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Abstract We consider a network of d companies (insurance companies, for ex-
ample) operating under a treaty to diversify risk. Internal and external borrow-
ing are allowed to avert ruin of any member of the network. The amount bor-
rowed to prevent ruin is viewed upon as control. Repayment of these loans en-
tails a control cost in addition to the usual costs. Each company tries to mini-
mize its repayment liability. This leads to a d-person differential game with state
space constraints. If the companies are also in possible competition a Nash equi-
librium is sought. Otherwise a utopian equilibrium is more appropriate. The cor-
responding systems of HJB equations and boundary conditions are derived. In the
case of Nash equilibrium, the Hamiltonian can be discontinuous; there are d in-
terlinked control problems with state constraints; each value function is a con-
strained viscosity solution to the appropriate discontinuous HJB equation. Unique-
ness does not hold in general in this case. In the case of utopian equilibrium,
each value function turns out to be the unique constrained viscosity solution to
the appropriate HJB equation. Connection with Skorokhod problem is briefly dis-
cussed.
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1 Introduction

Consider d insurance companies. Suppose the surplus (or reserve) of Company i, in
the absence of any control, is given by

Si(t) = zi +
∫ t

0
bi(r, Si(r))dr, t ≥ 0,

where zi ≥ 0 is the initial reserve and bi is the “drift” component. The term bi in-
corporates premium rate (>0) of Company i, interest rate (>0) of riskless bonds
in which the company may have invested part of its surplus, mean rate (<0) at
which claim payments are made, etc. We say Company i is ruined if Si(t) < 0 for
some t ≥ 0. Now suppose the d companies agree on a treaty, to diversify risk, along
the following lines. Accordingly, if Company i estimates at some instant of time
that it needs an amount ui(r)dr to avoid ruin, then for j �= i, Company j gives
|Rji |ui(r)dr , where ui(·) ≥ 0,Rji ≤ 0, j �= i and

∑
j �=i |Rji | ≤ 1. Of course, the

shortfall (1 − ∑
j �=i |Rji |)ui(r)dr has to be procured by Company i from “external”

sources. The amount
∑

j �=i |Rji |ui(r)dr that Company i gets from the other compa-
nies of the network is considered a loan on soft interest terms, whereas the amount
obtained from external sources carry interest at market rates. As there is mutual oblig-
ation among the companies, this is a reasonable way of diversifying the risk.

The function u(·) = (u1(·), . . . , ud(·)) is viewed upon as control, with ui denoting
the control for Company i. With the treaty in force, we get the following system of
equations to constitute state equations

yi(t) =
∫ t

0
ui(r)dr, (1.1)

zi(t) = zi +
∫ t

0
bi(r, zi(r))dr + yi(t) +

∑
j �=i

Rij yj (t), (1.2)

for t ≥ 0, with the stipulation that

zi(t) ≥ 0, t ≥ 0 (1.3)

for each i = 1,2, . . . , d . Here zi(t) = current surplus with Company i at time
t , yi(t) = cumulative amount obtained by Company i from internal and external
sources specifically for the purpose of preventing ruin over the period [0, t]. As the
objective of control is to keep the surplus nonnegative the state constraint (1.3) is
clear.

We consider a finite time horizon T > 0 to indicate that the treaty may be reviewed
at time T . Since repayment of yi(·) with interest is involved, a cost called control cost
of the form

∫ T

0 Mi(r)ui(r)dr is imposed on Company i. This cost is operative only
when the control ui is exercised. A typical control cost could be

∫ T

0
ea1(T −r)

(∑
j �=i

|Rji |
)

ui(r)dr +
∫ T

0
ea2(T −r)

(
1 −

∑
j �=i

|Rji |
)

ui(r)dr,
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where 0 ≤ a1 < a2 denote respectively interest rates for “internal” and “external”
loans. In addition there can also be the usual running cost and terminal cost. Each
company tries to minimise its cost, subject to the constraint (1.3). The companies
can possibly be in competition. Thus we are lead naturally to a d-person differential
game in the d-dimensional orthant with state space constraints, and we seek a Nash
equilibrium.

In [20] the above set up has been introduced in a greater generality which included
an r.c.l.l input function w(·) (that is, w(·) being right continuous and having left limit
at every t). In that set up, y(·), which was treated as control, need not be absolutely
continuous or even continuous. Under certain natural monotonicity conditions, it was
shown that a Nash equilibrium is given by the solution to the so called deterministic
Skorokhod problem. This means, in addition to (1.3) and the analogues of (1.1), (1.2),
we stipulate that yi(·) can increase only when zi(·) = 0, 1 ≤ i ≤ d . Of course the
game in [20] is a d-person dynamic game with state space constraints. Conditions
were also given for Nash equilibrium to be the solution of the Skorokhod problem. It
is argued in [20] that the above set up constitutes a reinsurance scheme. (See [22] for
surplus process and ruin problems in the context of single insurance company.)

As another illustration, consider d interdependent sectors of an economy; these
can even be different sections of the same company. If one sector faces severe finan-
cial strain, other sectors can pitch in previously-agreed-upon fractions of the money
needed. Once again we are lead to (1.1), (1.2) and the state constraint (1.3). In this
case, however, the different sectors may not be in competition, but each sector will try
to minimise its cost. This leads again to a d-person differential game with state space
constraints, and we seek to simultaneously minimise cost of each sector. We call an
optimal control in this situation to be a utopian equilibrium; the name is derived from
a comment in [15]. In Sect. 5 of [19] a more general model has been considered with-
out the game theoretic trappings; under fairly strong monotonicity conditions it has
been proved that the deterministic Skorokhod problem provides the utopian equilib-
rium. See [11, 21] for earlier results, and [19] for additional comments.

The purpose of this paper is to study the d-person differential game (in the orthant
with state space constraints) using the framework of HJB equations and constrained
viscosity solutions. Soner [24] has been the first to consider control problems with
state space constraints. Since then it is known that the appropriate way to study such
problems is through the so called constrained viscosity solutions to HJB equations.

In the case of utopian equilibrium, there are d control problems each with a
d-dimensional control set; should all the d problems attain their minima at the same
control we have a utopian equilibrium. Under some conditions the value function for
the i-th player is shown to be the unique bounded uniformly continuous constrained
viscosity solution to the appropriate HJB equation.

In the case of Nash equilibrium, there are d interlinked control problems with one
dimensional control sets. The Hamiltonian can be discontinuous in the time variable.
We show that the value function is a constrained viscosity solution to the discontin-
uous HJB equation in an appropriate sense, involving the semicontinuous envelopes
of the Hamiltonian. It is also shown that uniqueness does not hold in general.

The paper is organized as follows. In Sect. 2 we describe the differential game,
and derive the HJB equations as well as the “boundary conditions” dictated by the
state space constraint. We also take a preliminary glance at viscosity solutions under
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somewhat strong regularity assumptions. In Sect. 3 we take a closer look at viscosity
solutions as the Hamiltonian will be discontinuous in the context of Nash equilibrium;
an appropriate notion of constrained viscosity solution is defined. An Appendix in-
cludes a brief discussion on the connection with the deterministic Skorokhod problem
of probability theory. An example is given to show that Nash equilibrium need not be
unique.

We now indicate some connections with previous works. Besides [24], HJB equa-
tions with state constraints have been considered by [9]; see [3, 13] for more infor-
mation. There have been quite a few papers where Skorokhod problem, deterministic
as well as stochastic, has played a major role in control and 2-person zero-sum dif-
ferential game problems. In many of these, the dynamics of the system is governed
by the z-part of the solution to Skorokhod problem; often the so called Skorokhod
map is assumed to be Lipschitz continuous on the function space. Moreover the re-
flection terms are essentially taken to be constants. Existence and uniqueness of the
value function as viscosity solution to appropriate PDE are often studied. Costs corre-
sponding to singular controls (which are similar to control costs considered here) and
ergodic controls are also investigated. To get a flavour of these one may see [1, 2, 6]
and the references therein.

There seems to be quite a few papers on stochastic differential games with N

players (and on two player nonzero sum stochastic differential games), with a non-
degenerate diffusion term in the dynamics. While [4, 5, 16] use regularity results
for systems of nonlinear elliptic/parabolic equations to obtain Nash equilibrium, [7]
adopts an approach involving occupation measures. References to earlier works are
given in these papers.

In contrast, there do not seem to be many papers dealing with the deterministic
set up, that is, on differential games with N players or on two-player nonzero sum
differential game; part of the reason could be the absence of a uniformly elliptic
term in the Hamiltonian and the consequent non availability of regularity results for
the resulting system of PDE’s. Olsder [18] illustrates some of the difficulties and
curious aspects in the context of two instructive examples concerning two-person
nonzero-sum differential games. Cardaliaguet and Plaskacz [10] deal with a class
of nonzero sum two person differential games on the line; even with an apparently
simple looking dynamics, there are unexpected features like having to discriminate
between interesting and uninteresting Nash equilibrium feedbacks; the approach here
involves explicitly computing the suitable solution in small intervals. Bressan and
Shen [8] consider n-person differential games in one dimension for which the system
of HJB equations is strictly hyperbolic, and derive Nash equilibria for such situations.
Besides giving references to earlier works, these three papers illustrate some of the
difficulties inherent in getting global solutions to d-person differential games.

To the best of our knowledge, there is no previous work dealing with d-person
differential games with state space constraints. Our paper gives an example of a sit-
uation where a system of first order nonlinear PDE’s, with constraints and involving
discontinuous Hamiltonian, can be dealt with using the viscosity solution approach.
Moreover, the connection with Skorokhod problem also indicates a way of obtaining
the constrained viscosity solution.

We now fix some notations. For 1 ≤ i ≤ d , y ∈ R
d we denote y−i = (y1, . . . ,

yi−1, yi+1, . . . , yd). Similarly for an R
d -valued function g(·),1 ≤ i ≤ d, we write
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g−i (·) = (g1(·), . . . , gi−1(·), gi+1(·), . . . gd(·)) where g(·) = (g1(·), . . . , gd(·)). We
shall often identify g(·) = (gi(·), g−i (·)).

For a function (r, y, z) �→ f (r, y, z) on [0,∞) × R
d × R

d denote ∂0f (r, y, z) =
∂f
∂r

(r, y, z),

∇yf (r, y, z) =
(

∂f

∂y1
(r, y, z), . . . ,

∂f

∂yd

(r, y, z)

)
,

∇zf (r, y, z) =
(

∂f

∂z1
(r, y, z), . . . ,

∂f

∂zd

(r, y, z)

)
,

D(y,z)f = (∇yf,∇zf ) = gradient of f in (y, z)-variables. We may also write x =
(y, z). Md(R) denotes the space of all d × d matrices with real entries. The super-
script N (resp. U ) will be used to indicate that the discussion is in the context of Nash
(resp. utopian) equilibrium.

2 The Set Up and HJB Equations

In this section we describe the constrained d-person differential game in the orthant.
Two notions of optimality, viz., Nash and utopian equilibria are discussed. Corre-
sponding systems of HJB equations and the conditions at the boundary are derived
for the finite horizon problem. If the Hamiltonian, the optimal control and the value
function are sufficiently regular, it is also shown that the value function is a con-
strained viscosity solution to the HJB equation.

The hypotheses are more general than alluded to in Sect. 1. The drift and the
reflection field can be time, space and control dependent. Rij , i �= j can also take
positive values.

G := {x ∈ R
d : xi > 0, 1 ≤ i ≤ d} denotes the d-dimensional positive orthant.

We have two functions b : [0,∞) × R
d × R

d → R
d ,R : [0,∞) × R

d × R
d →

Md(R) called respectively the drift and the reflection field; denote b(s, y, z) =
(b1(s, y, z), . . . , bd(s, y, z)) and R(s, y, z) = ((Rij (s, y, z)))1≤i,j≤d . We make the
following assumptions:

(A1) For 1 ≤ i ≤ d, bi are bounded measurable; also (y, z) �→ bi(t, y, z) are
Lipschitz continuous, uniformly in t ; let |bi(t, y, z)| ≤ β̃i ,1 ≤ i ≤ d, β̃ =
(β̃1, . . . , β̃d).

(A2) For 1 ≤ i, j ≤ d , Rij are bounded measurable; also (y, z) �→ Rij (t, y, z) are
Lipschitz continuous, uniformly in t . Moreover Rii ≡ 1 for all i (this is a suit-
able normalization).

(A3) For i �= j there exist constants Wij such that |Rij (t, y, z)| ≤ Wij . Set W =
((Wij )) with Wii ≡ 0; we assume that σ(W) < 1, where σ(W) denotes the
spectral radius of W .

Remark 2.1 Recall the situation considered in Sect. 1. For i �= j let Rij ≡ −Wij

≤ 0. If
∑

j �=i |Rji | = ∑
j �=i Wji = 1 for all i, then (0,0, . . . ,0) can be a trap for the

system, as all the companies need money at the same time to avoid ruin, and there
is no scope for getting it from external sources. From the above it is clear that 1 is
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an eigenvalue of W in this case. Thus (A3) ensures that such a contingency does not
arise and hence we have an open system.

When (A3) holds, note that

(I − W)−1 = I + W + W 2 + W 3 + · · · (2.1)

is a matrix of nonnegative terms. We shall choose and fix βi > 0,1 ≤ i ≤ d such that

0 ≤ ((I − W)−1β̃)i ≤ βi, i = 1,2, . . . , d, (2.2)

where β̃ is as in (A1).
Fix the terminal time T > 0. For s ∈ [0, T ], y, z ∈ Ḡ, u(·) = (u1(·), . . . , ud(·))

such that 0 ≤ ui(·) ≤ βi , 1 ≤ i ≤ d , set

y(t) = y +
∫ t

s

u(r)dr, (2.3)

z(t) := z(t; s, y, z,u(·))
= z +

∫ t

s

b(r, y(r), z(r))dr +
∫ t

s

R(r, y(r), z(r))u(r)dr (2.4)

equivalently, for 1 ≤ i ≤ d, t ≥ s

yi(t) = yi +
∫ t

s

ui(r)dr, (2.5)

zi(t) = zi +
∫ t

s

bi(r, y(r), z(r))dr +
∫ t

s

ui(r)dr

+
∑
j �=i

∫ t

s

Rij (r, y(r), z(r))uj (r)dr. (2.6)

Clearly yi(·) ≥ 0, well defined and nondecreasing. By the standard assumptions (A1),
(A2) the integral equation (2.4) has a unique solution. We shall treat (y(·), z(·)) as
state of the system. The pair of (2.3), (2.4), or equivalently (2.5), (2.6), forms state
equations. We shall consider only controls u(·) that take values in the compact set∏d

i=1[0, βi]. For s ∈ [0, T ], y, z ∈ Ḡ write

U(s, y, z;T ) = {u(·) = (u1(·), . . . , ud(·)) : 0 ≤ ui(·) ≤ βi, zi(·) ≥ 0,

on [s, T ],1 ≤ i ≤ d} (2.7)

to denote the set of feasible controls; in (2.7) zi(·) is given by (2.4) or (2.6). The cost
function for the ith player is given by

Ji(s, y, z;T ,u(·))
= gi(T , y(T ), z(T ))

+
∫ T

s

Li(r, y(r), z(r))dr +
∫ T

s

Mi(r, y(r), z(r))ui(r)dr, (2.8)
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where the three terms on the right side denote respectively terminal cost, running
cost and control cost. A control u∗(·) ∈ U(s, y, z;T ) is called a utopian equilibrium
in U(s, y, z;T ) if

Ji(s, y, z;T ,u∗(·)) ≤ Ji(s, y, z;T ,u(·)) (2.9)

for all u ∈ U(s, y, z;T ), i = 1,2, . . . , d . Similarly a control u∗(·) =
(u∗

1(·), . . . , u∗
d(·)) ∈ U(s, y, z;T ) is called a Nash equilibrium in U(s, y, z;T ) if for

i = 1,2, . . . , d

Ji(s, y, z;T ,u∗(·))
= inf{Ji(s, y, z;T ,u(·)) : u−i = u∗−i , u ∈ U(s, y, z;T )}. (2.10)

Remark 2.2 Under (A1–A3), by the proof of Theorem 5.1 of [19], ui(·) = ((I −
W)−1β̃)i , 1 ≤ i ≤ d , is a feasible control. So U(s, y, z;T ) �= φ for any s ∈
[0, T ], y, z ∈ Ḡ. This is a reason why we consider only those controls taking val-
ues in

∏d
i=1[0, βi].

For fixed 1 ≤ i ≤ d , let u−i (·) = (u1(·), . . . , ui−1(·), ui+1, . . . , ud(·)) be such that

0 ≤ uj (r) ≤ βj , 0 ≤ r ≤ T , j �= i. (2.11)

For any s ∈ [0, T ], y, z ∈ Ḡ, i = 1,2, . . . , d, u−i (·) satisfying (2.11) we shall assume

U(s, y, z;T ,u−i (·))
:= {ui(·) : 0 ≤ ui(·) ≤ βi, (ui(·), u−i (·)) ∈ U(s, y, z;T )} �= φ. (2.12)

A sufficient condition for (2.12) to hold is given in an Appendix.
To derive the system of HJB equations with state constraints, we consider first the

case of Nash equilibrium.
For s, y, z,u−i as above, where i is fixed, define the value function for ith player

by

V (N,i)(s, y, z;T ,u−i (·))
= inf{Ji(s, y, z;T , (ui(·), u−i (·))) : ui ∈ U(s, y, z;T ,u−i )}. (2.13)

Following the approach given in Sect. I.4 of [13], we get the following dynamic pro-
gramming principle.

Theorem 2.3 (i) Assume (A1), (A2). Fix 1 ≤ i ≤ d ; let u−i (·) satisfy (2.11). Assume
(2.12). Let s ∈ [0, T ], y, z ∈ Ḡ, ui ∈ U(s, y, z;T ,u−i ). Then for s ≤ t1 ≤ t2 ≤ T ,

V (N,i)(t1, y(t1), z(t1);T ,u−i (·))
≤ V (N,i)(t2, y(t2), z(t2);T ,u−i (·))

+
∫ t2

t1

Li(r, y(r), z(r))dr +
∫ t2

t1

Mi(r, y(r), z(r))ui(r)dr, (2.14)
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where (y(·), z(·)) is the solution to state equation corresponding to the control
(ui, u−i ).

(ii) Under the above hypotheses, u∗
i (·) is optimal in U(s, y, z;T ,u−i ), that is,

V (N,i)(s, y, z;T ,u−i (·)) = Ji(s, y, z;T , (u∗
i , u−i )),

if and only if for any t ∈ [s, T ]
V (N,i)(s, y, z;T ,u−i ) − V (N,i)(t, ȳ(t), z̄(t);T ,u−i )

=
∫ t

s

Li(r, ȳ(r), z̄(r))dr +
∫ t

s

Mi(r, ȳ(r), z̄(r))u∗
i (r)dr, (2.15)

where (ȳ(·), z̄(·)) is the solution to state equation corresponding to the control
(u∗

i , u−i ). Moreover if (2.15) holds then for any t ∈ [s, T ], the restriction of u∗
i (·)

to [t, T ] is optimal in U(t, ȳ(t), z̄(t);T ,u−i ).
(iii) Assume (A1–A3). Then u∗(·) ∈ U(s, y, z;T ) is a Nash equilibrium if and only

if for s ≤ t1 ≤ t2 ≤ T , i = 1,2, . . . , d

V (N,i)(t1, y
∗(t1), z∗(t1);T ,u∗−i (·))

= V (N,i)(t2, y
∗(t2), z∗(t2);T ,u∗−i (·))

+
∫ t2

t1

Li(r, y
∗(r), z∗(r))dr +

∫ t2

t1

Mi(r, y
∗(r), z∗(r))u∗

i (r)dr, (2.16)

where (y∗(·), z∗(·)) is the solution to state equation corresponding to u∗(·). More-
over, when (2.16) holds, for any t ∈ [s, T ] the restriction of u∗(·) to [t, T ] is a Nash
equilibrium in U(t, y∗(t), z∗(t);T ).

Proof (i) Let s ≤ t1 ≤ t2 ≤ T and ûi (·) ∈ U(t2, y(t2), z(t2);T ,u−i (·)). Define
ũi (r) = ui(r), t1 ≤ r < t2, ũi(r) = ûi (r), t2 ≤ r ≤ T . By uniqueness of solution to
state equations (2.3), (2.4) it follows that ũi (·) ∈ U(t1, y(t1), z(t1);T ,u−i (·)) (this is
a switching condition). By definition of the value function we have

V (N,i)(t1, y(t1), z(t1);T ,u−i (·))
≤ Ji(t1, y(t1), z(t1);T , (ũi(·), u−i (·)))
= Ji(t2, y(t2), z(t2);T , (ũi(·), u−i (·)))

+
∫ t2

t1

Li(r, y(r), z(r))dr +
∫ t2

t1

Mi(r, y(r), z(r))ui(r)dr

where we have used the fact that the solutions corresponding to the controls (ui, u−i )

and (ũi , u−i ) agree up to t2. Taking infimum over ûi (·) ∈ U(t2, y(t2), z(t2);T ,u−i (·))
we get (2.14).

(ii) From the proof of part (i) it is clear that optimality is achieved if and only if
equality holds in (2.14); this proves (ii).

(iii) This is a easy consequence of part (ii) and the definition of Nash equilib-
rium. �
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Fix i, u−i (·) satisfying (2.11); assume (2.12). It is convenient to define, for
s ∈ [0, T ], y, z ∈ R

d, c ∈ [0,∞),R
2d -valued vector by

f (N,i)(s, (y, z), c) :=
⎛
⎝

(
c

u−i (s)

)

b(s, y, z)

⎞
⎠ +

(
0 0
0 R(s, y, z)

)⎛
⎝ 0(

c

u−i (s)

)
⎞
⎠ , (2.17)

where (c, u−i (s)) := (u1(s), . . . , ui−1(s), c, ui+1(s), . . . , ud(s)), the square matrix
on r.h.s. is of order 2d , and the scalar by

C(N,i)(s, (y, z), c) = Li(s, y, z) + Mi(s, y, z)c. (2.18)

It is to be kept in mind that u−i (·) acts as a parameter. In this notation state equations
(2.3), (2.4) can be written as

d

(
y(t)

z(t)

)
= f (N,i)(t, (y(t), z(t)), ui(t))dt, t > s (2.19)

with initial value (y(s), z(s)) = (y, z), and the cost function for ith player as

Ji(s, y, z;T , (ui(·), u−i (·)))
= gi(T , y(T ), z(T )) +

∫ T

s

C(N,i)(r, (y(r), z(r)), ui(r))dr. (2.20)

Next the Hamiltonian H(N,i) (for ith player in case of Nash equilibrium) is defined
by

H(N,i)(s, (y, z),p)

= sup{[−〈p,f (N,i)(s, (y, z), c)〉 − C(N,i)(s, (y, z), c)] : 0 ≤ c ≤ βi}
(2.21)

for s ≥ 0, y, z ∈ R
d,p ∈ R

2d .
Assume that u−i is right continuous, and that V (N,i) is continuously differentiable.

Assume also that b,R are continuous in t .
Let s ∈ [0, T ), y, z ∈ G (that is, interior point). Let 0 ≤ c ≤ βi . Then there is

ui(·) ∈ U(s, y, z;T ,u−i (·)) which is right continuous and limr↓s ui(r) = c. This
can be seen as follows. As z ∈ G is an interior point, for the control (c, u−i ) one
can run the state equation till τ , where τ = inf{t ≥ s : z(t) �∈ Ḡ}. Choose t0 ∈
(s, τ ∧ T ); clearly z(t0) ∈ Ḡ. By (2.12) there is vi(·) ∈ U(t0, y(t0), z(t0);T ,u−i (·)).
Take ui(r) = c, if s ≤ r < t0, ui(r) = vi(r), t0 ≤ r ≤ T .

Denote V (s, y, z) = V (N,i)(s, y, z;T ,u−i (·)), f (s, (y, z), c) = f (N,i)(s, (y, z), c),

C(s, (y, z), c) = C(N,i)(s, (y, z), c). By (2.14) in Theorem 2.3(i) we get

∂0V (s, y, z) + 〈D(y,z)V (s, y, z), f (s, (y, z), c)〉 + C(s, (y, z), c) ≥ 0, (2.22)

where ∂0 = ∂
∂s

and D(y,z) = gradient in the (y, z)-variables. As c ∈ [0, βi] is arbitrary,
we get

inf{[∂0V (s, y, z) + 〈D(y,z)V (s, y, z), f (s, (y, z), c)〉 + C(s, (y, z), c)] : 0 ≤ c ≤ βi}
≥ 0. (2.23)
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If ui(·) ∈ U(s, y, z;T ,u−i (·)) is optimal, and right continuous at s, then by Theo-
rem 2.3(ii), note that equality holds in (2.22) with c replaced by ui(s). Therefore V

satisfies

inf{[∂0V (s, y, z) + 〈D(y,z)V (s, y, z), f (s, (y, z), c)〉 + C(s, (y, z), c)] : c ∈ [0, βi]}
= 0. (2.24)

With the Hamiltonian introduced in (2.21), we write (2.24) in the conventional (but
equivalent) form as

−∂0V (s, y, z) + H(N,i)(s, (y, z),D(y,z)V (s, y, z)) = 0, (2.25)

for (s, y, z) ∈ [0, T ) × G × G. In (2.25) u−i (·) acts as a parameter. Equation (2.25)
is a Hamilton-Jacobi-Bellman equation.

Recall that we admit only those controls such that zk(·) ≥ 0 for all k. This re-
striction implies a condition at the boundary, and leads to what is referred to as a
“problem with state constraints” in the literature. Soner [24] was the first to consider
such problems; one may consult [3] or [13] for detailed discussions. We describe
below the state constraint in our context.

Since y(t) ∈ Ḡ automatically, note that ui(·) is feasible if and only if (y(t), z(t)) ∈
Ḡ × Ḡ for all t ; hence Ḡ × Ḡ is taken as the state space. For y, z ∈ R

d denote
Iy = {j : yj = 0}, Iz = {k : zk = 0}. Clearly (y, z) ∈ ∂(G × G) ⇔ Iy ∪ Iz �= φ. For
(y, z) ∈ ∂(G×G) let N(y,z) = set of all unit inward normals at (y, z). It is not difficult
to see that n ∈ N(y,z) ⇔ n is a convex combination of ej , ed+k with j ∈ Iy, k ∈ Iz

where e�’s denote unit vectors in R
2d .

Let (y, z) ∈ ∂(G × G). Suppose there is a feasible control ui(·) with some initial
data and t such that (y(t), z(t)) = (y, z) where (y(·), z(·)) is the solution to the state
equation (2.19) corresponding to the control ui(·). Since (y(t), z(t)) is a boundary
point note that (y(r), z(r)) ∈ Ḡ × Ḡ for all r ≥ t ⇔ 〈( y(r)−y(t)

z(r)−z(t)

)
, n

〉 ≥ 0 for all n ∈
N(y,z), r ≥ t . Hence

〈
d
( y(t)

z(t)

)
, n

〉 ≥ 0 for all n ∈N(y,z). So by (2.19) we get

〈f (N,i)(t, (y, z), ui(t)), n〉 ≥ 0, ∀n ∈ N(y,z). (2.26)

Note that ui(·), uj (·), j �= i are always nonnegative (even for i, j �∈ Iy ). So by (2.17),
the “boundary condition” (2.26) is essentially

bi(t, y, z) + ui(t) +
∑
� �=i

Ri�(t, y, z)u�(t) ≥ 0 (2.27)

if i ∈ Iz, and

bk(t, y, z) + Rki(t, y, z)ui(t) + uk(t) +
∑
� �=i,k

Rk�(t, y, z)u�(t) ≥ 0, k �= i, k ∈ Iz

(2.28)

again remembering that i, uj (·), j �= i are fixed.
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Let (y, z) ∈ ∂(G × G). Let ui(·) ∈ U(s, y, z;T ,u−i (·)) be optimal and right con-
tinuous. Denoting V (N,i), f (N,i),C(N,i) respectively by V,f,C, as V ∈ C1([0, T ] ×
Ḡ × Ḡ), f is continuous, by the dynamic programming principle we get

∂0V (s, y, z) + 〈D(y,z)V (s, y, z), f (s, (y, z), ui(s))〉 + C(s, (y, z), ui(s)) = 0.

(2.29)

Assume that the Hamiltonian is continuous. As (2.25) holds on [0, T ) × G × G, it is
now clear that it is true on [0, T ] × Ḡ × Ḡ as well. Consequently by (2.29) we now
get, denoting H(N,i) by H ,

H(s, (y, z),D(y,z)V (s, y, z))

= −〈D(y,z)V (s, y, z), f (s, (y, z), ui(s))〉 − C(s, (y, z), ui(s)). (2.30)

Now by the definition of H with p = D(y,z)V (s, y, z)−γ n, for any γ ≥ 0, n ∈ N(y,z)

by (2.26), (2.30) we get

H(s, (y, z),D(y,z)V (s, y, z) − γ n) ≥ H(s, (y, z),D(y,z)V (s, y, z)). (2.31)

Thus the state constraint (2.26), which is essentially (2.27), (2.28), implies that the
implicit inequality (2.31) has to be satisfied by D(y,z)V

(N,i) at a boundary point. The
heuristics above on state constraints have been influenced by the discussion on pp.
102–103 of [13].

It is well known that “viscosity solutions” is the appropriate framework to treat
Hamilton-Jacobi-Bellman equations; in particular “constrained viscosity solutions”
form the proper context to take care of problems with state constraints. Bardi and
Capuzzo-Dolcetta [3] and Fleming and Soner [13] have very nice treatment of vis-
cosity solutions to HJB equations when the Hamiltonian is continuous.

We now rephrase some key definitions from [3, 13] in our context. Assume that
the Hamiltonian H(N,i) given by (2.21) is continuous.

(i) A continuous function u is said to be a viscosity subsolution to the HJB equation
(2.25) on [0, T )×G×G if for any s ∈ [0, T ), y ∈ G,z ∈ G, any C1-function w

such that (u − w) has a local maximum at (s, y, z) one has

−∂0w(s, y, z) + H(N,i)(s, (y, z),Dy,zw(s, y, z)) ≤ 0.

(ii) A continuous function u is said to be viscosity supersolution to (2.25) on
[0, T ] × G × G if for any s ∈ [0, T ], y ∈ G,z ∈ G, any C1-function w such
that (u − w) has a local minimum in [0, T ] × G × G at (s, y, z) one has

−∂0w(s, y, z) + H(N,i)(s, (y, z),Dy,zw(s, y, z)) ≥ 0.

(iii) If u satisfies both (i), (ii) above then it is called a constrained viscosity solution
to the HJB equation (2.25) on [0, T ] × G × G.

Note that in (i), (ii) above we use the same Hamiltonian function H(N,i). This is
in contrast to the situation in Definition 3.2 later, where we deal with discontinu-
ous Hamiltonian; in Definition 3.2, we will need to consider lower and upper semi-
continuous envelopes of the Hamiltonian, respectively, for the subsolution and the
supersolution.
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We need an elementary lemma first, whose proof is given for the sake of com-
pleteness.

Lemma 2.4 Let D ⊆ R
k be a convex set (not necessarily smooth or bounded).

For ξ ∈ ∂D let Nξ denote the set of unit inward normal vectors at ξ . Let g be a
C1-function and x ∈ ∂D such that g(x) = min{g(x′) : x′ ∈ D̄}. Then ∇g(x) = γ n

for some n ∈ Nx, γ ≥ 0.

Proof We may assume that |∇g(x)| �= 0. Suppose the result is not true. Then there
is x′ ∈ D̄ such that

〈 ∇g(x)
|∇g(x)| , (x

′ − x)
〉
< 0 (since D is convex, x ∈ ∂D we have n ∈

Nx ⇔ |n| = 1 and 〈ξ − x,n〉 ≥ 0 ∀ξ ∈ D̄). Clearly x′ �= x; put � = x′−x
|x′−x| . Then

〈∇g(x), �〉 < 0.
Now, by the mean value theorem, for any 0 < r < 1 there is r ′ ∈ (0, r) such that

g(x + r�) = g(x) + r〈∇g(x + r ′�), �〉.
Since g attains minimum at x (over D̄) it follows then that 〈∇g(x + r ′�), �〉 ≥ 0.
Letting r ↓ 0, as g is C1, we get 〈∇g(x), �〉 ≥ 0 which is a contradiction. This proves
the lemma. �

Theorem 2.5 Assume (A1), (A2); let b, R be continuous in t , y, z. Fix i, u−i (·)
satisfying (2.11); also let u−i (·) be continuous. Suppose the Hamiltonian H(N,i)

given by (2.21) is continuous. Assume (2.12). Assume that the value function
V (N,i)(· , · , · ;T ,u−i (·)) ∈ C1([0, T ] × Ḡ × Ḡ), and that there is a right continuous
optimal control ui(·) in U(s, y, z;T ,u−i (·)) for any s, y, z. Then V (N,i) is a con-
strained viscosity solution to HJB equation (2.25) on [0, T ] × Ḡ × Ḡ with terminal
value gi(T , · , ·).
Proof First observe that our hypotheses ensure that the arguments given in heuristic
discussion above are valid. By the definition of constrained viscosity solution, we
need to show that V ≡ V (N,i) is a viscosity subsolution on [0, T ) × G × G, and is a
viscosity supersolution on [0, T ] × Ḡ × Ḡ.

Let (s, y, z) ∈ [0, T )×G×G. Let w be a C1-function such that (V −w) has a lo-
cal maximum at (s, y, z). Then ∂0w(s, y, z) = ∂0V (s, y, z) if s > 0,−∂0w(s, y, z) ≤
−∂0V (s, y, z) if s = 0. Since (y, z) is an interior point, we have D(y,z)w(s, y, z) =
D(y,z)V (s, y, z). Therefore, as V satisfies (2.25)

−∂0w(s, y, z) + H(N,i)(s, (y, z),D(y,z)w(s, y, z))

≤ −∂0V (s, y, z) + H(N,i)(s, (y, z),D(y,z)V (s, y, z) = 0.

Thus V is a viscosity subsolution on [0, T )×G×G. In a similar way it can be shown
that it is a viscosity supersolution on [0, T ) × G × G.

Remains to consider the case when s ∈ [0, T ], (y, z) ∈ ∂(G × G). Let w be a
C1-function such that (V − w) has a local minimum (in [0, T ] × Ḡ × Ḡ) at (s, y, z).
It is then easily verified that −∂0w(s, y, z) ≥ −∂0V (s, y, z). Also there is a ball B

around (y, z) such that

V (s, y, z) − w(s, y, z) = min{V (s, y′, z′) − w(s, y′, z′) : (y′, z′) ∈ B ∩ (Ḡ × Ḡ)}.
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As B ∩ (Ḡ × Ḡ) is a convex set in R
2d , by Lemma 2.4

D(y,z)[V (s, y, z) − w(s, y, z)] = γ n, for some n ∈ N(y,z), γ ≥ 0.

As (y, z) is an interior point of B , note that n is an inward normal to (G × G) at
(y, z). Hence

D(y,z)w(s, y, z) = D(y,z)V (s, y, z) − γ n.

Consequently by (2.31) and (2.25) we now obtain

−∂0w(s, y, z) + H(N,i)(s, (y, z),D(y,z)w(s, y, z))

≥ −∂0V (s, y, z) + H(N,i)(s, (y, z),Dy,zV (s, y, z)) = 0.

Thus V is a viscosity supersolution to (2.25) on [0, T ] × Ḡ × Ḡ, completing the
proof. �

Remark 2.6 Note that if u−i (·) continuous, and the various coefficients are also
continuous, then the Hamiltonian H(N,i) is continuous. So in case a Nash equilib-
rium can be achieved in the class of continuous controls we have the following.
Suppose u∗(·) = (u∗

1(·), . . . , u∗
d(·)) is a Nash equilibrium. In addition assume that

u∗(·) is continuous and (s, y, z) �→ V (N,i)(s, y, z;T ,u∗−i (·)) = Ji(s, y, z;T ,u∗(·)) is
in C1([0, T ] × Ḡ × Ḡ) for each i = 1,2, . . . , d . Then by Theorem 2.5 (s, y, z) �→
V (N,i)(s, y, z;T ,u∗−i (·) is a constrained viscosity solution to the HJB equation (2.25)
with u−i (·) replaced by u∗−i (·), for each 1 ≤ i ≤ d . So we will have a system of in-
terrelated HJB equations involving continuous Hamiltonians with state constraints.
However, in general the value function will not be smooth; nor can one hope to have
a continuous Nash equilibrium. Moreover the Hamiltonian will not be continuous in
general as we will see later. An interesting question is when can one hope to have a
Nash equilibrium in the class of continuous, or at least piecewise continuous controls;
in such a case we may not need to go beyond the class of continuous Hamiltonians.
We do not have an answer. This may perhaps be related to similar question concern-
ing the solution to the Skorokhod problem, in view of Section “The SP Connection”
in an Appendix.

We now briefly indicate the HJB equations in the case of utopian equilibrium; note
that

∏d
i=1[0, βi] can be taken as the control set. As before Ḡ × Ḡ is the state space.

For s ∈ [0, T ], y, z ∈ R
d, u ∈ ∏d

i=1[0, βi] define R
2d -valued vector by

f (U)(s, (y, z), u) =
(

u

b(s, y, z)

)
+

(
0 0
0 R(s, y, z)

)(
0
u

)
. (2.32)

So the state equations (2.3), (2.4) become

d

(
y(t)

z(t)

)
= f (U)(t, (y(t), z(t)), u(t))dt (2.33)
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with initial value (y(s), z(s)) = (y, z) corresponding to the control u(·). Define a
scalar function for i = 1, . . . , d by

C(U,i)(s, (y, z), u) = Li(s, y, z) + Mi(s, y, z)ui . (2.34)

Note that C(N,i) given by (2.18) and C(U,i) above differ in their domain of definition;
so C(U,i)(s, (y, z), u) = C(N,i)(s, (y, z), ui). Cost function Ji for the ith player, cor-
responding to the control u(·), is the same as before. The value function for the ith
player is

V (U,i)(s, y, z;T ) = inf{Ji(s, y, z;T ,u(·)) : u(·) ∈ U(s, y, z;T )}. (2.35)

The Hamiltonian is, for s ∈ [0, T ], y, z ∈ R
d,p ∈ R

2d , given by

H(U,i)(s, (y, z),p)

= sup

{
[−〈p,f (U)(s, (y, z), u)〉 − C(U,i)(s, (y, z), u)] : u ∈

d∏
i=1

[0, βi]
}

.

(2.36)

In a manner analogues to the earlier discussion, the HJB equation in this context is
seen to be

−∂0v(s, y, z) + H(U,i)(s, (y, z),D(y,z)v(s, y, z)) = 0. (2.37)

The state constraint once again leads to a “boundary condition” which is the ana-
logue of (2.26). Together with the HJB equation, this in turn implies the implicit
inequality (2.31) for the Hamiltonian H(U,i) under suitable regularity.

Using Remark 2.2, and proceeding as in the proofs of Theorems 2.3 and 2.5 with
obvious modifications we get the following result.

Theorem 2.7 (i) Assume (A1–A3). A control u∗(·) ∈ U(s, y, z;T ) is a utopian equi-
librium if and only if for s ≤ t1 ≤ t2 ≤ T ,1 ≤ i ≤ d ,

V (U,i)(t1, y
∗(t1), z∗(t1);T )

= V (U,i)(t2, y
∗(t2), z∗(t2);T )

+
∫ t2

t1

Li(r, y
∗(r), z∗(r))dr +

∫ t2

t1

Mi(r, y
∗(r), z∗(r))u∗

i (r)dr,

(2.38)

where y∗(·), z∗(·) is the solution to state equation corresponding to the control u∗(·).
(ii) For fixed i, suppose H(U,i) is continuous, V (U,i) ∈ C1([0, T ] × Ḡ × Ḡ) and

that the optimal control is continuous. Then V (U,i) is a constrained viscosity solution
to the HJB equation (2.37).
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3 Viscosity Solutions

In this section we take a closer look at the value functions being viscosity solutions
to the appropriate HJB equations derived in Sect. 2, as well as the question of unique-
ness.

We consider the case of Nash equilibrium first. As already mentioned in Re-
mark 2.6, the hypotheses of Theorem 2.5 are too strong. In particular, by (2.17),
(2.21) note that the Hamiltonian H(N,i) depends on u−i (·) and hence can be dis-
continuous in general. So even to define viscosity solutions we need to introduce
semicontinuous envelopes of the Hamiltonian. Moreover, as we shall see uniqueness
need not hold.

Fix 1 ≤ i ≤ d,u−i (·) satisfying (2.11). We continue to assume (A1–A3), (2.12).
Recall that the HJB equation is

−∂0v(s, y, z) + H(N,i)(s, (y, z),D(y,z)v(s, y, z)) = 0, (3.1)

where H(N,i) is given by (2.21).
For notational convenience write H = H(N,i). For t ∈ [0, T ], y, z ∈ Ḡ,p ∈ R

2d

set

H∗(t, (y, z),p)

= lim inf{H(t ′, (y′, z′),p′) : (t ′, (y′, z′),p′) → (t, (y, z),p)

in [0, T ] × Ḡ × Ḡ × R
2d}

= lim
θ↓0

inf{H(t ′, (y′, z′),p′) : |(t ′, (y′, z′),p′) − (t, (y, z),p)| ≤ θ,

0 ≤ t ′ ≤ T ,y′, z′ ∈ Ḡ} (3.2)

which is the lower semicontinuous envelope, and

H ∗(t, (y, z),p)

= lim sup{H(t ′, (y′, z′),p′) : (t ′, (y′, z′),p′) → (t, (y, z),p)

in [0, T ] × Ḡ × Ḡ × R
2d}

= lim
θ↓0

sup{H(t ′, (y′, z′),p′) : |(t ′, (y′, z′),p′) − (t, (y, z),p)| ≤ θ,

0 ≤ t ′ ≤ T ,y′, z′ ∈ Ḡ} (3.3)

which is the upper semicontinuous envelope.

Lemma 3.1 Let b,R,Li,Mi be bounded and continuous; let f (N,i),C(N,i) be de-
fined by (2.17), (2.18) respectively. For 0 ≤ t ≤ T ,y, z ∈ Ḡ,p ∈ R

2d ,0 ≤ c ≤ βi de-
note

h(t, (y, z),p; c) = −〈p,f (N,i)(t, (y, z), c)〉 − C(N,i)(t, (y, z), c)
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and

h∗(t, (y, z),p; c) = lim inf{h(t ′, (y′, z′),p′; c) : (t ′, (y′, z′),p′) → (t, (y, z),p)},
h∗(t, (y, z),p; c) = lim sup{h(t ′, (y′, z′),p′; c) : (t ′, (y′, z′),p′) → (t, (y, z,p)}.

Here c ∈ [0, βi] acts as a parameter. Then

H∗(t, (y, z),p) = max{h∗(t, (y, z),p;0), h∗(t, (y, z),p;βi)},
H ∗(t, (y, z),p) = max{h∗(t, (y, z),p;0), h∗(t, (y, z),p;βi)}.

Proof For notational convenience write ξ = (t, (y, z),p) ∈ [0, T ] × G × G × R
2d .

Observe that h(ξ ; c) = �(ξ)c + �(ξ), where

�(ξ) = −
(

pi +
d∑

�=1

pd+�R�i(t, y, z) + Mi(t, y, z)

)

is a bounded continuous function, and �(·) is a bounded measurable function. As h

is linear in c, for fixed ξ

H(ξ) = sup{h(ξ ; c) : 0 ≤ c ≤ βi} = �(ξ) + max{0,�(ξ)βi}.
For ξ fixed, let H∗(ξ) = lim inf{H(ξ ′) : ξ ′ → ξ}. Then there is ξ ′′ → ξ such
that �(ξ ′′) + max{0,�(ξ ′′)βi} converges to H∗(ξ). By continuity of �(·) we
have max{0,�(ξ ′′)βi} → max{0,�(ξ)βi}. Hence �(ξ ′′) converges to H∗(ξ) −
max{0,�(ξ)βi}. It now follows that lim�(ξ ′′) = lim inf{�(ξ ′) : ξ ′ → ξ}; if not, us-
ing continuity of �(·) we can easily get a contradiction to the definition of H∗(ξ).
Thus

H∗(ξ) = lim inf{�(ξ ′) : ξ ′ → ξ} + max{0,�(ξ)βi}
= max{[lim inf�(ξ ′)], [(lim inf�(ξ ′)) + �(ξ)βi]}
= max{h∗(ξ ;0), h∗(ξ ;βi)}

where the last equality follows once again using continuity of � . The second asser-
tion of the lemma is proved similarly. �

Definition 3.2 (a) A locally bounded function v is said to be a viscosity subsolution
to the discontinuous HJB equation (3.1) on [0, T ) × G × G if for any s ∈ [0, T ),
y ∈ G, z ∈ G, any C1-function w such that (v − w) has a local maximum at (s, y, z)

one has

−∂0w(s, y, z) + H∗(s, (y, z),Dy,zw(s, y, z)) ≤ 0. (3.4)

(b) A locally bounded function v is said to be a viscosity supersolution to (3.1)
on [0, T ] × Ḡ × Ḡ if for any s ∈ [0, T ], y ∈ Ḡ, z ∈ Ḡ, any C1-function w such that
(v − w) has a local minimum in [0, T ] × Ḡ × Ḡ at (s, y, z) one has

−∂0w(s, y, z) + H ∗(s, (y, z),Dy,zw(s, y, z)) ≥ 0. (3.5)
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(c) If v satisfies both (a), (b) above then it is called a constrained viscosity solution
to (3.1) on [0, T ] × Ḡ × Ḡ.

Note [3] (see Remark V.4.2 and Exercise V.4.1) very briefly discusses viscosity solu-
tion of a discontinuous HJB equation. However we do not know of any other instance
of a discontinuous HJB equation with state constraints.

If the Hamiltonian is continuous, then it is clear that H∗ = H = H ∗ and hence the
above definition is basically the same as the one given in Sect. 2.

Theorem 3.3 Let i, u−i (·) be fixed such that 0 ≤ uj (·) ≤ βj , j �= i. Assume that
b,R,Li,Mi, gi are bounded continuous. Assume that (2.12) holds. Suppose the
value function V (N,i), defined by (2.13), is a bounded continuous function on
[0, T ] × Ḡ × Ḡ. Then (s, y, z) �→ V (N,i)(s, y, z;T ,u−i (·)) is a constrained viscosity
solution to the discontinuous HJB equation (3.1) on [0, T ] × Ḡ × Ḡ with terminal
value gi(T , · , ·).

Proof Our proof is influenced by the proofs of Proposition III.2.8, pp. 104–106, and
Theorem IV.5.7, p. 278 of [3]. For simplicity of notation we shall drop the super-
scripts N, i.

Subsolution: Let (s, y, z) ∈ [0, T ) × G × G. Let w be a C1-function such that
(V − w) has a local maximum at (s, y, z). Take ui(·) ≡ c, where c is an arbitrary
point in [0, βi], and denote by y(·), z(·) the solution to the state equation (2.19) cor-
responding to the control u(·) = (ui(·), u−i (·)) with y(s) = y, z(s) = z. As (s, y, z)

is an interior point note that z(s′) ∈ G for all s′ sufficiently close to s with s′ > s.
As (V − w) has a local maximum at (s, y, z), by (2.14) in Theorem 2.3 (dynamic
programming principle), continuity of y(·), z(·) and (2.18) we get

w(s, y, z) − w(s′, y(s′), z(s′)) ≤ V (s, y, z) − V (s′, y(s′), z(s′))

≤
∫ s′

s

C(r, y(r), z(r))dr.

As w is C1, by state equation (2.19) and (2.17)

w(s, y, z) − w(s′, y(s′), z(s′))

= −
∫ s′

s

d

dr
w(r, y(r), z(r))dr

= −
∫ s′

s

[∂0w(r, y(r), z(r)) + 〈D(y,z)w(r, y(r), z(r)), f (r, (y(r), z(r)), c)〉]dr.

Consequently we get

−
∫ s′

s

[∂0w(r, y(r), z(r)) + 〈D(y,z)w(r, y(r), z(r)), f (r, (y(r), z(r)), c)〉
+ C(r, (y(r), z(r)), c)]dr ≤ 0
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for all s′ sufficiently close to s with s′ > s. Hence

lim inf
r↓s

[−∂0w(r, y(r), z(r)) + h(r, (y(r), z(r)),D(y,z)w(r, y(r), z(r)); c)] ≤ 0

where h(· · ·) is an in Lemma 3.1. As y(·), z(·), ∂0w,D(y,z)w are continuous it now
follows that

−∂0w(s, y, z) + h∗(s, (y, z),D(y,z)w(s, y, z); c) ≤ 0 (3.6)

for any 0 ≤ c ≤ βi , where h∗(· · ·) is as in Lemma 3.1. Now use (3.6) and Lemma 3.1
to get the required conclusion (3.4).

Supersolution: Let (s, y, z) ∈ [0, T ]× Ḡ× Ḡ (it could be a boundary point). Let w

be a C1-function such that (V −w) has a local minimum in [0, T ]×Ḡ×Ḡ at (s, y, z).
Let ε > 0, s′ ∈ (s, T ]. Take η = ε(s′ − s). By definition (2.13) of the value function
there exists ui(·), possibly depending on ε, s′ such that (ui(·), u−i (·)) ∈ U(s, y, z)

and

V (s, y, z) ≥ Ji(s, y, z;T , (ūi , u−i )) − η

=
∫ s′

s

C(r, (ȳ(r), z̄, (r)), ūi (r))dr

+ Ji(s
′, ȳ(s′), z̄(s′);T , (ūi , u−i )) − ε(s′ − s)

≥
∫ s′

s

C(r, (ȳ(r), z̄(r)), ūi (r))dr + V (s′, ȳ(s′), z̄(s′)) − ε(s′ − s),

where (ȳ(·), z̄(·)) denotes the solution to state equation (2.19) corresponding to the
control (ūi(·), u−i (·)), and we have used (2.8), (2.18). Hence

V (s, y, z) − V (s′, ȳ(s′), z̄(s′)) ≥
∫ s′

s

C(r, (ȳ(r), z̄(r)), ūi (r))dr − ε(s′ − s)

for all s′ sufficiently close to s with s′ > s. Note that (ȳ(r), z̄(r)) ∈ Ḡ × Ḡ for all
r ∈ [s, T ] as (ūi , u−i ) is a feasible control. As (V − w) has a local minimum in
[0, T ] × Ḡ × Ḡ at (s, y, z), now an argument similar to the one in the first part of
the proof, using dynamic programming principle, state equation, and continuity of
ȳ(·), z̄(·), gives

∫ s′

s

[−∂0w(r, ȳ(r), z̄(r)) + h(r, (ȳ(r), z̄(r)),D(y,z)w(r, ȳ(r), z̄(r)); ūi (r))]dr

≥ −ε(s′ − s).

Therefore by the definition of the Hamiltonian

∫ s′

s

[−∂0w(r, ȳ(r), z̄(r)) + H(r, (ȳ(r), z̄(r)),D(y,z)w(r, ȳ(r), z̄(r)))]dr

≥ −ε(s′ − s′).
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So, with ε > 0 fixed, for any s′ ∈ (s, T ] sufficiently close to s, there is a feasible
control ūi (·) such that

sup
s≤r≤s′

{−∂0w(r, ȳ(r), z̄(r)) + H(r, (ȳ(r), z̄(r)),D(y,z)w(r, ȳ(r), z̄(r)))} ≥ −ε.

(3.7)
Note that the solution to the state equation is Lipschitz continuous in r , with the
Lipschitz constant independent of the control. Hence given any small neighbourhood
N of (s, y, z), there exists s′ ∈ (s, T ] sufficiently close to s such that (r, y(r), z(r)) ∈
N ∩ ([s, T ] × Ḡ × Ḡ) for any r ∈ [s, s′] and any feasible control ui(·). Consequently
(3.7) now implies that

sup{−∂0w(r ′, y′, z′) + H(r ′, (y′, z′),D(y,z)w(r ′, y′, z′)) :
(r ′, y′, z′) ∈ N ∩ ([s, T ] × Ḡ × Ḡ)} ≥ −ε

whence it follows that

−∂0w(s, y, z) + H ∗(s, (y, z),D(y,z)w(s, y, z)) ≥ −ε. (3.8)

As ε > 0 is arbitrary (3.8) implies (3.5), completing the proof. �

Uniqueness cannot be expected to hold in general as the following counterexample
indicates.

Example 3.4 Take d = 2. Let A,B ⊂ [0, T ] be subsets such that (i) A ∪ B =
[0, T ],A ∩ B = φ; (ii) both A and B are dense in [0, T ]; (iii) m(A) > 0, m(B) > 0
where m is the one dimensional Lebesgue measure. Let K1 < K2 be constants.
Define u2(s) = K1IA(s) + K2IB(s),0 ≤ s ≤ T . Let b ≡ (0,0),R12 ≡ R21 ≡
0,R11 ≡ R22 ≡ 1,M1 ≡ 1,L1 ≡ 0. So f is independent of (y, z) and is given by
f (s, c) = (c, u2(s), c, u2(s)) ∈ R

2 × R
2 and the Hamiltonian, for s ∈ [0, T ],p =

(p1,p2,p3,p4) ∈ R
4 by

H(s,p) = sup{−〈p,f (s, c)〉 − c : 0 ≤ c ≤ β1}
= sup{−u2(s)(p2 + p4) − c(1 + p1 + p3) : 0 ≤ c ≤ β1}.

If 1 + p1 + p3 ≥ 0 then clearly

H(s,p) =
{−K1(p2 + p4), if s ∈ A,p ∈ R

4,

−K2(p2 + p4), if s ∈ B,p ∈ R
4.

Consequently, as A,B are dense in [0, T ],

H∗(s,p) = −K2(p2 + p4), if p2 + p4 > 0, (3.9)

H ∗(s,p) = −K1(p2 + p4), if p2 + p4 > 0 (3.10)

for all s.
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For a smooth function (s, y, z) �→ v(s, y, z) such that 1 + ∂v
∂y1

+ ∂v
∂z1

≥ 0 and ∂v
∂y2

+
∂v
∂z2

> 0 on [0, T ] × Ḡ × Ḡ, note that

−∂0v(s, y, z) + H∗(s,D(y,z)v(s, y, z))

= −∂v

∂s
(s, y, z) − K2

∂v

∂y2
(s, y, z) − K2

∂v

∂z2
(s, y, z) (3.11)

and

−∂0v(s, y, z) + H ∗(s,D(y,z)v(s, y, z))

= −∂v

∂s
(s, y, z) − K1

∂v

∂y2
(s, y, z) − K1

∂v

∂z2
(s, y, z). (3.12)

For the linear first order p.d.e.
(

−∂v

∂s
− K

∂v

∂y2
− K

∂v

∂z2

)
(s, y, z) = 0, 0 < s < T, y, z ∈ G, (3.13)

with terminal value

v(T , y, z) = 1 − e−y2e−z2, y, z ∈ Ḡ × Ḡ (3.14)

the solution is given by

v(s, y, z) = 1 − e−2K(T −s)e−y2e−z2 , 0 ≤ s ≤ T , y, z ∈ Ḡ. (3.15)

(Note that the general solution to (3.13) can be written in the form
ϕ(Ks −y2, y2 −z2) where ϕ is an arbitrary C1-function.) Observe that ∂v

∂y2
+ ∂v

∂z2
> 0.

In view of this define two functions

v1(s, y, z) = 1 − e−2K1(T −s)e−y2e−z2 , (3.16)

v2(s, y, z) = 1 − e−2K2(T −s)e−y2e−z2 (3.17)

for 0 ≤ s ≤ T ,y, z ∈ Ḡ. Note that v1(T , y, z) = v2(T , y, z) = 1 − e−y2e−z2 . By
(3.11–3.17) it is clear that

−∂0v1(s, y, z) + H ∗(s,D(y,z)v1(s, y, z)) = 0, (3.18)

−∂0v2(s, y, z) + H∗(s,D(y,z)v2(s, y, z)) = 0. (3.19)

Since K1 < K2, (3.11), (3.12), (3.16), (3.17) imply

−∂0v1(s, y, z) + H∗(s,D(y,z)v1(s, y, z)) < 0, (3.20)

−∂0v2(s, y, z) + H ∗(s,D(y,z)v2(s, y, z)) > 0 (3.21)

on [0, T ] × Ḡ × Ḡ. Now using (3.18), (3.20) arguing as in Theorem 2.5 it can be
shown that v1 is a constrained viscosity solution to (3.1) on [0, T ]× Ḡ× Ḡ. Similarly
(3.19), (3.21) lead to showing that v2 is also a constrained viscosity solution to (3.1)
on [0, T ] × Ḡ × Ḡ. Clearly v1, v2 are both bounded and Lipschitz continuous.
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In the above, take A = A0 ∪ A1 where A0 is a Cantor set of positive Lebesgue
measure and A1 a countable dense set in [0, T ]. Then there does not exist any func-
tion û(·) on [0, T ] such that u2(·) = û(·) a.s. and m(D̂) = 0 where D̂ is the set of
discontinuities of û(·). Because, if so, then for a · a · s ∈ A0 there exist sn ∈ B with
sn → s and K1 = u2(s) = û(s) = limn û(sn) = limn u(sn) = limn K2 = K2 which is
a contradiction.

We next consider the case of utopian equilibrium. When i is fixed, the usual de-
finitions work, uniqueness holds, and problem is somewhat easier; but it should be
kept in mind that to get a utopian equilibrium d control problems should attain their
minima at the same control.

For each fixed 1 ≤ i ≤ d we have a control problem with controls taking values in∏d
i=1[0, βi]. The HJB equation in this case is

−∂0v(s, y, z) + H(U,i)(s, (y, z),D(y,z)v(s, y, z)) = 0, (3.22)

where H(U,i) is given by (2.36). If the data b,R,Li,Mi are continuous in all the
variables, the Hamiltonian H(U,i) is also continuous. So the definition of viscosity
solution given in Definition 3.2 and the usual definition given in [3, 13] and recalled
in Sect. 2 coincide.

Theorem 3.5 In addition to (A1–A3) assume that b,R are continuous in the time
variable as well. Let gi,Li,Mi be bounded continuous. Assume that (s, y, z) �→
V (U,i)(s, y, z;T ), defined by (2.35), is a bounded continuous function on [0, T ] ×
Ḡ × Ḡ. Then V (U,i) is a constrained viscosity solution to (3.22) on [0, T ] × Ḡ × Ḡ.

Proof Along lines similar to the proof of Theorem 3.3. Because of continuity of f (U)

and H(U,i), the proof is much simpler; for example there is no need for Lemma 3.1.
In fact the approach given in the proofs of Proposition III.2.8 and Theorem IV.5.7 of
[3] can be more directly adapted. �

We now address the question of uniqueness. It is well known that this involves
proving a comparison result. Our approach below is inspired by the proofs of Theo-
rem III.3.7 and IV.5.8 of [3], of course, with some crucial deviations/modifications.

We denote x = (y, z) ∈ R
d ×R

d and 〈x〉 = 〈(y, z)〉 = [1+∑d
i=1 y2

i +∑d
j=1 z2

j ]1/2;

also e2d = (1,1, . . . ,1,1) ∈ R
2d with all the coordinates equal to 1. The following

lemma is the analogue of Lemma III.2.11 of [3], and the proof is similar.

Lemma 3.6 Let b,R,Li,Mi be bounded and Lipschitz continuous in all the vari-
ables (including the time variable). Then for s, s′ ∈ [0, T ], x, x′, ξ ∈ Ḡ × Ḡ, σ > 0,
θ > 0, θ ′ > 0

|H(U,i)(s, x, {σ [x − x′ + ξ ] + θx})
− H(U,i)(s′, x′, {σ [x − x′ + ξ ] − θ ′x′})|

≤ Kσ |x − x′ + ξ | · {|s − s′| + |x − x′|}
+ Kθ〈x〉2 + Kθ ′〈x′〉2 + K{|s − s′| + |x − x′|}, (3.23)

where K depends only on bounds and Lipschitz constants of b,R,Li,Mi .
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Theorem 3.7 Assume (A3) and that b,R,Li,Mi are bounded Lipschitz continuous
functions in all the variables (including the time variable). Let v1, v2 be functions on
[0, T ] × Ḡ × Ḡ such that

(a) v1, v2 are bounded uniformly continuous functions on [0, T ] × Ḡ × Ḡ;
(b) v1 is a viscosity subsolution to (3.22) on [0, T ) × G × G;
(c) v2 is a viscosity supersolution to (3.22) on [0, T ] × Ḡ × Ḡ;
(d) v1(T , · , ·) = v2(T , · , ·) on Ḡ × Ḡ.

Then v1 ≤ v2 on [0, T ] × Ḡ × Ḡ. In particular, under the above hypotheses, if the
value function V (U,i) given in Theorem 3.5 is bounded uniformly continuous on
[0, T ] × Ḡ × Ḡ, then it is the unique constrained viscosity solution to the HJB equa-
tion (3.22) in the class of bounded uniformly continuous functions with terminal value
gi(T , · , ·).
Proof Suppose M ≡ sup{v1(s, y, z) − v2(s, y, z) : s ∈ [0, T ], y, z ∈ Ḡ} > 0. For
δ ∈ (0,M) note that there exists (s̃, x̃) = (s̃, ỹ, z̃) ∈ [0, T ] × Ḡ × Ḡ such that
v1(s̃, x̃) − v2(s̃, x̃) = δ. Clearly s < T by (d). Choose λ > 0, η > 0,μ > 0, ν > 0
such that

2λ〈x̃〉 + 2η(T − s̃) + ν + 2dμ ≤ 1

2
δ

ensuring that

2λ〈x̃〉m + 2η(T − s̃) + ν + 2dμ ≤ 1

2
δ, for all 0 < m ≤ 1. (3.24)

For (s, x; s′, x′) ∈ ([0, T ] × Ḡ × Ḡ)2 define

�ε(s, x; s′, x′) = v1(s, x) − v2(s
′, x′) − μ

∣∣∣∣x − x′

ε
− e2d

∣∣∣∣
2

− ν

∣∣∣∣ s − s′

ε
+ 1

∣∣∣∣
2

− λ(〈x〉m + 〈x′〉m) − η[(T − s) + (T − s′)].
(3.25)

We will choose ε > 0,0 < m ≤ 1 suitably later; m will be chosen appropriately and
fixed, whereas ε will be treated as a parameter; so only dependence on ε is highlighted
in �ε . Since �ε → −∞ as |x|+ |x′| → ∞ and �ε is continuous, it follows that there
exists (sε, xε; s′

ε, x
′
ε) such that, by (3.24),

�ε(sε, xε; s′
ε, x

′
ε) = sup{�ε(s, x; s′, x′) : s, s′ ∈ [0, T ], x, x′ ∈ Ḡ}

≥ �ε(s̃, x̃; s̃, x̃) ≥ 1

2
δ.

Consequently

λ[〈xε〉m + 〈x′
ε〉m] + η[(T − sε) + (T − s′

ε)] + μ

∣∣∣∣xε − x′
ε

ε
− e2d

∣∣∣∣
2

+ ν

∣∣∣∣ sε − s′
ε

ε
+ 1

∣∣∣∣
2

≤ supv1 − infv2 ≡ C0 (3.26)
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for all ε > 0,0 < m ≤ 1. (Note that C0 > 0, otherwise M = 0.) It follows from (3.26)
that xε, x

′
ε ∈ B(0 : (C0/λ)1/m) for all ε > 0.

As �ε has its maximum at (sε, xε; s′
ε, x

′
ε)

�ε(sε, xε; sε + ε, xε − εe2d) + �ε(s
′
ε − ε, x′

ε + εe2d; s′
ε, x

′
ε) ≤ 2�ε(sε, xε; s′

ε, x
′
ε).

(3.27)

By mean value theorem 〈xε − εe2d〉m = 〈x〉m +O(ε) as xε varies over a bounded set.
Therefore

�ε(sε, xε; sε + ε, xε − εe2d)

= v1(sε, xε) − v2(sε + ε, xε − εe2d) − 2λ〈xε〉m
− 2η(T − sε) + ηε + O(ε) (3.28)

and similarly

�ε(s
′
ε − ε, x′

ε + εe2d ; s′
ε, x

′
ε)

= v1(s
′
ε − ε, x′

ε + εe2d)

− v2(s
′
ε, x

′
ε) − 2λ〈x′

ε〉m − 2η(T − s′
ε) − ηε + O(ε). (3.29)

Denote by ω the common modulus of continuity of v1 and v2; note that ω can be
taken to be bounded as v1, v2 are bounded uniformly continuous. Now (3.27–3.29)
imply

μ

∣∣∣∣xε − x′
ε

ε
− e2d

∣∣∣∣
2

+ ν

∣∣∣∣ sε − s′
ε

ε
+ 1

∣∣∣∣
2

≤ ω(|sε − s′
ε + ε| + |xε − x′

ε − εe2d |) + O(ε). (3.30)

If ε ≤ 1, then r.h.s. of (3.30) is bounded by a constant independent of ε. So from
(3.30) we get

|xε − x′
ε | + |sε − s′

ε | ≤ K1ε. (3.31)

Plugging (3.31) back into (3.30)

∣∣∣∣xε − x′
ε

ε
− e2d

∣∣∣∣
2

+
∣∣∣∣ sε − s′

ε

ε
+ 1

∣∣∣∣
2

≤ ω(K2ε) + O(ε) (3.32)

as ε ↓ 0, where K2 is constant independent of ε.
Clearly the ball B(x +εe2d : ε) ⊂ G×G for any x ∈ Ḡ× Ḡ. So by (3.32) it is now

easily seen that (sε, xε) ∈ [0, T ) × G × G for any ε > 0 such that r.h.s. of (3.32) <1.
With 0 < ε ≤ 1 as above, for (s, x) = (s, y, z) ∈ [0, T ] × Ḡ × Ḡ define

w1ε(s, x) = v2(s
′
ε, x

′
ε) + μ

∣∣∣∣x − x′
ε

ε
− e2d

∣∣∣∣
2

+ ν

∣∣∣∣ s − s′
ε

ε
+ 1

∣∣∣∣
2

+ λ(〈x〉m + 〈x′
ε〉m) + η[(T − s) + (T − s′

ε)].
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Note that (v1 − w1ε) has a maximum at (sε, yε, zε) and that w1ε is C1. Similarly, for
(s′, x′) = (s′, y′, z′) ∈ [0, T ] × Ḡ × Ḡ define

w2ε(s
′, x′) = v1(sε, xε) − μ

∣∣∣∣xε − x′

ε
− e2d

∣∣∣∣
2

− ν

∣∣∣∣ sε − s′

ε
+ 1

∣∣∣∣
2

− λ[〈xε〉m + 〈x′〉m] − η[(T − sε) + (T − s′)].
Clearly w2ε is C1 and (v2 − w2ε) has a minimum in [0, T ] × Ḡ × Ḡ at (s′

ε, y
′
ε, z

′
ε).

Since v1 is a viscosity subsolution in the interior and v2 is a viscosity supersolution
to (3.22) in the closure, it can be seen that

2η + H

(
sε, xε,

{
2μ

ε2
[xε − x′

ε − εe2d ] + mλ〈xε〉m−2xε

})

− H

(
s′
ε, x

′
ε,

{
2μ

ε2
[xε − x′

ε − εe2d ] − mλ〈x′
ε〉m−2x′

ε

})
≤ 0, (3.33)

where H = H(U,i). Now by Lemma 3.6, (3.26), (3.31), (3.32)
∣∣∣∣H

(
sε, xε,

{
2μ

ε2
[xε − x′

ε − εe2d ] + mλ〈xε〉m−2xε

})

− H

(
s′
ε, x

′
ε,

{
2μ

ε2
[xε − x′

ε − εe2d ] − mλ〈x′
ε〉m−2x′

ε

})∣∣∣∣
≤ K

2μ

ε

∣∣∣∣xε − x′
ε

ε
− e2d

∣∣∣∣[|sε − s′
ε | + |xε − x′

ε |]

+ Kmλ[〈xε〉m + 〈x′
ε〉m] + K[|sε − s′

ε | + |xε − x′
ε |]

≤ 2KK1μ[ω(K2ε) + O(ε)]1/2 + mKC0 + KK1ε. (3.34)

Now choose m ∈ (0,1) such that m <
η

2KC0
. Then (3.33), (3.34) imply

3

2
η − KK1ε − 2KK1μ[ω(K2ε) + O(ε)]1/2 ≤ 0.

But this would contradict η > 0 for ε ↓ 0. Thus M = 0 and hence v1 ≤ v2 on [0, T ]×
Ḡ × Ḡ. �
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Appendix

The appendix has two parts. In the first part we give a sufficient condition for feasible
controls to exist in the context of Nash equilibrium. The connection with Skorokhod
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problem of probability theory is briefly reviewed in the second part. We also give an
example to show that Nash equilibrium need not be unique.

A Sufficient Condition for (2.12)

We give a sufficient condition for U(s, y, z;T ,u−i ) to be nonempty for fixed i, u−i

satisfying (2.11). In fact we have something more.

Theorem 4.1 Assume (A1–A3); moreover assume that b,R are continuous in the
time variable as well. In addition let the following hypothesis hold:

(A4) For i = 1,2, . . . , d, s ∈ [0, T ], y ∈ Ḡ, z ∈ ∂G,uj ∈ [0, βj ], j �= i there exists
ui ∈ [0, βi] with

[
bk(s, y, z) +

d∑
�=1

Rk�(s, y, z)u�

]
> 0 (4.1)

for any k ∈ I (z). Here β = (β1, . . . , βd) is as in (2.11), and I (z) = {k : zk = 0}.
Then U(s, y, z;T ,u−i (·)) is a nonempty weakly compact subset of L2[s, T ] for

any s ∈ [0, T ], y, z ∈ Ḡ,0 ≤ uj (·) ≤ βj , j �= i.

Note Compare (4.1) with (2.27), (2.28). We know that (2.27), (2.28) give a necessary
boundary condition for u(·) to be feasible. See also Sect. 5, Chap. 4 of [3].

We first prove the following lemma

Lemma 4.2 Under the above hypotheses U(s, y, z;T ,u−i (·)) �= φ if u−i (·) is right
continuous. Moreover ui(·) can also chosen to be right continuous in this case.

Proof Fix i, s, y, z, u−i (·). We first claim that there exists a right continuous ui(·)
taking values in [0, βi] such that

τ0 = inf{t > s : z(t) �∈ G} > s,

where y(·), z(·) is the solution to the state equation corresponding to the control
u(·) = (ui(·), u−i (·)) with y(s) = y, z(s) = z.

Indeed, if z ∈ G then ui(·) can be taken to be any right continuous function
on [s, T ] taking values in [0, βi]. So let z ∈ ∂G; note that I (z) �= φ. Taking uj =
uj (s), j �= i, by assumption (A4) choose ui so that (4.1) holds for all k ∈ I (z).
Set u(t) = (ui, u−i (t)), t ≥ s; note that the ith component of u(·) is constant; let
y(·), z(·) denote the corresponding solution to the state equation. By continuity of
bk,Rkj , y(·), z(·) and right continuity of u(·) at s, note that there exist ε0 > 0, η > 0
such that for all t ∈ [s, s + ε0] we have I (z(t)) ⊆ I (z) and

bk(t, y(t), z(t)) +
∑

�

Rk�(t, y(t), z(t))u�(t) ≥ η

for all k ∈ I (z). So zk(t) ≥ η(t − s) > 0 for k ∈ I (z) and z�(t) > 0 for � �∈ I (z), for
all s < t ≤ s + ε0. The claim now follows.
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Now put τ := sup{t ∈ [s, T ]: there exists a right continuous ui(·) taking values
in [0, βi] and z(r) ∈ Ḡ for all s ≤ r ≤ t}; here y(·), z(·) denote the solution to the
state equation corresponding to (ui(·), u−i (·)). If τ < T then apply the claim above
with τ0, y(τ0), z(τ0) respectively replacing s, y, z; we now get a contradiction to the
definition of τ . So τ = T and hence z(t) ∈ Ḡ for all s ≤ t ≤ T . �

Proof of Theorem 4.1 Fix i, s, y, z; let uj (·), j �= i be as in the theorem. For n ≥ 1

choose u
(n)
−i (·) = (u

(n)
1 (·), . . . , u(n)

i−1(·), u(n)
i+1(·), . . . , u(n)

d (·)) such that u
(n)
j (·) is right

continuous, 0 ≤ u
(n)
j (·) ≤ βj , and u

(n)
j (·) → uj (·) in L2[s, T ] as n → ∞, for j �= i.

By Lemma 4.2, for n ≥ 1, there exists u
(n)
i (·), right continuous on [s, T ], taking

values in [0, βi], and if (y(n)(·), z(n)(·)) denotes the solution to the state equation
corresponding to the control u(n)(·) = (u

(n)
i (·), u(n)

−i (·)) with y(n)(s) = y, z(n)(s) = z

then y(n)(t) ≥ 0, z(n)(t) ≥ 0 for all t ∈ [s, T ].
As {u(n)

i (·) : n ≥ 1} is bounded, by Banach-Alaoglu theorem there exists ui(·) ∈
L2[s, T ] such that u

(n)
i → ui(·) weakly. Put u(·) = (ui(·), u−i (·)); let y(·), z(·) de-

note the solution to the state equation corresponding to u(·) starting at s, y, z. It can
easily be proved that 0 ≤ ui(·) ≤ βi . Clearly yi(·) ≥ 0 and nondecreasing. Using Lip-
schitz continuity of b,R, uniform boundedness of u(n)(·), u(·) and Gronwall inequal-
ity it can be shown that z(n)(t) → z(t) for all t , and hence that z(·) is Ḡ-valued (cf.
proof of Theorem 4.3 of [20]). Thus U(s, y, z;T ,u−i (·)) �= φ. The same argument
implies weak compactness as well. �

The SP Connection

As mentioned in Sect. 1, it has been proved in [19, 20] that the “pushing part” of
the solution to the deterministic Skorokhod problem provides Nash/utopian equilib-
rium under suitable monotonicity conditions. For description of Skorokhod problem,
its importance in probability theory and existence and uniqueness of solutions see
[12, 14, 17, 19, 23] and the references therein. However to read off the results from
[19, 20] in the present context we need the following result, which may be known to
experts. As we have not seen an easily accessible proof we include it for the sake of
completeness. We shall also use the notation as in [19, 20].

Proposition 4.3 Let w ∈ C([0,∞) : R) be absolutely continuous with derivative
ẇ(·); assume w(0) ≥ 0. Let yw(·), zw(·) be the solution to the one dimensional
Skorokhod problem for w(·). Then yw(·), zw(·) are also absolutely continuous and
0 ≤ ẏw(·) ≤ |ẇ(·)|, |żw(·)| ≤ 2|ẇ(·)| a.s.

Proof Let s ≥ 0. Put ŵ(t) = zw(s) + ∫ t

s
ẇ(r)dr, ŷ(t) = yw(t) − yw(s), ẑ(t) =

zw(t), t ≥ s. Then ŷ(·), ẑ(·) is the unique solution to the Skorokhod problem for
ŵ(·) starting at time s. Also put w̃(t) ≡ zw(s), ỹ(t) ≡ 0, z̃(t) ≡ zw(s), t ≥ s. Then
ỹ(·), z̃(·) is the unique solution to the Skorokhod problem for w̃(·) starting at time s.
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Note that ŵ − w̃ is of bounded variation over [s, t] for any t ≥ s. So by the lemma
of variational distance between maximal functions in Sect. 2 of [23], for any t ≥ s

Var(yw : [s, t]) = Var(ŷ − ỹ : [s, t]) ≤ Var(ŵ − w̃ : [s, t]) =
∫ t

s

|ẇ(r)|dr

(4.2)

where Var(g : [a, b]) denotes the total variation of g over [s, t].
As (4.2) holds for every 0 ≤ s ≤ t , it follows that Var(yw : dα) = dyw(·) is ab-

solutely continuous. The other assertions are now easy to obtain. �

Let b,R satisfy (A1–A3). Let w(·) be an R
d -valued continuous function on [0,∞)

such that w(0) ∈ Ḡ. Let Yw(·),Zw(·) denote the solution to the Skorokhod problem
in Ḡ with initial input w(·), drift b and reflection field R as described in [19]. So
Zw(t) ∈ Ḡ for all t , and (Yw)i(·) ≥ 0, nondecreasing, and can increase only when
(Zw)i(·) = 0. In view of Proposition 4.3, by the methods/arguments in [19] it follows
that if w(·) is absolutely continuous then so are Yw(·),Zw(·). A modification needed
here is that the analogue of the metric given in Sect. 3 of [19] be defined in terms of
L1 norm of the derivatives instead of the variational norm/supremum norm of the
functions; as the variational norm of an absolutely continuous function is the L1

norm of the derivative, the arguments of [19] can be easily adapted. In particular
taking w(·) ≡ z ∈ Ḡ, Skorokhod problem for our purposes is the following.

Given s ≥ 0, y ∈ Ḡ, z ∈ Ḡ consider the problem: Find functions P(·; s, y, z) ≡
P(·) = (P1(·), . . . ,Pd(·)),Q(·; s, y, z) ≡ Q(·) = (Q1(·), . . . ,Qd(·)) on [s,∞) satis-
fying the following:

1. Pi(t) ≥ 0 a.e. t ≥ s,1 ≤ i ≤ d ;
2. Qi(·) integrable over every compact interval;
3. Y(·; s, y, z) ≡ Y(·) = (Y1(·), . . . , Yd(·)) with

Yi(t) = yi +
∫ t

s

Pi(r)dr, t ≥ s, 1 ≤ i ≤ d; (4.3)

so Yi(·) ≥ 0 and nondecreasing;
4. Z(·; s, y, z) ≡ Z(·) = (Z1(·), . . . ,Zd(·)) with Z(·) ∈ Ḡ and

Zi(t) = zi +
∫ t

s

Qi(r)dr, t ≥ s, 1 ≤ i ≤ d; (4.4)

5. Z(·) satisfies the Skorokhod equation, viz. for i = 1,2, . . . , d, t ≥ s

Zi(t) = zi +
∫ t

s

bi(r, Y (r),Z(r))dr + Yi(t) − yi

+
∑
j �=i

∫ t

s

Rij (r, Y (r),Z(r))Pj (r)dr; (4.5)

6. Yi(·) can increase only when Zi(·) = 0, that is, Zi(t)Pi(t) = 0 a.e. t , 1 ≤ i ≤ d .



Appl Math Optim (2007) 56: 312–342 339

In such a case we say P,Q (or equivalently Y,Z) solves the Skorokhod problem.
By the above discussion it follows that for any s ≥ 0, y, z ∈ Ḡ, the Skorokhod

problem has a unique solution whenever b,R satisfy (A1–A3). Moreover, by results
of [19] it follows that

0 ≤ Pi(r) ≤ ((I − W)−1β̃)i ≤ βi, a.e. r, 1 ≤ i ≤ d

where β̃ is as in (A1) and β as in (2.11). This is one reason to consider only controls
taking values in

∏d
i=1[0, βi]. The functions Yi(·) or equivalently Pi(·),1 ≤ i ≤ d are

called the “pushing part” of the solution to the Skorokhod problem.
The following result can now be obtained; while the first part is a consequence of

Theorems 4.7, 4.14 of [20], the second part follows from Theorem 5.3 of [19].

Theorem 4.4 (i) In addition to (A1–A3), let b and R satisfy the following condi-
tions.

(C1) For 1 ≤ i ≤ d, bi,Rij are independent of z�, � �= i; that is, bi(t, y, z) =
bi(t, y, zi),Rij (t, y, z) = Rij (t, y, zi).

(C2) For fixed 1 ≤ i ≤ d, y−i = (y1, . . . , yi−1, yi+1, . . . , yd), t ≥ 0, z ∈ R
d

bi(t, (ξ, y−i ), z) ≥ bi(t, (ξ̃ , y−i ), z),

Rij (t, (ξ, y−i ), z) ≥ Rij (t, (ξ̃ , y−i ), z), 1 ≤ j ≤ d,

whenever ξ ≤ ξ̃ ; that is bi,Rij are nonincreasing in yi .
(C3) The functions zi �→ bi(t, y, zi) = bi(t, y, z), zi �→ Rij (t, y, zi) = Rij (t, y, z)

are differentiable and

∂

∂zi

bi(t, y, z) ≤ 0,
∂

∂zi

Rij (t, y, z) ≤ 0, 1 ≤ i, j ≤ d.

Also for 1 ≤ i ≤ d , suppose that Mi ≡ positive constant, gi,Li are nonnegative
functions independent of z, satisfying

gi(T , (ξ, y−i )) ≤ gi(T , (ξ̃ , y−i )),

Li(t, (ξ, y−i )) ≤ Li(t, (ξ̃ , y−i )),

whenever ξ ≤ ξ̃ ,∀t, y−i . Then (P1(·), . . . ,Pd(·)) is a Nash equilibrium in
U(s, y, z;T ).

(ii) In addition to (A1–A3), assume the hypotheses of Theorem 5.3 of [19].
Suppose also Mi ≡ positive constant, gi,Li are nonnegative functions indepen-
dent of z satisfying gi(T , ỹ) ≤ gi(T , y), Li(t, ỹ) ≤ Li(t, y) whenever ỹ ≤ y for all
t ≥ 0,1 ≤ i ≤ d . Then (P1(·), . . . ,Pd(·)) is a utopian equilibrium in U(s, y, z;T ).
(Here ỹ ≤ y means ỹj ≤ yj for all j .)

In the converse direction we have the following result. Note that the conditions on
b,R are less stringent than in Theorem 4.8 of [20].



340 Appl Math Optim (2007) 56: 312–342

Theorem 4.5 Let gi ≡ 0,Li ≡ 0,Mi ≡ 1 for 1 ≤ i ≤ d . In addition to the hypotheses
of Theorem 4.1, assume that Rk�(· · ·) ≤ 0 for k �= �. Fix s ∈ [0, T ], y ∈ Ḡ, z ∈ Ḡ.
Let û(·) = (û1(·), . . . , ûd (·)) be such that for any t ∈ [s, T ], the restriction of û(·)
to [s, t] is a Nash equilibrium in U(s, y, z; t). Let ŷ(·), ẑ(·) denote the solution to
state equation (2.3), (2.4) corresponding to the control û(·) with initial value ŷ(s) =
y, ẑ(s) = z. Then ŷ(·) − y, ẑ(·), solves the Skorokhod problem on [s, T ], with drift
b(· · ·) and reflection field R(· · ·) corresponding to w(·) ≡ z.

Proof Let ŷ(·), ẑ(·) denote the solution to the state equation corresponding to the
control û(·). As û(·) is feasible it is clear that ẑ(·) is Ḡ-valued. So we just need to
prove that ẑi (·)ûi(·) = 0 a.s. for each i. Put ĥi (t) = ∫ t

s
ẑi (r)ûi (r)dr, t ≥ s. We need

to prove ĥi (·) ≡ 0,1 ≤ i ≤ d . Suppose not. Then ĥi (t) > 0 for some t > s,1 ≤ i ≤ d .
Hence, by continuity of ẑi (·), there exist x > 0, s ≤ t0 < t̃ such that ẑi (t) ≥ x > 0 for
all t0 ≤ t ≤ t̃ and

m({r : ûi (r) > 0 for r ∈ [t0, t]}) > 0, ∀t0 ≤ t ≤ t̃ . (4.6)

We now make a remark concerning (A4). Let i, uj , j �= i, s, y be as in (A4). Let
z ∈ ∂G be such that zi > 0; so Rki(· · ·) ≤ 0 for any k ∈ I (z). Therefore one can take
ui = 0 so that (4.1) holds.

Now define ũ(·) = (ũi(·), ũ−i (·)) by ũj (·) = ûj (·), for j �= i, ũi (r) = ûi (r),
s ≤ r < t0 and ũi (r) = 0, r ≥ t0. Let ỹ(·), z̃(·) denote the solution to the state equation
corresponding to ũ(·). Clearly z̃(r) = ẑ(r), s ≤ r ≤ t0. In particular z̃i (t0) ≥ x > 0.
Put t1 = inf{t ≥ t0 : z̃i (t) = 0}. Clearly t1 > t0. Now Theorem 4.1 and the re-
mark above used repeatedly give that U(s, y, z; t, û−i (·)) �= φ and in fact ũi (·) ∈
U(s, y, z; t, û−i (·)) for any t ∈ [t0, t1]. In view of (4.6) it is now clear that

∫ t

s

ũi (r)dr <

∫ t

s

ûi (r)dr, t0 < t ≤ (t1 ∧ T ). (4.7)

As (4.7) contradicts our hypothesis that û(·) is a Nash equilibrium in Uβ̃ (s, y, z; t)
for t ∈ [s, T ], the result now follows. �

Remark 4.6 Theorem 4.4 gives conditions under which the solution to the Skorokhod
problem can provide a Nash equilibrium. As there are approximation procedures to
solve the Skorokhod problem, this forms a method of getting a system of bounded
continuous constrained viscosity solutions to the interlinked family of HJB equa-
tions (3.1) with u−i = P−i , 1 ≤ i ≤ d. Under the conditions of Theorem 4.4 the
pushing part of the solution to Skorokhod problem itself provides a system of con-
strained viscosity solutions for all t .

We conclude with an example to show that Nash equilibrium need not be unique.

Example 4.7 Let d = 2, b(· · ·) ≡ (1,−1),R12(· · ·) ≡ R12 > 0,R21(· · ·) ≡ R21 > 0
are constants such that R12R21 < 1. Let gi ≡ 0,Li ≡ 0,Mi ≡ 1, i = 1,2. Take s = 0,
y = 0, z = 0. The state equation for the z-part, viz. analogue of (2.6), is given by

z1(t) = t + y1(t) + R12y2(t),

z2(t) = −t + y2(t) + R21y1(t).
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Solution to the corresponding Skorokhod problem is given by Y1(t) ≡ 0, Y2(t) = t ,
Z1(t) = (1 + R12)t,Z2(t) ≡ 0. By Theorem 4.4 the solution to the Skorokhod prob-
lem gives a Nash equilibrium; this also follows from the argument given below.

Let λ1 ≥ 0,0 ≤ λ2 ≤ 1 be such that λ2 + R21λ1 = 1. Put ŷ1(t) = λ1(t),
ŷ2(t) = λ2t . Fix ŷ1(·). Let 0 ≤ y2(t) < λ2t for some t . Corresponding to ŷ1(·), y2(·)
note that z1(t) ≥ 0 but z2(t) = −t + y2(t) + R21ŷ1(t) < 0.

So with ŷ1(·) fixed, y2(·) cannot be feasible unless y2(t) ≥ λ2t,∀t . In an entirely
analogous manner with ŷ2(·) fixed, y1(·) cannot be feasible unless y1(t) ≥ λ1t for
all t . Therefore it follows that for any λ1, λ2 as above (û1(·), û2(·)) ≡ (λ1, λ2) gives
a Nash equilibrium for each t ≥ 0. So even Nash equilibrium serving for all t need
not be unique. Next note that (λ1, λ2) = (0,1) as well as (λ1, λ2) = ( 1

R21
,0) give

feasible controls (in fact both are Nash equilibria). So the only possible candidate for
utopian equilibrium is (0,0). But (0,0) cannot be a feasible control. Hence there is
no utopian equilibrium even for a single t > 0.
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