that exploits Pois-
son processes to obtain an exact description of the statistical properties of the estimate
for a finite number of particles N . The analysis holds for both the problem of esti-
mating the tail probability for a given quantile and the problem of estimating the
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quantile given a specified tail probability. To our knowledge, the application of mul-
tilevel splitting techniques to quantile estimation is new. Furthermore, the idealized
approach enables us to produce non-asymptotic confidence intervals for the estimated
quantities with respect to the number of particles.

It will be proved that the algorithm almost achieves the asymptotic efficiency
of tail probability estimation, as defined for example in [15]. Moreover the vari-
ance of the tail probability estimator is V (p̂) ≈ −p2 logp/N , for a computational
cost C(p,N) = −kN logN logp, where k is a constant that will be precised later.
Firstly, this implies that our algorithm has larger computational efficiency E =
1/(V (p̂)C(p,N)) than the current multilevel splitting methods. Secondly, compar-
ing this computational efficiency to the computational efficiency of the CMC method
reveals that our algorithm is better when

k logN <
1 − p

p(logp)2
.

Since the right-hand side increases to infinity when p goes to zero, our algorithm
beats CMC when p is small enough. For example, if k = 10 and N = 200, then our
algorithm outperforms CMC when p < 1.0 × 10−4.

Finally, we would like to stress that our methodology fits nicely within the mod-
ern computational Bayesian paradigm, since it provides a novel tool for computing
extreme quantiles of posterior distributions of univariate functions of the parameters.

The paper is organized as follows. Section 2 presents an idealized algorithm and
its mathematical analysis. Section 3 discusses the practical (but imperfect!) imple-
mentation of the idealized algorithm. In Sect. 4, we compare the computational effi-
ciency of our idealized estimator to CMC and other multilevel splitting algorithms.
We illustrate the method on the Watermarking example in Sect. 5. Once again, we
do completely acknowledge that the practical implementation presents an approxi-
mation of the idealized algorithm given in Sect. 2. However, when illustrating our
method on the Watermarking example, we show that our numerical results match
with the theoretical ones. The proofs of our results are gathered in the Appendix.

2 Main Results

Let X be a random element on R
d for some d > 0, and denote by μ its probability

distribution on the underlying probability space (�, F ,P). We assume that we know
how to draw i.i.d. samples from μ. Consider the function � : R

d → R that we assume
we can evaluate at any point x in R

d .

2.1 Algorithm

Consider the following algorithm:

• Start with an i.i.d. sample (X1,X2, . . . ,XN) from μ and initialize L0 = −∞ and

X1
1 = X1, . . . ,X

1
N = XN.
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• For m = 1,2, . . . , set

Lm = min(�(Xm
1 ), . . . ,�(Xm

N)),

and define for all i = 1,2, . . . ,N :

Xm+1
i =

{
Xm

i if �(Xm
i ) > Lm

X� ∼ L(X|�(X) > Lm) if �(Xm
i ) = Lm,

where X� is independent of {Xm
1 , . . . ,Xm

N }.
• Stopping rules:

(1) To estimate a tail probability p given a quantile q ,
continue until m = M where M = max{m : Lm ≤ q} and set

p̂ =
(

1 − 1

N

)M

.

We will show that M is a Poisson distributed random variable.
(2) To estimate a quantile q given a tail probability p,

continue until iteration

m =
⌈

log(p)

log(1 − N−1)

⌉
,

and set q̂ = Lm. Note that this time, the number of iterations is deterministic.

Remark Simulating exactly according to L(X|�(X) > Lm) is impossible in gen-
eral and we propose in Sect. 3 to do so approximately using Markov Chain Monte
Carlo techniques. However, for the theoretical analysis, we will consider only the case
where that simulation could be done perfectly, and we call it the idealized algorithm.

2.2 Statistical Results on the Idealized Algorithm

Suppose that the distribution μ of X and the mapping � are such that the univariate
random variable Y = �(X) has continuous cumulative distribution function F for
which we only assume continuity. This is the only assumption we make in the paper
about the distribution of X and the transformation �, unless stated otherwise. We
denote the survival function and the integrated hazard function of Y by S(y) = 1 −
F(y), and �(y) = − logS(y), respectively. The main result in this section describes
the joint distribution of the levels L1,L2,L3, . . . generated by our algorithm.

Theorem 1 The random variables �(L1),�(L2),�(L3), . . . are distributed as the
successive arrival times of a Poisson process with rate N , that is,

�(Lm)
d= 1

N

m∑

j=1

Ej ,

where E1, . . . ,Em, are i.i.d. Exponential (1).
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2.2.1 Estimation of a Tail Probability

Consider the problem of estimating the tail probability p = P(�(X) > q) for a given
quantile q . Applying the results of Theorem 1 to stopping rule number 1, we obtain
the following corollary:

Corollary 1 The random variable M = max{m : Lm ≤ q} is distributed according to
a Poisson law with parameter −N logp.

Remark It follows from the corollary that E[M] = V (M) = −N logp. Furthermore,
the classical approximation of the Poisson distribution by a Gaussian
N (−N logp,−N logp) is of course valid in our context since N is assumed to
be large (at least 100) and p small.

A natural estimator for the tail probability p is

p̂ =
(

1 − 1

N

)M

and the following proposition describes its distribution.

Proposition 1 The estimator p̂ for the tail probability p is a discrete random vari-
able taking values in

S =
{

1,

(
1 − 1

N

)
,

(
1 − 1

N

)2

, . . .

}
,

with probability

P

[
p̂ =

(
1 − 1

N

)m]
= pN(−N logp)m

m! , m = 0,1,2, . . . .

It follows that p̂ is an unbiased estimator of p with variance:

V (p̂) = p2
(
p− 1

N − 1
)

.

Comparing our estimator with the one obtained through CMC is instructive. Recall
that the CMC estimate for the tail probability is given by

p̂mc = N̂mc

N
= #{i ∈ {1, . . . ,N} : �(Xi) > q}

N
,

where N is the size of the CMC sample. The random variable N̂mc has a Binomial
distribution with parameters (N,p), and hence p̂mc is an unbiased estimator with
relative variance

V (p̂mc)

p2
= 1 − p

Np
≈ 1

Np
.
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The last approximation assumes that p is small and hence 1 − p ≈ 1. Thus the sam-
ple size N has to be at least as large as 1/p in order to get a reasonable precision.
Compare the latter with the relative variance of our estimator p̂

V (p̂)

p2
=
(
p− 1

N − 1
)

≈ − logp

N
,

when p is very small and/or N is large. This proves that, for the same precision
in terms of variance of the estimator, CMC requires about (−p logp)−1 more par-
ticles than the method presented in this paper. However the CMC estimator has a
lower complexity Cmc = N than our algorithm whose expected complexity value is
C(N,p) = −kN logN logp. As will be discussed in Sect. 4, the reduction in the vari-
ance outweights the increased computational costs when p is small enough, making
our algorithm computationally more efficient for estimating a tail probability p.

We can use Proposition 1 to derive confidence intervals for p. Let α be a fixed
number between 0 and 1 and denote by Z1−α/2 the quantile of order 1 − α/2 of the
standard Gaussian distribution.

Proposition 2 Let us denote

p̂± = p̂ exp

⎛

⎝±Z1−α/2√
N

√

− log p̂ + Z2
1−α/2

4N
− Z2

1−α/2

2N

⎞

⎠ ,

then I1−α(p) = [p̂−, p̂+] is a 100(1 − α)% confidence interval for p.

For example, if α = 0.05, then Z1−α/2 ≈ 2, and neglecting the terms in 1/N gives
the following 95% confidence interval for p:

p̂ exp

(
−2

√− log p̂

N

)
≤ p ≤ p̂ exp

(
+2

√− log p̂

N

)
. (1)

The asymmetry of this interval around p̂ arises from the distribution of p̂ that is
approximately log-normal. We will illustrate this result in Sect. 5.

2.2.2 Estimation of a Large Quantile

Consider the problem of estimating the quantile q for a given p such that P(�(X) >

q) = p. Using stopping rule number 2 described in Sect. 2.1, a natural estimator for
the quantile q is

q̂ = Lm,

where m = 	 log(p)

log(1−N−1)

. Given sufficient smoothness of the distribution at the quan-

tile q , we obtain an asymptotic normality result for our estimator.
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Proposition 3 If cdf F is differentiable at point q , with density f (q) �= 0, then

√
N(q̂ − q)

L−−−−→
N→∞ N

(
0,

−p2 logp

f (q)2

)
.

The CMC estimator defined as q̂mc = Y(�(1−p)N
), where Y(1) ≤ · · · ≤ Y(n) are
the order statistics of �(X1), . . . ,�(XN) and �y
 stands for the integer part of y,
satisfies the central limit theorem (see for example [26, Theorem 7.25])

√
N(q̂mc − q)

L−−−−→
N→∞ N

(
0,

p(1 − p)

f (q)2

)
.

This proves again that in order to achieve the same precision in terms of variance of
the estimator, CMC requires about (−p logp)−1 more particles than the estimator
proposed here. As usual the bias is in O(1/N) where as standard deviation is in
O(1/

√
N), so that only the term of variance is worth of attention when N is large

enough. The following proposition describes the bias of our estimator. As already
noticed in [31] for the CMC estimator, the estimation of the bias requires further
assumptions.

Proposition 4 If F−1 is twice differentiable on (0,1) with continuous second deriva-
tive on (0,1), if (F−1)′(t) > 0 for t ∈ (0,1), and if there exist non-negative numbers
a and b such that F−1(t)ta(1 − t)b is bounded for t ∈ (0,1), then the bias of q̂ is
bounded from below by

lim
N→∞N(E

[
q̂
]− q) ≥

(
logp − pf ′(q)

2f (q)2
(−2 − logp)

)
p

f (q)
,

and bounded from above by

lim
N→∞N(E

[
q̂
]− q) ≤

(
1 + logp − pf ′(q)

2f (q)2
(2 − logp)

)
p

f (q)
.

Remarks

1. In these inequalities, it is assumed that f ′(q) < 0. Suitably modified upper and
lower bounds are readily obtained when f ′(q) > 0. We chose to present the results
for f ′(q) < 0, as that assumption is more likely to hold in practice.

2. The assumptions to get expressions for the bias and the variance are the same as
in CMC. For this estimator, it is known from the theory of order statistics (see for
example [31, Lemma 3.2.2], or [1, p. 128]) that:

E[q̂mc] = q − 1

N
· p(1 − p)f ′(q)

2f (q)3
+ o(1/N).

The obtained expression for the asymptotic variance in Proposition 3 proves that
q̂ is much more precise than the CMC estimator q̂mc, but is of limited practical use
as it requires the knowledge of f (q). Exploiting the connection with Poisson pro-
cesses allows us to derive non asymptotic confidence intervals for q without having
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to estimate the density at the quantile q . Indeed, fix α ∈ (0,1), denote by Z1−α/2 the
quantile of order 1 − α/2 of the standard Gaussian distribution, and define

m− =
⌊
−N logp − Z1−α/2

√−N logp
⌋

,

m+ =
⌈
−N logp + Z1−α/2

√−N logp
⌉

and consider Lm− , Lm+ the associate levels. The following proposition provides a
1 − α confidence interval for q .

Proposition 5 Under the assumptions of Theorem 1, a 100(1 − α)% confidence in-
terval for the quantile q is I1−α(q) = [Lm− ,Lm+].

Remarks

1. The computational price to pay to obtain the confidence interval is the cost of run-
ning the algorithm until m = m+ in order to get the upper confidence bound Lm+ .
This requires the algorithm to run around Z1−α/2

√−N logp additional steps.
2. Compared to Proposition 3, the great interest of this property lies in the fact that

it does not require any estimation of the probability density function f .

This result will also be illustrated in Sect. 5.

3 Practical Implementation of the Algorithm

This section explains how to generate the random variable X� from the conditional
distribution L(X|�(X) > Lm) that is needed at each step in the algorithm. Let us
recall that μ denotes the law of X. To draw X�, we run a Monte Carlo Markov
Chain with a suitable μ-symmetric and one-step μ-irreducible kernel K . That is: K

satisfies the detailed balance property with μ; and from any initial point x, the Radon-
Nikodym derivative dK(x, dx′)/dμ(dx′) is strictly positive. Either, one knows such
a kernel K or otherwise could use a Metropolis-Hasting kernel K based on a one-step
μ-irreducible instrumental kernel Q(x,dx′) (see for example [22]).

Example Let us suppose that X has a standard Gaussian distribution on R. Then let
us present two ways to get such a transition kernel K :

(a) Direct construction: fix σ > 0 and denote K the transition kernel defined by

K(x,dx′) =
√

1 + σ 2

2πσ 2
exp

(
−1 + σ 2

2σ 2

(
x′ − x√

1 + σ 2

)2
)

λ(dx′),

where λ stands for Lebesgue measure on R
d . Denoting W a Gaussian standard

variable, the transition X � X′ proposed by K is X′ = (X + σW)/
√

1 + σ 2.
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(b) Metropolis-Hastings kernel: fix σ > 0 and denote Q the transition kernel defined
by

Q(x,dx′) = 1√
2πσ 2

exp

(
− (x′ − x)2

2σ 2

)
λ(dx′) = q(x, x′)λ(dx′).

Denoting W a Gaussian standard variable, the transition X � X′ proposed by K

is X′ = X + σW . Then, starting from Q, the transition kernel K constructed by
Metropolis-Hastings is μ-symmetric and one-step μ-irreducible.

3.1 Application to our Algorithm

Consider that a μ-symmetric and one-step μ-irreducible transition kernel K is avail-
able. For all m = 1,2, . . . , knowing L1 = 
1,L2 = 
2, . . . , consider the sets

Am = {x ∈ R
d s.t. �(x) > 
m},

and let us call μm the normalized restriction of μ on Am:

μm(dx) = 1

μ(Am)
1Am(x)μ(dx).

We define also the transition kernel Km by:

Km(x, dx′) = 1Ac
m
(x)δx(dx′) + 1Am(x)(K(x, dx′)1Am(x′) + K(x,Ac

m)δx(dx′)).

The idea behind the definition of Km is very simple: starting from x, the kernel K

proposes a transition x � x′. Then, if �(x′) > 
m, the transition is accepted, else it
is rejected and x stays at the same place.

With these notations, it easy to see that the probability measure μm is invariant
by the transition kernel Km. Moreover, using [29, Corollary 2], Km is also Harris
recurrent, and by Theorem 13.3.3 in [21], we have for any initial distribution ν such
that ν(Am) = 1

∥∥νKn
m − μm

∥∥−−−−→
n→+∞ 0, (2)

where ‖ · ‖ is the total variation norm.
In our context, let us fix m = 1, so that the algorithm begins with an i.i.d. sample

(X1,X2, . . . ,XN) from μ, and initialize

X1
1 = X1, . . . ,X

1
N = XN.

In order to simplify notations, suppose that:

�(X1
1) < · · · < �(X1

N),

so that L1 = �(X1
1) and

X2
2 = X1

2, . . . ,X
2
N = X1

N.



Appl Math Optim (2011) 64:171–196 181

Knowing L1 = 
1, the sample (X2
2, . . . ,X

2
N) is i.i.d. with distribution μ1. Now pick

at random an integer i between 2 and N and set X�
0 = X2

i . Thus X�
0 is also distributed

according to μ1, but is not independent from {X2
2,X

2
3, . . . ,X

2
N }. In order to get inde-

pendence, apply iteratively the transition kernel K1 to X�
0. Knowing X2

i = x2
i , one has

δx2
i
(A1) = 1 since by construction �(x2

i ) > 
1. As a consequence, the result given by
(2) may be applied:

∥∥∥∥
∫

δx2
i
Kn

1 − μ1

∥∥∥∥−−−−→
n→+∞ 0.

Thus, after “enough” applications of the kernel K1, X�
0 has mutated into a new

particle X� that is distributed according to μ1 and is now “almost” independent
from the initial position X2

i . Denoting by X2
1 = X�, we have constructed a sample

(X2
1, . . . ,X

2
N) of i.i.d. random variables with common distribution L(X|�(X) > 
1).

The principle of the algorithm is to iteratively apply this simple idea.

Remarks

1. One would theoretically have to iterate Km an infinite number of times to get
independence at each step and to match perfectly with the theoretical analysis of
the idealized algorithm in Sect. 2.2. This is of course unrealistic, and in practice it
is applied only a finite number of times, denoted T . In the watermarking example
of Sect. 5, we have applied it T = 20 times at each step and this led to an excellent
agreement between the idealized and empirical results. However, this is certainly
due to the fact that this is an extremely regular situation, and we admit that one
can undoubtedly find cases where things do not happen so nicely.

2. The second remark is about the choice of the transition kernel K . To fix ideas, let
us consider the toy example where X has a standard Gaussian distribution on R,
i.e., μ = N (0,1), and �(x) = x. Two μ-symmetric kernels have been proposed.
Both require to choose the value of a standard deviation parameter σ . The value
of σ has in fact a great impact on the efficiency of the algorithm. Indeed, if σ is
too small, then almost all of the T proposed transitions will be accepted, but since
each transition corresponds (in expectation) to a small move, it will require a large
T to forget the initial position. On the other side, if σ is too large, then almost
all of the T proposed transitions will be rejected, but each transition corresponds
(in expectation) to a huge move, so that it will require a rather low T to forget
its initial position. Consequently, a trade-off has to be found for the “mixing”
parameter σ . As a rule of thumb, it seems reasonable to count the proportion of
accepted transitions at each step, and if this proportion is below a certain rate (say
for example 20%) then one may reduce σ (say for example by a factor of 10%).
This adaptive tuning is possible since K has the desired properties with respect to
μ for any value of σ . In this respect, we would like to mention that there is a huge
amount of literature on appropriate scaling of random walk Metropolis algorithms,
dating back at least to [23].

3. Keeping the notations of the previous remark, one could think that, as the algo-
rithm goes on and concentrates on regions with smaller and smaller probabilities,
one would have to reduce the mixing parameter σ with increasing iteration. In
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fact, and as will be illustrated in Sect. 5, this is not the case when dimension d is
large enough: in such a situation, a region with very small probability may indeed
be very large. For our purpose, one could call this phenomenon the “blessing of
dimensionality”, in opposition to the statistical “curse of dimensionality”.

3.2 Pseudo-Code for Estimating p

We give now the pseudo-code version of the algorithm for the tail probability estima-
tion when q is given.

Parameters

The number N of particles, the quantile q , the number T of proposed transitions,
a μ-reversible kernel transition K .

Initialization

m = 1.

Draw an i.i.d. N -sample (Xm
1 , . . . ,Xm

N) of the law μ.

Sort the vector (�(Xm
1 ), . . . ,�(Xm

N)).

Denote (Xm
1 , . . . ,Xm

N) the sorted sample according to � and L1 = �(Xm
1 ).

Iterations

while Lm < q

Pick an integer R randomly between 2 and N .

Let Xm+1
1 = Xm

R .

for t = 1 : T
From Xm+1

1 , draw a new particle X� ∼ K(Xm+1
1 , .).

If �(X�) > Lm, then let Xm+1
1 = X�.

endfor

Let (Xm+1
2 , . . . ,Xm+1

N ) = (Xm
2 , . . . ,Xm

N).

Via a dichotomic search, put �(Xm+1
1 ) at the right place in the sorted vector

(�(Xm+1
2 ), . . . ,�(Xm+1

N )).

Denote (Xm+1
1 , . . . ,Xm+1

N ) the sorted sample according to � and Lm+1 =
�(Xm+1

1 ).

m = m + 1.

endwhile

Output

p̂ = (1 − 1
N

)m−1.
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4 Complexity, Efficiency and Asymptotic Efficiency

In this section, we mix the theoretical results of the idealized algorithm derived in
Sect. 2.2 and the computational complexity of the practical algorithm exposed in the
previous section. Once again, we do acknowledge that one might not find this analysis
totally convincing. However it gives us an insight about our method regarding the
crucial issues of complexity and efficiency.

The expected computational complexity of our algorithm is O(N logN logp−1):

• A sorting of the initial sample, whose cost is (in expectation) in O(N logN) via a
quicksort algorithm;

• Around −N logp steps (where p = P(�(X) > q)), whose cost is decomposed in:
– T proposed kernel transitions,
– the dichotomic search and the insertion of the new particle at the right place in

the ordered sample, whose cost is in O(logN) via a min-heap algorithm (see for
example [19]).

By comparison, the algorithm complexity of CMC is N . The algorithm complexity of
Cérou et al. [10], where at each iteration, instead of killing and branching the smallest
particle, they are branching a proportion (1 − p0) (0 < p0 < 1, typically p0 = 3/4)
is also in O(N logN logp−1).

We noticed in Sect. 2.2 that our estimator p̂ of p has a smaller variance than p̂mc

but a larger computational complexity. To take into account both computational com-
plexity and variance, Hammersley and Handscomb [16] have proposed to define the
efficiency of a Monte Carlo process as “inversely proportional to the product of the
sampling variance and the amount of labour expended in obtaining this estimate.” So
our method is a bit more efficient than Cérou et al. [10] because the variance of p̂ is a
bit smaller than the variance of p̃ while sharing similar computational costs. Specifi-
cally, the proposed estimator p̂ is computationally more efficient than the CMC esti-
mator p̂mc whenever

V (p̂) · CN ≤ V (p̂mc) · Cmc,

that is

−p2 logp

N
· (−kN logN logp) ≤ p(1 − p)

N
· N or k logN ≤ 1 − p

p(logp)2
.

That inequality is satisfied when p goes to zero since the right-hand side goes then to
infinity. For example, let us fix N = 200 and k = 10, then one can check numerically
that the condition

10 log(200) ≤ 1 − p

p(logp)2

is true as soon as p ≤ 1.0 × 10−4.
Our calculations on p̂ enable us to derive another efficiency result for rare event

probability estimation based on the asymptotic behavior of the relative variance of
the estimator when the rare event probability p goes to 0. Here we will focus only on
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the asymptotic efficiency, as discussed in [15]. Recall that an estimator p̂ for the tail
probability p is said to reach asymptotic efficiency if for N fixed:

lim
p→0

log (V (p̂) × C(p̂))

2 logp
= 1.

Jensen inequality shows that for any unbiased estimator:

lim sup
p→0

log (V (p̂) × C(p̂))

2 logp
≤ 1.

For example, the CMC method does not reach asymptotic efficiency since:

log (V (p̂mc) × C(p̂mc))

2 logp
= logp + log (1 − p)

2 logp
−−−→
p→0

1

2
.

Thanks to Proposition 1, we get for the proposed estimator:

log (V (p̂) × C(p̂))

2 logp
= 1 + log(p− 1

N − 1) + log(kN logN logp−1)

2 logp
−−−→
p→0

1 − 1

2N
.

Consequently, since the number N of particles is supposed to be large, the proposed
method almost reaches asymptotic efficiency.

5 Application

As indicated in the introduction, our motivations for calculating extreme quantile and
tail probabilities come from problems occurring in the protection of digital contents.
Here, we apply our algorithm to a well-known watermarking detector for which there
exists a closed form expression for the probability of false alarm. This allows us to
benchmark our method.

For this purpose, we have selected the absolute value of the normalized correlation
as the score function � (see for example [20]), so that X is deemed watermarked
whenever

�(X) = |XT u|
‖X‖ > q, (3)

where u is a secret but fixed unit vector, and X is a d-dimensional random vector with
an unknown isotropic distribution. Given a threshold value q we would like to find the
tail probability (stopping rule number 1) and conversely given by the manufacturer
a value p, we would like to find the threshold value q such that P(�(X) > q) = p

(stopping rule number 2).
A geometrical interpretation shows that the acceptance region is a two-sheet hy-

percone (see Fig. 1) whose axis is given by u and whose angle is θ = cos−1(q) (with
0 < θ < π/2).

Since X has an isotropic distribution, X/‖X‖ has the uniform law on the unit
sphere in dimension d , so that any isotropic distribution makes the job to evaluate
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Fig. 1 Detection region for
zero-bit watermarking

p or q . In the following, we propose to choose a standard Gaussian distribution:
X ∼ N (0, Id). This allows us to derive explicit expressions for the probability of
false positive detections to benchmark our algorithm. The following lemma describes
the distribution of �(X):

Lemma 1 Let us denote F the cdf of the random variable Y = �(X), G the cdf of a
random variable following a Fisher-Snedecor distribution with (1, d − 1) degrees of
freedom, f and g their respective probability densities. Then for all q in R, we have:

p = P(�(X) > q) = 1 − F(q) = 1 − G

(
(d − 1)q2

1 − q2

)
,

from which it follows that:

f (q) = 2(d − 1)q

(1 − q2)2
· g
(

(d − 1)q2

1 − q2

)
.

In our simulations, we chose the following transition kernel for Gaussian random
vectors on R

d : Given a current location x, we propose the new position

X′ = x + σW√
1 + σ 2

,

where W is a N (0, Id) R
d -valued random vector and σ a positive number. In the

simulations, the dimension is d = 20, the number of kernel transitions is T = 20, the
numbers of particles are successively N = 100,200,500,1000,5000, and for each
N we have run the algorithm 100 times in order to get boxplots, empirical relative
standard deviations and confidence intervals. The choice σ = 0.3 has experimentally
been proved to be a good trade-off for the “mixing” parameter.

Remark The fact that we do not have to tune σ on the fly might seem quite surprising
at first sight. Indeed, one could think that we should reduce it adaptively since we
progressively focus on smaller and smaller hypercones. Anyway, since d = 20, the
square of the distance between a particle and the origin is distributed according to
a χ2

20 law, which is concentrated around its mean (i.e., 20). Thus, roughly speaking,
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Fig. 2 Boxplots for the
estimation of p obtained with
100 simulations for N = 100 to
N = 5,000 particles

the particles are concentrated around the hypersphere centered at the origin and with
radius

√
20. If for example θ = cos−1(0.95), then even at the end of the algorithm

the distance between the axis of the hypercone and its boundary is around 1.5: this
is five times larger than the standard deviation σ = 0.3 of the Gaussian moves and
explains that the rate of rejection does not dramatically increase with the iterations of
the algorithm.

5.1 Estimation of p

For our illustrative example, we fix q = 0.95 and apply Lemma 1 to conclude that
the probability of interest is approximately equal to p = 4.704 × 10−11. Estimating
such a small probability by running a CMC algorithm is of course out of question.
Figure 2 summarizes the results through boxplots for our method. As the number of
particles increases, the distribution of the estimator concentrates around p.

Figure 3 shows in log-log scales the theoretical and empirical relative standard
deviations: the theoretical one is known thanks to Proposition 1, replacing p by the
numerical value 4.704×10−11, whereas the empirical one was estimated through 100
successive simulations. Let us recall that the theoretical relative standard deviations
is namely

√
V (p̂)

p
=
√

p− 1
N − 1 ≈

√− logp

N
,

the last approximation being valid when N is large enough, hence the slope equal
to −0.5 on the right hand of Fig. 3. One can notice the great coincidence between
theory and practice on this example.

To highlight the main difference between our method and the one proposed in [10],
we have run their algorithm on the same example and with exactly the same parame-
ters, that means: d = 20, T = 20, σ = 0.3. When the proportion of particles surviving
from one step to the next is fixed to p0, Cérou et al. prove a CLT for the estimator p̃

for the idealized version of their algorithm. Specifically,

√
N (p̃ − p)

D−−−−−→
N→+∞ N (0, σ 2),
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Fig. 3 Theoretical and
empirical relative standard
deviations with 100 simulations
for N = 10 to N = 5,000
particles

Fig. 4 Theoretical and
empirical relative standard
deviations with 100 simulations
for N = 50 to N = 5,000
particles with the algorithm
proposed in [10]

where

σ 2 = p2
(

n0
1 − p0

p0
+ 1 − r0

r0

)
.

with

n0 =
⌊

logp

logp0

⌋
and r0 = pp

−n0
0 .

Taking p0 = 0.75 for example, it follows that n0 = 82 and r0 ≈ 0.83. In this case, the
resulting standard deviation of their estimator is only slightly larger than the standard
of our estimator

√

n0
1 − p0

p0
+ 1 − r0

r0
≈ 1.66 � 1.58 ≈√− logp.

The difference becomes larger with smaller p. One consequence is that our method
requires fewer particles to compute estimators for the tail probability with similar
standard errors. More important, our technique gives the exact variance for as few as
N = 10 particles, whereas the asymptotic variance proposed in [10] is reached only
for N ≥ 500. This is illustrated in Figs. 3 and 4 that graph the estimated standard de-
viation as a function of the number of particle (dots) for both methods, and compares
it with the theoretical lower bound (line).

As a consequence, our estimator enables us to draw confidence intervals even with
a low number of particles, which is not possible with the estimator proposed by Cérou
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Fig. 5 95% confidence
intervals for p = 4.704 · 10−11

with 100 simulations and
N = 100 particles

Fig. 6 Boxplots for the
estimation of q obtained with
100 simulations for N = 100 to
N = 5,000 particles

et al. In this respect, Fig. 5 illustrates the 95% confidence intervals obtained in (1) for
N = 100 particles.

5.2 Estimation of q

Conversely, suppose that we fix p = 4.704 × 10−11 and seek to use our algorithm to
estimate its associated tail quantile. We know that the theoretical value is q = 0.95.
Figure 6 summarizes the results through boxplots.

Figure 7 shows in log-log scales empirical and theoretical relative standard de-
viations: these last ones are known thanks to Proposition 3, replacing p by the nu-
merical value 4.704 × 10−11 and f (q) by the second formula of Lemma 1. The em-
pirical standard deviation was estimated through 100 successive simulations of the
algorithm. One can notice the great coincidence between theory and practice on this
example. Finally, Fig. 8 illustrates the 95% confidence intervals obtained in Proposi-
tion 5 for N = 100 particles.

6 Conclusion and Perspectives

We presented an efficient algorithm to estimate a tail probability given a quantile
or a quantile given a tail probability. In its idealized version, the algorithm improves
upon existing multilevel splitting methods and can be analyzed using Poisson process
tools that lead to exact description of the distribution of the estimated probabilities
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Fig. 7 Theoretical and
empirical relative standard
deviations with 100 simulations
for N = 100 to N = 5,000
particles

Fig. 8 95% confidence
intervals for q = 0.95 with 100
simulations and N = 100
particles

and quantiles. To our knowledge, the application of multilevel splitting techniques to
quantile estimation is new. Furthermore, the idealized approach enables us to produce
non-asymptotic confidence intervals for the estimated quantities with respect to the
number of particles. We illustrated its efficiency and accuracy on a very concrete
example of digital watermarking that represents a new field of application for rare
event analysis.

There are two limitations to this work: First, our analysis relies on an idealized
implementation. Relaxing the assumption of perfect mixing to, say, uniform ergodic-
ity of the Markov chain, has been considered in the recent paper by Cérou et al. [11].
While that work was developed in the context of fixed levels splitting algorithms, and
does not directly apply to our context, it represents another promising way for further
investigation. The second limitation is that it applies to continuous responses. The
manuscript [9] suggests how to resolve that limitation in the context of counting on
discrete sets associated with NP-hard discrete combinatorial problems and in partic-
ular counting the number of satisfiability assignments. The main idea is to work with
an auxiliary sequence of continuous sets instead of discrete ones. The motivation of
doing so is that continuous problems are typically easier than the discrete ones. Our
algorithm could also be applied in this context.

Acknowledgements The authors are greatly indebted to Frédéric Cérou and Teddy Furon for valuable
comments and insightful discussions on the first draft of the paper.
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Appendix: Proofs of the Theoretical Results

Proof of Theorem 1 To describe the distribution of �(Lm), we introduce a sequence
of i.i.d. Exponential (1) random variables E1,E2,E3, . . . . Since � is assumed to be
continuous with values in ]0,+∞[, standard calculations show that

(
�(�(X1

1)),�(�(X1
2)), . . . ,�(�(X1

N))
)

d= (E1,E2, . . . ,EN).

Monotonicity of the integrated hazard entails that

�(L1) = �
(

min
1≤i≤N

�(X1
i )
)

= min
1≤i≤N

�(�(X1
i ))

has the same law as the minimum of N i.i.d. Exponential (1) random variables. This
means that

�(L1)
d= E1

N
.

Fix m ≥ 1 and Lm and consider for y > Lm, the integrated hazard of the conditional
distribution of Y = �(X), given �(X) > Lm,

�m+1(y) = − log

(
1 − F(y)

1 − F(Lm)

)
= �(y) − �(Lm).

From the definition of Xm+1
j , we have again that

(
�m+1(�(Xm+1

1 )),�m+1(�(Xm+1
2 )), . . . ,�m+1(�(Xm+1

N ))
)

d= (E1,E2, . . . ,EN).

In light of the memoryless property of the exponential distribution, that vector is
independent of L1, . . . ,Lm. Hence,

�m+1(Lm+1) = �(Lm+1) − �(Lm)
d= Em+1

N

that is,

�(Lm+1)
d= �(Lm) + N−1Em+1.

Since �m+1(Lm+1) is independent of �m(Lm), we get by recursion that

�(Lm+1)
d= 1

N

m+1∑

j=1

Ej ,

where E1, . . . ,Em+1 are i.i.d. Exponential (1). The random variables T1 =
�(L1), . . . , Tm = �(Lm), . . . can consequently be considered as the successive ar-
rival times of a Poisson process with rate N . �
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Proof of Corollary 1 The random variable M is defined as follows

M = max{m : Lm ≤ q}
= max{m : S(Lm) ≥ p}
= max{m : �(Lm) ≤ − logp}
= max{m : Tm ≤ − logp}.

Applying Theorem 1, T1 = �(L1), . . . , Tm = �(Lm), . . . can be seen as the succes-
sive arrival times of a Poisson process with rate N , and hence M is simply the number
of arrivals of a homogeneous Poisson point process until time t = − logp. A classi-
cal result on Poisson processes implies that M is Poisson distributed with parameter
−N logp. �

Proof of Proposition 2 To simplify notations, let us denote respectively 
 = logp

and 
̂ = log p̂. Both 
 and 
̂ are negative numbers by definition. Since M ∼
P (−N logp) ≈ N (−N logp,−N logp), 
̂ is approximately distributed as a Gaus-
sian variable


̂ = M log

(
1 − 1

N

)
≈ −M

N

d≈ N
(

logp,− logp

N

)
= N

(

,− 


N

)
.

By definition of Z1−α/2, we have that with probability (1 − α):

|
 − 
̂| ≤ Z1−α/2

√−


N
,

which is equivalent to


2 − 2

(

̂ − Z2

1−α/2

2N

)

 + 
̂2 ≤ 0. (4)

The discriminant of this quadratic polynomial in 
 is

� = Z2
1−α/2

N

(
−
̂ + Z2

1−α/2

4N

)
,

which is always positive since 
̂ is negative, so that (4) is equivalent to


̂ − Z2
1−α/2

2N
− √

� ≤ 
 ≤ 
̂ − Z2
1−α/2

2N
+ √

�.

Taking the exponential of each term leads to the desired result

p̂ exp

⎛

⎝−Z1−α/2√
N

√

− log p̂ + Z2
1−α/2

4N
− Z2

1−α/2

2N

⎞

⎠≤ p
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and

p ≤ p̂ exp

⎛

⎝+Z1−α/2√
N

√

− log p̂ + Z2
1−α/2

4N
− Z2

1−α/2

2N

⎞

⎠ .

Let us finally notice that when N is large enough, then 1/N is negligible compared
to 1/

√
N and these inequalities become simply

p̂ exp

(
−Z1−α/2√

N

√− log p̂

)
≤ p

and

p ≤ p̂ exp

(
+Z1−α/2√

N

√− log p̂

)
.

The form of this approximate confidence interval also follows from the asymptotic
normality of log p̂

√
N(log p̂ − logp) ≈ N (0,− logp). �

Proof of Proposition 3 By definition of q̂ , we have

q̂ = S−1 (exp(−Gm/N)) ,

where Gm = N(T1 + · · · + Tm) is a Gamma distributed random variable with rate
parameter 1 and shape parameter m. The application of the Central Limit Theorem
gives

√
m

(
Gm

m
− 1

)
L−−−−→

m→∞ N (0,1).

The left-hand side can be expressed as follows:

√
m

(
Gm

m
− 1

)
=
√

N

m

[√
N

(
Gm

N
− (− logp)

)]
− N√

m

(
logp + m

N

)
.

Taking into account that

log(p)

log(1 − N−1)
≤ m =

⌈
log(p)

log(1 − N−1)

⌉
< 1 + log(p)

log(1 − N−1)

leads to the deterministic convergences

N√
m

(
logp + m

N

)
−−−−→
N→∞ 0,

and
√

N

m
−−−−→
N→∞

√

− 1

logp
,
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so that

√
N

(
Gm

N
− (− logp)

)
L−−−−→

m→∞ N (0,− logp).

We are now in a position to apply the delta method to the mapping ϕ(x) =
S−1(exp(−x)) at point x0 = − logp, which gives

√
N(q̂ − q)

L−−−−→
m→∞ N

(
0,

−p2 logp

f (q)2

)
. �

Proof of Proposition 4 We recall that T1, T2, . . . are the arrival times of a rate N

Poisson point process, so that Gm = N(T1 + · · · + Tm) is a Gamma distributed ran-
dom variable with rate parameter 1 and shape parameter m. Since S is a one-to-one
mapping, we have

q̂ = Lm = S−1(exp(−Gm/N)).

Upper and lower bounds for the mean are obtained by making an asymptotic expan-
sion of S−1 at point p.

q̂ = S−1 (exp(−Gm/N))

= S−1(p) +
(
S−1
)′

(p) (exp(−Gm/N) − p)

+
(
S−1
)′′

(p)

2
(exp(−Gm/N) − p)2 + oP

(
(exp(−Gm/N) − p)2

)
,

where XN = oP(YN) means XN = εNYN and εN converges to 0 in probability (see
for example [30, Sect. 2.2]). Since S−1(p) = q , (S−1)′(p) = − 1

f (q)
and (S−1)′′(p) =

− f ′(q)

f (q)3 , we can rewrite it:

q̂ = q − 1

f (q)
(exp(−Gm/N) − p) − f ′(q)

2f (q)3 (exp(−Gm/N) − p)2

+ oP

(
(exp(−Gm/N) − p)2

)
.

Taking the expectation on both sides leads to:

E
[
q̂
] = q − 1

f (q)

(
E
[
exp(−Gm/N)

]− p
)− f ′(q)

2f (q)3
E

[
(exp(−Gm/N) − p)2

]

+ E

[
oP

(
(exp(−Gm/N) − p)2

)]
. (5)

The number of steps of the algorithm can be lower and upper bounded as follows:

log(p)

log(1 − N−1)
≤ m =

⌈
log(p)

log(1 − N−1)

⌉
≤ 1 + log(p)

log(1 − N−1)
.
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Standard computations on the Gamma distribution give:

E
[
exp(−Gm/N)

]=
(

1 + 1

N

)−m

= exp

(
−m log

(
1 + 1

N

))
.

Now, taking into account that:

log(1 + N−1)

log(1 − N−1)
= −1 + 1

N
+ o(1/N),

we get:

p − p(1 + logp)

N
+ o(1/N) ≤ E

[
exp(−Gm/N)

]≤ p − p logp

N
+ o(1/N).

Let us now develop the second expectation term in formula (5):

E

[
(exp(−Gm/N) − p)2

]
= E

[
exp(−2Gm/N)

]

− 2p E
[
exp(−Gm/N)

]+ p2.

This time we have:

E
[
exp(−2Gm/N)

]=
(

1 + 2

N

)−m

= exp

(
−m log

(
1 + 2

N

))
.

And the asymptotic expansion:

log(1 + 2N−1)

log(1 − N−1)
= −2 + 3

N
+ o(1/N),

leads to:

(−2 − logp)p2

N
+ o(1/N) ≤ E

[
(exp(−Gm/N) − p)2

]
≤ (2 − logp)p2

N
+ o(1/N).

For the last term in (5), it remains to prove that:

E

[
oP

(
(exp(−Gm/N) − p)2

)]
= o(1/N).

This step requires the regularity of F ′′ and can be done in the same way as for the
estimation of the bias in the CMC estimation of the quantile. We refer the reader to
the rigorous proof given by Van Zwet [31, Chap. 3], Lemma 3.2.2. Finally, putting
all pieces together, and assuming that f ′(q) < 0, we obtain the lower bound:

lim
N→∞N(E

[
q̂
]− q) ≥

(
logp − pf ′(q)

2f (q)2
(−2 − logp)

)
p

f (q)
,

and the upper bound:

lim
N→∞N(E

[
q̂
]− q) ≤

(
1 + logp − pf ′(q)

2f (q)2
(2 − logp)

)
p

f (q)
.

This concludes the proof of Proposition 4. �
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Proof of Proposition 5 We have for all k ≥ 0:

P(Lk ≤ q < Lk+1) = P(Tk ≤ − logp < Tk+1).

For the above-mentioned Poisson process with rate N , this means that at time − logp,
there have been exactly k arrivals. Since the number of arrivals until time − logp is
a Poisson random variable M , with M ∼ P (−N logp), it comes:

P(Lk ≤ q < Lk+1) = P(M = k).

Thus we are simply looking for the shortest interval [Lk,LK ] such that:

K∑

j=k

P(M = j) ≥ 1 − α.

This can be solved exactly by numerical computation or approximately thanks
to the following remark: since the distribution of M is approximately Gaussian
N (−N logp,−N logp), we have:

P(−N logp − Z1−α/2
√−N logp ≤ M ≤ −N logp + Z1−α/2

√−N logp) ≈ 1 − α.

We would like to stress that, unless the number of particles is really small, the pa-
rameter −N logp is large, so that the approximation P (−N logp) ≈ N (−N logp,

−N logp) is excellent. The result of Proposition 5 follows if we denote
{

m− = ⌊−N logp − Z1−α/2
√−N logp

⌋
,

m+ = ⌈−N logp + Z1−α/2
√−N logp

⌉

and Lm− , Lm+ the associated levels. �

Proof of Lemma 1 Denote by Pu the orthogonal projection onto u. We have

p = P(�(X) ≥ q) = P

(‖PuX‖
‖X‖ ≥ q

)
= P

(
‖PuX‖2 > q2‖X‖2

)
.

The orthogonal decomposition of X gives:

p = P

(
‖PuX‖2 > q2(‖PuX‖2 + ‖I − PuX‖2)

)
,

which we can rewrite:

p = P

( ‖PuX‖2

‖I − PuX‖2/(d − 1)
> (d − 1)

q2

1 − q2

)
,

so that finally we obtain:

p = P

(
Z > (d − 1)

q2

1 − q2

)
,

where Z is a real random variable following a Fisher-Snedecor distribution with 1
and (d − 1) degrees of freedom. �
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