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Abstract This paper deals with two person zero-sum semi-Markov games with a
possibly unbounded payoff function, under a discounted payoff criterion. Assuming
that the distribution of the holding times H is unknown for one of the players, we
combine suitable methods of statistical estimation of H with control procedures to
construct an asymptotically discount optimal pair of strategies.
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1 Introduction

This paper concerns two-person zero-sum semi-Markov games (SMGs) in Borel
spaces, with a possibly unbounded payoff function, under a discounted payoff cri-
terion. The game can be formulated as follows: there are two players with opposite
objectives. If at the nth decision epoch, the game is in the state xn = x, then the play-
ers independently of each other choose actions an = a and bn = b, and the following
happens: the game remains in the state x during a nonnegative random time δn+1 with
distribution H, and a payoff r is generated which represents a reward for player 1 and
a cost for player 2; moreover, the game jumps to a new state xn+1 = y according to
some transition law. Once the transition to the state y occurs, the process is repeated.
Payoff accumulates throughout the evolution of the game and, the goal of each player
is to optimize the total discounted payoff.
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The class of zero-sum SMGs we are interested in is when the distribution H of the
holding (or sojourn) times is known by player 1 but unknown by player 2. In addition,
as usual, we suppose that the payoff r is the sum of an immediate payoff imposed at
the moment when the players choose their decisions, plus a payoff rate imposed until
the transition to a new state of the game occurs. In this context, at the time of the
nth decision epoch Tn, when the game is in state xn = x, player 1 may choose the
action an = a in a standard way, whereas player 2, before choosing the action bn,

must implement a statistical estimation method to obtain an estimate Hn of H , and
then selects an action b = bn(Hn).

The actions applied by players at the decision epochs, are selected according to
rules known as strategies. Hence, our main contribution in this paper is the following.
Assuming that the game model satisfies sufficient conditions for the existence of
the value of the game and for the existence of a solution to the Shapley equation,
a suitable estimation method of H is used by player 2 to construct a discounted
optimal pair of strategies (π1∗ ,π2∗ ) for players 1 and 2. However, since the discounted
payoff criterion depends heavily on the decisions selected at the first stages (precisely
when the information about the distribution H is deficient), we cannot ensure, in
general, optimality of the pair (π1∗ ,π2∗ ). Therefore, the optimality will be analyzed in
an asymptotic sense motivated by the paper of Schäl [21] (see also [6]) for Markov
control processes.

A key point to obtain the statistical estimation process for player 2 is to assume that
H does not depend on the state-actions triplets (x, a, b). This condition is necessary
to get independent observations of the holding time variables during the evolution of
the system, and so with them construct an estimator of H . This assumption might be
strong for some semi-Markov game models, however it is satisfied, for instance, in a
class of storage systems (see Sect. 6).

The study of zero-sum stochastic Markov games was started by L. Shapley [22],
and several extensions of that work have been proposed. In particular, related papers
on semi-Markov games are [10, 11, 15, 17, 18, 24], in which the distribution H is
supposed to be known for both players. To the best of our knowledge, there are no
works dealing with semi-Markov games in the context of our paper.

Moreover, SMGs with discounted payoff criterion, can be considered as an exten-
sion of semi-Markov control processes (one player) with discounted reward criterion
which have been studied, mainly, in [1, 12–14, 16, 20]). In particular, in [16] we an-
alyze the case when the holding times distribution is unknown for the controller, and
as far as we know it was the first work dealing with this kind of problems.

As would be expected, some basic ideas of semi-Markov control processes can be
adapted, in a straightforward way, to SMGs. However, the essential points have an
independent development. For instance, to show the existence of optimal strategies
for the players we must analyze minimax and maximin equations, and ensure the
interchange of minimum and maximum in the corresponding optimality equation. In
our work this procedure is combined with an estimation scheme of the holding times
distribution implemented by player 2.

Recent works studying continuous-time stochastic games are, for instance, [3–5]
which deal with games for (continuous-time) Markov chains. In that class of games,
the times between consecutive decision epochs δn are exponentially distributed ran-
dom variables and the players can select their actions continuously in time. These
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facts represent the main differences with the semi-Markov games where the distribu-
tion of the random variables δn can be arbitrary and the players select their actions at
the transition times.

The remainder of the paper is organized as follows: in Sect. 2, we introduce the
semi-Markov game model we will be dealing with, and in Sect. 3 we introduce the
performance criterion. The main result is stated in Sect. 4 and the proof is given in
Sect. 5. Finally, in Sect. 6 we present an example of a storage system satisfying all
the hypotheses of the paper.

Notation Given a Borel space X (that is, a Borel subset of a complete and separable
metric space) its Borel sigma-algebra is denoted by B(X), and “measurable”, for
either sets or functions, means “Borel measurable”. Given a Borel space X, we denote
by P(X) the family of probability measures on X, endowed with the weak topology.
Let X and Y be Borel spaces. Then a stochastic kernel γ (dx | y) on X given Y is a
function such that γ (· | y) is a probability measure on X for each fixed y ∈ Y, and
γ (B | ·) is a measurable function on Y for each fixed B ∈ B(X). In addition, we
denote by P(X | Y) the family of stochastic kernels on X given Y.

2 Semi-Markov Game Model

We consider a two-person semi-Markov game model of the form

GM := (X,A,B,KA,KB,Q,H,D,d), (1)

where X is the state space, A and B are the action spaces for players 1 and 2, respec-
tively. The sets X, A and B are assumed to be Borel spaces and KA ∈ B(X × A)

and KB ∈ B(X × B) are the constraint sets. For every x ∈ X, we define the sets
A(x) := {a ∈ A : (x, a) ∈ KA} and B(x) := {b ∈ B : (x, a) ∈ KB}, whose elements
are the available actions for player 1 and player 2 in state x, respectively. The set
K = {(x, a, b) : x ∈ X, a ∈ A(x), b ∈ B(x)} of admissible state-actions triplets is
assumed to be a Borel subset of the Cartesian product X × A × B . The transition
law Q(· | ·), is a stochastic kernel on X given K, and H(· | x, a, b) is the distribution
function of the holding time at state x ∈ X when the actions a ∈ A(x) and b ∈ B(x)

are chosen, which is known by player 1 but unknown by player 2. Finally, the pay-
off functions D and d are possibly unbounded and measurable real-valued functions
on K.

The game is played as follows: If at time of the nth decision epoch, the state of the
game is xn = x, and the actions chosen by player 1 and 2 are an = a ∈ A(x) and b =
bn(Hn) ∈ B(x), then the game remains in the state x during a nonnegative random
time δn+1 with distribution H, and the following happen: (1) player 1 receives an
immediate reward D(x,a, b) while player 2 incurs an immediate cost D(x,a, b); (2)
the game jumps to a new state xn+1 = y according to the transition law Q(· | x, a, b);
and (3) a reward rate (cost rate) d(x, a, b) for player 1 (player 2) is imposed until
the transition occurs. Once the transition to state y occurs, the process is repeated.
Thus, the goal of player 1 is to maximize his/her reward, whereas that of player 2 is
to minimize his/her cost.
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Observe that the decision epochs are Tn := Tn−1 + δn for n ∈ N := {1,2, . . .}, and
T0 = 0. The random variable δn+1 = Tn+1 − Tn is called the sojourn or holding time
at stage n.

Remark 2.1 (a) We shall assume that the payoffs are continuously discounted. That
is, for a given discount factor α > 0, a payoff R incurred at time t is equivalent to a
payoff R exp(−αt) at time 0. In this sense, the one-stage reward for player 1 and cost
for player 2 takes the form:

r(x, a, b) := D(x,a, b) + d(x, a, b)

∫ ∞

0

∫ t

0
exp(−αs)dsH(dt | x, a, b),

(x, a, b) ∈ K. (2)

Hence, the function r is also unknown for player 2 (since r depends on H which is
unknown for player 2).

(b) In addition, we will suppose that the distribution H is independent of the ad-
missible state-actions triplets (x, a, b) ∈ K and it has a density ρ. That is, there exists
a distribution function G (unknown) with a density ρ such that

H(t | x, a, b) = G(t) =
∫ t

0
ρ(s)ds ∀(x, a, b) ∈ K, t ≥ 0.

Now, defining

�α :=
∫ ∞

0
exp(−αs)ρ(s)ds (3)

and

τα := 1 − �α

α
, (4)

it follows that the payoff function (2) takes the form

r(x, a, b) = D(x,a, b) + ταd(x, a, b), (x, a, b) ∈ K. (5)

Assumption 2.2 There exist q ∈ (1,2) and a measurable function ρ̄ : [0,∞) →
[0,∞) such that ρ ∈ Lq([0,∞)), ρ(s) ≤ ρ̄(s) almost everywhere with respect to
the Lebesgue measure, and

∫ ∞

0

(
ρ̄(s)

)2−q
ds < ∞.

For example, if ρ̄(s) := M ′ min{1,1/s1+r }, s ∈ [0,∞), for some r > 0, then there
are plenty of densities that satisfy Assumption 2.2.

We define the spaces of admissible histories of the game up to the nth decision
epoch by H0 := X, and Hn := (K × 
+)n × X for n ∈ N. A typical element of
Hn is written as hn = (x0, a0, b0, δ1, . . . , xn−1, an−1, bn−1, δn, xn). A strategy for
player 1 is a sequence π1 = {π1

n } of stochastic kernels π1
n ∈ P(A | Hn) such that
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π1
n(A(xn) | hn) = 1 for all hn ∈ Hn and n ∈ N. We denote by 	1 the set of all strate-

gies for player 1. A strategy π1 = {π1
n } for player 1 is called stationary if there exists

f ∈ P(A | X) such that f (x) ∈ P(A(x)) and π1
n = f for all x ∈ X and n ∈ N. In this

case, we identify π1 with f, i.e., π1 = f = {f,f, . . .}. We denote by 	1
S the set of

all stationary strategies for player 1.
The sets 	2 and 	2

S of all strategies and all stationary strategies, respectively, for
player 2, are defined similarly.

Let (
,A) be the canonical measurable space that consist of the sample space

 = (K × 
+)∞ and its product σ -algebra A. Then for each pair of strategies
(π1,π2) ∈ 	1 × 	2 and each initial state x ∈ X, there exist a probability measure

P
π1,π2

x and a stochastic process {(xn, an, bn, δn+1)}, n = 0,1, . . . , where xn, an, bn

represent the state and the actions for player 1 and 2, respectively, at the nth deci-
sion epoch, whereas δn+1 represents the time between the nth and (n + 1)th decision

epoch. E
π1,π2

x denotes the expectation operator with respect P
π1,π2

x . We note that by
Remark 2.1(b), the distribution of δn (n = 1,2, . . .) is independent of the strategies
π1 and π2 and

P π1,π2

x [δn ≤ t] =
∫ t

0
ρ(s)ds. (6)

Assumption 2.3 There exist ε > 0 and θ > 0 such that

∫ θ

0
ρ(s)ds ≤ 1 − ε.

Assumption 2.3 ensures that in a bounded time interval there are at most a finite
number of transitions of the process. On the other hand, following similar ideas as in
[23] for semi-Markov control processes, we have that

�α < 1, (7)

which in turn yields

τα < 1/α. (8)

Let γ be a real number such that �α ≤ γ < 1.

Assumption 2.4 (a) For each x ∈ X the sets A(x) and B(x) are compact.
(b) For each (x, a, b) ∈ K, r(x, · , b) is upper semi-continuous (u.s.c.) on A(x),

and r(x, a, ·) is lower semi-continuous (l.s.c.) on B(x).

(c) There exist a measurable function W0 : X → [1,∞) and positive constants c̄0,
p > 1, d0 < ∞, and, β0 < 1 such that

max{|D(x,a, b)|, |d(x, a, b)|} ≤ c̄0W0(x),

and ∫
X

W
p

0 (y)Q(dy | x, a, b) ≤ β0W
p

0 (x) + d0, (9)

for all (x, a, b) ∈ K.
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(d) For each (x, a, b) ∈ K and each bounded measurable function v on X, the
functions

a �−→
∫

X

v(y)Q(dy | x, a, b) and b �−→
∫

X

v(y)Q(dy | x, a, b) (10)

are continuous on A(x) and B(x) respectively. In addition, (10) holds when v is
replaced with W0.

Remark 2.5 (a) Applying Jensen’s inequality to (9) yields
∫

X

W0(y)Q(dy | x, a, b) ≤ β ′W0(x) + d, for all (x, a, b) ∈ K, (11)

where β ′ = β
1/p

0 and d = d
1/p

0 . Moreover, a consequence of both inequalities (9) and
(11) is (see [2, 7]):

sup
n≥0

Eπ1,π2

x [Wp

0 (xn)] < ∞ and sup
n≥0

Eπ1,π2

x [W0(xn)] < ∞,

for each pair (π1,π2) ∈ 	1 × 	2 and x ∈ X.

(b) Using similar arguments to those used in the proof of Proposition 8.3.4 and
Remark 8.3.5(a) in [7] we can prove that Assumption 2.4 implies the existence of a
measurable function W : X → [1,∞) and positive constants k, c̄1 and β, such that
βγ < 1 and for all (x, a, b) ∈ K,

(i) W(x) ≤ kW0(x);
(ii) max{|D(x,a, b)|, |d(x, a, b)|} ≤ c̄1W(x);
(iii)

∫
X

W(y)Q(dy | x, a, b) ≤ βW(x).

Thus, by (i) we have

sup
n≥0

Eπ1,π2

x [Wp(xn)] < ∞ and sup
n≥0

Eπ1,π2

x [W(xn)] < ∞. (12)

(c) From (5), (ii) and (8),

|r(x, a, b)| ≤ c̄W(x) for all (x, a, b) ∈ K, (13)

where c̄ := c̄1(1 + 1
α
).

(d) For any probability measures μ ∈ P(A(x)) and λ ∈ P(B(x)), and any function
u : X → 
 we write

r(x,μ,λ) :=
∫

B(x)

∫
A(x)

r(x, a, b)μ(da)λ(db)

and
∫

X

u(y)Q(dy|x,μ,λ) :=
∫

B(x)

∫
A(x)

∫
X

u(y)Q(dy|x, a, b)μ(da)λ(db).
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In particular

Q(D|x,μ,λ) :=
∫

B(x)

∫
A(x)

Q(D|x, a, b)μ(da)λ(db).

We denote by B
∞
W the normed linear space of all measurable functions u : X → 


with the finite norm ‖u‖W defined as

‖u‖W := sup
x∈X

|u(x)|
W(x)

.

3 Discounted Optimality Criterion

For each pair of strategies (π1,π2) and initial state x0 = x ∈ X, we define the total
expected α-discounted payoff as

V (x,π1,π2) := Eπ1,π2

x

[ ∞∑
n=0

exp(−αTn)r(xn, an, bn)

]
. (14)

We define the lower and the upper value functions as:

L(x) := sup
π1∈	1

inf
π2∈	2

V (x,π1,π2), x ∈ X, (15)

and

U(x) := inf
π2∈	2

sup
π1∈	1

V (x,π1,π2), x ∈ X. (16)

A pair (π1∗ ,π2∗ ) is said to be an optimal pair of strategies if for all x ∈ X,

U(x) := inf
π2∈	2

V (x,π1∗ ,π2) and L(x) := sup
π1∈	1

V (x,π1,π2∗ ). (17)

If such an optimal pair exists, then U(x) = L(x) for all x ∈ X, and the common
function is called the value of the game and is denoted by V (x). Observe that in this
case V (x) = V (x,π1∗ ,π2∗ ).

Assumptions 2.3 and 2.4 ensure the existence of a value of the game. More pre-
cisely, from [15] we have:

Proposition 3.1 Suppose that Assumptions 2.3 and 2.4 hold. Then

(a) The game has a value V ∈ B
∞
W , that is, L(x) = U(x) = V (x) for all x ∈ X.

Moreover, there exists a constant M < ∞ such that

‖V ‖W ≤ M/(1 − �α). (18)
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(b) The value of the game V satisfies, for all x ∈ X,

V (x) = sup
μ∈P(A(x))

inf
λ∈P(B(x))

{
r(x,μ,λ) + �α

∫
X

V (y)Q(dy|x,μ,λ)

}

= inf
λ∈P(B(x))

sup
μ∈P(A(x))

{
r(x,μ,λ) + �α

∫
X

V (y)Q(dy|x,μ,λ)

}
. (19)

(c) There exist f ∗ ∈ P(A(x)) and g∗ ∈ P(B(x)) such that, for all x ∈ X,

V (x) = inf
λ∈P(B(x))

{
r(x, f ∗, λ) + �α

∫
X

V (y)Q(dy|x,f ∗, λ)

}
(20)

= sup
μ∈P(A(x))

{
r(x,μ,g∗) + �α

∫
X

V (y)Q(dy|x,μ,g∗)
}

= r(x, f ∗, g∗) + �α

∫
X

V (y)Q(dy|x,f ∗, g∗). (21)

In addition, (f ∗, g∗) is an optimal pair of strategies.

Remark 3.2 Observe that (19) is equivalent to

sup
μ∈P(A(x))

inf
λ∈P(B(x))

�(x,μ,λ) = inf
λ∈P(B(x))

sup
μ∈P(A(x))

�(x,μ,λ) = 0,

where

�(x,μ,λ) = r(x,μ,λ) + �α

∫
X

V (y)Q(dy|x,μ,λ) − V (x), (22)

for x ∈ X, μ ∈ P(A(x)), λ ∈ P(B(x)). The optimal pair (f ∗, g∗) (see (21)), satisfies
�(x,f ∗, g∗) = 0. Furthermore, observe that for all x ∈ X

�(x,f ∗, λ) ≥ 0 ∀λ ∈ P(B(x)) (23)

and

�(x,μ,g∗) ≤ 0 ∀μ ∈ P(A(x)). (24)

These facts motivate the following definition.

Definition 3.3 A pair of strategies (π1∗ ,π2∗ ) ∈ 	1 × 	2 is said to be asymptotically
discount optimal if, for each x ∈ X,

lim inf
n→∞ E

π1∗ ,π2

x �(xn, an, bn) ≥ 0 ∀π2 ∈ 	2

and

lim sup
n→∞

E
π1,π2∗
x �(xn, an, bn) ≤ 0 ∀π1 ∈ 	1.
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Observe that if (π1∗ ,π2∗ ) is an asymptotically discount optimal pair of strategies,
then, for each x ∈ X,

E
π1∗ ,π2∗
x �(xn, an, bn) → 0 as n → ∞.

4 Construction of Strategies

Since all the components of the game model are known to player 1, he/she may con-
struct his/her strategies in a standard way according to relation (20). That is, player 1
can use the value of the game and the Shapley’s equation to calculate his/her strate-
gies. In contrast, the solution to the game given in Proposition 3.1 is not accessible
to player 2, and therefore he/she must combine suitable statistical density estimation
methods of ρ with control procedures in order to construct his/her strategies.

Let f ∗ ∈ P(A(x)) be a maximizer satisfying (20). We define the strategy π1∗ ∈ 	1
S

for player 1 as π1∗ = {f ∗}.

4.1 Construction of Strategies for Player 2

4.1.1 Density Estimation

Recall that for each ω ∈ 
, δ1(ω), δ2(ω), . . . , δn(ω) represent the sojourn times
(observed by player 2) up to the moment of the nth decision epoch. Thus by
Remark 2.1(b) (see (6)), for each (π1,π2) ∈ 	1 × 	2 and x ∈ X, δ1, δ2, . . . , δn

are i.i.d. random variables, defined on 
, with common density ρ. Let ρ̂n(s) :=
ρ̂n(s; δ1, δ2, . . . , δn), s ∈ 
+, be an estimator of ρ such that, for some ν > 0,

Eπ1,π2

x ‖ρ − ρ̂n‖qp′/2
q = O(n−ν) as n → ∞, ∀(π1,π2) ∈ 	1 × 	2, x ∈ X, (25)

where q and p are as in Assumptions 2.2 and 2.4(c), respectively, and 1/p + 1/p′ = 1.

Examples of estimators satisfying (25) are given, for instance, in [8].
To construct strategies for player 2, we estimate ρ by the projection ρn of ρ̂n on

the set of densities D in Lq([0,∞)) defined as follows:

D :=
{
ζ : ζ is a density on Lq([0,∞)),

∫ ∞

0
exp(−αs)ζ(s)ds ≤ γ,

∫ θ

0
ζ(s)ds < 1 − ε, ζ(s) ≤ ρ̄(s) a.e.

}
. (26)

See Assumptions 2.3 and 2.4 for the constants θ, ε, and γ, and observe that ρ ∈ D.

The existence (and uniqueness) of the estimator ρn is guaranteed because the set D

is convex and closed in Lq([0,∞)), which can be easily proved following the ideas
in [2, 9, 16]. In fact, ρn ∈ D is the “best approximation” of the estimator ρ̂n on the
set D. That is, for each n ∈ N,

‖ρn − ρ̂n‖q = inf
ζ∈D

‖ζ − ρ̂n‖q . (27)
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In addition, denoting

ηn :=
∫ ∞

0
|ρ(s) − ρn(s)|ds, n ∈ N,

and letting p′ as in (25), we have

Eπ1,π2

x [ηp′
n ] = O(n−ν) as n → ∞, ∀(π1,π2) ∈ 	1 × 	2, x ∈ X. (28)

Indeed, let M ′ < ∞ such that
∫ ∞

0 (ρ̄(s))2−qds ≤ M ′ (see Assumption 2.2). Then, for
each n ∈ N, applying Hölder’s inequality, we have,

ηn =
∫ ∞

0
|ρ(s) − ρn(s)| 2−q

2 |ρ(s) − ρn(s)| q
2 ds

≤
(∫ ∞

0
|ρ(s) − ρn(s)|2−qds

)1/2(∫ ∞

0
|ρ(s) − ρn(s)|qds

)1/2

≤
(∫ ∞

0
(2ρ̄(s))2−qds

)1/2(∫ ∞

0
|ρ(s) − ρn(s)|qds

)1/2

≤ (22−qM ′)1/2‖ρ − ρn‖q/2
q ≤ (22−qM ′)1/22q/2‖ρ − ρ̂n‖q/2

q ,

where the last inequality follows from (27). Hence, (28) follows from (25).
On the other hand, for n ∈ N, let (as in (3) and (4))

�n :=
∫ ∞

0
exp(−αs)ρn(s)ds (29)

and

τn := 1 − �n

α
. (30)

Observe that �n < 1 which in turn implies that τn < 1/α (see (7) and (8)). Further-
more, for each n ∈ N,

|�α − �n| ≤ ηn (31)

and

|τα − τn| ≤ ηn

α
. (32)

4.1.2 Construction of Strategies

We define the sequence {Ln} of functions in B
∞
W as:

L0(x) = 0;
(33)

Ln(x) = inf
λ∈P(B(x))

sup
μ∈P(A(x))

{
rn(x,μ,λ) + �n

∫
X

Ln−1(y)Q(dy|x,μ,λ)

}
,
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for n ∈ N, x ∈ X, where rn is the approximate payoff function (see (5)):

rn(x, a, b) = D(x,a, b) + τnd(x, a, b), (x, a, b) ∈ K. (34)

Observe that

|r(x, a, b) − rn(x, a, b)| ≤ c̄ηn

α
W(x), (x, a, b) ∈ K, n ∈ N, (35)

and (see (13))

|rn(x, a, b)| ≤ c̄W(x), (x, a, b) ∈ K, n ∈ N.

Thus, a straightforward calculation shows that, for some constant C2,

|Ln(x)| ≤ C2W(x) ∀n ∈ N, x ∈ X. (36)

On the other hand, it is easy to prove that (following similar ideas to prove the
interchange of inf and sup in (19)) for n ∈ N, x ∈ X,

Ln(x) = sup
μ∈P(A(x))

inf
λ∈P(B(x))

{
rn(x,μ,λ) + �n

∫
X

Ln−1(y)Q(dy|x,μ,λ)

}
. (37)

Now, applying standard arguments on the existence of minimizers (see, e.g.,
[7, 12, 19]), under Assumptions 2.3 and 2.4, we have that for each n ∈ N, there exists
gn = g

ρn
n ∈ P(B(x)) such that

Ln(x) = sup
μ∈P(A(x))

{
rn(x,μ,gn) + �n

∫
X

Ln−1(y)Q(dy|x,μ,gn)

}
, x ∈ X. (38)

Observe that the function Ln depends on the observations δ̄(ω) := (δ1(ω), δ2(ω), . . . ,

δn(ω)), ω ∈ 
. Then, in a strict sense, we should have written Ln(x, δ̄) and gn(δ̄)

instead of just Ln(x) and gn, respectively. However, for notational convenience we
will keep using the short notation. Therefore, the minimization in (38) is done for
every ω ∈ 
.

We define the strategy π̂2 = {π̂2
n } for player 2 by π̂2

n := gn for all n ∈ N, and π̂2
0

is any fixed action.
We can now state our main result as follows.

Theorem 4.1 Under Assumptions 2.2–2.4, (π1∗ , π̂2) is an asymptotically discount
optimal pair of strategies.

5 Proof of Theorem 4.1

Throughout the proof, we will repeatedly use the following inequalities. For any
u ∈ BW(X),

|u(x)| ≤ ‖u‖WW(x) (39)
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and ∫
X

u(y)Q(dy | x, a, b) ≤ β‖u‖WW(x), (40)

for all (x, a, b) ∈ K. The inequality (39) is a consequence of the definition of ‖ · ‖W ,
whereas (40) follows from (39) and (iii) in Remark 2.5(b).

Lemma 5.1 Suppose that Assumptions 2.2–2.4 hold. Then

lim
n→∞Eπ1,π2

x ‖V − Ln‖p′
W = O(n−ν) as n → ∞,

for every x ∈ X and (π1,π2) ∈ 	1 × 	2.

Proof Let us define the operators

T u(x) := inf
λ∈P(B(x))

sup
μ∈P(A(x))

{
r(x,μ,λ) + �α

∫
X

u(y)Q(dy|x,μ,λ)

}
,

Tmu(x) := inf
λ∈P(B(x))

sup
μ∈P(A(x))

{
rm(x,μ,λ) + �m

∫
X

u(y)Q(dy|x,μ,λ)

}
,

for, m ∈ N, x ∈ X, u ∈ BW(X). By Assumption 2.4(c), T and Tm map BW(X) into
itself. In [15] it has been proved that T is a contraction operator with modulus β�α.

It can also be proved that for each m ∈ N, Tm is a contraction operator with modulus
β�m. Thus

‖T u − T v‖W ≤ β�α‖u − v‖W (41)

and
‖Tmu − Tmv‖W ≤ β�m‖u − v‖W,

for all u,v ∈ BW(X), m ∈ N. Now (see (29)) since �m ≤ γ < 1, we have for all
u,v ∈ BW(X), m ∈ N,

‖Tmu − Tmv‖W ≤ βγ ‖u − v‖W . (42)

Note that from Assumption 2.4 (see Remark 2.5(a)), βγ < 1.

From (19) and (33),

T V = V and TnLn−1 = Ln, n ∈ N.

Therefore, from (42), for each n ∈ N,

‖V − Ln‖W ≤ ‖T V − TnV ‖W + βγ ‖V − Ln−1‖W . (43)

On the other hand, from (18) and (35)

|T V (x) − TnV (x)| ≤ sup
λ∈P(B(x))

sup
μ∈P(A(x))

{
|r(x,μ,λ) − rn(x,μ,λ)|

+ |�α − �n|
∫

X

V (y)Q(dy|x,μ,λ)

}
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≤
(

c̄

α
+ Mβ

1 − �α

)
ηnW(x), x ∈ X, n ∈ N, (44)

which implies

‖T V − TnV t‖W ≤ M1ηn, n ∈ N, (45)

where M1 := c̄
α

+ Mβ
1−�α

.

Combining (43) and (45) we obtain, for each n ∈ N,

Eπ1,π2

x ‖V − Ln‖p′
W ≤ M

p′
1 Eπ1,π2

x

[
η

p′
n

] + (βγ )p
′
Eπ1,π2

x ‖V − Ln−1‖p′
W . (46)

Now, note that from (18) and (36), l := lim supn→∞ E
π1,π2

x ‖V − Ln‖p′
W < ∞.

Hence, since βγ < 1, taking lim sup as n → ∞ in both sides of (46), we obtain,

l ≤ M
p′
1

1 − (βγ )p
′ lim

n→∞Eπ1,π2

x

[
η

p′
n

]
,

which by (28) yields the desired result. �

Proof of Theorem 4.1 For each n ∈ N, we define the function �n as (see Remark 3.2)

�n(x,μ,λ) := rn(x,μ,λ) + �n

∫
X

Ln−1(y)Q(dy|x,μ,λ) − Ln(x). (47)

Let π1 ∈ 	1 be an arbitrary strategy for player 1, and let {(xn, an, gn)} be a se-
quence of state-actions triplets corresponding to application of (π1, π̂2). By the def-
inition of the strategy π̂2 (see (38)) we have, for each n ∈ N,

�n(xn, an, gn) ≤ sup
μ∈P(A(xn))

{
rn(xn,μ,gn) + �n

∫
X

Ln−1(y)Q(dy|xn,μ,gn)

}

− Ln(xn) = 0.

Thus, for each n ∈ N,

�(xn, an, gn) ≤ �(xn, an, gn) − �n(xn, an, gn)

≤ sup
λ∈P(B(xn))

sup
μ∈P(A(xn))

|�(xn,μ,λ) − �n(xn,μ,λ)|

≤ W(xn) sup
x∈X

[W(x)]−1 sup
λ∈P(B(x))

sup
μ∈P(A(x))

|�(x,μ,λ) − �n(x,μ,λ)|.

(48)

On the other hand, from (22) and (47), (adding and subtracting the term
�n

∫
V (y)Q(dy | x,μ,λ)) and using (39), (40), (18) and (35), we get (see (44) and

(45)), for each x ∈ X, n ∈ N, μ ∈ P(A(x)) and λ ∈ P(B(x)),

|�(x,μ,λ) − �n(x,μ,λ)|
≤ |r(x,μ,λ) − rn(x,μ,λ)| + |V (x) − Ln(x)|
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+ |�α − �n|
∫

X

V (y)Q(dy|x,μ,λ) + �n

∫
X

|V (y) − Ln−1(y)|Q(dy|x,μ,λ)

≤ M1ηnW(x) + ‖V − Ln‖WW(x) + β‖V − Ln−1‖WW(x).

Hence, for each n ∈ N,

sup
x∈X

[W(x)]−1 sup
λ∈P(B(x))

sup
μ∈P(A(x))

|�(x,μ,λ) − �n(x,μ,λ)|

≤ M1ηn + ‖V − Ln‖W + β‖V − Ln−1‖W,

which combined with (48) yields

�(xn, an, gn) ≤ M1ηnW(xn) + ‖V − Ln‖WW(xn)

+ β‖V − Ln−1‖WW(xn). (49)

Letting M2 := supn(E
π1,π̂2

x Wp(xn))
1/p < ∞ (see (12)) and applying Hölder’s

inequality in (49), we obtain,

Eπ1,π̂2

x �(xn, an, bn) ≤ M2M1(E
π1,π̂2

x η
p′
n )1/p′ + M2(E

π1,π̂2

x ‖V − Ln‖p′
W)1/p′

+ M2β(Eπ1,π̂2

x ‖V − Ln−1‖p′
W)1/p′

. (50)

To conclude, taking limsup as n → ∞ in (50), Lemma 5.1 and (28) yield

lim sup
n→∞

Eπ1,π̂2

x �(xn, an, bn) ≤ 0 ∀π1 ∈ 	1.

In addition, from the relation (23) and definition of the strategy π1∗ , we get

lim inf
n→∞ E

π1∗ ,π2

x �(xn, an, bn) ≥ 0 ∀π2 ∈ 	2.

Thus, (π1∗ , π̂2) is an asymptotically discount optimal pair of strategies. �

6 Example

We consider a storage system whose inputs are controlled in the following manner: at
the time when an amount of product M > 0 accumulates for admission in the system,
player 1 chooses a decision a ∈ [a∗,1] =: A (0 < a∗ < 1), that represents the portion
of M to be admitted. On the other hand, there is a continuous consumption of the
admitted product, controlled by the player 2. That is, at the time of each decision
epoch, player 2 chooses a number b ∈ [b∗, b∗] =: B (0 < b∗ < b∗) which represents
the consumption rate per unit time. Thus, if xn ∈ X := [0,∞) represents the stock
level, an and bn are the decisions of players 1 and 2, respectively, at the time of the
nth decision epoch Tn, then the game evolves according to the equation

xn+1 = (xn + anM − bnδn+1)
+
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with δn+1 := Tn+1 −Tn (n = 0,1,2, . . .). It is clear that the distribution of the holding
time δn+1 is independent of (xn, an, bn), and we assume that δn (n = 1,2, . . .) has
a density ρ that satisfies Assumptions 2.2 and 2.3. Moreover, the payoff function is
given by

r(x, a, b) := d̄bτα − D1x − D2a (51)

with d̄ , D1, D2 positive constants, and τα as in (4). We assume that the following is
satisfied

Assumption 6.1 Eδ1 > M/b∗.

Let � be the moment generating function of the random variable M − bδ, that is:

�(t) = E[exp(t (M − b∗δ))].
Then, Assumption 6.1 implies � ′(0) < 0, and since �(0) = 1, there exists λ > 0
such that �(λ) < 1. In addition, by the continuity of �, we can choose p > 1 such
that

β0 := �(pλ) = E[exp(λp(M − b∗δ))] < 1.

Note that by the description of the system and (51), Assumption 2.4(a), (b) are satis-
fied. Now, let M̄ be a positive constant such that for each x ∈ X,

max{d̄b∗,D1x + D2} ≤ M̄eλx,

and define W0(x) := M̄eλx. Then, for (x, a, b) ∈ K,

∫
M̄peλpyQ(dy | x, a, b)

=
∫ ∞

0
M̄peλp(x+aM−bs)+ρ(s)ds

≤ M̄pP [x + aM − bs ≤ 0] + M̄peλpx

∫ ∞

0
eλp(M−bs)ρ(s)ds

≤ M̄p + W
p

0 (x)E[eλp(M−bδ)] ≤ M̄p + W
p

0 (x)E[eλp(M−b∗δ)]
≤ β0W

p

0 (x) + M̄p.

Thus, Assumption 2.4(c) is satisfied. To verify Assumption 2.4(d), let v be a bounded
measurable function on X, and for every a ∈ A and b ∈ B , let ρ(a,b) be the density of
aM − bδ. Observe that

ρ(a,b)(y) = 1

b
ρ

(
aM − y

b

)
, −∞ < y ≤ aM.

In addition, for each y ∈ R, (a, b) �−→ ρ(a,b)(y) is continuous on A × B . Then,
∫

X

v(y)Q(dy | x, a, b) =
∫ ∞

0
v[(x + y)+]ρ(a,b)(y)dy
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= v(0)

∫ −x

−∞
ρ(a,b)(y)dy +

∫ ∞

−x

v(x + y)ρ(a,b)(y)dy

= v(0)

∫ −x

−∞
ρ(a,b)(y)dy +

∫ ∞

0
v(y)ρ(a,b)(y − x)dy.

Thus by Scheffé’s Theorem,

(a, b) �−→
∫

X

v(y)Q(dy | x, a, b)

defines a continuous function on A×B. Finally, replacing v(·) by the function W0(·)
and using similar arguments, we obtain that Assumption 2.4(d) holds.
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