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Abstract The well known De Giorgi result on Hölder continuity for solutions of the
Dirichlet problem is re-established for mixed boundary value problems, provided that
the underlying domain is a Lipschitz domain and the border between the Dirichlet and
the Neumann boundary part satisfies a very general geometric condition. Implications
of this result for optimal control theory are presented.
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1 Introduction

In the last decades it has been anticipated in applied analysis that many elliptic prob-
lems originating from science, engineering, and technology possess nonsmooth data.
This means that they often live on nonsmooth domains, the coefficients are non-
smooth and, thirdly, they often exhibit mixed boundary conditions, see [3, 43] and
the references cited therein, see also [21, 46]. In this paper we prove Hölder continu-
ity for the solution u of
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−∇ · ρ∇u + u = f +
d∑

j=1

∂fj

∂xj
, f ∈ Lq/2, fj ∈ Lq, (1.1)

where q is larger than the space dimension, and mixed boundary conditions are incor-
porated, see Theorem 3.3. The result is to be seen in the tradition of Stampacchia’s
paper [51] (see also [40, 41]), where Hölder continuity already was achieved for
mixed boundary value problems, but under rather technical conditions—difficult to
verify in applications. Here, we generalize the Stampacchia result in space dimen-
sions d = 2,3 and 4 to Lipschitz domains, provided that the Dirichlet boundary part
satisfies a very general compatibility condition—purely topological in nature and
easy to check at least for d = 2,3, see Theorems 5.2 and 5.4 below.

Note that the admissible distributional right-hand sides in (1.1) allow for jumps
in the conormal derivative of solutions across internal interfaces. This means,
e.g. in electrostatics, that the jump in the normal component of the displacement
ν+ · ε∇ϕ − ν− · ε∇ϕ across a prescribed interface equals the surface charge density
on the interface, and this surface charge density is represented by a distribution on
the underlying domain �.

Divergence type operators as in (1.1) are of fundamental significance in many
application areas. This is the case not only in mechanics (see [38, Chaps. IV, V]),
thermodynamics (see [50]) and electrodynamics (see [49]) of heterogeneous media,
but also in mining, multiphase flow, mathematical biology (see [6, 20]) and semi-
conductor device simulation (see [21, 24, 46]), in particular quantum electronics (see
[5, 36, 39, 56, 57]).

The non-homogeneous coefficient function ρ represents varying material proper-
ties as the context requires. It may be thermal conductivity in a heat equation (see [50,
Sect. 21]) or dielectric permittivity in a Poisson equation, or diffusivity in a transport
equation (see for instance [46, Sect. 2.2] for carrier continuity equations) or effective
electron mass in a Schrödinger equation (see [36]).

Continuity of solutions to (1.1) plays an important role for the discussion of state-
constrained optimal control problems (see for instance [8]). Hence it is rather natural
to use the above mentioned result for the discussion of semilinear elliptic control
problems with pointwise inequality constraints on the state, which is done here in a
very general setting. Such problems have been discussed by numerous authors be-
fore (see for instance [1, 8, 11] and the references therein). Concerning second-order
sufficient optimality conditions, some progress has recently been made in a contri-
bution of Casas et al. [12]. Here we show that, based on the regularity results of
Theorem 3.3, the analysis, developed in [12], is also applicable to problems with
mixed boundary conditions, which are not considered in [12]. Thus the consideration
of mixed boundary conditions for semilinear elliptic state-constrained optimal con-
trol problems represents the genuine contribution of this paper from the viewpoint of
optimal control theory.

The outline of the paper is as follows: first we introduce some notation. In Sect. 3
we formulate our regularity result, which is proved in Sect. 4. In Sect. 5 we give an
alternative characterization for Gröger’s regular sets, which represent the geometric
setting for the domains under consideration and the associated Dirichlet boundary
parts, in the 2d and 3d case. Finally, the relevance of the Hölder property for the
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discussion of semilinear elliptic optimal control problems with pointwise state con-
straints is pointed out in Sect. 6.

2 Notation

Throughout this paper, � ⊂ R
d always denotes a bounded Lipschitz domain (see [29,

Chap. 1.2] for the definition) and � ⊂ ∂� is an open part of its boundary. In particular,
we often use the cube K := {x ∈ R

d : −1 < xj < 1 for 1 ≤ j ≤ d}, the half cube
K− := {x ∈ K : xd < 0}, its upper plate 	 := {x ∈ K : xd = 0} and, lastly, the half
of this, 	0 := {x ∈ 	 : xd−1 < 0}. The symbol Cα(�) stands for the usual Hölder
space on �, see [35] or [53]. W 1,p(�) denotes the Sobolev space on � consisting
of those Lp(�) functions whose first order distributional derivatives also belong to
Lp(�) (see [29] or [42]). We use the symbol W 1,p

� (�) for the closure of
{
v|� : v ∈ C∞(Rd), supp v ∩ (∂� \ �) = ∅}

(2.1)

in W 1,p(�). Note that � enjoys the extension property for W 1,p(�) in view of being
a bounded Lipschitz domain, see [23, Theorem 3.10] or [42, Chap. 1.1.16]. Thus,
in case of � = ∂� the space W

1,p
� (�) is identical with the usual Sobolev space

W 1,p(�). If � = ∅ we write as usual W
1,p
0 (�) instead of W

1,p
∅ (�). W

−1,p′
� (�)

denotes the dual to W
1,p
� (�) and W−1,p′

(�) denotes the dual to W
1,p
0 (�), when

1
p

+ 1
p′ = 1 holds. If � is understood, then we sometimes abbreviate W

±1,p
� , W 1,p

0

and W−1,p , respectively. Please notice that all functional spaces under consideration
are regarded as complex ones. By 〈·, ·〉X we indicate the duality between a Banach
space X and its dual. Finally, γ denotes a generic constant not always of the same
numerical value.

3 The Regularity Result

Definition 3.1 Let � ⊂ R
d be a bounded domain and ϒ a (relatively) open part of

its boundary ∂�. Then we call � ∪ ϒ regular (in the sense of Gröger [30]), if for
every x ∈ ∂� there are two open sets Ux, Vx ⊂ R

d and a bi-Lipschitz transform �x
from Ux onto Vx, such that x ∈ Ux, �x(x) = 0 and �x(Ux ∩ (�∪ϒ)) either coincides
with K− or with K− ∪ 	 or with K− ∪ 	0.

Assumption 3.2 Let ρ be a Lebesgue measurable, essentially bounded function
on �, taking its values in the set of real d × d matrices, that additionally satisfies
the usual (strong) ellipticity condition

y · ρ(x)y ≥ ι|y|2, y ∈ R
d, (3.1)

for almost all x ∈ � and some ι > 0.

Given a coefficient function ρ, satisfying this assumption, we define the operator
−∇ · ρ∇ + 1 : W 1,2

� (�) → W
−1,2
� (�) by
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〈−∇ · ρ∇v + v,w〉
W

−1,2
�

:=
∫

�

(ρ∇v · ∇w + vw) dx , v,w ∈ W
1,2
� (�). (3.2)

Then our first main result reads as follows.

Theorem 3.3 Suppose 2 ≤ d ≤ 4 and q > d . Suppose further that � ∪ � is
regular and that Assumption 3.2 is satisfied. Then there is an α > 0, such that
(−∇ · ρ∇ + 1)−1 maps W

−1,q
� (�) continuously into Cα(�).

Remark 3.4

(a) The cases � = ∅ (Dirichlet boundary condition) and � = ∂� (Neumann bound-
ary condition) are explicitly allowed.

(b) It is not hard to see that the right-hand side of (1.1) defines an element of
W

−1,q
� (�). Conversely, any element of W

−1,q
� (�) may be represented this way,

see [58, Chap. 4.3].

Corollary 3.5 The result of Theorem 3.3 carries over to problems with Robin bound-
ary conditions on �, if the function κ, defining the boundary term in the bilinear form
(see (4.18) below) is from L∞(�,σ ) (σ being the induced boundary measure on �,
cf. [32, Sect. 3]).

Corollary 3.6 Let a non-negative function V ∈ L∞(�) be given. Moreover, assume
that, if meas(∂� \ �) = 0, then there is a subset �+ of � of positive measure, where
V is strictly positive. Then, similarly to Corollary 3.5, Theorem 3.3 also applies to
problems of the form −∇ · ρ∇v + V v = f , f ∈ W

−1,q
� (�).

Corollary 3.7 Let Dq denote the domain of the maximal restriction of −∇ ·ρ∇ +1 to

the space W
−1,q
� (�). Then, under the suppositions of Theorem 3.3, even the complex

interpolation space [Dq,W
−1,q
� ]τ continuously embeds into a Hölder space Cβ(�),

if τ and β are sufficiently close to 0.

Remark 3.8 Corollary 3.7 may be of use for the treatment of parabolic equations, see
[2, 45, 48].

4 Proof of the Regularity Result

Let us start by commenting on the philosophy of the proof: the problem will be lo-
calized by means of a suitably chosen partition of unity, afterwards transformed by
bi-Lipschitz mappings and, if necessary, by reflection. In any case one ends up with
a Dirichlet problem on either a ball, the half cube K− or the cube K . Then a well
known regularity result (see Proposition 4.4) may be applied.

In order to perform this procedure we first quote two results from the literature and
afterwards establish some auxiliary results, which will justify the required technical
steps.
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4.1 Known Results

Proposition 4.1 ([31], see also [30]) Suppose that ρ satisfies Assumption 3.2. If �∪
� is regular, then there is a q0 > 0 such that for all q ∈ ]2 − q0,2 + q0[ the operator
−∇ · ρ∇ + 1 provides a topological isomorphism between W

1,q
� (�) and W

−1,q
� (�).

Remark 4.2 In the quoted papers the assertion of Proposition 4.1 is shown for q from
an interval [2,2 + q0[. The case q ∈]2 − q0,2[ is achieved by considering the adjoint
operator.

Remark 4.3 It is clear by Sobolev embedding that in the two dimensional case the
assertion of Theorem 3.3 already follows from Proposition 4.1.

Proposition 4.4 (See [37, Chap. III.14], [35, Theorem C.2], [13, Chap. 4], see also
[15]) Let � be a ball or a cuboid and let the coefficient function ω (mutatis mutandis)
satisfy Assumption 3.2. If q > d , then there is an α > 0, such that

(−∇ · ω∇)−1 : W−1,q (�) → Cα(�) (4.1)

is continuous.

Remark 4.5 Usually, Proposition 4.4 is proved only for real spaces, but it is straight-
forward to extend this to the complex case: one considers for any element T of the
complex Sobolev space W

−1,q
� the linear forms T+T ∗

2 and T−T ∗
2i , where T ∗ is defined

by T ∗ψ := T ψ . Obviously, both take real values when applied to real functions and
satisfy T+T ∗

2 + i T−T ∗
2i = T . Thus, one may use the result for the corresponding real

spaces.

4.2 Auxiliary Results

Lemma 4.6 Let �∪� be regular and let U ⊂ R
d be open, such that �• := �∩ U is

also a Lipschitz domain. Furthermore, we put �• := � ∩ U and fix an arbitrary func-
tion η ∈ C∞

0 (Rd) with suppη ⊂ U . Then for any q ∈ [1,∞[ we have the following
assertions:

(i) If v ∈ W
1,q
� (�), then ηv|�• ∈ W

1,q
�• (�•).

(ii) Let for any v ∈ L1(�•) the symbol ṽ indicate the extension of v to � by zero.
Then the mapping

W
1,q
�• (�•) � v �→ η̃v

has its image in W
1,q
� (�) and is continuous.

Proof For the proof of both points we will employ the following well known set
inclusion (cf. [16, Chap. 3.8]):

(∂� ∩ U) ∪ (� ∩ ∂U) ⊂ ∂�• ⊂ (∂� ∩ U) ∪ (� ∩ ∂U). (4.2)
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(i) First one observes that the multiplication with η and the restriction is a contin-
uous mapping from W

1,q
� (�) into W 1,q(�•). Thus, it suffices to show the assertion

only for elements of the dense subset
{
v|� : v ∈ C∞(Rd), suppv ∩ (∂� \ �) = ∅}

,

what we will do now. One has by (4.2)

supp(ηv) ∩ (∂�• \ �•) ⊂ suppη ∩ suppv ∩ [(
(∂� ∩ U) ∪ (� ∩ ∂U)

) \ (
� ∩ U

)]
.

Since (� ∩ ∂U) ∩ (� ∩ U) = ∅, we see
(
(∂� ∩ U) ∪ (� ∩ ∂U)

) \ (
� ∩ U

) = (
(∂� ∩ U) \ (� ∩ U)

) ∪ (
(� ∩ ∂U) \ (� ∩ U)

)

= (
(∂� \ �) ∩ U

) ∪ (� ∩ ∂U).

This, together with suppη ⊂ U yields

supp(ηv) ∩ (∂�• \ �•) ⊂ suppη ∩ suppv ∩ (
(∂� \ �) ∩ U

) = ∅.

(ii) Let v ∈ C∞
0 (Rd) with suppv ∩ (∂�• \ �•) = ∅. Since by the right-hand side

of (4.2) we have

∂�• \ �• ⊇ (∂� ∩ U) \ �• = U ∩ (∂� \ �),

it follows suppv ∩ (
U ∩ (∂� \ �)

) = ∅. Combining this with suppη ⊂ U , we obtain

supp(ηv) ∩ (∂� \ �) = supp(ηv) ∩ (
U ∩ (∂� \ �

) = ∅,

so ηv|� ∈ W
1,q
� (�). Furthermore, it is not hard to see that ‖ηv‖W 1,q (�) ≤

γη‖v‖W 1,q (�•), where the constant γη is independent from v. Thus, the assertion fol-

lows, since {v|�• : v ∈ C∞
0 (Rd), supp(v) ∩ (∂�• \ �•) = ∅} is dense in W

1,q
�• (�•)

and W
1,q
� (�) is closed in W 1,q (�). �

Lemma 4.7 Let �, �, U , η, �• and �• be as in the foregoing lemma. Denote by
ρ• the restriction of the coefficient function ρ to �• and let the operator −∇ · ρ•∇ :
W

1,2
�• (�•) → W

−1,2
�• (�•) be defined analogously to (3.2). Assume v ∈ W

1,2
� (�) to be

the solution of

−∇ · ρ∇v + v = f ∈ W
−1,2
� (�). (4.3)

Then the following holds true:

(i) For all q ∈]1,∞[ the linear form

f• : w �→ 〈f, η̃w〉
W

−1,q
� (�)

,

where η̃w again means the extension by zero to the whole �, is well defined and

continuous on W
1,q ′
�• (�•), whenever f ∈ W

−1,q
� (�).
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(ii) If we denote the linear form

W
1,2
�• (�•) � w �→

∫

�•
vρ•∇η · ∇wdx,

by Tv , then u := ηv|�• satisfies

−∇ · ρ•∇u = −ηv|�• − ρ•∇v|�• · ∇η|�• + Tv + f• =: f •. (4.4)

(iii) Assume now 2 ≤ d ≤ 4. If f ∈ W
−1,q
� (�) for a q > d , then there is a p > d

such that f • ∈ W
−1,p
�• (�•). Moreover, the mapping W

−1,q
� (�) � f �→ f • ∈

W
−1,p
�• (�•) is continuous.

Proof (i) The mapping f �→ f• is the adjoint to v �→ η̃v, which maps by the preced-

ing lemma W
1,q ′
�• (�•) continuously into W

1,q ′
� (�).

(ii) For every w ∈ W
1,2
�• (�•) we have

〈−∇ · ρ•∇u,w〉
W

−1,2
�• (�•) +

∫

�•
ηvw dx

=
∫

�•
ρ•∇(ηv) · ∇wdx +

∫

�•
ηvwdx

=
∫

�•
vρ•∇η · ∇wdx +

∫

�•
ηρ•∇v · ∇wdx +

∫

�

v η̃w dx

=
∫

�•
vρ•∇η · ∇wdx +

∫

�•
ρ•∇v · ∇(ηw)dx −

∫

�•
wρ•∇v · ∇η dx

+
∫

�

v η̃w dx

and by (4.3) we see
∫

�•
ρ•∇v · ∇(ηw)dx +

∫

�

v η̃w dx =
∫

�

ρ∇v · ∇(η̃w)dx +
∫

�

v η̃w dx

= 〈f, η̃w〉
W

−1,2
� (�)

.

Applying the definition of Tv and f• and afterwards subtracting
∫
�• ηvw dx from

both sides yields the assertion.
(iii) We regard the terms in (4.4) from left to right. For the first summand the

assertion is obvious.
According to Proposition 4.1 there is an ε > 0 such that the solution v of −∇ ·

ρ∇v + v = f is from W
1,2+ε
� (�), what implies ∇v ∈ L2+ε(�). Furthermore, |∇η| ∈

L∞(�•) and |ρ•∇v| ∈ L2+ε(�•). Consequently we have ρ•∇v · ∇η ∈ L2+ε(�•).
Now, whenever 1/p ≥ (d − 2 − ε)/(d(2 + ε)) we have the embedding L2+ε(�•) ↪→
W

−1,p
�• (�•). Since we restricted the dimension to 2 ≤ d ≤ 4, there is always a p >

4 ≥ d satisfying that condition, so the second term is also fine.
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On the other hand, we have v ∈ W
1,2+ε
� (�) ↪→ L4+δ(�) for a δ = δ(d) > 0. Thus,

concerning Tv , we can estimate

|〈Tv,w〉
W

−1,4+δ
�• (�•)| ≤ ‖v‖L4+δ(�•) ‖ρ‖L∞(�;Cd×d ) ‖∇η‖L∞(�•) ‖w‖

W
1,(4+δ)′
�• (�•)

.

The claim on f• follows from (i), while the proof of the last assertion is implicitly
contained in the above considerations. �

Remark 4.8 It is the lack of integrability of the gradient of v (see the counterexample
in [18, Chap. 4]) together with the quality of the needed Sobolev embeddings, which
prevents the applicability of this localization procedure to higher dimensions and thus
limits our central result to the dimensions up to 4.

The reader may wonder why we start with the operator −∇ · ρ∇ + 1 and consider
the operator −∇ · ρ•∇ after the localization. The reason for this is the following:
in order to include the pure Neumann case one should consider the operator −∇ ·
ρ∇ + 1. On the other hand, the resulting localized operators −∇ · ρ•∇ exhibit in any
case a nontrivial Dirichlet boundary part (making them invertible) and the subsequent
transformation techniques are technically simpler for the pure operator −∇ · ρ•∇ .

Proposition 4.9 Let � ⊂ R
d be a bounded Lipschitz domain and ϒ be an open

subset of its boundary. Assume that φ is a mapping from a neighborhood of � into R
d

that is bi-Lipschitz. Let us denote φ(�) =: �� and φ(ϒ) =: ϒ�. Then the following
is true:

(i) For any p ∈]1,∞[, the mapping φ induces a linear, topological isomorphism

�p : W 1,p
ϒ� (��) → W

1,p
ϒ (�),

which is given by (�pf )(x) = f (φ(x)) = (f ◦ φ)(x).

(ii) �∗
p′ is a linear, topological isomorphism between W

−1,p
ϒ (�) and W

−1,p
ϒ� (��).

(iii) If ω is a bounded, measurable function on �, taking its values in the set of d ×d

matrices, then

�∗
p′∇ · ω∇�p = ∇ · ω�∇ (4.5)

with

ω�(y) := 1

|det(Dφ)(φ−1(y))| (Dφ)(φ−1(y)) ω(φ−1(y))
(
Dφ

)T
(φ−1(y))

(4.6)
for almost all y ∈ ��. Here, Dφ denotes the Jacobian of φ and det(Dφ) the
corresponding determinant.

(iv) If ω satisfies Assumption 3.2, then ω� also does.

Proof The proof of (i) is contained in [28, Theorem 2.10)]. Assertion (ii) follows
from (i) by duality, while (iii) is well known, see [33] for an explicit verification or
[4, Chap. 0.8]. Finally, (iv) is implied by (4.6) and the fact that for a bi-Lipschitz φ the
Jacobian Dφ and its inverse (Dφ)−1 are essentially bounded (see [19, Chap. 3.1]). �
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Fig. 1 K− ∪ 	0 and χ1(K− ∪ 	0)

The next lemma makes clear that within the class of bi-Lipschitz transformations
one only needs the two local model sets K− and K− ∪ 	, if one dispenses with the
condition �x(x) = 0 (cf. Definition 3.1):

Lemma 4.10 There is a bi-Lipschitz mapping � : R
d → R

d which maps K− ∪ 	0
onto K− ∪ 	.

Proof Let us first consider the case d = 2. We define on the lower halfspace {(x, y) :
y ≤ 0}

χ1(x, y) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(x − y/2, y/2), if x ≤ 0, y ≥ x,

(x/2,−x/2 + y), if x ≤ 0, y < x,

(x/2, x/2 + y), if x > 0, y < −x,

(x + y/2, y/2), if x > 0, y ≥ −x.

(4.7)

Observing that χ1 acts as the identity on the x-axis, we may define χ1 on the upper
half space {(x, y) : y > 0} also as the identity and thus obtain a globally bi-Lipschitz
transformation χ1 from R

2 onto itself that transforms K− ∪ 	0 onto the triangle
shown in Fig. 1.

Next, we define the bi-Lipschitz mapping χ2 : R
2 → R

2 by

χ2(x, y) :=
{
(x, x + 2y + 1), if x ≤ 0,

(x,−x + 2y + 1), if x > 0,
(4.8)

in order to get the geometric arrangement in Fig. 2.
If ϑ is the (clockwise) rotation by π/4, we thus achieved that χ := ϑχ2χ1 : R

2 →
R

2 is bi-Lipschitz and satisfies

χ(K− ∪ 	0) =
{
(x, y) : − 1√

2
< x <

1√
2
, − 1√

2
< y ≤ 1√

2

}
.

Let ς : R
2 → R

2 be the affine mapping (x, y) �→ (
√

2x, 1√
2
y − 1

2 ). Then �2 := ςχ

maps K− ∪ 	0 bi-Lipschitzian onto K− ∪ 	 in the 2d case.
If d > 2, one simply puts �(x1, . . . , xd) := (x1, . . . , xd−2,�2(xd−1, xd)). �



406 Appl Math Optim (2009) 60: 397–428

Fig. 2 χ2(χ1(K− ∪ 	0))

Proposition 4.11 Let for any x = (x1, . . . , xd) ∈ R
d the symbol x− denote the ele-

ment (x1, . . . , xd−1,−xd). Further, for a d × d matrix �, we define the matrix �−
by

�−
j,k :=

⎧
⎪⎨

⎪⎩

�j,k, if j, k < d,

−�j,k, if j = d and k �= d or k = d and j �= d,

�j,k, if j = k = d.

(4.9)

Let ω be a bounded, measurable function on K− taking its values in the set of real,
symmetric d × d matrices. We define the matrix valued function ω̂ on K by

ω̂(x) :=

⎧
⎪⎨

⎪⎩

ω(x), if x ∈ K−,(
ω(x−)

)−
, if x− ∈ K−,

0, if x ∈ 	.

(4.10)

Then we have the following assertions for every p ∈]1,∞[:
(i) If ψ ∈ W

1,p
	 (K−) satisfies −∇ ·ω∇ψ = f ∈ W

−1,p
	 (K−), then −∇ · ω̂∇ψ̂ = f̂ ∈

W−1,p(K) holds for ψ̂ with

ψ̂(x) =
{
ψ(x), if x ∈ K−,

ψ(x−), if x− ∈ K−,

and f̂ defined by 〈f̂ , ϕ〉W−1,p(K) := 〈f,ϕ|K− +ϕ−|K−〉
W

−1,p
	 (K−)

. Here, the func-

tion ϕ− is defined by ϕ−(x) := ϕ(x−).
(ii) The mapping W

−1,p
	 (K−) � f �→ f̂ ∈ W−1,p(K) is continuous.

Proof (i) It is known that ψ̂ belongs to W
1,p
0 (K), see [23, Lemma 3.4]. Thus, it

remains to show −∇ · ω̂∇ψ̂ = f̂ as an equation in W−1,p(K). Since every test func-
tion from W

1,p
0 (K) may be split up into a symmetric and an anti-symmetric part, we
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may look at these two cases separately. For every anti-symmetric ϕ ∈ W
1,p
0 (K). i.e.

ϕ(x−) = −ϕ(x), the symmetry of ω̂, ψ̂ and f̂ yields immediately

〈−∇ · ω̂∇ψ̂, ϕ〉
W

−1,p
0 (K)

= 0 = 〈f̂ , ϕ〉
W

−1,p
0 (K)

.

In the case of symmetric functions ϕ the assertion is obtained by the definitions of
ψ̂, f̂ ,−∇ · ω∇,−∇ · ω̂∇ and straightforward calculations, based on Proposition 4.9
when applied to the transformation x �→ x−.

(ii) The operator f �→ f̂ is the adjoint to ϕ �→ (ϕ|K− + ϕ−|K−). �

4.3 Core of the Proof

By Definition 3.1 and Lemma 4.10, for every x ∈ ∂� there is an open neighborhood
Ux of x, an open set Wx and a bi-Lipschitz mapping �x from Ux onto Wx such that
�x((� ∪ �) ∩ Ux) equals either K− or K− ∪ 	. Take for every point x ∈ � a ball

Bx ⊂ � centered at x. Obviously, the system {Ux}x∈∂� ∪{Bx}x∈� forms an open cov-
ering of �. Take a finite subcovering Ux1 , . . . , Uxk

, Bx1, . . . , Bxl
and choose a partition

of unity η1, . . . , ηk, ζ1, . . . , ζl over �, which is subordinated to this subcovering.
Assume now f ∈ W

−1,q
� (�) with q > d and that v is the solution of −∇ · ρ∇v +

v = f . Then, according to Proposition 4.7 with �• = ∅ and �• = Bxj , every function
ζj v|Bxj

satisfies an equation −∇ · ρ∇(ζj v|Bxj
) = gj , where gj ∈ W−1,p(Bxj

) with
p > d and, additionally,

‖gj‖W−1,p(Bxj )
≤ γ ‖f ‖

W
−1,q
� (�)

(4.11)

with γ independent from f . Hence, by Proposition 4.4, we have ζj v|Bxj
∈ Cα(Bxj

)

for an α = α(j) > 0 and, moreover,

‖ζj v|Bxj
‖Cα(Bxj )

≤ γ ‖gj‖W−1,p(Bxj )
. (4.12)

Clearly, (4.12) together with (4.11) implies

‖ζj v‖Cα(�) = ‖ζj v|Bxj
‖Cα(Bxj )

≤ γ ‖gj‖W−1,p(Bxj )
≤ γ ‖f ‖

W
−1,q
� (�)

. (4.13)

Let us now consider the functions ηjv for fixed j : putting �j := � ∩ Uxj
and �j :=

� ∩ Uxj
we obtain by Lemma 4.6(i) that each ηjv|�j

belongs to W
1,2
�j

(�j ). Further-
more, Proposition 4.7 shows that ηjv|�j

satisfies an equation −∇ ·ρ∇(ηj v|�j
) = fj ,

where fj ∈ W
−1,p
�j

(�j ) with p > d and, additionally,

‖fj‖W
−1,p
�j

(�j )
≤ γ ‖f ‖

W
−1,q
� (�)

(4.14)

with γ independent from f . Next we consider the ‘transformed’ function (cf. Propo-
sition 4.9 with φ = �−1

xj
) ψj := �p(ηjv|�j

) = (ηj v|�j
) ◦�−1

xj
on K−, from now on

distinguishing the cases

�xj

(
(� ∪ �) ∩ Uxj

) = K− (4.15)
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and

�xj

(
(� ∪ �) ∩ Uxj

) = K− ∪ 	. (4.16)

If (4.15) is true, then �j := � ∩ Uxj
⊂ ∂(� ∩ Uxj

) must be empty, since K−
has only inner points and inner points pass to inner points and boundary points
to boundary points under a bi-Lipschitz transformation. In particular, this means
ηjv|�j

∈ W
1,2
0 (�j ). By Proposition 4.9 the function ψj belongs to W

1,2
0 (K−) and

satisfies an equation −∇ · ω∇ψj = hj with hj = (�∗
p′)−1fj ∈ W−1,p(K−) for the

same p > d as above. Thanks to Proposition 4.9(iv), the coefficient function ω again
satisfies Assumption 3.2. Thus, by Proposition 4.4, ψj ∈ Cα(K−), where α depends
on j , and

‖ψj‖Cα(K−) ≤ γ ‖hj‖W−1,p(K−)

with α and γ independent from hj . Transforming back, this gives ηjv|�j
∈ Cα(�j )

with

‖ηjv|�j
‖Cα(�j ) ≤ γ ‖fj‖W−1,p(�j )

≤ γ ‖f ‖
W

−1,q
� (�)

, (4.17)

where the last inequality is just (4.14). As the support of ηjv has a positive distance
to � \ �j , the function ηjv is from Cα(�) with the norm equality ‖ηjv‖Cα(�) =
‖ηjv|�j

‖Cα(�j ). This, together with (4.17) gives the desired estimate, where γ is
independent from f .

Let us now consider the case (4.16). Analogously as before Proposition 4.9 yields
that ψj belongs to W

1,2
	 (K−) and satisfies an equation −∇ · ω∇ψj = hj with

hj ∈ W
−1,p
	 (K−) and p > d , where ω again satisfies Assumption 3.2. Now, we apply

the reflection principle from Proposition 4.11. This leads to a homogeneous Dirichlet
problem −∇ · ω̂∇ψ̂j = ĥj , where ĥj ∈ W−1,p(K). But then Proposition 4.4 gives
ψ̂j ∈ Cα(K) and ‖ψ̂j‖Cα(K) ≤ γ ‖ĥj‖W−1,p(K) (α depending on j ). Clearly, this,
together with Proposition 4.11(ii), implies ‖ψj‖Cα(K−) ≤ γ ‖hj‖W

−1,p
	 (K−)

and, con-

sequently,

‖ηjv|�j
‖Cα(�j ) ≤ γ ‖fj‖W

−1,p
�j

(�j )
≤ γ ‖f ‖

W
−1,q
� (�)

.

Thus, we get ηjv ∈ Cα(�) and ‖ηjv‖Cα(�) ≤ γ ‖f ‖
W

−1,q
� (�)

with γ independent

from f as in the previous case. Passing to the minimal α(j), this finishes the proof
of Theorem 3.3.

Proof of Corollary 3.5 As is well known ([14, Chap. 1.2], [22, Chap. II.2]), in case
of a Robin boundary condition the operator is defined via the bilinear form

W
1,2
� (�) × W

1,2
� (�) � (v,w) �→

∫

�

ρ∇v · ∇wdx +
∫

�

vwdx +
∫

�

κ vw dσ

(4.18)
for some κ ∈ L∞(�,σ ). It is easy to see that the linear mapping T : L∞(�,σ ) →
W

−1,p
� (�), given by

〈T ψ,ϕ〉
W

−1,p
� (�)

=
∫

�

κψ ϕ dσ,
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is well defined and continuous. Denoting the domain of −∇ ·ρ∇ +1 again by Dq , we
have by Theorem 3.3 the compact embedding Dq ↪→ Cα(�) ↪→ L∞(�,σ ). Hence,
the mapping T is relatively compact with respect to −∇ · ρ∇ + 1 and a classical
perturbation theorem [34, Chap. IV.1.3] applies. �

Proof of Corollary 3.6 We argue analogously to the proof of Corollary 3.5. Here,
T : L∞(�) → W

−1,q
� (�) is defined by

〈T ψ,ϕ〉
W

−1,q
� (�)

=
∫

�

V ψ ϕ dx.

Then, due to the compact embedding Dq ↪→ L∞(�), the same perturbation argu-
ment as above yields that the domain of the maximal restriction of −∇ · ρ ∇ + V to
W

−1,q
� (�) coincides with Dq . Together with the coercivity of the associated bilinear

form that follows from the assumptions on V stated in Corollary 3.6, this gives the
assertion. �

Proof of Corollary 3.7 Applying a well known re-iteration result on complex inter-
polation (see [53, Chap. 1.9.3]), we obtain for τ ∈ ]0,1[

[Dq,W
−1,q
� (�)] τ

2
↪→ [

Dq, [Dq,W
−1,q
� (�)] 1

2

]
τ
. (4.19)

But the embedding W
−1,q
� (�) ↪→ W

−1,2
� (�) gives Dq ↪→ W

1,2
� (�). Together with

Dq ↪→ Cα(�), we obtain by (4.19)

[Dq,W
−1,q
� (�)] τ

2
↪→ [

Cα(�), [W 1,2
� (�),W

−1,2
� (�)] 1

2

]
τ
.

One identifies the interpolation space [W 1,2
� (�),W

−1,2
� (�)] 1

2
as the space L2(�)

(see [53, Chap. 1.18.10]), what gives

[Dq,W
−1,q
� (�)] τ

2
↪→ [Cα(�),L2(�)]τ . (4.20)

This latter interpolation space is known to embed into another Hölder space Cβ(�),
if τ > 0 is chosen sufficiently small (see [27, Chap. 7], see also [54]). �

Remark 4.12 If the coefficient matrices are symmetric, the Hölder continuity of the
solution for (1.1) may be deduced from the results of [26] and [25] by means of
suitable (but nontrivial) embedding theorems. Unfortunately, this is not carried out
there.

5 Alternative Characterization for Regular Sets

Gröger’s concept of regular sets [30] turned out to be a powerful tool for the treatment
of mixed boundary value problems. Not only his regularity result [30], based on this,
is exploited in some tens of papers; but the regular sets proved also to be an adequate
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frame for establishing interpolation results for function spaces which include a trace
zero condition on part of the boundary, see [28]. Moreover, it allowed to recover
resolvent estimates and thus provided tools for the treatment of parabolic equations,
which incorporate mixed boundary conditions, see [27, 31]. All of this shows that
the concept of regular sets in itself deserves some investigation in order to simplify
things.

In this spirit, the aim of this chapter is to prove that for two and three space di-
mensions the property of a set �∪ϒ to be regular in the sense of Gröger (see Defini-
tion 3.1) can be characterized by � being a Lipschitz domain and a certain topological
property of ϒ (to be specified in a moment). The point is that the resulting conditions
usually can be checked ‘by appearance’—in contrast to the original definition. Let
us explicitly mention that the underlying class of Lipschitz domains is broad enough
to contain e.g. the case of two beams, lying on each other with an angle �= π , which
together do not form a domain with Lipschitz boundary.

We start with the following observation.

Theorem 5.1 If � ∪ ϒ is regular, then � is a Lipschitz domain.

Proof Let x ∈ ∂�. Then there is, due to the definition, an open neighborhood U
of x and a bi-Lipschitz mapping � : U → R

d , such that �(x) = 0 holds and �(U ∩
(� ∪ ϒ)) equals K− ∪ 	̃, where 	̃ = ∅ or 	̃ = 	 or 	̃ = 	0. This means

�(U ∩ (� ∪ ϒ)) = �((U ∩ �) ∪ (U ∩ ϒ)) = K− ∪ 	̃ (5.1)

and since inner points pass to inner points and boundary points to boundary points
under a bi-Lipschitz transformation, (5.1) implies �(U ∩�) = K− in all three cases.
Hence, U may serve as the local chart neighborhood required in the definition of a
Lipschitz domain, see [29, Definition 1.2.1.2]. �

We first deal with the easier case of d = 2.

Theorem 5.2 Let � ⊂ R
2 be a bounded Lipschitz domain and ϒ ⊂ ∂� be an open

part of the boundary. Then � ∪ ϒ is regular in the sense of Gröger, iff the set ϒ ∩
(∂� \ ϒ) is finite and no connected component of ∂� \ ϒ consists of a single point.

Proof In view of Theorem 5.1 and an application of the definition for regular sets it
is clear that the condition is necessary. Sufficiency follows from the Lipschitz domain
property and the fact that any point x ∈ ∂� can only lie in ϒ , ϒ ∩ (∂� \ϒ) or in the
(relative) interior of ∂� \ ϒ . �

Remark 5.3 It is not hard to see that the given condition is equivalent to the following:
ϒ is a finite union of open arc pieces from ∂� and ∂� \ ϒ is a finite union of
(nondegenerate) closed arc pieces.

Now we come to an intrinsic characterization of regular sets in R
3, which we

regard as the second essential result of this work.
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Theorem 5.4 Let � ⊂ R
3 be a bounded Lipschitz domain. Assume ϒ to be an open

subset of ∂�. Then � ∪ ϒ is regular in the sense of Gröger, iff the following two
conditions are satisfied:

(i) ∂� \ ϒ is the closure of its interior (within ∂�).
(ii) For any x ∈ ϒ ∩ (∂� \ ϒ) there is an open neighborhood N of x and a bi-

Lipschitz mapping κ : N ∩ ϒ ∩ (∂� \ ϒ) →] − 1,1[.

Proof According to the definition of regular sets the conditions are necessary.
In order to prove sufficiency, we have to show that for every x ∈ ∂� there is an

open neighborhood U of x and a bi-Lipschitz mapping � with �(x) = 0, such that
�(U ∩ (� ∪ ϒ)) is either K− or K− ∪ 	 or K− ∪ 	0.

We first observe that

∂� = ϒ ∪ (∂� \ ϒ)◦ ∪ [
(∂� \ ϒ) ∩ ϒ

]
, (5.2)

where the closure and the interior are again taken with respect to the topology of ∂�.
In the following we will treat these three cases separately.

Let x ∈ ϒ . Since ϒ was supposed to be open, there is an open set U1 ⊂ R
d that

contains x and satisfies U1 ∩ ∂� ⊂ ϒ . Furthermore, as � is a Lipschitz domain, there
is another open neighborhood U2 ⊂ R

d of x and a bi-Lipschitz transform � from U2
onto the (open) cube K , such that �(x) = 0, �(�∩ U2) = K− and �(∂� ∩ U2) = 	.
Since � is in particular a homeomorphism, the set �(U1 ∩ U2) is an open neighbor-
hood of 0 and it is contained in K . Thus, it contains a homothety tK of K for some
t > 0. If we define U := �−1(tK), then �|U is a bi-Lipschitz mapping from the open
neighborhood U of x onto tK , such that �(U ∩ (�∪ϒ)) is the set t (K− ∪	). Com-
bining � with a homothety, we get a bi-Lipschitz mapping � from U onto K that
satisfies �(x) = 0 and �(U ∩ (� ∪ ϒ)) = K− ∪ 	.

Analogously, one proves for the (relatively) inner points x ∈ (∂� \ ϒ)◦ the exis-
tence of a neighborhood U and a bi-Lipschitz mapping � onto the open cube K such
that �(x) = 0 and �(U ∩ (� ∪ ϒ)) is the set K−.

It remains to consider the points of (∂� \ ϒ) ∩ ϒ . Let x be an element of this
set. As � is a Lipschitz domain, there is an open neighborhood O of x in R

3 and
a bi-Lipschitz mapping � from O onto the cube K ⊂ R

3, such that �(x) = 0,
�(� ∩ O) = K− and �(∂� ∩ O) = 	. Exploiting (ii), we find another open neigh-
borhood N of x and a bi-Lipschitz mapping κ , such that κ(ϒ ∩ (∂� \ ϒ) ∩ N ) =
] − 1,1[. Without loss of generality we may assume κ(x) = 0 ∈ R.

Our job is now to combine the good properties of � and κ . In order to do so, we
first define a smaller neighborhood of x that is contained in O ∩ N . Since �(O ∩ N )

is an open neighborhood of 0 ∈ R
3, we find a number t ∈]0,1[, such that tK ⊂

�(O ∩ N ) and we set X := �−1(tK). Clearly, X then is an open neighborhood of x
that is contained in O ∩ N . Additionally, one has

�(� ∩ X ) = �(�) ∩ tK = �(� ∩ O) ∩ tK = K− ∩ tK = tK−

and

�(∂� ∩ X ) = �(∂� ∩ O) ∩ tK = 	 ∩ tK = ]−t, t[ × ]−t, t[ × {0}.
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We define P : R
3 → R

2 as the canonical projection onto the first two compo-
nents and �̂ := P� with X ∩ ∂� as its domain of definition. Note that by the
above considerations �̂ : X ∩ ∂� → ]−t, t[ × ]−t, t[ is a bi-Lipschitz mapping with
�̂(x) = 0 ∈ R

2. Let ]s−, s+[ ⊂ ]−1,1[ be the maximal interval containing 0, such
that �̂κ−1(]s−, s+[) ⊂ ]−t, t[ × ]−t, t[ and denote the set �̂κ−1(]s−, s+[) by C . It is
not hard to see, that C is the connected component of �̂(X ∩ ϒ ∩ (∂� \ ϒ)), which
contains 0 ∈ R

2 within �̂(X ∩ ∂�) = ]−t, t[ × ]−t, t[. We claim:

�̂(X ∩ ϒ ∩ (∂� \ ϒ)) \ C has a positive distance to 0 ∈ R
2. (5.3)

In fact, the elements of �̂(X ∩ ϒ ∩ (∂� \ ϒ)) \ C correspond to numbers from the
set ] − 1, s−] ∪ [s+,1[ with respect to the mapping κ�̂−1. Since κ is bi-Lipschitz,
the image of this set under κ−1 has a positive distance to x. From this (5.3) follows
from the bi-Lipschitz property of �̂.

Let θ be the (bi-Lipschitz) mapping �̂κ−1 : ]s−, s+[→ C . We will identify ]s−, s+[
by means of the (bi-Lipschitz) embedding R � x �→ (x,0) ∈ R

2 with the set
]s−, s+[×{0}. Then by a deep lying theorem of Tukia, cf. [55, Theorem B], there
exists a bi-Lipschitz extension of θ which maps R

2 onto itself that we will denote
by #.

Note that # maps ]s−, s+[×{0} onto C and, in particular, #(0) = 0 ∈ R
2. As

�̂(X ∩ ∂�) = ]−t, t[ × ]−t, t[ is open in R
2 and due to (5.3) one finds an ε ∈

]0,min{−s−, s+, t}], such that

[
�̂

(
X ∩ ϒ ∩ (∂� \ ϒ)

) \ C
] ∩ #

(
]−ε, ε[ × ]−ε, ε[

) = ∅ (5.4)

and simultaneously

#
(
]−ε, ε[ × ]−ε, ε[

) ⊂ ]−t, t[ × ]−t, t[

holds, see Fig. 3.

Fig. 3 �̂(X ∩ ∂�) and #−1(�̂(X ∩ ∂�))
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This ε will provide us a suitable neighborhood U of x to complete our task. In fact,
we set Z := #(]− ε, ε[×]− ε, ε[) and U := �−1(Z×]− ε, ε[). For the bi-Lipschitz
mapping � we define first the mapping ξ on Z×] − ε, ε[ by

ξ(y1, y2, y3) := (#−1(y1, y2), y3)

and then set � := 1
ε
(ξ ◦ �) on U . Note that �(U) is exactly Z×] − ε, ε[ by con-

struction, which implies that everything is well defined. Furthermore, U is obviously
a neighborhood of x and since ξ and � are bi-Lipschitz mappings, � is of the same
quality.

Regarding the desired mapping properties of � , we already see

�(x) = ξ(�(x))/ε = ξ(0)/ε = (
#−1(0,0),0

)
/ε = 0

and

ε�(U) = ξ(Z × ]−ε, ε[) = #−1(Z) × ]−ε, ε[ = εK.

Since U ⊂ O, we get

ε�(U ∩ �) = ξ
(
(Z × ]−ε, ε[) ∩ �(� ∩ O)

) = εK ∩ ξ(K−)

= εK ∩ (
#−1(]−1,1[2) × ]−1,0[

)
.

Observing #(]−ε, ε[ × ]−ε, ε[) ⊂ ]−t, t[ × ]−t, t[ ⊂ ]−1,1[2 and thus ]−ε, ε[ ×
]−ε, ε[ ⊂ #−1(]−1,1[2), this yields

�(U ∩ �) = K−. (5.5)

For the boundary of � we get by analogous considerations

�(U ∩ ∂�) = 	, (5.6)

so the only thing left to prove is �(U ∩ ϒ) = 	0.
First, we focus on the interface U ∩ ϒ ∩ (∂� \ ϒ) and show that this is mapped

to the line ]−1,1[ × {0} × {0}, i.e. the boundary of 	0 in 	. Then, in a second step,
we will show that �(U ∩ϒ) must be exactly one of the half squares 	0 or −	0. We
first observe

#−1(Z ∩ �̂(X ∩ ϒ ∩ (∂� \ ϒ))
) = #−1(Z ∩ [

�̂(X ∩ ϒ ∩ (∂� \ ϒ)) \ C
])

∪ #−1(Z ∩ �̂(X ∩ ϒ ∩ (∂� \ ϒ)) ∩ C
)
.

Now, the left part of this union is empty thanks to (5.4). Using Z = #(]−ε, ε[ ×
]−ε, ε[) and C ⊂ �̂(X ∩ ϒ ∩ (∂� \ ϒ)), we thus obtain

#−1(Z ∩ �̂(X ∩ ϒ ∩ (∂� \ ϒ))
) = (]−ε, ε[ × ]−ε, ε[) ∩ #−1(C)

= (]−ε, ε[ × ]−ε, ε[) ∩ (]−ε, ε[ × {0})
= ]−ε, ε[ × {0}. (5.7)
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Having in mind that �(X ∩ ϒ ∩ (∂� \ ϒ)) = �̂(X ∩ ϒ ∩ (∂� \ ϒ)) × {0} and
U = �−1(Z×] − ε, ε[), this implies

ε�
(

U ∩ ϒ ∩ (∂� \ ϒ)
) = ξ

(
�

(
X ∩ ϒ ∩ (∂� \ ϒ)

) ∩ �(U)
)

= #−1(�̂
(

X ∩ ϒ ∩ (∂� \ ϒ)
) ∩ Z

) × {0}
= ]−ε, ε[ × {0} × {0}

and thus

�
(

U ∩ ϒ ∩ (∂� \ ϒ)
) = ]−1,1[ × {0} × {0}. (5.8)

Now, we claim:

(∗) (5.6) and (5.8) imply, that �(U ∩ ϒ) is either ]−1,1[ × ]−1,0[ × {0} or

]−1,1[ × ]0,1[ × {0}.

Firstly, (5.6) and (5.8) imply that at least one of the two sets in this claim must contain
a point from �(U ∩ ϒ). Let in this spirit A be any of the two sets ]−1,1[ × ]−1,0[
×{0} or ]−1,1[×]0,1[×{0}, which contains at least one point from �(U ∩ϒ). Both
the sets �(U ∩ϒ) and �(U ∩ (∂� \ϒ)◦) are open in �(U ∩ ∂�) and, consequently,
the—mutually disjoint—sets �(U ∩ ϒ) ∩ A and �(U ∩ (∂� \ ϒ)◦) ∩ A are open
in A. Since by (5.8) no points from �(U ∩ ϒ ∩ (∂� \ ϒ)) can lie in A, we have,
according to (5.2) and (5.6), the identity

(�(U ∩ ϒ) ∩ A) ∪ (�(U ∩ (∂� \ ϒ)◦) ∩ A) = �(U ∩ ∂�) ∩ A = A. (5.9)

A is connected, therefore (5.9) can only be true if �(U ∩ (∂� \ ϒ)◦) ∩ A = ∅. This
means: if any of the two sets ]−1,1[×]−1,0[×{0} and ]−1,1[×]0,1[×{0} contains
a point from �(U ∩ ϒ), then it is a subset of �(U ∩ ϒ). But then the other cannot
contain a point from �(U ∩ ϒ), because in this case it also would be a subset of
�(U ∩ ϒ), which cannot be true in view of (5.8) and our supposition that ∂� \ ϒ is
the closure of its interior. This proves the claim (∗).

Together with (5.5) this gives �(U ∩ (�∪ϒ)) = K− ∪	0 or �(U ∩ (�∪ϒ)) =
K− ∪ (−	0). In the first case we have finished the proof, in the second we compose
� with a reflection at the x-z-plane to conclude. �

Corollary 5.5 If � ⊂ R
3 is a Lipschitzian polyhedron and ϒ ∩ (∂� \ ϒ) is a finite

union of line segments, then � ∪ ϒ is regular.

Remark 5.6 Theorem 5.4 makes precise an old suggestion of Gröger, see [30, Re-
mark 1]. Unfortunately, the given intrinsic characterization is restricted to the di-
mensions 2 and 3, because there is no analogue of the Tukia theorem in dimensions
above 2. Nevertheless, the by far most important cases concerning applications are
covered.
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6 Application to Semilinear Elliptic Optimal Control Problems

In the subsequent we will employ the results of the previous sections, in particular
Theorem 3.3, to derive necessary and sufficient optimality conditions for the fol-
lowing semilinear elliptic optimal control problem with pointwise state and control
constraints and jumping boundary conditions:

(P)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize J (y,u) :=
∫

�

L(x, y(x)) dx +
∫

�

l(x, y(x), u(x)) dσ

subject to −∇ · a∇y + b(x, y) = f in �,

ν · a y = u on �,

y = 0 on ∂� \ �

and umin(x) ≤ u(x) ≤ umax(x) a.e. on �,

g(x, y(x)) ≤ 0 for all x ∈ �.

As already mentioned in the introduction, necessary and sufficient optimality con-
ditions for semilinear elliptic control problems have been addressed by numerous
authors before (cf. for instance [8, 11, 12] and the references therein). In particu-
lar, we refer to the recent contribution of Casas et al. [12], where an optimal control
problem is analyzed that is very similar to (P), but does not contain mixed boundary
conditions. However, as we will see in the following, with the results of Sect. 3 at
hand, the analysis of [12] can easily be adapted to (P).

Note that mixed boundary conditions play an important role in various applica-
tions. A typical example is the optimal control of an electric potential in a conducting
material by adjusting the direct current inducing the potential. In the stationary case,
this problem is modelled by the electrostatic equation, an elliptic PDE with homo-
geneous Neumann boundary conditions at isolated surfaces, homogeneous Dirichlet
conditions at the anode and inhomogeneous Neumann boundary conditions at the
cathode, where the control enters the system (see for instance [17]). Hence, the aris-
ing problem is covered by the general problem (P). We point out that state-constrained
optimal control problems with mixed boundary conditions and distributed control can
be discussed analogously to the following investigation of (P). However, to keep the
discussion concise, we do not consider distributed controls here.

In addition to Assumption 3.2 for the coefficient function a, we require the fol-
lowing conditions to be satisfied by the quantities in (P):

Assumption 6.1 The domain � ⊂ R
d , d ≤ 4, is a bounded Lipschitz domain,

� ⊂ ∂� is an open part of its boundary and ∂�\� has positive measure. The outward
unit normal vector on ∂� is denoted by ν. Moreover, � ∪ � is regular in the sense
of Gröger (cf. Theorems 5.2 and 5.4 for the two and three-dimensional case). The
coefficient function a : R → R

d×d satisfies the conditions (on ρ) in Assumption 3.2,
i.e. in particular, a is essentially bounded and fulfills the ellipticity condition (3.1). In
addition, the function b : � × R → R is twice continuously differentiable w.r.t. the



416 Appl Math Optim (2009) 60: 397–428

second variable and monotone increasing, i.e., ∂b
∂y

(x, y) ≥ 0 a.e. in �. Furthermore,
there is an s > d/2 such that

b( · ,0) ∈ Ls(�) and f ∈ Ls(�).

Moreover, for all M > 0 there is a constant Cb,M > 0, such that

∣∣∣∣
∂b

∂y
(x, y1)

∣∣∣∣ +
∣∣∣∣
∂2b

∂y2
(x, y1)

∣∣∣∣ ≤ Cb,M and

∣∣∣∣
∂2b

∂y2
(x, y2) − ∂2b

∂y2
(x, y1)

∣∣∣∣ ≤ Cb,M |y2 − y1|

for almost all x ∈ � and all y1, y2 ∈ R with |y1|, |y2| ≤ M .

Assumption 6.2 The function l : �×R×R → R is a Carathéodory function of class
C2 w.r.t. the second and third variables. In addition, l is convex w.r.t. the third vari-
able. Moreover, l(·,0,0) ∈ L1(�) and for all M > 0 there exist a constant Cl,M > 0
and a function ψl,M ∈ L2(�) with

∣∣∣∣
∂l

∂y
(x, y1, u1)

∣∣∣∣ +
∣∣∣∣
∂l

∂u
(x, y1, u1)

∣∣∣∣ ≤ ψl,M(x), |D2
(y,u)l(x, y1, u1)| ≤ Cl,M,

|D2
(y,u)l(x, y2, u2) − D2

(y,u)l(x, y1, u1)| ≤ Cl,M (|y2 − y1| + |u2 − u1|),
(6.1)

for almost all x ∈ � and all |y1|, |y2|, |u1|, |u2| ≤ M . Here, D2
(y,u)l denotes the

Hessian of l w.r.t. (y,u). Furthermore, L : � × R → R fulfills analogous conditions,
i.e. it is of class C2 w.r.t. the second variable, L(·,0,0) ∈ L1(�) and for all M > 0
there exist CL,M > 0 and ψL,M ∈ L2(�) with

∣∣∣∣
∂L

∂y
(x, y1)

∣∣∣∣ ≤ ψL,M(x),

∣∣∣∣
∂2

∂y2
L(x, y1)

∣∣∣∣ ≤ CL,M,

∣∣∣∣
∂2

∂y2
L(x, y2) − ∂2

∂y2
L(x, y1)

∣∣∣∣ ≤ CL,M |y2 − y1|,
(6.2)

for almost all x ∈ � and all |y1|, |y2| ≤ M .

Assumption 6.3 The bounds in the control constraints satisfy umin, umax ∈ L∞(�)

with umin(x) < umax(x) a.e. in �. Moreover, g : �× R → R is continuous and twice

continuously differentiable w.r.t. the second variable. In addition, ∂g
∂y

and ∂2g

∂y2 are

continuous on �̄ × R, and g(x,0) < 0 is satisfied on ∂� \ �.

Note that the last conditions in Assumption 6.3 allow for the existence of a Slater
point, which is essential for the derivation of first-order necessary conditions (see
Assumption 6.21 below).



Appl Math Optim (2009) 60: 397–428 417

6.1 Discussion on the State Equation

We start the discussion of (P) with the analysis of the state equation, i.e.

−∇ · a∇y + b( · , y) = f in �,

ν · a y = u on �,

y = 0 on ∂� \ �.

(6.3)

Definition 6.4 Let q ∈ [2,∞[ and let s, r ∈ R satisfy s > 1 and r > 1, if d = q = 2,
and s ≥ dq/(d + q) and r ≥ (d − 1)q/d , otherwise. Moreover, let ϕ ∈ Ls(�) and
ψ ∈ Lr(�) be given. Then we denote the elements of W

−1,q
� (�), associated to ϕ

and ψ , by ϕ̃ and ψ̃ , i.e.

〈ϕ̃ , w〉
W

−1,q
� (�)

:=
∫

�

ϕwdx, 〈ψ̃ , w〉
W

−1,q
� (�)

:=
∫

�

ψ wdσ, w ∈ W
1,q ′
� (�).

(6.4)

Since embedding and trace theorems guarantee w ∈ Ls′
(�) and τ� w ∈ Lr′

(�), if

w ∈ W
1,q ′
� (�), the integrals in (6.4) are finite and, hence, ϕ̃ and ψ̃ are well defined.

Definition 6.5 Suppose that f ∈ Ls(�), s > 2d/(d + 2), and u ∈ Lr(�), r >

(2d − 2)/d . Then a function y ∈ W
1,2
� (�) ∩ L∞(�) is said to be a solution of (6.3),

if it fulfills the operator equation

−∇ · a∇y + b̃(y) = f̃ + ũ in W
−1,2
� (�), (6.5)

where f̃ , ũ ∈ W
−1,2
� (�) are defined according to Definition 6.4 and b̃ : L∞(�) →

W
−1,2
� (�) is analogously given by

〈b̃(y) , w〉
W

−1,2
� (�)

:=
∫

�

b(x, y(x))w(x) dx, w ∈ W
1,2
� (�).

Note that, due to Assumption 6.1, the Nemyzki operator �b(y) := b( · , y( · )) is
continuous from L∞(�) to Ls(�), s > 2d/(d + 2), so b̃ is well defined.

Theorem 6.6 Let f ∈ Ls(�) with s > d/2 and u ∈ Lr(�) with r > d − 1. Then,
under Assumption 6.1, there exists a unique solution of (6.3) in the sense of Defini-
tion 6.5. Moreover, there is an α > 0 such that this solution belongs to Cα(�).

Proof The existence of a unique solution in W
1,2
� (�) ∩ L∞(�) is standard (cf. for

instance [8] or [1] and the references therein). For convenience of the reader, we recall
the main arguments. First, one considers a modified nonlinearity given by

bk( · , y) :=
⎧
⎨

⎩

b( · , k), if y > k,

b( · , y), if − k ≤ y ≤ k,

b( · ,−k), if y < −k,
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with some k > 0. For a nonlinearity of this form, Browder and Minty’s theorem
for monotone operators immediately implies the existence of a unique solution in
W

1,2
� (�). Then a classical argument in the spirit of Stampacchia [52] yields

‖y‖L∞(�) ≤ c∞
(‖f ‖Ls(�) + ‖u‖Lr(�) + 1

)

with a constant c∞ independent of f and k. It is easily verified that the mixed bound-
ary conditions do not influence the analysis in [52].

Hence, if we choose k ≥ c∞ (‖f ‖Ls(�) + ‖u‖Lr(�) + 1), then the solution of the
truncated problem coincides with the one of (6.3). It remains to verify the Hölder con-
tinuity of y, which follows from Theorem 3.3 together with a classical bootstrapping
argument. To see this, rewrite (6.5) as

(−∇ · a∇ + 1)y = g (6.6)

with g := f̃ + ũ − b̃(y) + ỹ and ỹ according to Definition 6.4. Due to f,b( · , y) ∈
Ls(�), s > d/2, u ∈ Lr(�), r > d − 1, and y ∈ L∞(�), Sobolev embedding the-
orems give that g ∈ W

−1,q
� (�) for a q > d . Therefore, Theorem 3.3 implies y ∈

Cα(�). �

Definition 6.7 For the rest of this section, let s > d/2 and r > d − 1 be fixed, but
arbitrary. Moreover, f is a fixed inhomogeneity in Ls(�) (cf. Assumption 6.1). Based
on Theorem 6.6, we introduce the control-to-state operator S : Lr(�) → W

1,2
� (�) ∩

Cα(�), mapping u to the solution of (6.3).

Lemma 6.8 Suppose that there is a sequence {uk} converging weakly to u in Lr(�).
Then S(uk) → S(u) in W

1,2
� (�) ∩ Cα(�).

Proof With Theorem 3.3 at hand, the arguments are standard (cf. for instance [12]).
Nevertheless, let us recall the basic ideas. In all what follows we use the notation
yk := S(uk) and y := S(u). The weak convergence of {uk} implies the uniform
boundedness of this sequence in Lr(�) giving in turn that {yk} is uniformly bounded
in C(�). Hence, {yk} and {�b(yk)}, with �b as defined above, converge weakly
in Ls(�) with s > d/2, to some zy and z�, respectively. Now define the sequence

{gk} in W
−1,q
� (�) by gk := f̃ + ũk − b̃(yk) + ỹk . Due to the compact embedding

Ls(�) ↪→ W
−1,q
� (�) and the compactness of the trace operator τ� : W 1,q ′

� (�) →
Lr ′

(�), weak convergences of {uk}, {yk}, and {�b(yk)} imply strong convergence of
{gk} in W

−1,q
� (�) to g := f̃ + ũ − z̃� + z̃y , where z̃� and z̃y again denote the el-

ements in W
−1,q
� (�) associated to z� and zy , respectively. Now consider again the

auxiliary equation (6.6) with gk as inhomogeneity. Theorem 3.3 then implies

yk → η := (−∇ · a∇ + 1)−1g in W
1,2
� (�) ∩ Cα(�).

This in particular guarantees yk → η in L∞(�) and, hence, �b(yk) → �b(η)

in Ls(�), s > d/2, as well as ỹk → η̃ and b̃(yk) → b̃(η) in W
−1,q
� (�). Con-



Appl Math Optim (2009) 60: 397–428 419

sequently, η is the solution of (6.3) associated to u, which implies yk → y in
W

1,2
� (�) ∩ Cα(�). �

Now, we turn to the linearized version of (6.3). Given a ȳ ∈ L∞(�), the linearized
state equation reads as

−∇ · a∇y + b̃′(ȳ)y = h̃ in W
−1,2
� (�), (6.7)

where h̃ ∈ W
−1,2
� (�) and b̃′(ȳ) : W 1,2

� (�) → W
−1,2
� (�) is defined by

〈b̃′(ȳ)y , w〉
W

−1,2
� (�)

:=
∫

�

∂b

∂y
(x, ȳ(x))y(x)w(x) dx, w ∈ W

1,2
� (�).

Note that Assumption 6.1 implies ∂b
∂y

(x, ȳ(x)) ∈ L∞(�) and that, due to the
monotonicity of b, ∂b

∂y
(x, ȳ(x)) ≥ 0 holds true a.e. in �. Hence, an immediate conse-

quence of Corollary 3.6 is the following

Lemma 6.9 Let ȳ ∈ L∞(�) be given. For every h̃ ∈ W
−1,2
� (�) there is a unique

solution y ∈ W
1,2
� (�) of (6.7). Furthermore, if h̃ ∈ W

−1,q
� (�) for some q > d , then

y ∈ W
1,2
� (�) ∩ Cα(�) for some α > 0.

In view of Assumption 6.1, the Nemyzki operator �b(y) = b(·, y(·)) clearly is
twice continuously Fréchet differentiable in L∞(�). Thus, together with Lemma 6.9,
the implicit function theorem implies the following result (for a detailed proof see for
instance [10]).

Theorem 6.10 Under Assumption 6.1 the control-to-state operator S is twice con-
tinuously Fréchet differentiable from Lr(�) to W

1,2
� (�) ∩ Cα(�). Its first derivative

at ū ∈ Lr(�) in direction h ∈ Lr(�) solves

−∇ · a∇y + b̃′(ȳ)y = h̃ in W
−1,2
� (�), (6.8)

where ȳ = S(ū) and h̃ denotes the element of W
−1,2
� (�) associated to h. Further-

more, η = S′′(ū)[h1, h2], hi ∈ Lr(�), i = 1,2, is the solution of

−∇ · a∇η + b̃′(ȳ)η = −b̃′′(ȳ)y1y2 in W
−1,2
� (�) (6.9)

with yi = S′(ū)hi , i = 1,2, i.e. the solution of (6.8), and

〈b̃′′(ȳ)y1y2 , w〉
W

−1,2
� (�)

:=
∫

�

∂2b

∂y2
(x, ȳ(x))y1(x)y2(x)w(x) dx, w ∈ W

1,2
� (�).

Note that, due to hi ∈ Lr(�), i = 1,2, Lemma 6.9 yields yi ∈ L∞(�). In addition,

Assumption 6.1 implies ∂2b

∂y2 (·, ȳ(·)) ∈ Ls(�), so b̃′′(ȳ)y1y2 is well defined.
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6.2 An Adjoint Equation Involving Measures

In the following section, we consider an elliptic PDE with measures as inhomogene-
ity. Such an equation will arise as adjoint equation in the derivation of first-order
conditions for (P), see Sect. 6.3 below. It turns out that the Theorem 3.3 is in particu-
lar well suited for the discussion of the adjoint equation, since it immediately yields
the existence and uniqueness. The underlying notion of solutions of equations with
measures (see Definition 6.13 below) coincides with the one given in [52]. It is to be
noted however that the adjoint state, defined in this way, does in general not allow
for a distributional characterization in terms of a ‘classical’ variational formulation
(cf. Remark 6.15 below).

Let us consider the following PDE

−∇ · a� ∇p + β p = μ� in �,

ν · a� p = μ� on �,

p = 0 on ∂� \ �,

(6.10)

where � and a are supposed to fulfill the assumptions of Theorem 3.3. Moreover, β
is a fixed, but arbitrary non-negative function in L∞(�). Furthermore, the inhomo-
geneity μ is given in M(�) which is the space of regular Borel measures that can
be identified with the dual of C(�) by means of the Riesz representation theorem.
Moreover, μ� and μ� denote the restrictions of μ to � and �, respectively.

Throughout this section, let q ∈ R be a fixed number with q > d . As in Corol-
lary 3.7, we denote the domain of the maximal restriction of −∇ · a∇ + 1 to
W

−1,q
� (�) by Dq , i.e.

Dq := {v ∈ W
1,2
� (�) : −∇ · a∇v + v ∈ W

−1,q
� (�)}.

Thus, Dq is the subset of W
1,2
� (�) the elements v of which admit an continuous

extension of the linear form

W
1,2
� (�) � ψ �→

∫

�

a∇v · ∇ψ dx (6.11)

to the space W
1,q ′
� (�).

Remark 6.11 We point out that one can in general not expect that, for v ∈ Dq , the
duality 〈−∇ · a∇v,ψ〉 can be expressed by the right-hand side of (6.11), if ψ is an

arbitrary element from W
1,q ′
� (�).

Lemma 6.12 Endowed with the norm

‖v‖Dq := ‖ − ∇ · a∇v + v‖
W

−1,q
� (�)

(6.12)

the set Dq is a Banach space. Moreover, it is compactly embedded in C(�).
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Proof By construction −∇ · a∇ + 1 : Dq → W
−1,q
� (�) is linear and bijective, and

if we equip Dq with the norm ‖ · ‖Dq , then −∇ · a∇ + 1 is an isometry, again by
construction. Hence, the completeness of the domain space (Dq,‖ · ‖Dq ) follows

from the completeness of the image space W
−1,q
� (�). �

Next we define the operator Aβ : Dq → W
−1,q
� (�) by

Aβ y := −∇ · a∇y + β y.

Moreover, the embedding operator Eq : M(�) → D∗
q is given by

〈Eq μ, v〉D∗
q
=

∫

�

v dμ ∀v ∈ Dq ⊂ C(�).

With these settings at hand, we are now in the position to introduce the notion of
solutions to (6.10) fitting to the theory presented in the sections before.

Definition 6.13 A function p ∈ W
1,q ′
� (�), q ′ = q/(q − 1) < d/(d − 1), is said to be

a solution of (6.10), if the equation

A∗
β p = Eq μ in D∗

q ⇔ 〈Aβ v , p〉
W

−1,q
� (�)

=
∫

�

v dμ� +
∫

�

v dμ� ∀v ∈ Dq

(6.13)
is satisfied.

Theorem 6.14 There exists a unique solution of (6.10) in the sense of the above
Definition 6.13, and there holds

‖p‖
W

1,q′
� (�)

≤ c ‖μ‖M(�) (6.14)

with a constant c > 0 independent of μ.

Proof According to Theorem 3.3 and Corollary 3.6, respectively, Aβ : Dq →
W

−1,q
� (�) is a topological isomorphism. Therefore, A∗

β : D∗
q → W

1,q ′
� (�) is contin-

uously invertible, too. The continuity of Dq ↪→ C(�) by Lemma 6.12 finally gives
(6.14). �

Remark 6.15 Since W
1,q
� (�) ↪→ Dq by construction, Definition 6.13 implies that the

solution of the operator equation A∗
β p = Eq μ in W

−1,q
� (�) also solves the following

variational formulation
∫

�

(a� ∇p · ∇v + β p v)dx =
∫

�

v dμ� +
∫

�

v dμ� ∀v ∈ W
1,q
� (�), (6.15)

which seems to be a more comfortable equation than the ones in (6.13). However,
(6.15) is not equivalent to (6.13), because, in contrast to the operator equations in
(6.13), the equation (6.15) does not determine the solution p uniquely. Since this is
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rather surprising, let us put some more emphasis on this point. Serrin showed in [47]
the following fact: Assume that � is a ball around 0 in R

d , � = ∅ and r < 2. Then
there is a bounded, elliptic coefficient function a = ar and a non-vanishing func-
tion p ∈ W

1,r
0 (�), such that (6.15) is satisfied with right-hand side 0. This counter-

example shows that the variational formulation (6.15) is not sufficient to describe a
solution of (6.10) uniquely, since the space of test functions, i.e. W 1,q

� (�), is too poor

and has to be extended to Dq . Hence, the operator from W
1,q ′
� (�) to W

−1,q ′
� (�), de-

fined by the left-hand side in (6.15), is in general not injective if q < 2 is not contained
in an interval around 2 whose radius depends on the data of the problem. Duality then
implies that W 1,q

� (�) is not always dense in Dq , this equipped with the norm given
in (6.12).

It is to be noted however that in the two-dimensional case Proposition 4.1 allows
to show the equivalence of (6.15) and (6.13): one uses the fact that the space M(�)

of finite, regular Borel measures on � embeds into W
−1,r
� (�) for every r < 2 and

takes in this spirit (for our fixed coefficient function a) q sufficiently close to 2. As a
consequence, Dq = W

1,q
� (�) is obtained in this case.

Remark 6.16 As shown by Prignet in [44, Sect. 2.1], the notion of solutions in Defi-
nition 6.13 coincides with the one given by Stampacchia in [52].

Remark 6.17 Since W
1,2
� (�) is dense in W

1,q ′
� (�) and by continuity of Aβ , (6.13) is

equivalent to

lim
k→∞

∫

�

(a� ∇pk · ∇v + β pk v)dx =
∫

�

v dμ� +
∫

�

v dμ� ∀v ∈ Dq, (6.16)

where {pk} ⊂ W
1,2
� (�) is an arbitrary sequence converging to p in W

1,q ′
� (�).

Remark 6.18 In [1], Alibert and Raymond introduce another notion of solutions to el-
liptic PDEs with nonsmooth data and measures as inhomogeneity, cf. [1, Theorem 4].
Their definition of solutions is based on (6.15) and a formula of integration by parts
to ensure uniqueness. By adapting their arguments to the case with mixed boundary
conditions, one can show that this definition of the adjoint equation is equivalent to

Definition 6.13 in the sense that they yield the same solution in W
1,q ′
� (�).

6.3 Necessary and Sufficient Optimality Conditions

With the above results, the analysis of this section is along the lines of [12]. Hence,
we shorten the description, if the arguments are analogous to the ones in [12]. First,
let us introduce the reduced objective functional j : L∞(�) → R and the Lagrange
function L : L∞(�) × M(�) → R by

j (u) := J (S(u),u) =
∫

�

L(x, S(u)(x)) dx +
∫

�

l(x, S(u)(x), u(x)) dσ, (6.17)

L(u,μ) := j (u) +
∫

�

g(x, S(u)(x))dμ. (6.18)
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Lemma 6.19 Let μ ∈ M(�) be arbitrary. Then the Lagrange function is twice con-
tinuously Fréchet differentiable w.r.t. u from L∞(�) to R. If μ∂�\� = 0, then its first
partial derivative at ū in direction h ∈ L∞(�) is given by

∂L
∂u

(ū,μ)h =
∫

�

[
∂l

∂u
(x, ȳ(x), ū(x)) + p(x)

]
h(x) dσ, (6.19)

where ȳ = S(ū) and p ∈ W
1,q ′
� (�) solves

−∇ · a� ∇p + ∂b

∂y
( · , ȳ)p = ∂L

∂y
( · , ȳ) + ∂g

∂y
( · , ȳ)μ� in �,

ν · a� p = ∂l

∂y
( · , ȳ, ū) + ∂g

∂y
( · , ȳ)μ� on �, (6.20)

p = 0 on ∂� \ �,

in the sense of Definition 6.13. Moreover, the second derivative of L at ū in directions
h1, h2 ∈ L∞(�) is given by

∂2 L
∂u2

(ū,μ)h1h2 =
∫

�

[
∂2L

∂y2
(x, ȳ, ū)y1y2 − p

∂2b

∂y2
(x, ȳ)y1y2

]
dx

+
∫

�

[
∂2l

∂y2
(x, ȳ, ū)y1y2 + ∂2l

∂y∂u
(x, ȳ, ū)(y1h2 + y2h1)

+ ∂2l

∂u2
(x, ȳ, ū)h1h2

]
dσ +

∫

�

∂2g

∂y2
(x, ȳ, ū)y1y2 dμ (6.21)

with yi = S′(ū)hi , i = 1,2.

Proof The arguments are standard (cf. [10]). Nevertheless, we shortly describe the
derivation of (6.19) to see how the associated theory is influenced by the analysis
of the adjoint equation as carried out in Sect. 6.2. The differentiability of L is an
immediate consequence of Assumptions 6.1–6.3 and Theorem 6.10. Concerning the
explicit form of ∂L

∂u
, the chain rule yields

∂L
∂u

(ū,μ)h =
∫

�

∂L

∂y
(x, ȳ, ū)y dx +

∫

�

(
∂l

∂y
(x, ȳ, ū)y + ∂l

∂u
(x, ȳ, ū)h

)
dσ

+
〈
∂g

∂y
(x, ȳ)y

〉

M(�)

(6.22)

with ȳ = S(ū) and y = ∂S
∂u

(ū)h, i.e. y ∈ Dq solves Ab′(ȳ) y = −∇ ·a∇y+ b̃′(ȳ)y = h̃

in W
−1,q
� (�). The unique solution of (6.20) in the sense of Definition 6.13 solves

〈Ab′(ȳ)v , p〉
W

−1,q
� (�)

=
∫

�

∂L

∂y
(x, ȳ, ū)v dx +

∫

�

∂l

∂y
(x, ȳ, ū)v dσ

+
〈
μ,

∂g

∂y
(x, ȳ)v

〉

M(�)
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for all v ∈ Dq . Choosing v = y as test function yields

∫

�

∂L

∂y
(x, ȳ, ū)y dx +

∫

�

∂l

∂y
(x, ȳ, ū)y dσ +

〈
μ,

∂g

∂y
(x, ȳ)y

〉

M(�)

= 〈Ab′(ȳ) y , p〉
W

−1,q
� (�)

= 〈h̃ , p〉
W

−1,q
� (�)

=
∫

�

hp dσ.

Inserting this into (6.22) gives (6.19). Finally, (6.21) follows from an analogous ar-
gument. �

Definition 6.20 A function u ∈ L∞(�) is called feasible for (P), if it fulfills

umin(x) ≤ u(x) ≤ umax(x) a.e. on �,

g(x, S(u)(x)) ≤ 0 for all x ∈ �.

Under Assumptions 6.1–6.3 there is at least one (global) solution of (P), provided
that a feasible function exists (see [9, Theorem 8] for the proof).

Let us now turn to necessary optimality conditions for (P). It is well known that
certain constraint qualifications are required to discuss pointwise inequality con-
straints on the state as they occur in (P). Here, we rely on the following linearized
Slater condition.

Definition 6.21 Let ū ∈ L∞(�) be feasible for (P). We say that the linearized Slater
condition is fulfilled at ū, if there exists a function û ∈ L∞(�), such that

umin(x) ≤ û(x) ≤ umax(x) a.e. on �, (6.23)

g(x, ȳ(x)) + ∂g

∂y
(x, ȳ(x))ŷ(x) < 0 for all x ∈ �, (6.24)

where ȳ = S(ū) and ŷ = S′(ū)(û − ū).

Note that, due to ŷ|∂�\� = 0, (6.24) yields g(x, ȳ(x)) = g(x,0) < 0 for all x ∈
∂� \ � which is guaranteed by Assumption 6.3. With the existence and regularity
results for the state and the adjoint equation obtained before, the theory of first-order
necessary conditions for (P) is standard. For the corresponding theorem, we define
the Hamiltonian associated to (P), denoted by H : � × R × R × R → R:

H(x, y,u,p) := l(x, y,u) + p (u − b(x, y)).

The definition of H allows to formulate the first-order necessary conditions in form
of Pontryagin’s principle. For the corresponding proof we refer to [7].

Theorem 6.22 Suppose that ū ∈ L∞(�) is a local solution of (P) in the topology
of L∞(�), i.e., j (ū) ≤ j (u) for all feasible u with ‖u − ū‖L∞(�) ≤ ε. Furthermore,
denote the state associated to ū by ȳ ∈ W

1,2
� (�) ∩ Cα(�). Moreover, let Assump-

tions 6.1–6.3 hold and let the linearized Slater condition be satisfied at ū. Then there
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exist a function p ∈ W
1,q ′
� (�) and a Borel measure μ ∈ M(�), such that the adjoint

equation (6.20) is fulfilled in the sense of Definition 6.13 and it holds

∫

�

(v(x) − g(x, ȳ(x)))dμ(x) ≤ 0 for all v ∈ C(�) with v(x) ≤ 0 ∀x ∈ �, (6.25)

H(x, ȳ(x), ū(x),p(x)) = min
t∈Uad(x,ū(x))

H(x, ȳ(x), t,p(x)) a.e. on �, (6.26)

where Uad(x, ū(x)) := [max{umin(x), ū(x) − ε},min{umax(x), ū(x) + ε}].

In [8], it is shown that the Lagrange multiplier associated to the state constraints
is concentrated in the Borel set {x ∈ � : g(x, ȳ(x)) = 0}, such that μ∂�\� = 0 since
g(x,0) < 0 on ∂� \� according to Assumption 6.3. Hence, we obtain homogeneous
Dirichlet boundary conditions on ∂�\� also in the adjoint equation (6.20). The first-
order necessary conditions in Theorem 6.22 can also be formulated in terms of the
Lagrangian (see [12] for details).

In all what follows, let ū again be a fixed local optimum with associated state ȳ,
adjoint state p, and Lagrange multiplier μ such that (6.25) and (6.26) are fulfilled.
For the statement of second-order sufficient conditions accounting for strongly active
sets, we have to restrict to the two dimensional case, since the underlying analysis
heavily relies on the assumption that S : L2(�) → C(�) (see [12, Sects. 4 and 6.3]).
In view of Theorem 6.6, this is not fulfilled in the three and four dimensional case.
We start with the definition of the critical cone associated to ū:

C(ū) := {h ∈ L2(�) : h satisfies conditions (a), (b), and (c)},

where

h(x)

⎧
⎪⎨

⎪⎩

≥ 0, if ū(x) = umin(x),

≤ 0, if ū(x) = umax(x),

= 0, if ∂H
∂u

(x, ȳ(x), ū(x),p(x)) �= 0,

(a)

∂g

∂y
(x, ȳ(x))y(x) ≤ 0, if g(x, ȳ(x)) = 0, (b)

∫

�

∂g

∂y
(x, ȳ(x))y(x)dμ(x) = 0 (c)

and y = S′(ū)h. Note that y ∈ C(�) in the two-dimensional case. Moreover, the
derivative of the Hamiltonian is given by ∂H

∂u
(x, ȳ, ū,p) = ∂l

∂u
(x, ȳ, ū) + p.

Now, we are in the position to state the second-order sufficient conditions for (P).
With the above results, in particular Lemma 6.8, the corresponding proof is com-
pletely analogous to the one presented in [12].

Theorem 6.23 Let d = 2, let Assumptions 6.1–6.3 be satisfied and suppose that ū ∈
L∞(�) with associated state ȳ ∈ W

1,2
� (�) ∩ Cα(�) is feasible for (P). Moreover, let
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p ∈ W
1,q ′
� (�) and μ ∈ M(�) exist such that (6.20), (6.25), and (6.26) are satisfied.

In addition, it is assumed that there are two constants ω,τ > 0 with

∂2l

∂u2
(x, ȳ(x), ū(x)) ≥ ω if

∣∣∣
∂H

∂u
(x, ȳ(x), ū(x),p(x))

∣∣∣ ≤ τ, a.e. on � (6.27)

∂2 L
∂u2

(ū,μ)h2 > 0 for all h ∈ C(ū) \ {0}. (6.28)

Then there exist ε, δ > 0, such that

j (u) ≥ j (ū) + δ

2
‖u − ū‖2

L2(�)

for all feasible u ∈ L∞(�) with ‖u − ū‖L∞(�) < ε.

Note that, according to Lemma 6.19, L is only continuously differentiable from
L∞(�) to R. However, it is straightforward to see that Assumptions 6.1–6.3 ensure

that ∂L
∂u

and ∂2 L
∂u2 can be extended from L∞(�) to L2(�) using (6.19) and (6.21).

This extension is also used in (6.28). Note further that the sufficient conditions (6.27)
and (6.28) are natural in the sense that they are comparatively close to the necessary
optimality conditions (see [12, Remark 4.2] for details).

Remark 6.24 We point out that the second-order analysis can be extended to the three
dimensional case if distributed controls are applied instead of boundary control, since
L2(�) ↪→ W

−1,q
� (�) and thus continuous states are obtained with controls in L2(�)

(see [12, Theorem 4.1]). Nevertheless, up to the authors’ best knowledge, there is
no proof of second-order conditions accounting for strongly active sets in case of
pointwise state constraints and boundary controls in three dimensions.
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