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Abstract We study the weak* lower semicontinuity properties of functionals of the
form

F(u) = ess sup
x∈�

f (x,Du(x))

where � is a bounded open set of RN and u ∈ W 1,∞(�). Without a continuity as-
sumption on f (·, ξ) we show that the supremal functional F is weakly∗ lower semi-
continuous if and only if it is a level convex functional (i.e. it has convex sub-levels).
In particular if F is weakly∗ lower semicontinuous, then it can be represented through
a level convex function. Finally a counterexample shows that in general it is not pos-
sible to represent F through the level convex envelope of f .

Keywords Supremal functionals · Calculus of variations in L∞ · Level convex
function · Absolute minimizers

1 Introduction

In the last years a new class of functionals has been considered with growing inter-
est in the mathematical literature: these functionals are represented in the so called
supremal form

F(u) = ess sup
x∈�

f (x,Du(x)) (1.1)

where � is a bounded open set of RN and u ∈ W 1,∞(�). According to part of the
already existing literature, we will refer to a functional of the type (1.1) as a supremal
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functional or L∞-functional, while we refer to the function f which represents F as
an admissible supremand. The definition of this class is very important because in
many situations one would like to minimize a quantity which cannot be expressed as
an integral: for example, a quantity which does not express a mean property of a body
or whose values can be relevant on sets of arbitrarily small measure. In these cases
the problem could be formulated as the minimization of a supremal functional: see,
for example, the classical problem of finding optimal Lipschitz extensions, first con-
sidered by McShane in [15] or the recent formulation of the first dielectric breakdown
for composite conductors given in [13].

In order to apply the direct methods of Calculus of Variations to this class of func-
tionals, the main issue to be solved is the identification of the qualitative conditions
on the supremand f which imply the lower semicontinuity of F with respect to the
weak* W 1,∞ topology. In fact, under reasonable growth conditions for f , this is the
right topology which gives the compactness of minimizing sequences. The character-
ization of lower semicontinuity of a functional expressed by a supremum requires a
new notion of convexity: the level convexity. A function f = f (ξ) is said to be level
convex (or quasi-convex) if it has convex sub-levels. Namely f is level convex if the
set {ξ : f (ξ) ≤ λ} is convex for every λ ∈ R; equivalently if

f (θξ + (1 − θ)η) ≤ f (ξ) ∨ f (η)

for every ξ, η ∈ RN and θ ∈ [0,1]. In [5] Barron, Jensen and Wang show the follow-
ing sufficient condition:

Theorem 1.1 (Sufficient condition, Theorem 3.4 in [5]) Let f : � × RN → R be a
Borel function such that f (x, ·) is lower semicontinuous and level convex. Then for
any open subset A ⊂ � the functional F(u,A) = ess supx∈A f (x,Du(x)) is sequen-
tially weakly∗ lower semicontinuous on W 1,∞(�).

In the same paper, they show that this condition is also necessary.

Theorem 1.2 (Necessary condition, Theorem 2.7 in [5]) Let f : � × RN → R be a
Borel function such that there exists a function w : R × R → R which is continuous
in its first variable with w(0, s) = 0 for every s ∈ R and non-decreasing in its second
variable, such that

|f (x1, ξ) − f (x2, ξ)| ≤ w(|x1 − x2|, |ξ |)
for any x1, x2 ∈ � and ξ ∈ RN . Let F(u,A) = ess supx∈A f (x,Du(x)) for every
open subset A ⊂ � and assume that F(·,A) is sequentially weakly∗ lower semicon-
tinuous on W 1,∞(A). Then for every x ∈ � f (x, ·) is a level convex function.

Note that the last theorem requires that the localized functional F(·,A) is weakly∗
lower semicontinuous for every open subset A ⊂ �. Moreover, in the case in which
only F(·,�) is weakly∗ lower semicontinuous, we cannot apply the previous result
in order to deduce some convexity property for f. The proof of Theorem 1.2 heavily
relies on the continuity assumption on f (·, ξ). If one drops this assumption, then the
statement of Theorem 1.2 can be false as it is shown in Remark 3.1 of [14]. This
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counterexample is based on the fact that, in general, a supremal functional does not
admit a unique representation. More precisely, the Authors construct a dense open
set A ⊂ � with |A| > 0, |� \ A| > 0, two admissible level convex supremands ϕ1, ϕ2
with ϕ1 ≤ ϕ2 on � and ϕ1 < ϕ2 on (� \ A) × RN such that ess sup� ϕ1(x,Du(x)) =
ess sup� ϕ2(x,Du(x)) := F(u) for every u ∈ W 1,∞(�). Moreover F turns out to be
weakly∗ lower semicontinuous since it admits a level convex supremand, but it can be
also represented by any function f , possibly non level convex, such that ϕ1 ≤ f ≤ ϕ2.
This means that, without having a continuity property on f (·, ξ), one cannot expect
that any admissible supremand for a weakly∗ l.s.c. L∞ functional is a level convex
function.

Despite to these facts, in most of the results concerning the class of supremal func-
tionals it is assumed that a priori that the weakly∗ lower semicontinuous functional F

is represented by a level convex function. For example, the existence of absolute min-
imizers (the so called AML) shown in [6], the �-convergence result given in [9], the
homogenization theorem in [7], the principles of comparison with distance functions
for AML stated in [10], all assume such a representation. Thus the question whether
a weakly∗ lower semicontinuous functional always admits a level convex supremand
turns out to be interesting and useful for applications.

The first positive answer to this problem is given in the 1-dimensional case in [16]
where in Corollary 3.1 it is shown that if F(u) = ess sup� f (x,u′(x)) is weakly∗
lower semicontinuous on W 1,∞(�) then there exists a level convex supremand f̃

which represents F .
The main contribution of this paper is the extension of this result to the

N -dimensional case (see Sect. 2, Theorems 2.5–2.7). With a completely different
technique, under mild assumptions on f (x, ·) and without requiring a continuity
property on f (·, ξ), we prove that all weakly∗ lower semicontinuous supremal func-
tionals:

• F : W 1,∞(�) → R of the form (1.1)
• F : W 1,∞(�) ×A → R of the form

F(u,A) = ess sup
A

f (x,Du(x)) (1.2)

(where A is the class of the open subsets of �) can be represented by a level convex
supremand. The proofs of these results are given in Sect. 6 and are achieved in two
steps. First we show that if a supremal functional of the form (1.1) is weakly∗ lower
semicontinuous on W 1,∞(�) then F is a level convex functional on W 1,∞(�), i.e.
the sub-level sets

Eλ := {u ∈ W 1,∞(�) : F(u) ≤ λ}
are convex. The strategy used to prove this property follows the metric approach used
in [14] where, among other results, it is shown that a 1-homogeneous supremal func-
tional can be written in terms of intrinsic distances associated with the functionals
(see Sect. 3). The second step concerns the representation in terms of a level convex
supremand. Since we know that the representation is not unique, the main issue is
to identify a good candidate. As shows the example constructed in Sect. 8, given a
weakly∗ lower semicontinuous F of the form (1.1), in general it is not possible to
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choose as an admissible level convex supremand of F the level convex envelope f lc

of f given by

f lc(x, ·)
= sup{h : RN → R : h lower semicontinuous and level convex, h(·) ≤ f (x, ·)}.

In the choice of a suitable supremand we have been inspired by the one constructed
in [8] (see Theorem 2.2 and Lemma 3.4 therein). In this paper, given an abstract func-
tional F : W 1,∞(�)×A → R such that F(·,A) is weakly∗ lower semicontinuous for
every A ∈ A, the Authors construct a function f̃ in the following way

f̃ (x, ξ) := inf{F(u,Br(x)) | r > 0, u ∈ W 1,∞(�) s.t. x ∈ û, with Du(x) = ξ }
(1.3)

where

û := {x ∈ � : x is a differentiability point of u and a Lebesgue point of Du}
and under some suitable assumptions on F , they represent the functional in the supre-
mal form

F(u,A) = ess sup
A

f̃ (x,Du(x)), (1.4)

but they cannot deduce that f̃ is a level convex function. Inspired by the above result,
we devote Sect. 5 to show that if F is a coercive supremal functional of the form (1.2)
(possibly non weak* lower semicontinuous), then the function f̃ defined by (1.3) is
an admissible supremand of F (see Theorem 5.4). In the case in which F is weakly∗
l.s.c. on W 1,∞(�), we show that f̃ is a level convex supremand of F . As an easy
consequence we obtain also that the function

ϕ(x, ξ) := inf{F(u) | u ∈ W 1,∞(�) s.t. x ∈ û, with Du(x) = ξ } (1.5)

is an admissible level convex supremand of a weakly∗ l.s.c functional F of the
form (1.1). Finally, as a special case we deal with the class of the 1-homogeneous
supremal functionals already considered by Garroni, Ponsiglione and Prinari in [14]
(see Theorem 2.6).

As a consequence of these results, in Sect. 7 we show the existence of absolute
minimizers for a weakly∗ l.s.c. supremal functional. An absolute minimizer (or AML)
of the functional (1.2) is a function u ∈ W 1,∞(�) such that for all subdomain V ⊂ �

one has

F(u,V ) ≤ F(v,V )

for all v in W 1,∞(V ) such that v = u on ∂V . In [6, 9] it is shown that if the func-
tional (1.2) is coercive and represented by a level convex function f then there exists
at least one absolute minimizer of F . Thanks to Theorem 2.7 we can give a result
of existence of AML under the natural assumptions that F is weakly∗ l.s.c. and co-
ercive (see Theorem 7.2). Moreover, we discuss the problem of characterizing the
AMLs by extending the principle of comparison with cones introduced by Crandall,
Evans and Gariepy in [11] for the minimizing Lipschitz Extension Problem. In [10]
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Champion and De Pascale give a comparison principle with distances but they con-
fine themselves to the case where f is globally l.s.c. Now if f is not globally l.s.c. the
possibility of giving an analogous principle is an open problem. We obtain a partial
result by showing that if u satisfies a comparison principle with the distance func-
tions introduced in Sect. 7 and associated with the supremal functional F then u is
an AML of F .

Finally, a paper in preparation (see [17]) is devoted to extending the previous re-
sults to the class of the supremal functionals of the form

F(u) = ess sup
�

f (x,u(x),Du(x))

under a continuity assumption on f (x, ·, ξ). Moreover we study the weak* l.s.c. enve-
lope of a supremal functional in order to show that the lower semicontinuous envelope
of a supremal functional is a level convex functional.

Let us fix some notations useful in the sequel.

Notations

• We denote by � an open bounded domain of RN and by A the family of all open
subsets of �.

• For every x ∈ RN and r > 0 we denote by Br(x) the open ball {y ∈ RN :
|x − y| < r} where | · | is the euclidean norm on RN .

• For any set B ⊂ RN we denote by H1(B) its one dimensional Hausdorff measure.
Moreover if B ⊂ RN is a measurable set then |B| denotes its Lebesgue measure.

• A modulus of continuity is any continuous function w : [0,+∞) → [0,+∞) such
that w(0) = 0.

For every u ∈ W 1,∞(�) we denote by û the set

û := {x ∈ � : x is a differentiability point of u and a Lebesgue point of Du}.

2 Necessary and Sufficient Conditions for the w∗ Lower Semicontinuity

Before stating the main results of this paper, we introduce the following definitions.

Definition 2.1 A function f : � × RN → R is said to be

(a) a normal supremand if:
(i) f is a Borel function;

(ii) for a. a. x ∈ � the function ξ 
→ f (x, ξ) is lower semicontinuous in RN ;
(b) a Carathéodory supremand if:

(i) for every ξ ∈ RN the function x 
→ f (x, ξ) is measurable in �;
(ii) for a. a. x ∈ � the function ξ 
→ f (x, ξ) is continuous in RN ;

(c) a level convex normal (respectively, a level convex Carathéodory) supremand if f

is a normal (respectively, a Carathéodory) supremand and f (x, ·) is level convex
on RN for almost every x ∈ �.

Definition 2.2 A functional F : X → R defined on a topological vector space X is
said to be level convex if for every t ∈ R the level set {u ∈ X : F(u) ≤ t

}

is convex.
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Now we are in a position to state the main theorems of this paper. In Theorems 2.3–
2.5 we deal with functionals F : W 1,∞(�) → R of the form

F(u) = ess sup
�

f (x,Du(x)) (2.1)

where � is an open subset of RN.

First we show that in many situations the level convexity of the functional F is a
consequence of its weak∗ lower semicontinuity.

Theorem 2.3 Let � ⊂ RN be a connected open set with Lipschitz continuous bound-
ary. Let f : � × RN → R be a Carathéodory supremand satisfying the following
assumption: for any M > 0 there exists a modulus of continuity ωM such that

|f (x, ξ) − f (x, η)| ≤ ωM(|ξ − η|) (2.2)

for a.e. x ∈ � and for every ξ, η ∈ BM(0). If the functional F defined by (2.1) is
weakly∗ l.s.c. on W 1,∞(�) then F is a level convex functional.

As shown in Remark 3.1 of [14], in the general case the above result does not imply
as consequence the level convexity of f (·, ξ). However, we can prove that there exists
at least a level convex supremand ϕ for a level convex supremal functional F . We
notice, as shown in Sect. 8, that ϕ may not coincide with the level convex envelope
of f .

Theorem 2.4 Let � ⊂ RN be an open set. Let f : � × RN → R be a normal supre-
mand and let F be the functional defined by (2.1). Then F is level convex if and only
if there exists a level convex normal supremand ϕ : � × RN → R such that

F(u) = ess sup
�

ϕ(x,Du(x))

for all u ∈ W 1,∞(�). In particular if F is level convex then F is weakly∗ l.s.c. on
W 1,∞(�).

In the previous theorem, if f is globally Lipschitz continuous then it is possible
to show that the function ϕ is Lipschitz continuous as well (see Proposition 5.2). But
when f is a Carathéodory supremand it is not clear if ϕ is a Carathéodory supre-
mand too. However if f satisfies (2.2) and a further coercivity condition, we may put
together the previous results and obtain the following characterization.

Theorem 2.5 Let � ⊂ RN be a connected open set with Lipschitz continuous bound-
ary. Let f : � × RN → R be a Carathéodory supremand satisfying (2.2) and the fol-
lowing assumption: there exists an increasing continuous function α : R+ → R+such
that limt→+∞ α(t) = +∞ and

f (x, ξ) ≥ α(|ξ |) for a.e x ∈ �, for every ξ ∈ RN. (2.3)

Let F be the functional defined by (2.1). The following facts are equivalent:
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1. F is weakly∗ l.s.c. on W 1,∞(�);
2. F is a level convex functional;
3. there exists a level convex Carathéodory supremand ϕ : � × RN → R given by

ϕ(x, ξ) := inf
{

ess sup
�

f (y,Du(y)) | u ∈ W 1,∞(�) s.t. x ∈ û, with Du(x) = ξ
}

(2.4)
such that

F(u) = ess sup
�

ϕ(x,Du(x))

for all u ∈ W 1,∞(�). Moreover ϕ satisfies (2.3, 2.2) (for a suitable family (ω′
M)M

of moduli of continuity) and for a.e. x ∈ � ϕ(x, ·) ≥ f (x, ·).

The following result concerns the class of 1-homogeneous supremal functional
studied in [14]. Note that, compared with the assumptions in Theorem 2.5, in the
next result we do not require that f satisfies assumption (2.2).

Theorem 2.6 Let � ⊂ RN be a connected open set with Lipschitz continuous bound-
ary. Let f : � × RN → R be a Carathéodory supremand satisfying the following
assumptions

α|ξ | ≤ f (x, ξ) ≤ β|ξ | (2.5)

and

f (x, tξ) = |t |f (x, ξ) (2.6)

for every ξ ∈ RN , for a.e. x ∈ � and for every t ∈ R and for some positive constants
α, β > 0. Let F be the functional defined by (2.1), let d : � × � → R be the distance
defined by

d(x, y) = sup
{

u(x) − u(y),u ∈ W 1,∞(�) : F(u) ≤ 1
}

. (2.7)

and let ϕd be the metric derivative of d defined as

ϕd(x, η) := lim sup
t→0+

d(x, x + tη)

t
. (2.8)

Then the following facts are equivalent:

1. F is weakly∗ l.s.c. on W 1,∞(�);
2. F is a convex functional;
3. for all u ∈ W 1,∞(�)

F (u) = ess sup
�

ϕ0
d(x,Du(x))

where

ϕ0
d(x, ξ) := sup

{

ξ · η : ϕd(x, η) ≤ 1
}

.
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Moreover if ϕ is given by (2.4) there exists a negligible set H ⊂ � such that

ϕ0
d(x, ξ) = ϕ(x, ξ)

for every x ∈ � \ H and for every ξ ∈ RN .

Finally, through a localization method and an appropriate choice of the supremand,
the results above can be extended to the class of supremal functionals F : W 1,∞(�)×
A → R of the form

F(u,A) = ess sup
A

f (x,Du(x)). (2.9)

In particular we give the following result:

Theorem 2.7 Let � be an open subset of RN . Let f : � × RN → R be a
Carathéodory supremand satisfying (2.2) and (2.3). Let F(·,A) be the functional
defined by (2.9). The following facts are equivalent:

1. F(·,A) is weakly∗ l.s.c. on W 1,∞(�) for every A ∈A;
2. F(·,A) is a level convex functional for every A ∈ A;
3. there exists a level convex normal supremand f̃ : � × RN → R given by

f̃ (x, ξ) := inf
{

ess sup
Br (x)

f (y,Du(y)) | r > 0,

u ∈ W 1,∞(�) s.t. x ∈ û, with Du(x) = ξ
}

(2.10)

such that

F(u,A) = ess sup
A

f̃ (x,Du(x))

for all u ∈ W 1,∞(�) and for all A ∈ A. Moreover f̃ satisfies (2.3, 2.2) ( for a suit-
able family (ω′

M)M of moduli of continuity) and for a.e. x ∈ � f̃ (x, ·) ≥ f (x, ·).

Notice that in the previous theorem when f (·, ξ) is continuous for every ξ ∈ RN

then for a.e. x ∈ � f̃ (x, ·) = f (x, ·) (see Theorem 5.4) and therefore we obtain that
if F is weakly∗ l.s.c. then f is a level convex supremand.

In order to show all the results above, we introduce some tools, recall some known
facts and prove further preliminary results. For these reasons, the proofs of the previ-
ous theorems are postponed until Sect. 6.

3 The Class of Difference Quotients

In order to show that a weakly∗ lower semicontinuous supremal functional is level
convex, we recall some results and some tools given for the 1-homogeneous supremal
functionals in [14] with the aim to extend them to more general supremal functionals.
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We consider a supremal functional (2.1) represented through a Carathéodory supre-
mand f : � × RN → R+ satisfying (2.2) and (2.3). Inspired by the distances intro-
duced in [12], with every λ ∈ R such that the sub-level set Eλ := {u ∈ W 1,∞(�) :
F(u) < λ} is nonempty, we can associate a distance dλ in the following way:

dλ(x, y) := sup
{|u(x) − u(y)| : u ∈ W 1,∞(�) : F(u) ≤ λ

}

. (3.1)

Notice that if Br(x) ⊂ � then, from (2.3), we have that dλ(x, y) ≤ α−1(λ)r for
every y ∈ Br(x). In general if � is a connected open set, then for every x, y ∈ � the
inequality

dλ(x, y) ≤ α−1(λ)|x − y|� (3.2)

holds, where

|x − y|� = inf{L(γ ) : γ ∈ �x,y(�)},
�x,y(�) being the set of Lipschitz curves in � with end-points x and y, and L(γ ) the
Euclidean length of γ . In particular if ∂� is Lipschitz continuous then there exists a
constant C > 0 such that

dλ(x, y) ≤ |x − y|� ≤ C|x − y|. (3.3)

Moreover for every λ ∈ R there exists δ = δ(λ) such that for every x, y ∈ �

dλ(x, y) ≥ δ|x − y|. (3.4)

In fact since Eλ is nonempty, then there exists ε > 0 and u ∈ W 1,∞(�) such that
F(u) < λ− ε. Now fix x, y ∈ � and, without loss of generality, assume u(x) ≥ u(y).
Chosen M > ||u||1,∞ there exists 0 < σ < 1 such that wM+2(t) ≤ ε for every 0 <

t ≤ σ. Thus if 0 < δ < min{ 1
diam�+1 , σ } then the function

v(z) := u(z) + δ
(x − y)

|x − y| · z

is such that

‖v‖1,∞ ≤ M + δ(diam�) + σ ≤ M + 2

and

F(v) ≤ F(u) + wM+2(δ) < λ − ε + ε = λ.

This implies

dλ(x, y) ≥ |v(x) − v(y)| = |δ|x − y| + u(x) − u(y)|
= δ|x − y| + u(x) − u(y) ≥ δ|x − y|.

Now, for every λ such that Eλ is nonempty, we consider the functional Rλ :
W 1,∞(�) → R̄ given by

Rλ(u) := sup
x,y∈�,x =y

|u(x) − u(y)|
dλ(x, y)

. (3.5)
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The functional Rλ is referred to as the difference quotient associated with the sub-
level set Eλ of F .

Proposition 3.1 For every λ s.t. Eλ = ∅ the difference quotient Rλ is a convex lower
semicontinuous functional with respect to the strong convergence in L∞. Moreover
Rλ(u + v) ≤ Rλ(u) + Rλ(v) for every u,v ∈ W 1,∞(�).

Proof Let u ∈ W 1,∞(�) and let {un} ⊂ W 1,∞(�) be a sequence converging to u in
L∞(�). We have that for every x, y ∈ � such that 0 < dλ(x, y) < +∞

|u(x) − u(y)|
dλ(x, y)

= lim
n

|un(x) − un(y)|
dλ(x, y)

≤ lim inf
n

Rλ(un).

Taking the supremum for x, y ∈ �,x = y we get the thesis. The convexity and the
sublinearity of Rλ are trivial. �

The key tool we will use in the sequel is the following lemma. It is an adaptation
of Lemma 3.4 in [14]. We report its revised proof for the sake of completeness.

Lemma 3.2 Let � ⊂ RN be a connected open set with Lipschitz continuous bound-
ary. Let F be a supremal functional on W 1,∞(�) represented by a Carathéodory
supremand f : � × RN → R satisfying (2.2) and (2.3). Let v ∈ W 1,∞(�) be such
that Rλ(v) < 1. Then there exists a sequence {vn} ⊂ W 1,∞(�) converging to v in
L∞(�) with F(vn) ≤ λ for n ∈ N.

Proof Let us fix r > 0. By the fact that Rλ(v) < 1 and thanks to (3.4), for every x,
y ∈ � with |x − y| = r

|v(y) − v(x)| < dλ(x, y) − γ, (3.6)

for a positive constant γ depending on r . Let us fix 0 < ε <
γ
3 . For every x ∈ �

and for every y ∈ ∂Br(x) ∩ �, by the definition of dλ there exists a function w
x,y
r ∈

W 1,∞(�) such that:

1. F(w
x,y
r ) ≤ λ;

2. |wx,y
r (y) − w

x,y
r (x)| ≥ dλ(x, y) − ε;

3. w
x,y
r (x) = v(x);

the third property it is possible to fulfill thanks to the translation invariance of the first
two. By properties 2, 3 and by (3.6), for every y ∈ ∂Br(x) ∩ �

|wx,y
r (y) − v(x)| ≥ dλ(x, y) − ε > |v(y) − v(x)| + γ − ε. (3.7)

Note that by (2.3) we have that ess sup� |Dw
x,y
r | < α−1(λ), and hence there exists

δ > 0 (depending only on ε) such that

|wx,y
r (z) − v(x)| > |v(z) − v(x)| + γ − 2ε > |v(z) − v(x)| + ε

for every z ∈ ∂Br(x) ∩ � : |z − y| ≤ δ. (3.8)
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Moreover, since w
x,y
r (x) = v(x), there exists 0 < r ′ < r (depending only on ε) such

that

|wx,y
r (z) − v(x)| < |v(z) − v(x)| + ε for every z ∈ Br ′(x) ∩ �. (3.9)

For every x ∈ �, let us fix a finite set of points {y1, . . . , yN } on ∂Br(x) ∩ � such that

∂Br(x) ∩ � ⊂
N
⋃

i=1

Bδ(yi),

and let us set the function wx
r : Br(x) ∩ � → R defined by

wx
r (z) := max

i
w

x,yi
r (z) for every z ∈ Br(x) ∩ �. (3.10)

By construction and by (3.8, 3.9), we have:

1. ess supBr (x)∩� f (z,Dwx
r ) ≤ λ;

2. |wx
r (z) − v(x)| > |v(z) − v(x)| + ε for every z ∈ ∂Br(x) ∩ �;

3. |wx
r (z) − v(x)| < |v(z) − v(x)| + ε for every z ∈ Br ′(x) ∩ �.

Now let Zr be a finite set of points of � such that

� ⊂
⋃

z∈Zr

Br ′(z),

and consider the function wr : � → R defined by

wr(x) := min
z∈Zr∩Br(x)

wz
r (x). (3.11)

From properties 2 and 3 above it follows that wr is continuous. Moreover, for almost
every x in �, Dwr(x) coincides with Dwz

r (x) for some z ∈ Zr and this implies that
wr ∈ W 1,∞(�) and F(wr) ≤ λ.

Now let us prove that ‖wr − v‖∞ → 0 as r → 0+. To this aim, let us fix x ∈ �,
and let z ∈ Br(x) be such that wr(x) = wz

r (x). Recalling that by construction wz
r (z) =

v(z), and using (3.2) and (3.3), we conclude

|wr(x) − v(x)| ≤ |wz
r (x) − wz

r (z)| + |wz
r (z) − v(x)|

= |wz
r (x) − wz

r (z)| + |v(z) − v(x)|
≤ ‖Dwz

r‖∞|x − z|� + dλ(x, z)

≤ 2α−1(λ)|x − z|� ≤ 2α−1(λ)Cr.

Therefore, for every {rn} → 0, the sequence vn := wrn does the job. �

The following result is a variant of the Lemma 3.2: we remove the assumption that
� has Lipschitz continuous boundary but we require that the supremal functional is
weakly∗ l.s.c. on every open subset of �.
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Lemma 3.3 Let � ⊂ RN be an open set. Let F be a supremal functional on
W 1,∞(�) of the form (2.9) represented by a Carathéodory supremand f : � ×
RN → R satisfying (2.2) and (2.3). Assume that F(·,A) is weakly∗ l.s.c. on W 1,∞(A)

for every A ∈A. If v ∈ W 1,∞(�) is such that Rλ(v) < 1 then F(v,�) ≤ λ.

Proof Fix r̄ ∈ R+. If x ∈ �r̄ = {x ∈ � : d(x, ∂�) > r̄} then Br(x) ⊂ Br̄(x) ⊂ �

for every 0 < r < r̄ . In particular for every x, y ∈ �r̄ with |x − y| = r we have that
dλ(x, y) ≤ 2α−1(λ)r. By repeating the proof of the previous lemma, for every r ∈ R+
we can construct a function wr ∈ W 1,∞(�) such that F(wr,�r̄) ≤ λ and

|wr(x) − v(x)| ≤ 2α−1(λ)

for every x ∈ �r̄ . If {rn} → 0, the sequence vn := wrn weakly∗ converges to v in �r̄

and thanks to the weak* lower semicontinuity of F(·,�r̄ ) we have that

F(v,�r̄) ≤ lim inf
n

F (wrn,�r̄) ≤ lim inf
n

F (wrn,�) ≤ λ.

This easily implies that F(v,�) ≤ λ. �

Finally, we cite the following result obtained in [14] as a corollary of Lemma 3.2.
This will be useful when we will be interested to the 1-homogeneous supremal func-
tionals represented by a Carathéodory function.

Proposition 3.4 (Proposition 3.5 in [14]) Let f : � × RN → R be a Carathéodory
supremand satisfying (2.5) and (2.6). Let d : �×� → R+ be the distance defined by

d(x, y) := sup
{

u(x) − u(y),u ∈ W 1,∞(�) : ess sup
�

f (x,Du(x)) ≤ 1
}

. (3.12)

If the functional F(u) = ess sup� f (x,Du(x)) is a weakly∗ l.s.c. on W 1,∞(�) then

F(u) = sup
x,y∈�,x =y

u(x) − u(y)

d(x, y)

for every u ∈ W 1,∞(�).

4 Approximation of Supremal Functionals

4.1 Moreau–Yosida Transform

A key tool we shall use is a modification of the Moreau–Yosida Transform first in-
troduced in [1] by Alvarez, Barron and Ishii for functions f : RN → R ∪ {+∞}.
This modified infimal convolution is compatible with the max operator ∨ just as the
classical convolution is compatible with the + operator.

Proposition 4.1 (Theorem 3.1 in [1]) Let f : �×RN → [0,+∞) be a normal supre-
mand. If we set for every λ > 0

fλ(x, ξ) = inf
{

f (x, η) ∨ λ|ξ − η| : ξ ∈ RN
}

(4.1)
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then we have that fλ is a normal supremand such that

|fλ(x, ξ) − fλ(x, η)| ≤ λ|ξ − η|
and

f (x, ξ) = sup
{

fλ(x, ξ) : λ > 0
}

for every x ∈ � and for every ξ, η ∈ RN.

In this section we apply this modified infimal convolution to a functional F :
W 1,∞(�) → [0,+∞] and we show an analogous approximation result.

Theorem 4.2 Let F : W 1,∞(�) → [0,+∞] be a (strongly) l.s.c. functional such that
F(u + c) = F(u) for every u ∈ W 1,∞(�) and for every c ∈ R. If we set

Fλ(u) := inf
{

F(v) ∨ λ‖Du − Dv‖∞ : v ∈ W 1,∞(�)
}

for every λ > 0 then we have

F(u) = sup
λ

Fλ(u).

Moreover, the functional Fλ satisfies the condition

Fλ(u) ≤ Fλ(v) + λ‖Du − Dv‖∞ for every u,v ∈ W 1,∞(�). (4.2)

Therefore if F is finite in at least one point then

|Fλ(u) − Fλ(v)| ≤ λ‖Du − Dv‖∞ for every u,v ∈ W 1,∞(�).

Proof Fix u ∈ W 1,∞(�). By taking v = u in the definition of Fλ(u) we obtain the
inequality

Fλ(u) ≤ F(u).

Take now t < F(u); since F is lower semicontinuous there exists δ > 0 such that

t < inf
{

F(w) : w ∈ W 1,∞(�), ‖u − w‖W 1,∞(�) < δ
}

.

Let 0 < δ′ < δ
1+diam�

. Then

t < inf
{

F(v) : v ∈ W 1,∞(�), ‖Du − Dv‖∞ < δ′}. (4.3)

In fact, let v ∈ W 1,∞(�) be such that

‖Du − Dv‖∞ < δ′.

Fix x0 ∈ � and define w(x) := v(x) + u(x0) − v(x0). Then

‖Du − Dw‖∞ = ‖Du − Dv‖∞ ≤ δ′
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and for a.e. x ∈ �

|u(x) − w(x)| ≤ |(u(x) − u(x0)) − (w(x) − w(x0)|
≤ ‖Du − Dw‖∞|x − x0| ≤ δ′ · diam�.

Therefore

‖u − v‖W 1,∞(�) ≤ δ′ + δ′ · diam� < δ.

This implies F(v) = F(w) ≥ inf{F(w) : w ∈ W 1,∞(�), ‖u − w‖W 1,∞(�) < δ} and
thus (4.3) follows. Now let λ > 0 be such that λ · δ′ > t . For every v ∈ W 1,∞(�) with
‖Du − Dv‖∞ < δ′ we have

F(v) ∨ λ‖Du − Dv‖∞ ≥ F(v) > t

whereas for every v ∈ W 1,∞(�) with ‖Du − Dv‖∞ ≥ δ we have

F(v) ∨ λ‖Du − Dv‖∞ ≥ λδ′ > t.

Hence Fλ(u) ≥ t and, since t was arbitrary, this proves the inequality

F(u) ≤ sup
{

Fλ(u) : λ > 0
}

.

Finally let u,v ∈ W 1,∞(�). For fixed ε > 0, let w ∈ W 1,∞(�) be such that

Fλ(v) ≥ F(w) ∨ λ‖Dv − Dw‖∞ − ε.

Taking into account that for every a, b, c ∈ R we have

a ∨ b ≤ a ∨ c + |b − c|
we obtain

Fλ(u) ≤ F(w) ∨ λ‖Du − Dw‖∞
≤ F(w) ∨ λ‖Dv − Dw‖∞ + λ

∣

∣‖Du − Dw‖∞ − ‖Dv − Dw‖∞
∣

∣

≤ Fλ(v) + ε + λ‖Du − Dv‖∞.

Since ε was arbitrary, inequality (4.2) follows and the proof is achieved. �

4.2 An Approximation through Coercive Functionals

Here we approximate a non-negative supremal functional through a sequence of co-
ercive supremal functionals.

Proposition 4.3 Let � be an open subset of RN . Let g : � × RN → R+ be a normal
supremand. Let

gn(x, ξ) := g(x, ξ) ∨ 1

n
|ξ | (4.4)
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and for every n ∈ N let G,Gn : W 1,∞(�) → R be the functionals defined by

G(u) = ess sup
�

g(x,Du(x)) (4.5)

and by

Gn(u) = ess sup
�

gn(x,Du(x)) (4.6)

respectively. Then:

(i) for every n ∈ N and for every u ∈ W 1,∞(�)

Gn(u) = G(u) ∨ 1

n
‖Du‖L∞(�); (4.7)

(ii) the sequence (Gn)n pointwise converges to G;
(iii) if Gn is a level convex functional for every n ∈ N, then G is a level convex

functional.

Proof In order to show (i), fix n ∈ N and u ∈ W 1,∞(�). The inequality Gn(u) ≤
G(u) ∨ 1

n
‖Du‖L∞(�) is trivial. For the converse inequality, for fixed δ there ex-

ists Bδ ⊂ � with |Bδ| > 0 such that gn(x,Du(x)) ≥ Gn(u) − δ for every x ∈ Bδ.

Set B+
δ = {x ∈ Bδ : gn(x, ξ) = g(x, ξ)} and B−

δ = {x ∈ Bδ : gn(x, ξ) = 1
n
|ξ |}.

If |B+
δ | > 0 then G(u) ≥ Gn(u) − δ while if |B−

δ | > 0 then 1
n
‖Du‖L∞(�) ≥

Gn(u) − δ. In both cases 1
n
‖Du‖L∞(�) ∨ G(u) ≥ Gn(u) − δ for every δ > 0. Then

1
n
‖Du‖L∞(�) ∨ G(u) ≥ Gn(u). As a consequence, for every u ∈ W 1,∞(�)

lim
n

Gn(u) = lim
n

G(u) ∨ 1

n
‖Du‖L∞(�) = G(u) ∨ 0 = G(u).

Finally, concerning (iii), fix u,v ∈ X and λ ∈ (0,1). Then

G(λu + (1 − λ)v) = lim
n

Gn(λu + (1 − λ)v) ≤ lim
n

Gn(u) ∨ Gn(v) = G(u) ∨ G(v)

i.e. G is a level convex functional. �

5 Some Representation Results

This section is devoted to the construction of admissible supremands for supremal
functionals of the form (2.1) and (2.9). Note that, as shown in the example given in
Sect. 1 of [8], if F is a supremal functional of the form (2.9), it is not possible to
represent F through the function h defined by

h(x, ξ) := inf
r>0

F(wx,ξ ,Br(x))

where wx,ξ (y) := u + ξ · (y − x).
The following proof is inspired by the proof of Lemma 3.3 in [8].
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Proposition 5.1 Let � be an open subset of RN . Let F : W 1,∞(�) → R be a func-
tional such that for any M > 0 there exists a modulus of continuity ωM such that

|F(u) − F(v)| ≤ ωM(‖Du − Dv‖∞)

for every u,v ∈ W 1,∞(�) s.t. ‖Du‖∞,‖Dv‖∞ ≤ M . Let ϕ : �×RN → R be defined
by

ϕ(x, ξ) := inf
{

F(u) | u ∈ W 1,∞(�) s.t. x ∈ û, with Du(x) = ξ
}

. (5.1)

Then for every ξ ∈ RN the function x 
→ ϕ(x, ξ) is measurable in �.
Moreover if there exists an increasing continuous function α : R+ → R+ such that

limt→+∞ α(t) = +∞ and F(u) ≥ α(‖Du‖∞) then:

(i) ϕ is a Carathéodory supremand satisfying (2.3) and (2.2) for a suitable family
(ω′

M)M of moduli of continuity;
(ii) for any u ∈ W 1,∞(�)

F (u) ≥ ess sup
�

ϕ(x,Du(x)).

Proof Let ξ ∈ RN and λ ∈ R be fixed. Define the sets

A(x) := {u ∈ W 1,∞(�) : x ∈ û with Du(x) = ξ}, (5.2)

and

Kλ := {x ∈ � : ∀u ∈ A(x) F (u) ≥ λ} = {x ∈ � : ϕ(x, ξ) ≥ λ}. (5.3)

If we prove that Kλ is measurable for every λ ∈ R, then ϕ(·, ξ) is measurable. Sup-
pose that Kλ is not measurable. Then there is a set C with Kλ ⊂ C s.t. C is measurable
and of minimal measure. Let x0 ∈ ̂C \ Kλ where ̂C the set of the points of density 1
of C. From the definition of Kλ, there is some u ∈ A(x0) such that F(u) < λ. Now,
fix ε > 0 such that F(u) < λ − ε. Since the functional F is strongly continuous in
W 1,∞(�), then there exists δ > 0 such that F(v) < λ for every v ∈ W 1,∞(�) such
that ‖v − u‖W 1,∞(�) ≤ δ. Set

A1 = {

x ∈ � | x ∈ û, |u(x) − u(x0)| ≤ δ/2, |Du(x) − ξ | ≤ δ
2diam(�)

}

. (5.4)

Note that A1 is measurable and since x0 is a Lebesgue point of Du, then |A1| > 0.

We claim that A1 ∩ Kλ = ∅. In fact, if x ∈ A1, then the function vx ∈ W 1,∞(�)

defined by

vx(y) := u(y) + (u(x0) − u(x)) + 〈Du(x0) − Du(x), y − x〉
belongs to A(x) and ‖vx − u‖W 1,∞(�) ≤ δ. Thus it easily follows that F(vx) < λ. So
x /∈ Kλ which implies that Kλ ⊂ C \ A1. Moreover the set C\A1 is still measurable.
If we show that x0 is a point of density 1 of A1 then there exists r > 0 such that

|A1 ∩ Br(x0)| ≥ 1

2
|Br(x0)| and

|C ∩ Br(x0)| ≥ 3

4
|Br(x0)|.
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Therefore

|A1 ∩ C| ≥ |A1 ∩ Br(x0) ∩ C| = |A1 ∩ Br(x0)| − |A1 ∩ Br(x0, ) \ C|
≥ |A1 ∩ Br(x0)| − |Br(x0) \ C|
≥ |A1 ∩ Br(x0)| − |Br(x0)| + |Br(x0) ∩ C|
≥ 3

4
|Br(x0)| − |Br(x0)| + 1

2
|Br(x0)|

= 1

2
|Br(x0)|.

In particular |C \ A1| < |C| and since K ⊂ (C\A1), we have contradicted the min-
imality of C. In order to show that x0 is a point of density 1 of A1 note that there
exists r0 = r0(δ) > 0 such that for every r < r0

Br(x0) ∩ A1 = {

x ∈ Br(x0);x ∈ û, |Du(x) − ξ0| ≤ δ
2diam(�)

}

. (5.5)

Now

|Br(x0) ∩ A1|
|Br(x0)| = 1 − |Br(x0) \ A1|

|Br(x0)| = 1 −
∫

Br (x0)\A1
dx

|Br(x0)|
≥ 1 − 2diam(�)

δ|Br(x0)|
∫

Br (x0)

|Du(x) − ξ0|dx

and since x0 is a Lebesgue point of Du with Du(x0) = ξ0 we obtain

lim
r→0+

|Br(x0) ∩ A1|
|Br(x0)| = 1

i.e. x0 is a point of density 1 of A1. Now we assume that F satisfies also the coercivity
assumption F(u) ≥ α(‖Du‖∞) for every u ∈ W 1,∞(�). We show that ϕ satisfies
assumption (2.2) for a suitable family of moduli of continuity. Let M > 0 be fixed.
Then there is some constant K = K(M) such that, for any (x, ξ) ∈ � × RN with
|ξ | ≤ M and for any v ∈ W 1,∞(�),

[F(v) ≤ ϕ(x, ξ) + 1] ⇒ ‖Dv‖∞ ≤ M ′.

In fact, from the continuity assumption on F ,

F(v) ≤ ϕ(x, ξ) + 1 ≤ F(ϕξ ) + 1 ≤ F(0) + ωM(|ξ |) + 1

where ϕξ (x) := ξ · x and, from the coercivity condition on F , we have

‖Dv‖∞ ≤ α−1(F (0) + ωM(M) + 1).

In particular if ξ, η ∈ BM(0) and uξ ∈ W 1,∞(�) is such that F(uξ ) ≤ ϕ(x, ξ) + ε

where 0 < ε < 1 then

ϕ(x,η) ≤ F(uξ + ϕη−ξ ) ≤ F(uξ ) + ωM ′(|ξ − η|) ≤ ϕ(x, ξ) + ωM ′(|ξ − η|) + ε
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where M ′ = α−1(ωM(M) + F(0) + 1) + 2M. As ε → 0+ the last inequality implies

ϕ(x,η) ≤ ϕ(x, ξ) + ωM ′(|ξ − η|)
and, by changing the roles of ξ and η, it follows

|ϕ(x,η) − ϕ(x, ξ)| ≤ ωM ′(|ξ − η|).
Then it is sufficient to define ω′

M := ωM ′ . Finally by the definition of ϕ it follows that

ess sup
�

ϕ(x,Du(x)) ≤ F(u)

for every u ∈ W 1,∞(�). �

Under the stronger assumption that F is a Lipschitz continuous functional, it is not
necessary to require a coercivity assumption in order to show that ϕ is a Carathéodory
supremand.

Proposition 5.2 Let � be an open subset of RN . Let F : W 1,∞(�) → R be a func-
tional. Assume that there exists L > 0 such that F is L-Lipschitz continuous func-
tional i.e.

|F(u) − F(v)| ≤ L‖u − v‖W 1,∞(�) for every u,v ∈ W 1,∞(�).

Then:

(i) the function ϕ defined by (5.1) is a Carathéodory supremand such that

|ϕ(x, ξ) − ϕ(x,η)| ≤ L|ξ − η| (5.6)

for every x ∈ � and for every ξ, η ∈ �;
(ii) for any u ∈ W 1,∞(�)

F (u) ≥ ess sup
�

ϕ(x,Du(x)).

Proof Thanks to Proposition 5.1, for every ξ ∈ RN the function x 
→ ϕ(x, ξ) is mea-
surable in �. In order to show that for every x ∈ � ϕ(x, ·) is L-Lipschitz continuous,
fix x ∈ � and ξ, η ∈ RN. Let uξ ∈ W 1,∞(�) be such that F(uξ ) ≤ ϕ(x, ξ) + ε. Then

ϕ(x,η) ≤ F(uξ + ϕη−ξ ) ≤ F(uξ ) + L|ξ − η| ≤ ϕ(x, ξ) + L|ξ − η| + ε.

As ε → 0+ the last inequality implies

ϕ(x,η) ≤ ϕ(x, ξ) + L|ξ − η|
and, by changing the roles of ξ and η, it follows

|ϕ(x,η) − ϕ(x, ξ)| ≤ L|ξ − η|. �
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Lemma 5.3 Let � be an open subset of RN . Let f : � × RN → R+ be a
Carathéodory supremand satisfying assumption (2.2) and let ϕ and f̃ be the func-
tions given respectively by (2.4) and (2.10). Then there exists a negligible set H ⊂ �

such that

ϕ ≥ f̃ ≥ f on (� \ H) × RN.

Proof By definition, it easily follows that ϕ ≥ f̃ . Now, for every ξ ∈ QN let Nξ be
the negligible set such that � \ Nξ is the set of the Lebesgue points of f (·, ξ). Then
⋃

ξ∈QN Nξ is a negligible set and if x ∈ �′ = � \ (⋃

ξ∈QN Nξ

)

then x is a Lebesgue

point of f (·, η). In fact, let (ξn)n ⊂ QN be such that ξn → η. Fix ε > 0 and n0 ∈ N
such that |ξn − η| ≤ ε for every n ≥ n0. Then for every n ≥ n0 and for every ρ > 0

∫

Bρ(x)

|f (y, η) − f (x, η)|dy

≤
∫

Bρ(x)

|f (y, η) − f (y, ξn)|dy +
∫

Bρ(x)

|f (y, ξn) − f (x, ξn)|dy

+
∫

Bρ(x)

|f (x, ξn) − f (x, η)|dy

≤
∫

Bρ(x)

2wM(|η − ξn|)dy +
∫

Bρ(x)

|f (y, ξn) − f (x, ξn)|dy

≤ 2|Bρ |wM(ε) +
∫

Bρ(x)

|f (y, ξn) − f (x, ξn)|dy.

Letting ρ → 0 we obtain

lim
ρ→0

1

|Bρ |
∫

Bρ(x)

|f (y, η) − f (x, η)|dy ≤ 2wM(ε)

and from the arbitrariness of ε we can conclude. Now we show that for every x ∈ �′
and for every ξ ∈ RN it holds

f̃ (x, ξ) ≥ f (x, ξ). (5.7)

Note that � \ �′ is a negligible set. Fix x ∈ �′ and ξ ∈ RN. Then there ex-
ists Br(x) and ux ∈ W 1,∞(�) such that x ∈ ûx, Dux(x) = ξ and f̃ (x, ξ) ≥
ess supBr(x) f (y,Dux(y)) − ε. If we show that x is a Lebesgue point of h =
f (·,Dux(·)) then

f̃ (x, ξ) ≥ ess sup
Br(x)

f (y,Dux(y)) − ε ≥ f (x, ξ) − ε

for every ε > 0 and thus we can conclude. Let us show that x is a Lebesgue point of
the function h(y) := f (y,Dux(y)). For M = ‖Dux‖∞ we have

∫

Bρ(x)

|f (y,Dux(y)) − f (x,Dux(x))|dy
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≤
∫

Bρ(x)

|f (y,Dux(y)) − f (y,Dux(x)|dy

+
∫

Bρ(x)

|f (y,Dux(x)) − f (x,Dux(x))|dy

≤
∫

Bρ(x)

ωM(|Dux(y) − Dux(x)|)dy

+
∫

Bρ(x)

|f (y,Dux(x)) − f (x,Dux(x))|dy.

Since x ∈ �′ we have that

1

|Bρ |
∫

Bρ(x)

|f (y,Dux(x)) − f (x,Dux(x))|dy → 0 (5.8)

when ρ → 0. Then for fixed ε > 0 there exists r0 = r0(ε) such that for every ρ ≤ r0

∫

Bρ(x)

|Dux(y) − Dux(x)|dy ≤ ε|Bρ |.

By Chebishev Theorem we have that

∣

∣{y ∈ Bρ(x) : |Du(y) − Du(x)| ≥ √
ε}∣∣ ≤ 1√

ε

∫

Bρ(x)

|Dux(y) − Dux(x)|dy

≤ √
ε|Bρ |.

Thus for every ρ ≤ r0, we have
∫

Bρ(x)

ωM(|Dux(y) − Dux(x)|)dy

=
∫

{y∈Bρ(x):|D(y)−Du(x)|≥√
ε}

ωM(|Dux(y) − Dux(x)|)dy

+
∫

{y∈Bρ(x):|Du(y)−Du(x)|≤√
ε}

ωM(|Dux(y) − Dux(x)|)dy

≤ C
√

ε|Bρ | + ωM(
√

ε)|Bρ |
where C = max{ωM(ξ) : |ξ | ≤ 2M}. Thus

lim
ρ→0+

1

|Bρ |
∫

Bρ(x)

ωM(|Dux(y) − Dux(x)|)dy ≤ C
√

ε + ωM(
√

ε)

for every ε > 0 and thus

lim
ρ→0+

1

|Bρ |
∫

Bρ(x)

ωM(|Dux(y) − Dux(x)|)dy = 0. (5.9)
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In particular from (5.8) and (5.9) it follows that

1

|Bρ |
∫

Bρ(x)

|f (y,Dux(y)) − f (x,Dux(x))|dy → 0

when ρ → 0. This completes the proof of (5.7). �

We underline the difference between the following theorem and the representation
result shown in Theorem 2.2 in [8]. We prove that the function f̃ is an admissi-
ble supremand for a localized supremal functional F(u,A) = ess supA f (x,Du(x))

without requiring that for every open set A ⊂ � F(·,A) is weakly∗ lower semicon-
tinuous.

Theorem 5.4 Let � be an open subset of RN . Let f : � × RN → R+ be a
Carathéodory supremand satisfying assumptions (2.2) and (2.3). Then

(i) the functions ϕ and f̃ given respectively by (2.4) and (2.10) are Carathéodory
supremands satisfying (2.3) and (2.2) for a suitable family (ω′

M)M of moduli of
continuity;

(ii) for every u ∈ W 1,∞(�) and for every A ∈A

ess sup
�

f (x,Du(x)) = ess sup
�

ϕ(x,Du(x)) and

ess sup
A

f (x,Du(x)) = ess sup
A

f̃ (x,Du(x));

(iii) if f (·, ξ) is continuous on � for every ξ ∈ RN then there exists a negligible set
H such that f = f̃ on (� \ H) × RN.

Proof By applying Proposition 5.1 to the functional F : W 1,∞(�) → R defined by

F(u) = ess sup
�

f (x,Du(x))

we obtain that the function ϕ is a Carathéodory supremand satisfying (2.3) and (2.2)
for a suitable family (ω′

M)M of moduli of continuity and such that

ess sup
�

f (x,Du(x)) ≥ ess sup
�

ϕ(x,Du(x))

for any u ∈ W 1,∞(�). The converse inequality follows from Lemma 5.3.
Now let us choose a countable base (An)n∈N of open subsets of � and for every

n ∈ N and for every u ∈ W 1,∞(�) define Fn(u) := ess supAn
f (x,Du(x)). By apply-

ing Proposition 5.1 to the functional Fn we obtain that for every n ∈ N

ϕn(x, ξ) := inf
{

ess sup
An

f (x,Du(x)) | u ∈ W 1,∞(An) s.t. x ∈ û, with Du(x) = ξ
}

is a Carathéodory supremand such that

ess sup
An

f (x,Du(x)) ≥ ess sup
An

ϕn(x,Du(x)) (5.10)
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for any u ∈ W 1,∞(An). Since

f̃ = infϕn,

we have that f̃ is a Borel function. Moreover by applying Proposition 5.1 for any
M > 0 there exists a modulus of continuity ω′

M such that

|ϕn(x, ξ) − ϕn(x, η)| ≤ ω′
M(|ξ − η|)

for a.e. x ∈ � and for every ξ, η ∈ BM(0) and for every n ∈ N. This implies that

|f̃ (x, ξ) − f̃ (x, η)| ≤ ω′
M(|ξ − η|)

for a.e. x ∈ � and for every ξ, η ∈ BM(0). Therefore f̃ is a Carathéodory supremand.
Finally thanks to (5.10) we have that for every n ∈ N

ess sup
An

f (x,Du(x)) ≥ ess sup
An

f̃ (x,Du(x))

for any u ∈ W 1,∞(An). Thanks to Lemma 5.3 the converse inequalities follow and
since (An)n∈N is a countable base of open subsets of � it follows that

ess sup
A

f (x,Du(x)) = ess sup
A

f̃ (x,Du(x))

for any u ∈ W 1,∞(�) and for every A ∈A.
Finally in order to show (iii) thanks to (5.7) it is sufficient to show that f (x0, ξ) ≥

f̃ (x0, ξ) for every x0 ∈ �′. Fix x0 ∈ �′. By the definition of f̃

ess sup
Br(x0)

f (x, ξ) ≥ f̃ (x0, ξ).

By letting r → 0 and by using the continuity of f (·, ξ) it easily follows f (x0, ξ) ≥
f̃ (x0, ξ). �

Finally we consider the particular case in which f (x, ·) is a 1-homogeneous func-
tion. Note that inequality (5.11) cannot be proved directly by applying Lemma 5.3
since f does not satisfy (2.2).

Theorem 5.5 Let � be an open subset of RN . Let f : � × RN → R+ be a
Carathéodory supremand satisfying assumption (2.5) and (2.6). Then the function ϕ

given by (2.4) is a Carathéodory supremand satisfying assumption (2.5) and (2.6)
and such that:

(i) for a.e. x ∈ �

ϕ(x, ξ) ≥ f (x, ξ) ∀ξ ∈ RN ; (5.11)

(ii) for every u ∈ W 1,∞(�)

ess sup
�

f (x,Du(x)) = ess sup
�

ϕ(x,Du(x)).
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Proof Let F be the functional defined by

F(u) = ess sup
�

f (x,Du(x))

for all u ∈ W 1,∞(�). In order to show (i) of Definition 2.1(b), let ξ ∈ RN and λ ∈ R
be fixed. Consider the sets A(x) and Kλ defined respectively by (5.2, 5.3). If we prove
that Kλ is measurable for every λ ∈ R, then ϕ(·, ξ) is measurable. Suppose that Kλ

is not measurable. Then there is a set C with Kλ ⊂ C s.t. C is measurable and of
minimal measure. In fact, let x0 ∈ ̂C \ Kλ where ̂C the set of the points of density 1
of C. From the definition of Kλ, there is some u ∈ A(x0) such that F(u) < λ. Now,
fix ε > 0 such that F(u) < λ − ε and set δ := ε

β
. By (2.5) we have that F(v) ≤ ε for

every v ∈ W 1,∞(�) such that ‖v‖W 1,∞(�) ≤ δ. Now consider the set A1 defined by
(5.4). We claim that A1 ∩ Kλ = ∅. Now, if x ∈ A1, then the function vx ∈ W 1,∞(�)

defined by

vx(y) := u(y) + (u(x0) − u(x)) + 〈Du(x0) − Du(x), y − x〉
belongs to A(x) and ‖vx − u‖W 1,∞(�) ≤ δ. By Proposition 3.4 we can write F as

F(u) = sup
x,y∈�,x =y

u(x) − u(y)

d1(x, y)

where d1 is given by (3.12). In particular, by Proposition 3.1

F(u + v) ≤ F(u) + F(v) (5.12)

for every u,v ∈ W 1,∞(�). This implies

F(vx) ≤ F(vx − u) + F(u) < ε + λ − ε = λ.

So x /∈ Kλ. This implies that Kλ ⊂ C \A1. Moreover the set C\A1 is still measurable.
Repeating the proof of Proposition 5.1 one can show that

|A1 ∩ C| ≥ 1

2
|Br(x0)|

which implies that |C \ A1| < |C| and since K ⊂ (C\A1), we have contradicted the
minimality of C. Now we show (ii) of Definition 2.1(b). Let us fix x ∈ �, ε > 0 and
ξ1, ξ2 ∈ RN such that |ξ1 − ξ2| ≤ min{ ε

2βdiam(�)
, ε

2β
}. From the definition of ϕ we

can find some u ∈ W 1,∞(�) such that Du(x) = ξ1 and ϕ(x, ξ1) ≥ F(u) − ε. Then,
defined wx,ξi

(y) := ξi · (y − x), we have

‖wx,ξ1 − wx,ξ2‖W 1,∞(�)) ≤ ε

β

and thus

ϕ(x, ξ2) ≤ F(u + wx,ξ2 − wx,ξ1) ≤ F(u) + F(wx,ξ2 − wx,ξ1) ≤ ϕ(x, ξ1) + ε.



134 Appl Math Optim (2008) 58: 111–145

By changing the roles of ξ1 and ξ2 we obtain that ϕ(x, ·) is uniformly continuous
on RN. Concerning (5.11), for every n ∈ N one can define

fn(x, ξ) = inf
η∈RN

{f (x, η) ∨ n|ξ − η|}. (5.13)

Then, thanks to Proposition 4.1, for every n ∈ N the function fn is Lipschitz con-
tinuous with Lipschitz constant equal to n, fn ≤ fm if n ≤ m and since f (x, ·) is
continuous, we have

f (x, ξ) = sup
{

fn(x, ξ) : n ∈ N
}

.

Now for every n ∈ N let ψn be defined by

ψn(x, ξ) := inf
{

ess sup
�

fn(x,Du(x)) | u ∈ W 1,∞(�) s.t. x ∈ û, with Du(x) = ξ
}

.

(5.14)
By definition, we have that ψn ≤ ϕ for every n ∈ N and, thanks to Theorem 5.4, ψn

is a Carathéodory supremand such that there exists a negligible set Hn ⊂ � such that

ψn ≥ fn on (� \ Hn) × RN.

In particular, by defining H = ⋃∞
n=1 Hn we obtain that

ϕ(x, ξ) ≥
∨

n∈N

ψn(x, ξ) ≥
∨

n∈N

fn(x, ξ) = f (x, ξ) on (� \ H) × RN

which implies that for every u ∈ W 1,∞(�) the inequality

ess sup
�

ϕ(x,Du(x)) ≥ ess sup
�

f (x,Du(x))

holds. By the definition of ϕ the converse inequality is also true and thus (ii) fol-
lows. �

6 The Proofs

Now we are in a position to show the main theorems of this paper. In the proofs it
is fundamental the application of Lemma 3.2 in order to deduce the convexity of the
sub-level sets of a weakly∗ lower semicontinuous functional.

Proof of Theorem 2.3 Suppose that f is a Carathéodory supremand satisfying also
the coercivity assumption (2.3). Let λ ∈ R be such that the sub-level set Eλ := {u ∈
W 1,∞(�) : F(u) ≤ λ} is nonempty. If Kλ := {u ∈ W 1,∞(�) : F(u) < λ} is nonempty
too, then let Rλ be the corresponding difference quotient defined by (3.5). Now we
show that

Eλ = {u ∈ W 1,∞(�) : Rλ(u) ≤ 1}. (6.1)

In fact, if Rλ(u) ≤ 1 then for every 0 < δ < 1 we have that Rλ(δu) ≤ δ < 1. By
Lemma 3.2 there exists a sequence {un} ⊂ W 1,∞(�) converging to δu in L∞(�)
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with F(un) ≤ λ. Since F is weakly∗ lower semicontinuous it follows F(δu) ≤ λ and
then, by the same reason, letting δ → 1 we can conclude F(u) ≤ λ. Vice versa, if
F(u) ≤ λ then for every x, y ∈ � we have dλ(x, y) ≥ |u(x) − u(y)| by definition
of dλ. This implies Rλ(u) ≤ 1. By (6.1), by applying Proposition 3.1, it follows that
Eλ is a convex set. Finally, if Kλ is empty, note that Kλ+ε is nonempty for every
ε > 0 since Eλ ⊂ Kλ+ε and from the first part of this proof it follows that Eλ+ε is a
convex set. Since

Eλ =
⋂

ε>0

Eλ+ε

then Eλ is a convex set, too. Now we remove the previous coercivity assumption
on f. Define

g(x, ξ) := arctan(f (x, ξ)) + π

2
and for every n ∈ N consider the function gn given by (4.4) and the functionals G

and Gn given by (4.5) and (4.6) respectively. Then it holds:

(i) gn(x, ξ) ≥ 1
n
|ξ | for every n ∈ N, for a.e. x ∈ � and for every ξ ∈ RN ;

(ii) for every n ∈ N, for a.e. x ∈ � and for every ξ, η ∈ BM(0)

|gn(x, ξ) − gn(x, η)| ≤ ω′
M,n(|ξ − η|) (6.2)

where ω′
M,n(s) := ωM(s) ∨ 1

n
|s|.

Property (i) is trivial; concerning (ii), fix n ∈ N and let x ∈ �, ξ, η ∈ BM(0). If
gn(x, ξ) ≥ 1

n
|ξ | and gn(x, η) ≥ 1

n
|η| then (6.2) is trivial. If gn(x, ξ) ≤ 1

n
|ξ | and

gn(x, η) ≤ 1
n
|η| then (6.2) is trivial. It remains to show (6.2) when gn(x, ξ) < 1

n
|ξ |

and gn(x, η) > 1
n
|η|. In this case

gn(x, ξ) − gn(x, η) = 1

n
|ξ | ∨ g(x, ξ) − g(x, η)

≤
(

1

n
|ξ − η| + 1

n
|η|

)

∨ (

g(x, η) + ωM(|ξ − η|)) − g(x, η)

≤ 1

n
|ξ − η| ∨ ωM(|ξ − η|)

and

gn(x, ξ) − gn(x, η) = 1

n
|ξ | − g(x, η) ∨ 1

n
|η|

≥ 1

n
|ξ | − (

g(x, ξ) + ωM(|ξ − η|)) ∨
(

1

n
|ξ − η| + 1

n
|ξ |

)

≥ −
(

1

n
|ξ − η| ∨ ωM(|ξ − η|)

)

.

Now, since the function h(s) = arctan s is uniformly continuous and increasing on R,
then the supremal functional G is weakly∗ lower semicontinuous on W 1,∞(�). Thus,
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thanks to (4.7), for every n ∈ N the supremal functional Gn is a weakly∗ lower semi-
continuous on W 1,∞(�). Since Gn is represented through a coercive function, from
the first part of this proof it follows that (Gn)n is a sequence of level convex func-
tionals. Since (Gn)n pointwise converges to G, then G is a level convex functional,
too. As an easy consequence, F is a level convex functional. �

Proof of Theorem 2.4 One implication is trivial. Now assume that F is a level convex
functional. For every n ∈ N, let Fn : W 1,∞(�) → R be the functional defined by

Fn(u) := inf
{

F(v) ∨ n‖Dv − Du‖∞ : v ∈ W 1,∞(�)
}

.

Then, thanks to Proposition 4.2, for every n ∈ N Fn is an n-Lipschitz continuous
functional such that

F =
∨

n

Fn.

Moreover, for every n ∈ N, the functional Fn is level convex. In fact let u1, u2 ∈
W 1,∞(�) and θ ∈ (0,1). For fixed ε > 0 there exist v1, v2 ∈ W 1,∞(�) such that

Fn(ui) ≥ F(vi) ∨ n‖Dvi − Dui‖∞ − ε

for every i ∈ {1,2}. Then

Fn(θu1 + (1 − θ)u2)

≤ F(θv1 + (1 − θ)v2) ∨ n
∥

∥D(θu1 + (1 − θ)u2) − D(θv1 + (1 − θ)v2)
∥

∥∞
≤ F(v1) ∨ F(v2) ∨ n‖Du1 − Dv1‖∞ ∨ n‖Du2 − Dv2)‖∞
≤ Fn(u1) ∨ Fn(u2) + ε.

Since ε is arbitrary, it follows that

Fn

(

θu1 + (1 − θ)
)

u2 ≤ Fn(u1) ∨ Fn(u2),

i.e. Fn is a level convex functional. Now define

ϕn(x, ξ) := inf
{

Fn(u) | u ∈ W 1,∞(�) s.t. x ∈ û, with Du(x) = ξ
}

. (6.3)

Thanks to Proposition 5.2, for every n ∈ N ϕn is a Carathéodory supremand,
n-Lipschitz continuous w.r.t. ξ and such that

ess sup
�

ϕn(x,Du(x)) ≤ Fn(u). (6.4)

Moreover, for every n ∈ N ϕn is a level convex function. Fix x ∈ �, ξ, η ∈ RN and
λ ∈ (0,1). By the definition of ϕn there exist Br(x), uε, vε ∈ W 1,∞(�), differentiable
at x such that Duε(x) = ξ, Dvε(x) = η and ϕn(x, ξ) ≥ Fn(uε) − ε and ϕn(x, η) ≥
Fn(vε) − ε. Since Fn is a level convex functional then

ϕn(x,λξ + (1 − λ)η) ≤ Fn(λuε + (1 − λ)vε)

≤ Fn(uε) ∨ Fn(vε) ≤ (ϕn(x, ξ) − ε) ∨ (ϕn(x, η) − ε).
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Letting ε → 0 we obtain the thesis. The sequence {ϕn}n is non decreasing and thus

∃ lim
n

ϕn(x, ξ) =
∨

n

ϕn(x, ξ) =: ϕ(x, ξ).

It is easy to verify that ϕ is a level convex normal supremand and letting n → ∞ in
(6.4) we obtain

ess sup
�

ϕ(x,Du(x)) ≤ F(u).

In order to show the converse inequality, for every n ∈ N we use again the functions
fn, ψn defined by (5.13) and (5.14). Now for every n ∈ N and for every u ∈ W 1,∞(�)

it holds

ess sup
�

fn(x,Du(x)) ≤ Fn(u). (6.5)

In fact, by definition, for fixed ε > 0 there exists uε ∈ W 1,∞(�) such that

Fn(u) ≥ ess sup
�

f (x,Duε(x)) ∨ n‖Duε − Du‖∞ − ε.

In particular for a.e. x ∈ �

Fn(u) ≥ f (x,Duε(x)) ∨ n|Duε(x) − Du(x)| − ε ≥ fn(x,Du(x)) − ε

which implies

Fn(u) ≥ ess sup
�

fn(x,Du(x)) − ε.

Since ε is arbitrary, then (6.5) follows. From (6.5) and the definitions of fn, ψn,ϕn,
we deduce

fn(x, ξ) ≤ ψn(x, ξ) ≤ ϕn(x, ξ) on (� \ H) × RN

where H ⊂ � is a negligible set. By passing to the limit as n → ∞ in the previous
inequality and by applying the fact that

f (x, ξ) =
∨

n∈N

fn(x, ξ)

we obtain that

f (x, ξ) ≤ ϕ(x, ξ) on (� \ H) × RN

which implies that

F(u) ≤ ess sup
�

ϕ(x,Du(x)). �

Proof of Theorem 2.5 1 �⇒ 2. It follows from Theorem 2.3.
2 �⇒ 3. Thanks to Lemma 5.3 and Theorem 5.4 it remains to show that ϕ is

level convex w.r.t. ξ . Fix x ∈ �, ξ, η ∈ RN and λ ∈ (0,1). By definition of ϕ there
exist uε, vε ∈ W 1,∞(�), differentiable at x, such that Duε(x) = ξ, Dvε(x) = η and
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ϕ(x, ξ) ≥ F(uε) − ε and ϕ(x,η) ≥ F(vε) − ε. Since F is a level convex functional,
we have that

ϕ(x,λξ + (1 − λ)η) ≤ F(λuε + (1 − λ)vε) ≤ F(uε) ∨ F(vε)

≤ (ϕ(x, ξ) − ε) ∨ (ϕ(x, η) − ε).

Letting ε → 0 we obtain the thesis.
3 �⇒ 1 It follows by Theorem 1.1. �

Proof of Theorem 2.6 1 �⇒ 2. By applying Proposition 3.4 we have that

F(u) = sup
x,y∈�, x =y

u(x) − u(y)

d(x, y)
.

Then F is convex (see for instance the proof of Proposition 3.1).
2 �⇒ 3. Thanks to Theorem 5.5 we can represent F through the function ϕ given

by (2.4), i.e. F(u) = ess sup� ϕ(x,Du(x)) for every u ∈ W 1,∞(�). If we show that
ϕ is convex w.r.t. ξ then by applying Propositions 2.4 and 2.5 in [14] it follows that
F can be represented also through the function ϕ0

d . Fix x ∈ �, ξ, η ∈ RN and λ ∈
(0,1). By definition of ϕ, there exist uε, vε ∈ W 1,∞(�), differentiable at x such that
Duε(x) = ξ, Dvε(x) = η and ϕ(x, ξ) ≥ F(uε) − ε and ϕ(x,η) ≥ F(vε) − ε. Since
F is a convex functional, we have that

ϕ(x,λξ + (1 − λ)η) ≤ F(λuε + (1 − λ)vε) ≤ λF(uε) + (1 − λ)F (vε)

≤ λ(ϕ(x, ξ) − ε) + (1 − λ)(ϕ(x, η) − ε),

and letting ε → 0 we obtain that ϕ is convex w.r.t. ξ . Finally, thanks to Lemma 5.3,
we have that there exists a negligible set H ⊂ � such that

ϕ0
d(x, ξ) ≤ ϕ(x, ξ) for every x ∈ � \ H, for ξ ∈ RN.

The converse inequality follows by applying Proposition 1.6 in [14].
3 �⇒ 1. It follows by Theorem 1.1. �

Proof of Theorem 2.7 1 �⇒ 2. For every open subset A ⊂ � with Lipschitz continu-
ous boundary, it is sufficient to apply Theorem 2.3 to the functional F(u) := F(u,A).

Now let A ⊂ � be a generic open set and u1, u2 ∈ W 1,∞(�) and θ ∈ (0,1). Then
there exists a countable family of open sets (An)n∈N with Lipschitz continuous
boundaries such that A = ⋃

n An. For every n ∈ N we have that

F(θu1 + (1 − θ)u2,An) ≤ F(v1,An) ∨ F(v2,An).

This implies

F(θu1 + (1 − θ)u2,A) =
∨

n∈N

F(θu1 + (1 − θ)u2,An)

≤
∨

n∈N

F(v1,An) ∨
∨

n∈N

F(v2,An)

= F(v1,A) ∨ F(v2,A).
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2 �⇒ 3. Since f satisfies all the assumptions of Theorem 5.4, F can be repre-
sented also by the Carathéodory supremand f̃ . It remains to show that f̃ is a level
convex function. Fix x ∈ �, ξ, η ∈ RN and λ ∈ (0,1). By the definition of f̃ there ex-
ist Br(x), uε, vε ∈ W 1,∞(�), differentiable at x such that Duε(x) = ξ, Dvε(x) = η

and f̃ (x, ξ) ≥ F(uε,Br(x)) − ε and f̃ (x, η) ≥ F(vε,Br(x)) − ε. Since F(·,Br(x))

is a level convex functional then

f̃ (x, λξ + (1 − λ)η) ≤ F(λuε + (1 − λ)vε,Br(x)) ≤ F(uε,Br(x)) ∨ F(vε,Br(x))

≤ (f̃ (x, ξ) − ε) ∨ (f̃ (x, η) − ε).

Letting ε → 0 we obtain the thesis.
3 �⇒ 1. It follows by Theorem 1.1. �

7 An Existence Theorem of AMLs and a Principle of Comparison

In general a minimizer for a supremal functional is not necessarily a local minimizer
(see Example 1.2. in [9]). Then, by analogy with the case of integral functionals,
G. Aronsson introduced the following notion of local minimizers for a supremal func-
tional of the form

F(u,A) = ess sup
A

f (x,Du(x)) (7.1)

(for instance see [2–4]).

Definition 7.1 Let g be a Lipschitz function defined on ∂� and let us denote by
W

1,∞
g (�) the space of functions such that (u − g) ∈ W 1,∞(�) ∩ C0(�). An absolute

minimizer or an AML for the problem

min
v∈W

1,∞
g (�)

F (v,�) (7.2)

(where F is given by (7.1)) is a minimizer u such that for all open subset V ⊂⊂ �

one has

F(u,V ) ≤ F(v,V )

for all v in W 1,∞(V ) such that v = u on ∂V .

With different techniques Barron et al. in [6] and Champion et al. in [9] have
proved an existence theorem of AML for a supremal functional F by assuming that
it is represented by a level convex function f. Now, thanks to Theorem 2.7, we can
give the following:

Theorem 7.2 Let f : � × RN → R be a Carathéodory supremand satisfying (2.2)
and (2.3). Let F(·,A) be the functional defined by (7.1). Let g be a Lipschitz function
defined on ∂�. If F(·,A) is lower semicontinuous with respect to the weak* conver-
gence of W 1,∞(�) for every A ∈ A then there exists at least one absolute minimizer
v ∈ W

1,∞
g (�).



140 Appl Math Optim (2008) 58: 111–145

Proof By applying Theorem 2.7, we can represent F through a level convex
Carathéodory supremand satisfying (2.2) and (2.3). Then we can conclude by ap-
plying Theorem 4.1 in [9]. �

Remark 7.3 In [9] (see Theorem 4.7) the authors give another existence theorem
for AML based on a Perron-like method. They show that if the functional (7.1) is
weakly∗ l.s.c. and coercive and satisfies the additional hypothesis that for any A ∈A,

w ∈ W 1,∞(A) ∩ C(Ā) and y ∈ A, the image set

Ay,w = {u(y) : u ∈ W 1,∞
w (A), u is an AML}

is connected, then there exists at least one absolute minimizer v ∈ W
1,∞
g (�). Now

if the functional (7.1) is weakly∗ lower semicontinuous for every A ∈ A and f sat-
isfies (2.2) and (2.3), then the last assumption is trivially satisfied. In fact, thanks to
Theorem 2.3, F is a level convex functional and then the sets Ay,w are convex.

In Theorem 3.5 of the paper [10], Champion and De Pascale characterize the ab-
solute minimizers of a wide class of supremal functionals by extending the princi-
ple of comparison with cones introduced by Crandall et al. in [11] for the minimiz-
ing Lipschitz Extension Problem. Their characterization relies on the fact that when
f = f (x, ξ) is a lower semicontinuous function, satisfying (2.3) and level convex in
the ξ -variable, then for every open set V ⊂ RN the pseudo-distances

ρV
λ (x, y) = sup

{

u(x) − u(y),u ∈ W 1,∞(V ) : ess sup
V

f (x,Du(x)) ≤ λ
}

(7.3)

coincide with the following distances:

δV
λ (x, y) = inf

γ∈�x,y(V )

∫ 1

0
f 0(γ, γ ′, λ) dt

where f 0 is defined by

f 0(x, ξ, λ) := sup
{

ξ · η : f (x, η) ≤ λ
}

(see Lemma B.3 and Proposition A.2 in [10]). Now if f is not lower semicontin-
uous this equality could fail. In fact let � = (−2,2)2 and consider the segment
S = (−1,1) × {0}. Consider the Carathéodory supremand defined by

f (x, ξ) =
{

β|ξ | if x ∈ � \ S,

α|ξ | if x ∈ S,

with 0 < β < α. Then f is not globally lower semicontinuous on � and for every
λ ≥ 0 and for every x, y ∈ V = (−1,1)2 it holds

δV
λ (x, y) = λ

β
|x − y|.
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If x̄ = (−1,0) and ȳ = (0,1) then

δV
λ (x̄, ȳ) = 2λ

α
<

2λ

β
= ρV

λ (x̄, ȳ).

This inequality is due to the fact that when one modifies the values of the supremand
f on a negligible subset of � the distances δV

λ can change while the distances ρV
λ do

not depend on the supremand f chosen to represent F.

Now when f is not globally l.s.c., it is an open problem if it is possible to charac-
terize the AMLs of the problem (7.2) through a comparison principle with distance
functions. However, thanks to the results shown in Sects. 3 and 6, we can give a par-
tial result. We consider a supremal functional F represented by a Carathéodory supre-
mand f : � × RN → R+, level convex in the ξ -variable, satisfying (2.2) and (2.3).
For any open set V ⊂⊂ �, for every x, y ∈ V and for every λ ∈ R we define

dV
λ (x, y) :=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

sup{|u(x) − u(y)| : u ∈ W 1,∞(�),F (u,V ) ≤ λ}
if λ > infv∈W 1,∞(V ) F (v,V ),

infε>0 dV
λ+ε(x, y) if λ = infv∈W 1,∞(V ) F (v,V ),

−∞ if λ < infv∈W 1,∞(V ) F (v,V ).

(7.4)

Moreover for every x, y ∈ V̄ and for every λ ∈ R we define

dV
λ (x, y) := inf

{

lim inf
n

dV
λ (xn, yn) : (xn)n, (yn)n ⊂ V, xn → x, yn → y

}

. (7.5)

We point out that, since the boundary of V may be non regular, it may happen that
dV
λ (x̄, ȳ) = +∞ for some λ ∈ R and for some x̄ ∈ ∂V and ȳ ∈ V. In this case it is

easy to show that dV
λ (x̄, y) = +∞ for every y ∈ V .

Definition 7.4 We shall say that a continuous function u : �̄ → R satisfies the com-
parison with the distance functions dV

λ from above in � if and only if for any con-
nected open subset V ⊂⊂ �, any x0 ∈ V̄ , any λ ∈ R and α ∈ R the inequality

u ≤ dV
λ (x0, .) + α on ∂(V \ {x0})

implies

u ≤ dV
λ (x0, .) + α on V̄ .

Now we can easily show the theorem.

Theorem 7.5 Under the assumption of Theorem 7.2 if u ∈ W 1,∞(�) satisfies the
Comparison with the Distance Functions dV

λ on � from above then u is an absolute
minimizer of F .

Proof Assume that u satisfies the comparison principle with the distance func-
tions dV

λ . Let V ⊂⊂ � be an open set. We will show that

F(u,V ) = inf{F(v,V ) : v ∈ W 1,∞(V ), v = u on ∂V }.
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In fact, since F(·,V ) is weakly∗ l.s.c. and coercive, there exists w ∈ W 1,∞(V ) such
that

F(w,V ) = λ = min{F(v,V ) : v ∈ W 1,∞(V ), v = u on ∂V }.
If λ > inf{F(v,V ) : v ∈ W 1,∞(V )} then

|w(x) − w(y)| ≤ dV
λ (x, y) (7.6)

for every x, y ∈ V. Now w − u = 0 on ∂V means that there exists a sequence
wn ∈ C∞

0 (V ) weakly∗ converging to w − u. In particular the sequence (wn + u)n

is bounded in W 1,∞(�) and thus it admits a subsequence which weakly∗ converges
to a function v ∈ W 1,∞(�). In particular v = w on V and therefore

|v(x) − v(y)| ≤ dV
λ (x, y)

for every x, y ∈ V. Since v ∈ C(V̄ ) and v = u on ∂V , by continuity we obtain that

|u(x) − u(y)| ≤ dV
λ (x, y) (7.7)

for every x, y ∈ ∂V . Since u satisfies the principle of comparison, (7.7) yields to
u(x) ≤ u(y)+dV

λ (x, y) for every y ∈ ∂V and for every x ∈ V . By applying again the
principle of comparison we obtain that u(x) ≤ u(y) + dV

λ (x, y) for every y, x ∈ V

i.e.

Rλ(u,V ) := sup
x,y∈V,x =y

|u(x) − u(y)|
dV
λ (x, y)

≤ 1

and thus for every 0 < δ < 1 Rλ(δu,V ) ≤ δ < 1. Now we can notice that thanks to
Theorem 2.7 F(·,V ) is weakly∗ l.s.c. in W 1,∞(V ). Thus by applying Lemma 3.3
we have that F(δu,V ) ≤ λ. By letting δ → 1 we can conclude that F(u,V ) ≤ λ. If
λ = min{F(v,V ) : v ∈ W 1,∞(V )} it is sufficient to note that

|w(x) − w(y)| ≤ dV
λ+ε(x, y)

for every x, y ∈ V and for every ε > 0. By repeating the first part of this proof, it is
easy to show that F(u,V ) ≤ λ + ε. By letting ε → 0+ we obtain the thesis. �

8 A Counterexample

In this section we will show that in general even if F(u) = ess sup� f (x,Du(xf ))

is weakly∗ lower semicontinuous on W 1,∞(�) it cannot be represented by the level
convex envelope f lc of f i.e. in general ess sup� f lc(x,Du(x)) < F(u).

In fact, a suitable modification of Example 3.2 in [14] gives the following:

Example 8.1 Let us call G the set of all continuous functions g : RN → R, positively
1-homogeneous and satisfying α|ξ | ≤ g(ξ) ≤ β|ξ | for all ξ ∈ RN , and let

C := {C ⊆ RN : C = {ξ ∈ RN : g(ξ) ≤ 1} for some g ∈ G}. (8.1)
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Note that the sets in C are closed, star-shaped (with respect to the origin), and that by
definition with every C ∈ C is associated a function g ∈ G, which we denote by gC .
Moreover C is closed under intersection and union.

Let now B be the unit closed ball in RN centered at 0. Then B ∈ C with gB(ξ) =
|ξ |. Let H ∈ C satisfy the following properties:

1. H is not convex;
2. H ∩ B is convex;
3. H \ B = ∅ and B \ H = ∅;
4. B is contained in the convex hull of H .

Finally let us construct an open and dense set A ⊂ � with 0 < |A| < |�| as fol-
lows. Let {vi}i∈N be a dense subset of ∂B and let {pj }j∈N be dense in �. For a given
positive constant δ > 0 we define

A :=
⋃

i,j∈N

{

x ∈ � : dist(x, {pi + svj , s ∈ R}) <
δ

2ij

}

.

Clearly, if δ is small enough, we have that 0 < |A| < |�|. Roughly speaking the set A

is given by a countable union of thin strips along a dense set of directions.
We consider the functions f , f+ : � × RN → R defined by

f (x, ξ) :=
{

gB(ξ) if x ∈ A,

gH (ξ) if x ∈ � \ A; f+(x, ξ) :=
{

gB(ξ) if x ∈ A,

gH∩B(ξ) if x ∈ � \ A.

The associated supremal functionals are

F(u) := ess sup
�

f (x,Du(x)) and F+(u) := ess sup
�

f+(x,Du(x)).

Now we show the following facts:

1. F = F+ and therefore F is weakly∗ lower semicontinuous (in fact F+ is weakly∗
lower semicontinuous being represented by a (level) convex function);

2. ∃u ∈ W 1,∞(�) such that F(u) > ess sup� f lc(x,Du(x)).

In fact, by construction we have that F+ ≥ F , and so let us assume by contradic-
tion that for some u ∈ W 1,∞(�) we have

F+(u) > 1 while F(u) < 1. (8.2)

This will imply that Du ∈ H \ B on a set of positive measure. Therefore there exists
a point x ∈ � of differentiability for u with |Du(x)| > 1. To simplify the notation we
can assume x = 0 and u(0) = 0. Let {ρn} be a sequence converging to zero, and for
every n let us consider the function un : B → R defined by

un(x) := 1

ρn

u(ρnx) for every x ∈ B.
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By the definition of A, for every n and for every ε > 0 we can find an open strip Lε
n

in B such that ρnL
ε
n ⊂ A and such that Lε

n contains two points aε
n and bε

n with
∣

∣

∣

∣

aε
n − Du(0)

|Du(0)|
∣

∣

∣

∣

+
∣

∣

∣

∣

bε
n −

(

− Du(0)

|Du(0)|
)∣

∣

∣

∣

≤ ε. (8.3)

By Proposition 3.4, we have that

ess sup
Lε

n

|Dun(x)| = sup
x,y∈Lε

n

un(x) − un(y)

|x − y| ≥ un(a
ε
n) − un(b

ε
n)

|aε
n − bε

n|
.

Using that, by the differentiability of u at 0, {un} converges to Du(0) · x uniformly,
by (8.3) we deduce that, for n big enough,

ess sup
Lε

n

|Dun(x)| ≥ |Du(0)| + o(ε),

where o(ε) → 0 as ε → 0. Therefore, recalling that |Du(0)| > 1, we can find ε and
n such that ess supLε

n
|Dun(x)| > 1. We conclude that

F(u) ≥ ess sup
A

|Du(x)| ≥ ess sup
ρnLε

n

|Du(x)| = ess sup
Lε

n

|Dun(x)| > 1,

which is in contradiction with (8.2).
Finally let ξ ∈ B such that ξ is not in H ∩B . In particular ξ belongs to the convex

hull of H and therefore

f lc(x, ξ) ≤ 1 a.e. on �.

On the other hand by the definition of f+ and the choice of ξ we have

f+(x, ξ) > 1 a.e. on � \ A. (8.4)

Therefore if we define ū(x) = x · ξ we obtain

F(ū) > 1 ≥ ess sup
�

f lc(x, ξ) = ess sup
�

f lc(x,Dū(x)).
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