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Abstract In this paper, we propose a trust region method for minimizing a function
whose Hessian matrix at the solutions may be singular. The global convergence of the
method is obtained under mild conditions. Moreover, we show that if the objective
function is LC2 function, the method possesses local superlinear convergence under
the local error bound condition without the requirement of isolated nonsingular solu-
tion. This is the first regularized Newton method with trust region technique which
possesses local superlinear (quadratic) convergence without the assumption that the
Hessian of the objective function at the solution is nonsingular. Preliminary numerical
experiments show the efficiency of the method.
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1 Introduction

Consider the following optimization problem

min
x∈Rn

f (x), (1)
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where f : Rn → R is LC2 on Rn. That is, it is a twice continuously differentiable
function and the Hessian, ∇2f , of f is Lipschitz continuous on Rn, namely, there is
a constant L > 0 such that

‖∇2f (x) − ∇2f (y)‖ ≤ L‖x − y‖ (2)

for all x, y ∈ Rn. Throughout the paper, denote by g(x) = ∇f (x) and G(x) =
∇2f (x) the gradient vector and the Hessian matrix of f at x respectively. Let X

be the set of local minimizers of f (x).
Trust region methods are quite a way of solving (1). Because of their strong con-

vergence properties and robustness, the trust region methods have been studied exten-
sively and numerous softwares based on trust region methods have been developed
since 1970’s [2, 4, 6, 7, 11]. Furthermore, they are locally superlinearly (quadrati-
cally) convergent at a nonsingular solution x̄. We call a solution x̄ of problem (1)
nonsingular if G(x̄) is a nonsingular matrix. Otherwise we call a solution x̄ singular.
It is clear that a nonsingular solution is locally isolated. We are particularly interested
in the case where problem (1) may have singular solutions. When the trust region
methods are applied to such a problem, the superlinear (quadratic) rate of conver-
gence may no longer be guaranteed.

Recently, there have been some progresses in convergence analysis of Newton-
type methods and trust region methods for nonlinear equation system

H(x) = 0 (3)

with singular solutions. Yamashita and Fukushima [10] first proved that the
Levenberg–Marquadt method is quadratically convergent if ‖H(x)‖ provides a lo-
cal error bound for problem (3). Then Fan and Yuan [3], Zhang [14] improved the
results in [10]. Zhang and Wang [13] proposed a trust region method for solving (3)
and proved that the trust region method retains a superlinear convergence if ‖H(x)‖
provides a local error bound for problem (3). Li et al. [5] proposed several regular-
ized Newton methods for convex minimization problems and prove the superlinear
convergence of their methods under the local error bound condition. Following the
definition of the local error bound for nonlinear equation system (3) in [10], the
concept of a local error bound for problem (1) is defined as follows:

Definition 1.1 [5] A function F : Rn → R is said to provide a local error bound for
problem (1) near x̄ ∈ X if there exist a neighborhood �(x̄) of x̄ and a constant c̄ > 0
such that for all x ∈ �(x̄)

F (x) ≥ c̄ · dist(x,X), (4)

where dist(x,X) denotes the distance from point x to the set X.

In the remaining part of the paper, we will omit the phrase “for problem (1)” when
we talk about a local error bound. It is easy to show that if the Hessian matrix G(x̄)

is nonsingular, ‖g(x)‖ provides a local error bound near x̄. However, the converse
is not true in general. An example is given in [10], which shows that the local error
bound condition is weaker than nonsingularity of G(x̄).
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As mentioned above, the superlinear (quadratic) convergence of all the trust re-
gion methods at present are obtained under the assumption that the solution x̄ of (1)
is isolated and G(x̄) is nonsingular. This assumption seems too restrictive to properly
determine the function category in which the trust region methods have superlinear
convergence. The purpose of this paper is to show that trust region method with some
improvements will possesses the superlinear (quadratic) convergence without the as-
sumption of nonsingularity. In detail, our trust region method possesses the following
merits:

• The subproblem retains the possible sparsity of G(x);
• The trust region radius is adjusted adaptively;
• Global convergence is guaranteed;
• Superlinear (quadratic) convergence is obtained without the assumption that the

solution x̄ is isolated and G(x̄) is nonsingular;
• The performance of the method is notable.

Note that in our method (see Sect. 2), the trust region radius approaches zero as the
method proceed. This is the key to prove the superlinear convergence of our method
without the assumption that G(x̄) is positive definite. For the classic trust region
methods, we can show that the trust region radius is bounded away from zero. Then
the Newton step (Quasi-Newton step) is a feasible solution of trust region subprob-
lem eventually. The trial step is the Newton step (Quasi-Newton step) and this trial
step is accepted after finite iterations. So the trust region methods reduce to the New-
ton method after finite iterations and superlinear convergence is achieved under the
nonsingularity assumption. However, if the Hessian of f (x) at the solution of (1) is
singular, the solution of the trust region subproblem in traditional trust region meth-
ods (see (10)) is on the boundary and the trial step does not converge to 0. Therefore,
the classic trust region methods can not converge superlinearly without the assump-
tion that G(x̄) is nonsingular. In our algorithm, the trust region radius δk is the same
order as ‖xk − x̄‖. This ensures the superlinear convergence of the new trust region
method.

The remainder of the paper is arranged as follows. In Sect. 2, we state the algo-
rithm model and study the global convergence. In Sect. 3, we show the local con-
vergence of the algorithm. In Sect. 4, numerical results are reported to show the effi-
ciency of the method. In Sect. 5, some conclusions are given.

2 Algorithm Model and Global Convergence

In our algorithm, at each iterative point xk , the trial step is obtained by solving the
following subproblem

min �k(d) = gT
k d + 1

2
dT (Bk + μkI)d

s.t. ‖d‖ ≤ cp‖gk‖γ � δ
p
k ,

(5)

where gk = g(xk), Bk is an n × n matrix, which equals to Gk = G(xk) or is ob-
tained by some iterative formula (such as quasi-Newton formula). I is an identity
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matrix with proper dimension. p is a nonnegative integer. c and γ satisfy
0 < c < 1 and 0 < γ < 1 respectively. μk is a adjustable parameter satisfying
μk = �((dist(xk,X)ρ)) (0 < ρ ≤ 1), which means that there exist two constants
0 < c1 < C1 such that

c1 · dist(xk,X)ρ ≤ μk ≤ C1 · dist(xk,X)ρ. (6)

If ‖g(x)‖ provides a local error bound, there are many choices of μk satisfying (6),
for example, μk = ‖g(xk)‖ρ or μk = ‖Gkgk‖ρ , etc., see [14]. Let d

p
k be the solution

of (5) corresponding to p. Then we define the actual reduction as

Aredk(d
p
k ) = f (xk + d

p
k ) − f (xk), (7)

the predict reduction as

Predk(d
p
k ) = �k(d

p
k ), (8)

and the ratio of actual reduction over predict reduction as

r
p
k = Aredk(d

p
k )

Predk(d
p
k )

. (9)

Now we state our trust region method in detail.

Algorithm 2.1 Step 0. Given an initial point x0 ∈ Rn and an initial symmetric ma-
trix B0. Let 0 < η < 1, 0 < c < 1, ε > 0, 0 < γ < 1, 0 < ρ < 1 and p = 0. Set k := 0;

Step 1. If ‖g(xk)‖ ≤ ε, stop. Otherwise, solve (5) to obtain the trial step d
p
k ;

Step 2. Calculate Predk(d
p
k ), Aredk(d

p
k ) and r

p
k . If r

p
k ≥ η, let xk+1 = xk + d

p
k and

go to Step 3. Otherwise, set p := p + 1 and go to Step 1.
Step 3. Update Bk+1. Set k := k+1 and p = 0. Choose γ ∈ (0,1) and go to Step 1.

Remark (i) Bk may be set as Gk . In order to reduce computation, Bk can also be
updated by some quasi-Newton formula (for example BFGS, DFP, etc.).

(ii) Traditionally, the trust region subproblem is

min �k(d) = gT
k d + 1

2
dT Bkd

s.t. ‖d‖ ≤ 
k.

(10)

The differences between (5) and (10) are that there is an additional term in the ob-
jective in (5), and the adjustment of trust region radius in classic trust region method,

k , is based on the information of iteration xk−1 while the determination of trust re-
gion radius in our method is based on the information of the current iterative point.
The motivation to adopt the new update rule is that we think that the approximation
of �k(d) to f (xk + d) − f (xk) is different at different point and it is reasonable to
adopt the information at the current point to adjust the trust region radius (please see
[15, 16] for explanation in detail). By using (5) as the trust region subproblem and the
new update rule of the trust region radius, we can prove the superlinear (quadratic)
convergence without the assumption that G(x̄) is nonsingular. If xk is far from the
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solution set of f (x), μk may be very large. This makes the trial step very small and
the algorithm inefficient. In this case, we can choose μk satisfying μk ≤ 0.01 simul-
taneously (for example μk can be chosen as min{‖gk‖ρ,0.01}), the results in this
paper still hold.

In order to analyze the global convergence of the algorithm, we need the following
assumption.

Assumption 2.1 (i) f (x) is continuously differentiable;
(ii) {xk} is a bounded sequence;
(iii) {Bk} is a bounded sequence.

By Assumption 2.1, we have that {Bk + μkI } and {Gk} are bounded sequences.
Hence there exists M > 0 such that

‖Bk + μkI‖ ≤ M, ∀k, (11)

and

‖Gk‖ ≤ M, ∀k. (12)

First, we give several lemmas, which will be used in the analysis of the global
convergence.

Lemma 2.1 |Aredk(d
p
k ) − Predk(d

p
k )| = O(‖dp

k ‖2).

Proof By Taylor expansion theory, (11) and (12), we have

Aredk(d
p
k ) − Predk(d

p
k ) = f (xk + d

p
k ) − f (xk) − gT

k d
p
k − 1

2
d

p
k

T
Bkd

p
k − 1

2
μk‖dp

k ‖2

= 1

2
d

p
k

T
(Gk − Bk − μkI)d

p
k + o(‖dp

k ‖2) = O(‖dp
k ‖2). �

Lemma 2.2 Predk(d
p
k ) ≤ − 1

2 min{‖gk‖/M,δ
p
k }‖gk‖.

Proof By the definition of d
p
k , we know that for any α ∈ (0,1)

Predk(d
p
k ) = �k(d

p
k ) ≤ �k

(
−α

δ
p
k

‖gk‖gk

)

= −αδ
p
k ‖gk‖ + α2δ

p
k

2
gT

k (Bk + μkI)gk

2‖gk‖2
≤ −αδ

p
k ‖gk‖ + 1

2
α2δ

p
k

2
M.

Thus,

Predk(d
p
k ) ≤ min

0≤α≤1

{
−αδ

p
k ‖gk‖ + 1

2
α2δ

p
k

2
M

}
≤ −1

2
min{‖gk‖/M,δ

p
k }‖gk‖. �

Lemma 2.3 Algorithm 2.1 does not cycle between Steps 1 and 2 infinitely.
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Proof If the algorithm cycles between Step 1 and Step 2 at xk infinitely, then for all
i = 1,2, . . . , we have xk+i = xk , p = i and ‖gk‖ > ε. Hence

δi
k → 0 and ri

k < η. (13)

Therefore by Lemmas 2.1 and 2.2, as i → ∞

|ri
k − 1| = |Aredk(d

i
k) − Predk(d

i
k)|

|Predk(d
i
k)|

≤ O(δi
k

2
)

0.5δi
kε

→ 0.

Thus, for i sufficiently large

ri
k ≥ η, (14)

which contradicts (13). �

Theorem 2.1 Suppose that Assumption 2.1 holds. If ε = 0, either the algorithm ter-
minates finitely at a solution of (1) or generates an infinite sequence {xk} such that

lim
k→∞‖gk‖ = 0. (15)

Therefore any accumulation point of {xk} is a stationary point of (1).

Proof Due to Assumption 2.1(i) and (ii), the sequence {f (xk)} is bounded from
below. Suppose that the algorithm does not stop finitely and (15) is not true, then
there exist a positive constant ε̄ and an infinite subsequence {ki} such that ‖gki

‖ ≥ ε̄.
Define set T = {k | ‖gk‖ ≥ ε̄}, then T is an infinite set.

By Lemma 2.2 and Step 2 of Algorithm 2.1, we have

∑
k∈T

[f (xk) − f (xk+1)] ≥ −
∑
k∈T

η · Predk ≥
∑
k∈T

η · 1

2
ε̄ min

{
δ
p(k)
k ,

ε̄

M

}
,

where p(k) is the largest p value obtained in Step 2 at iterative point xk .
Since {f (xk)} is bounded from below, we have

∑
k∈T

η · 1

2
ε̄ min

{
δ
p(k)
k ,

ε̄

M

}
< +∞.

Then δ
p(k)
k → 0, as k → +∞ and k ∈ T . Since ‖gk‖ ≥ ε̄ for all k ∈ T , p(k) → ∞ as

k → ∞ and k ∈ T . Therefore, we can assume p(k) ≥ 1 for all k ∈ T .
From the determination rule of p(k) (k ∈ T ) in Step 2, we know that the solution

d̄k corresponding to the following subproblem

min
d∈Rn

�k(d) = gT
k d + 1

2
dT Bkd + 1

2
μk‖d‖2

s.t. ‖d‖ ≤ cpk−1‖gk‖γ = δ
p(k)
k

c

(16)
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is unacceptable. That is, let x̄k+1 = xk + d̄k , we have

f (xk) − f (x̄k+1)

−�k(d̄k)
< η, k ∈ T . (17)

On the other hand, we have

δ
p(k)−1
k → 0, k ∈ T .

It follows from Lemma 2.1 that

f (x̄k+1) − f (xk) − �k(d̄k) = O(‖d̄k‖2).

By Lemma 2.2, δ
p(k)−1
k → 0, k ∈ T and the definition of T , for sufficiently large

k ∈ T , we have

∣∣∣∣f (xk) − f (x̄k+1)

−�k(d̄k)
− 1

∣∣∣∣ ≤ O(‖d̄k‖2)

1
2‖gk‖min{δp(k)−1

k ,
‖gk‖
M

}
≤ O((δ

p(k)−1
k )2)

1
2 ε̄δ

p(k)−1
k

. (18)

Let k → ∞, k ∈ T , (18) implies

f (xk) − f (x̄k+1)

−�k(d̄k)
→ 1,

which contradicts (17). Therefore the theorem is true. �

3 Superlinear Convergence

In order to simplify the presentation, we assume that f (x) is a convex function. For
general nonconvex minimization problem, we need only to assume that xk → x∗ and
x∗ is a local minimizer of f (x) and f (x) is locally convex at x∗. The results in this
section still hold.

To analyze the superlinear convergence, we need the following assumption.

Assumption 3.1 (i) xk → x∗;
(ii) f (x) is LC2 and convex;
(iii) For sufficiently large k, Bk is a positive semidefinite matrix and ‖Bk −Gk‖ =

O(‖d0
k ‖ 1

γ );
(iv) ‖g(x)‖ provides a local error bound for problem (1) near x∗, i.e., there exist a

neighborhood � of x∗ and a constant c̄ > 0 such that for all x ∈ �

‖g(x)‖ ≥ c̄ · dist(x,X). (19)

(v) μk = �((dist(xk,X)ρ)) (0 < ρ ≤ 1), i.e., there exist two constants 0 < c1 < C1
such that

c1 · dist(xk,X)ρ ≤ μk ≤ C1 · dist(xk,X)ρ. (20)
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‖Bk − Gk‖ = O(‖d0
k ‖ 1

γ ) is a little more restrictive than the usually used condi-

tion ‖Bk − Gk‖ → 0. However, if we set Bk = Gk + αkI and αk = 0 or ‖gk‖
1
γ or

‖Gkgk‖
1
γ , we can show that ‖Bk − Gk‖ ≤ O(‖d0

k ‖ 1
γ ) holds.

By Assumption (ii), we know that X is the solution set of problem (1) and convex.
From Theorem 2.1 and Assumption 3.1(i), we know that limk→∞ gk = 0 and x∗

is a solution of (1).
We first prove that for k sufficiently large, the iterative formula generated by Al-

gorithm 2.1 is

xk+1 = xk + d̃k, (21)

where d̃k = −(Bk + μkI)−1gk . To this end, we need to do two things: one is to show
that d̃k is a solution of (5) corresponding to p = 0 for k sufficiently large; another is
to prove that d̃k is acceptable. First, we give some properties of d̃k .

Since G(x∗) is symmetric positive semidefinite, there is an orthogonal matrix Q =
(Q1,Q2) such that

G(x∗) = (Q1,Q2)

(
� 0
0 0

)(
QT

1

QT
2

)
, (22)

where � is a diagonal matrix with positive diagonal elements.
Let Qk = (Qk,1,Qk,2) be an orthogonal matrix conformable to Q = (Q1,Q2)

such that

Bk = (Q1,k,Q2k)

(
�1,k 0

0 �2,k

)(
QT

1,k

QT
2,k

)
, (23)

where �1,k and �2,k are diagonal matrices. It follows from Assumption 3.1 and
Theorem 2.1 that Bk → G(x∗). Then from the theory of matrix perturbation [9], we
know that �1,k → � and �2,k → 0 as k → ∞. Let x̂ ∈ X be the projection of x onto
X, i.e., x̂ ∈ X and ‖x − x̂‖ = dist(x,X).

Lemma 3.1 For k sufficiently large, we have

(i) ‖QT
2,kgk‖ = o(‖xk − x̂k‖) = o(dist(xk,X));

(ii) If ‖g(x)‖ provides a local error bound near x∗, then there are constants c2 > 0
and c3 > 0 such that

‖QT
1,kgk‖ ≥ c2‖xk − x̂k‖ = c2 dist(xk,X)

and

‖QT
1,k(xk − x̂k)‖ ≥ c3‖xk − x̂k‖ = c3 dist(xk,X)

respectively.

Proof (i) Since f is LC2, it is easy to deduce that

‖QT
2,kgk‖ = ‖QT

2,k(g(xk) − g(x̂k))‖
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=
∥∥∥∥QT

2,k

∫ 1

0
G(x̂k + τ(xk − x̂k))dτ(xk − x̂k)

∥∥∥∥
= ‖QT

2,kGk(xk − x̂k)‖ + o(‖xk − x̂k‖)
= ‖QT

2,kBk(xk − x̂k)‖ + o(‖xk − x̂k‖) + ‖QT
2,k(Bk − Gk)(xk − x̂k)‖

= ‖�2,kQ
T
2,k(xk − x̂k)‖ + o(‖xk − x̂k‖)

= o(‖xk − x̂k‖).

(ii) It follows from (19) and (i) that

‖QT
1,kgk‖2 =

∥∥∥∥∥
(

QT
1,k

QT
2,k

)
gk

∥∥∥∥∥
2

− ‖QT
2,kgk‖2 = ‖gk‖2 − o(‖xk − x̂k‖2)

≥ c̄2‖xk − x̂k‖2 − o(‖xk − x̂k‖2) ≥ 1

2
c̄2‖xk − x̂k‖2,

and

c̄‖xk − x̂k‖ ≤ ‖gk‖ = ‖QT
k (g(xk) − g(x̂k))‖ = ‖QT

k Gk(xk − x̂k)‖ + o(‖xk − x̂k‖)
= ‖QT

k Bk(xk − x̂k)‖ + o(‖xk − x̂k‖)
= ‖�1,kQ

T
1,k(xk − x̂k)‖ + o(‖xk − x̂k‖) ≤ 2‖�1,k‖‖QT

1,k(xk − x̂k)‖,

which imply that (ii) holds. �

Lemma 3.2 For k sufficiently large, we have

(i) There exists a constant c4 > 0 such that

‖QT
1,kd̃k‖ ≥ c4 dist(xk,X);

(ii) ‖d̃k‖ = O(dist(xk,X));
(iii) There are two positive constants c5 < c6 such that

c5 dist(xk,X) ≤ ‖d̃k‖ ≤ c6 dist(xk,X).

Proof Since Qk is orthogonal, we have ‖d̃k‖2 = ‖QT
1,k d̃k‖2 +‖QT

2,kd̃k‖2. Therefore,
the statement (iii) follows from (i) and (ii). So we only need to prove (i) and (ii).

(i) Notice that d̃k is the solution of the following equation

(Bk + μkI)d + gk = 0. (24)

Multiplying (24) by QT
1,k yields

(�1,k + μkI)QT
1,k d̃k + QT

1,kgk = 0, (25)
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where we use QT
1,kBk = �1,kQ

T
1,k. This implies

‖QT
1,kd̃k‖ = ‖(�1,k + μkI)−1QT

1,kgk‖ ≥ ‖(�1,k + μkI)‖−1‖QT
1,kgk‖

≥ c2‖�1,k + μkI‖−1‖xk − x̂k‖. (26)

Since �1,k → � and Bk is positive semidefinite, 2� > �1,k > 1
2� > 0 and

{�1,k + μkI } is uniformly positive definite. Moreover, μk ≤ C1‖xk − x̂k‖ρ by (20).
Then (26) implies that (i) holds with some suitable constant c4 > 0.

(ii) Multiplying (24) by QT
2,k, we get

(�2,k + μkI)QT
2,k d̃k + QT

2,kgk = 0,

where we use QT
2,kBk = �2,kQ

T
2,k. This implies

‖QT
2,kd̃k‖ ≤ ‖(�2,k + μkI)−1QT

2,kgk‖
≤ ‖(�2,k + μkI)−1QT

2,k(g(xk) − g(x̂k) − Gk(xk − x̂k))‖
+ ‖(�2,k + μkI)−1QT

2,kBk(xk − x̂k)‖
+ ‖(�2,k + μkI)−1QT

2,k(Bk − Gk)(xk − x̂k)‖
≤ ‖(�2,k + μkI)−1‖O(‖xk − x̂k‖2)

+ ‖(�2,k + μkI)−1�2,kQ
T
2,k(xk − x̂k)‖

+ ‖(�2,k + μkI)−1‖O(‖xk − x̂k‖2) (27)

where the second inequality follows from g(x̂k) = 0 and the third inequality follows

from ‖QT
2,k‖ ≤ 1, QT

2,kBk = �2,kQ
T
2,k and ‖Bk − Gk‖ = O(‖d0

k ‖ 1
γ ) ≤ O(‖gk‖) =

O(‖xk − x̂k‖). Note that (20) implies

‖(�2,k + μkI)−1‖ ≤ μ−1
k ≤ c−1

1 ‖xk − x̂k‖−ρ. (28)

Moreover, since �2,k is a diagonal matrix with nonnegative diagonal, we have

‖(�2,k + μkI)−1�2,k‖ ≤ 1.

Then

‖(�2,k + μkI)−1�2,kQ
T
2,k(xk − x̂k)‖ ≤ ‖(�2,k + μkI)−1�2,k‖‖QT

2,k(xk − x̂k)‖
≤ ‖QT

2,k(xk − x̂k)‖ = O(‖xk − x̂k‖).
This along with (27), (28) and 0 < δ ≤ 1 yields

‖QT
2,kd̃k‖ ≤ O(‖xk − x̂k‖). (29)

By (25), we have

‖QT
1,kd̃k‖ = ‖(�1,k +μkI)−1QT

1,kgk‖ ≤ ‖�1,k‖−1‖QT
1,kgk‖ ≤ O(‖xk − x̂k‖). (30)

(29), (30) and ‖d̃k‖2 = ‖QT
1,k d̃k‖2 + ‖QT

2,kd̃k‖2 imply that (ii) holds. �
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Theorem 3.1 Suppose that Assumption 3.1 holds. For sufficiently large k the iterative
formula is as follows

xk+1 = xk + d0
k = xk + d̃k (31)

and

dist(xk+1,X) = O((dist(xk,X))1+ρ),

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖1+ρ

< +∞,

i.e., Algorithm 2.1 converges superlinearly.

Proof We have from (19) that

δ0
k = ‖gk‖γ ≥ c̄γ (dist(xk,X))γ . (32)

By Lemma 3.2(iii), we have

‖d̃k‖ ≤ c6 dist(xk,X). (33)

It follows from Assumption 3.1(i) that dist(xk,X) < 1 for all k sufficiently large.
Then by (32), (33) and γ < 1 we know that d̃k is a feasible solution of (5) corre-
sponding to p = 0. By Assumption 3.1(iii), we know that (5) is a strictly convex
quadratic programming for sufficiently large k. Hence d0

k = d̃k .
Now we prove that d0

k = d̃k is acceptable. Note that γ < 1, then 1
γ

> 1. Hence

Predk(d
0
k ) − Aredk(d

0
k ) = f (xk) − f (xk + d0

k ) + gT
k d0

k + 1

2
d0
k

T
Bkd

0
k + 1

2
μk‖d0

k ‖2

= 1

2
d0
k

T
(Bk − Gk)d

0
k + O(‖d0

k ‖2+ρ)

= O(‖d0
k ‖2+ 1

γ ) + O(‖d0
k ‖2+ρ) = O((dist(xk,X)2+ρ),

(34)

where the second equality holds because f (xk +d0
k ) = f (xk)+gT

k d0
k + 1

2d0
k

T
Gkd

0
k +

O(‖d0
k ‖3). γ < 1 and Lemma 2.2 imply that for k sufficiently large

|Predk(d
0
k )| ≥ 1

2
‖gk‖min

{
‖gk‖γ ,

‖gk‖
M

}
= 1

2M
‖gk‖2 ≥ c̄2

2M
(dist(xk,X)2). (35)

It follows from (34) and (35) that

|r0
k − 1| = |Aredk(d

0
k ) − Predk(d

0
k )|

|Predk(d
0
k )| = O(dist(xk,X)ρ) → 0.

So r0
k > η for k sufficiently large, i.e., d0

k = d̃k is acceptable for k sufficiently large.
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From (19) we have

c̄ · dist(xk+1,X) = c̄ · dist(xk + d̃k,X) ≤ ‖g(xk + d̃k)‖
≤ ‖g(xk + d̃k) − gk − Gkd̃k‖ + ‖(Gk − Bk)d̃k‖ + μk‖d̃k‖
≤ O(‖d̃k‖2) + O(‖d̃k‖1+ 1

γ ) + O(‖d̃k‖1+ρ)

= O(‖d̃k‖1+ρ) = O((dist(xk,X))1+ρ).

It then follows from Lemma 3.2(iii) that

‖d̃k+1‖ = O(‖d̃k‖1+ρ). (36)

Since for k sufficiently large, the iteration formula is

xk+1 = xk + d̃k

and x∗ is the limit point of {xk}, there exists a positive integer K > 0 such that

x∗ = xk +
∞∑
i=k

d̃i , ∀k > K.

By (36), there exist a ∈ (0,1) and a positive integer K̄ > K such that for all k ≥ K̄

a‖d̃k‖ ≥
∞∑

i=k+1

‖d̃i‖.

It then follows from the triangle inequality that for k ≥ K̄

∥∥∥∥∥
∞∑
i=k

d̃i

∥∥∥∥∥ ≥ ‖d̃k‖ −
∥∥∥∥∥

∞∑
i=k+1

d̃i

∥∥∥∥∥ ≥ (1 − a)‖d̃k‖ (37)

and ∥∥∥∥∥
∞∑

i=k+1

d̃i

∥∥∥∥∥ ≤ ‖d̃k+1‖ +
∥∥∥∥∥

∞∑
i=k+2

d̃i

∥∥∥∥∥ ≤ (1 + a)‖d̃k+1‖. (38)

So

‖xk+1 − x∗‖
‖xk − x∗‖1+ρ

≤ (1 + a)‖d̃k+1‖
(1 − a)1+ρ‖d̃k‖1+ρ

for all k ≥ K̄ . Since ‖d̃k+1‖ = O(‖d̃k‖1+ρ), we finally have

lim sup
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖1+ρ

< +∞,

that is, {xk} converges to x∗ superlinearly. �
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Remark (i) If ρ = 1, the algorithm is quadratically convergent.

(ii) If we assume that ‖Bk −Gk‖ → 0 instead of ‖Bk −Gk‖ = O(‖d0
k ‖ 1

γ ), we can

prove that lim supk→∞
‖xk+1−x∗‖
‖xk−x∗‖ = 0. Algorithm 2.1 still converges superlinearly.

4 Numerical Results

In order to see the efficiency of our method, we conducted the numerical experi-
ments on some degenerate problems and some classic test problems from CUTEr,
and compared the results by our method with that obtained by the traditional trust re-
gion method. Here the traditional trust region method means the trust region method
developed by Powell, Moré and Yuan et al. and was described in detail in [2, 12]. At
each iterative point, we obtain the trial step by solving subproblem (10) and Bk is
chosen as Gk.

The radius of the trust region is updated as follows


k+1 =

⎧⎪⎪⎨
⎪⎪⎩

c3‖sk‖ + c4
k

2
, if r < c2,

(1 + c1)
k

2
, if r ≥ c2,

where c1 = 2, c2 = 0.25, c3 = 0.25, and c4 = 0.5.
In our new trust region method, the parameters are set as η = 10−4, γ = 0.6,

μk = min{0.01,‖gk‖ρ} and ρ = 0.8, c = 0.2.
All of the algorithms are implemented in Fortran 77, and runs are made on 2.4 GHz

PC with 512 M memory. The stopping criterion used is ‖gk‖ < ε, where ε = 10−6.
For the convenience of comparison, the subroutine solving the quadratic subproblems
is GQTPAR in Minpack and all of the algorithms use the same subroutine to solve
the quadratic subproblems.

In Sect. 3, the superlinear convergence of the proposed algorithm has been proved
theoretically under the local error bound condition ‖g(x)‖ ≥ c̄ · dist(x,X). In such
a case, we concentrate on the local error bound condition. Such a test problem is
designed as follows:

f (x1, x2) = (x1 − 4x2)
2.

And the solution set is {(x1, x2)|x1 − 4x2 = 0}. We set the initial point to
(−5000,5000) and try to seek the minimum. It is easy to verify that the Hessian
is singular at any solution, and the local error bound condition is satisfied when
c̄ ∈ [0,

√
34 ]. Numerical results indicate that the sequence generated by the algorithm

converges to x∗ = (−3.4463797E+03,−8.6159494E+02), which is an optimal so-
lution. The iterative step xk and the norm of gradient at every iteration are recorded in
Table 1. These results indicate that our trust region method converges quickly when
{xk} approaches the optimal solution.

Next we consider the Powell’s singular problem in [8], which is a typical singular
test problem,

f (x1, x2, x3, x4) = (x1 + 10x2)
2 + 5(x3 − x4)

2 + (x2 − 2x3)
4 + 10(x1 − x4)

4.
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Table 1 Numerical results on designed problem

Iteration k xk ‖g(xk)‖

1 (−0.5000000E+04,0.5000000E+04) 0.2061553E+06

2 (−0.4608029E+04,0.3432116E+04) 0.1512066E+06

3 (−0.4280549E+04,0.2122195E+04) 0.1052986E+06

4 (−0.4014761E+04,0.1059044E+04) 0.6803898E+05

5 (−0.3807774E+04,0.2310955E+03) 0.3902236E+05

6 (−0.3656664E+04,−0.3733458E+03) 0.1783887E+05

7 (−0.3570446E+04,−0.7182162E+03) 0.5752403E+04

8 (−3.4463797E+03,−8.6159494E+02) 0.0000000E+00

Table 2 Numerical results on
Powell’s singular problem Iters

Our Method 18

Traditional (
0 = 0.01) 52

Traditional (
0 = 1) 40

Traditional (
0 = 100) 43

And both our method and the traditional method try to seek the minimum (0,0,0,0)

(at which the Hessian matrix is not positive definite) started from (3,−1,0,1). The
results are summarized in Table 2, where iters denotes the number of subproblems
solving. The numerical results in Table 2 show that our method has advantage over
the traditional method for this problem.

Furthermore, we test the efficiency of our algorithm on some large-scale prob-
lems. Numerical experiments are conducted on some problems from CUTEr, which
is a famous test environment for constrained and unconstrained optimization [1], and
compare the results by our method with that obtained by the traditional trust region
method.

The detailed results are summarized in Table 3. Table 3 can be read as follows:

• Column 1 represents the problem name and the problem size or dimension n.
• Columns 2–5 report the numerical results of various algorithms.
• 
0 denotes the initial trust region radius for the traditional trust region method.
• In columns 2–5, “#f” denotes the number of calculation of the objective function.

“#g” denotes the number of calculation of the gradient. “time” is the runtime in
seconds.

From Table 3, one can see that the efficiency of the traditional method depends on
the choice of the initial trust region radius. For some problems, the traditional method
with large initial trust region radius is efficient. But for other problems, the traditional
method with small initial trust region radius becomes more efficient. However, there
is no general rule for the choice of the initial trust region radius. Our new trust region
method takes a strategy of adjusting the trust region radius self–adaptively, a strat-
egy whose preliminary version is introduced in [15, 16]. In general, the performance
of the new method is competitive to that of the traditional trust region method. For
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Table 3 Numerical results for the large-scale problems

Test problem Size New TRM Traditional TRM Traditional TRM Traditional TRM

(
0 = 0.01) (
0 = 1) (
0 = 100)

#f #g Time #f #g Time #f #g Time #f #g Time

BRYBND 1000 18 12 49.05 24 24 31.63 123 115 152.56 14 10 27.78

CHAINWOO 1000 84 51 141.9 238 179 434.21 356 256 729 283 203 561.98

COSINE 1000 17 14 25.03 23 23 26.38 12 12 16.36 #f > 10000

CRAGGLVY 1000 15 15 14.19 30 30 29.85 19 19 18.83 16 16 14.12

DIXMAANA 3000 10 10 305.45 30 30 726.94 18 18 470.36 14 13 339.02

DIXMAANB 3000 11 11 1091.57 30 30 1324.09 19 19 1231.34 16 14 1018.42

DIXMAANC 3000 13 11 1222.53 32 31 1694.42 19 19 1342.73 16 14 1032.04

DIXMAAND 3000 27 16 1385.46 31 31 1581.74 20 20 1481.89 15 15 1318.41

EIGENALS 930 255 159 883.81 150 138 414.56 138 126 380.71 138 123 383.35

FREUROTH 1000 12 8 15.19 30 30 34.48 19 19 25.34 13 12 12.84

MANCINO 100 36 11 2.12 31 31 4.78 22 21 3.25 10 10 1.54

NCB20B 1000 18 12 34.89 27 20 56.93 15 8 31.9 22 10 64.59

SENSORS 100 26 14 0.7 41 34 1.5 30 22 1.01 28 16 0.79

SINQUAD 1000 19 11 31.7 29 28 39.24 19 18 30.76 17 13 20.04

SPARSINE 1000 101 39 411.25 31 30 36.83 27 26 33.77 55 44 124.31

problem CHAINWOO, CRAGGLVY, DIXMAANA, DIXMAANB, DIXMAANC,
FREUROTH, SENSORS, SINQUAD, the new method performs better than the tra-
ditional method with all the three radius. For problem BRYBND, COSINE, DIX-
MAAND, NCB20B, the new method performs worse than the traditional method
with one choice of initial trust region radius but better than the other two choices.
These evidences show that the new trust region method is notable in practical com-
putation.

The performance of the new method depends on the choice of parameters μk ,
c and γ . During the experiments, we note that our method is insensitive to c. μk

should be min{0.01,‖g(xk)‖ρ}. If we set μk = ‖g(xk)‖ρ , μk would be very large
and the trial step dk will be very small in the initial stage of the method. This may
result in inefficiency. We note that the theoretical results in Sect. 3 still hold if we set
μk = min{0.01,‖g(xk)‖ρ}. The choice of γ has significant affect on the efficiency of
the method. If we set γ too small or too large, the method is not efficient. Generally
speak, we set γ ∈ [0.6,0.8].

5 Conclusion and Discussions

A new trust region method for minimization problems with singular solutions is pro-
posed in this paper. The global convergence is obtained under standard conditions.
Moreover, we proved the superlinear convergence without the assumption that the
solution of the problem is isolated and the Hessian of the objective function at the
solution is nonsingular. This is the first trust region method which possesses this
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property. Although the superlinear convergence results of the method is for convex
minimization problems, it can be extended to nonconvex minimization problems. For
nonconvex minimization problem, we need only to assume that xk → x∗, x∗ is a lo-
cal minimizer of f (x) and f (x) is locally convex at x∗. It is not difficult to establish
local superlinear convergence for the trust region method in a way similar to that in
Sect. 3. Numerical tests show that the proposed method is not only theoretically im-
proved, but also computationally efficient. Meanwhile, the encouraging theoretic and
numerical results suggest some directions for future research, such as incorporating
an approximate strategy for trust region subproblem, generalizing the results in this
paper to constrained optimization problem, etc.
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