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1. Introduction

LetM1(Rd) denote the complete separable metric space, with a weak topology, of Borel
probability measures on Rd (d ≥ 1).

Let b: [0, 1]× Rd �→ Rd be measurable and let {Pt (dx)}0≤t≤1 ⊂M1(Rd) satisfy
the following Fokker–Planck equation: for f ∈ C1,2

b ([0, 1]× Rd) and t ∈ [0, 1],∫
Rd

f (t, x)Pt (dx)−
∫

Rd

f (0, x)P0(dx)

=
∫ t

0
ds

∫
Rd

(
∂ f (s, x)

∂s
+ 1

2
� f (s, x)+〈b(s, x), Dx f (s, x)〉

)
Ps(dx), (1.1)

∗ This research was partially supported by the Grant-in-Aid for Scientific Research, Nos. 15340047,
15340051, and 16654031, JSPS.
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where � := ∑d
i=1 ∂

2/∂x2
i , Dx := (∂/∂xi )

d
i=1, and 〈·, ·〉 denotes the inner product

in Rd .
Inspired by Born’s probabilistic interpretation of a solution to Schrödinger’s equa-

tion, Nelson proposed the problem of the construction of a diffusion process {X (t)}0≤t≤1

for which the following hold (see [20]):

X (t) = X (0)+
∫ t

0
b(s, X (s)) ds +W (t) (t ∈ [0, 1]), (1.2)

P(X (t) ∈ dx) = Pt (dx) (t ∈ [0, 1]), (1.3)

where {W (t)}0≤t≤1 is a σ [X (s): 0 ≤ s ≤ t]-Wiener process.
The first result was given by Carlen [2] (see also [23]). It was generalized, by Mikami

[12], to the case where the second-order differential operator has a variable coefficient.
Further generalization and almost complete resolution was made by Cattiaux and Léonard
[3]–[6] (see also [1] and [13]–[15] for the related topics). However, in these papers, they
assumed that∫ 1

0
dt

∫
Rd

|b(t, x)|2 Pt (dx) <∞ (1.4)

for some b for which (1.1) holds. This is called the finite energy condition for
{Pt (dx)}0≤t≤1.

Remark 1.1. It is known that b is not unique for {Pt (dx)}0≤t≤1 in (1.1) (see [12] or
[3]–[6]).

In this paper we consider Nelson’s problem under a weaker assumption than (1.4):
there exists p > 1 such that∫ 1

0
dt

∫
Rd

|b(t, x)|p Pt (dx) <∞ (1.5)

for some b for which (1.1) holds. We call (1.5) the generalized finite energy condition
for {Pt (dx)}0≤t≤1.

Let L(t, x; u): [0, 1] × Rd × Rd �→ [0,∞) be continuous and be convex in u.
Let A denote the set of all Rd -valued, continuous semimartingales {X (t)}0≤t≤1 on a
complete filtered probability space such that there exists a Borel measurable βX : [0, 1]×
C([0, 1]) �→ Rd for which

(i) ω �→ βX (t, ω) isB(C([0, t]))+-measurable for all t ∈ [0, 1], whereB(C([0, t]))
denotes the Borel σ -field of C([0, t]) and B(C([0, t]))+ denotes the left-hand
limit of t �→ B(C([0, t])), and

(ii) {WX (t) := X (t)−X (0)−∫ t
0 βX (s, X) ds}0≤t≤1 is aσ [X (s): 0 ≤ s ≤ t]-Wiener

process.

For P0 and P1 ∈M1(Rd), put

V (P0, P1) := inf

{
E

[∫ 1

0
L(t, X (t);βX (t, X)) dt

]∣∣∣∣
P X (t)−1 = Pt (t = 0, 1), X ∈ A

}
, (1.6)
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v(P0, P1)

:= inf

{∫ 1

0

∫
Rd

L(t, x; b(t, x))P(t, dx)dt

∣∣∣∣P(t, dx) = Pt (dx)(t = 0, 1),

{P(t, dx)}0≤t≤1⊂M1(Rd), (b(t, x), P(t, dx)) satisfies (1.1)

}
. (1.7)

In [12] where u �→ L is quadratic, we proved and used the following:

V (P0, P1) = v(P0, P1). (1.8)

Remark 1.2. As a typical case, when L = |u|2, the minimizer of V (P0, P1) is known
to be the h-path process for the space–time Brownian motion (see [7], [18] and the
references therein). It is known that its zero-noise limit exists and is the unique minimizer
of Monge’s problem (see [16] and [19]).

In this paper we prove (1.8) for a more general function L by the duality theorem
for V . To make the point clearer, we describe [18] briefly. For P0 and P1 ∈M1(Rd), put

V(P0, P1) := sup

{∫
Rd

ϕ(1, y)P1(dy)−
∫

Rd

ϕ(0, x)P0(dx)

}
, (1.9)

where the supremum is taken over all classical solutions ϕ to the following Hamilton–
Jacobi–Bellman equation:

∂ϕ(t, x)

∂t
+ 1

2
�ϕ(t, x)+ H(t, x; Dxϕ(t, x)) = 0((t, x) ∈ (0, 1)× Rd), (1.10)

ϕ(1, ·) ∈ C∞b (R
d)

(see Lemma 3.1). Here for (t, x, z) ∈ [0, 1]× Rd × Rd ,

H(t, x; z) := sup
u∈Rd

{〈z, u〉 − L(t, x; u)}. (1.11)

The following was proved in [18] and is called the duality theorem for the stochastic
optimal control problem (1.6).

Theorem 1.1 (Duality Theorem). Suppose that (A.1)–(A.4) in Section 2 hold. Then
for any P0 and P1 ∈M1(Rd),

V (P0, P1) = V(P0, P1)(∈ [0,∞]). (1.12)

Suppose in addition that V (P0, P1) is finite. Then V (P0, P1) has a minimizer and for
any minimizer {X (t)}0≤t≤1 of V (P0, P1),

βX (t, X) = bX (t, X (t)) := E[βX (t, X)|(t, X (t))]. (1.13)

Remark 1.3. Equation (1.12) can be considered as a counterpart in the stochastic
optimal control theory of the duality theorem in the Monge–Kantorovich problem (see
[10], [17], [21], [22] and the references therein).
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Using a similar result to (1.8) on small time intervals ⊂ [0, 1], we prove that for
P := {Pt (dx)}0≤t≤1 ⊂M1(Rd),

V(P) = v(P), (1.14)

where

V(P) := inf

{
E

[∫ 1

0
L(t, X (t);βX (t, X)) dt

]∣∣∣∣
P X (t)−1 = Pt (0 ≤ t ≤ 1), X ∈ A

}
, (1.15)

v(P) := inf

{∫ 1

0
dt

∫
Rd

L(t, x; b(t, x))Pt (dx)|b satisfies (1.1)

}
. (1.16)

In particular, the existence of a minimizer of V(P) implies that of a semimartingale
for which (1.2)–(1.3) hold. When p = 2 in (1.5), this semimartingale is Markovian.
However, we do not know if it is also true even when 1 < p < 2. This is our future
problem.

In Section 2 we state our results which is proved in Section 4. Technical lemmas are
given in Section 3.

2. Main Result

In this section we state our result. We state assumptions on L .

(A.1) There exists p > 1 such that

lim inf
|u|→∞

inf{L(t, x; u): (t, x) ∈ [0, 1]× Rd}
|u|p > 0.

(A.2)

�L(ε1, ε2) := sup
L(t, x; u)− L(s, y; u)

1+ L(s, y; u) → 0 as ε1, ε2 → 0,

where the supremum is taken over all (t, x) and (s, y) ∈ [0, 1]×Rd , for which |t−s| ≤ ε1,
|x − y| < ε2 and all u ∈ Rd .

(A.3)

(i) L(t, x; u) ∈ C3([0, 1]× Rd × Rd : [0,∞)),
(ii) D2

u L(t, x; u) is positive definite for all (t, x, u) ∈ [0, 1]× Rd × Rd ,
(iii) sup{L(t, x; o): (t, x) ∈ [0, 1]× Rd} is finite,
(iv) |Dx L(t, x; u)|/(1+ L(t, x; u)) is bounded and
(v) sup{|Du L(t, x; u)|: (t, x) ∈ [0, 1]× Rd , |u| ≤ R} is finite for all R > 0.

(A.4)

(i) �L(0,∞) is finite, or
(ii) p = 2 in (A.1).
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Remark 2.1. (i) Assumption (A.3(ii)) implies that L(t, x; u) is strictly convex in u.
(ii) (1+ |u|2)p/2 (p > 1) satisfies (A.1)–(A.3) and (A.4(i)).

We state that (1.8) holds.

Theorem 2.1. Suppose that (A.1)–(A.4) hold. Then for any P0 and P1 ∈M1(Rd),

V (P0, P1) = v(P0, P1)(∈ [0,∞]). (2.1)

The following is our main result (see (1.15)–(1.16) for notations).

Theorem 2.2. Suppose that (A.1)–(A.4) hold. Then:

(i) For any P := {Pt (dx)}0≤t≤1 ⊂M1(Rd),

V(P) = v(P)(∈ [0,∞]). (2.2)

(ii) For any P := {Pt (dx)}0≤t≤1,⊂ M1(Rd), for which v(P) is finite, there exist
a unique minimizer bo(t, x) of v(P) and a minimizer X ∈ A, of V(P). In
particular, for any minimizer X ∈ A, of V(P),

βX (t, X) = bo(t, X (t)) (2.3)

and (1.2)–(1.3) with b = bo hold.

Remark 2.2. If v(P) is finite, then the generalized finite energy condition (1.5) holds
from (A.1).

3. Lemmas

In this section we give technical lemmas.
In the same way as for A, we define the set of semimartingales At in C([t, 1]). We

recall the following result.

Lemma 3.1 [8, p. 210, Remark 11.2]. Suppose that (A.1) and (A.3) hold. Then for
any f ∈ C∞b (R

d), the HJB equation (1.10) with ϕ(1, ·) = f has a unique solution
ϕ ∈ C1,2([0, 1]× Rd) ∩ C0,1

b ([0, 1]× Rd), which can be written as follows:

ϕ(t, x) = sup
X∈At

{
E[ f (X (1))|X (t) = x]

− E

[∫ 1

t
L(s, X (s);βX (s, X)) ds

∣∣∣∣X (t) = x

]}
, (3.1)

where for the maximizer X ∈ At , the following holds:

βX (s, X) = Dz H(s, X (s); Dxϕ(s, X (s))).
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Fix P0 ∈M1(Rd). For f ∈ Cb(Rd), put

V ∗( f ) := sup
P∈M1(Rd )

{∫
Rd

f (x)P(dx)− V (P0, P)

}
, (3.2)

v∗( f ) := sup
P∈M1(Rd )

{∫
Rd

f (x)P(dx)− v(P0, P)

}
. (3.3)

The following lemma plays a crucial role in the proof of Theorem 2.1.

Lemma 3.2.

(i) Suppose that (A.3(i),(ii)) hold. Then for any Q0 and Q1 ∈M1(Rd),

V (Q0, Q1) ≥ v(Q0, Q1). (3.4)

(ii) Suppose in addition that (A.1) and (A.3) hold. Then for any f ∈ C∞b (R
d),

V ∗( f ) ≥ v∗( f ). (3.5)

Proof. We first prove (i). For X ∈ A for which E[
∫ 1

0 L(t, X (t);βX (t, X)) dt] is finite
and for which P X (t)−1 = Qt (t = 0, 1), (bX (t, x), P(X (t) ∈ dx)) satisfies (1.1) with
(b(t, x), Pt (dx)) = (bX (t, x), P(X (t) ∈ dx)) (see (1.13) for notation). Indeed, for any
f ∈ C1,2

b ([0, 1]× Rd) and t ∈ [0, 1], by Itô’s formula,∫
Rd

f (t, x)P(X (t) ∈ dx)−
∫

Rd

f (0, x)P(X (0) ∈ dx)

= E[ f (t, X (t))− f (0, X (0))]

=
∫ t

0
ds E

[
∂ f (s, X (s))

∂s
+ 1

2
� f (s, X (s))+ 〈βX (s, X), Dx f (s, X (s))〉

]

=
∫ t

0
ds E

[
∂ f (s, X (s))

∂s
+ 1

2
� f (s, X (s))+ 〈bX (s, X (s)), Dx f (s, X (s))〉

]

=
∫ t

0
ds

∫
Rd

(
∂ f (s, x)

∂s
+ 1

2
� f (s, x)+〈bX (s, x), Dx f (s, x)〉

)
P(X (s) ∈ dx).

(3.6)

Hence, from Remark 2.1(i), by Jensen’s inequality,

E

[∫ 1

0
L(t, X (t);βX (t, X)) dt

]

≥ E

[∫ 1

0
L(t, X (t); bX (t, X (t))) dt

]

=
∫ 1

0
dt

∫
Rd

L(t, x; bX (t, x))P(X (t) ∈ dx) ≥ v(Q0, Q1). (3.7)

Next we prove (ii). For ϕ in (3.1) and {(b(t, x), P(t, dx))}0≤t≤1 for which
{P(t, dx)}0≤t≤1 ⊂M1(Rd) and (1.1) with P(0, dx) = P0 holds,∫

Rd

f (x)P(1, dx)−
∫

Rd

ϕ(0, x)P0(dx)≤
∫ 1

0
dt

∫
Rd

L(t, x; b(t, x))P(t, dx). (3.8)
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Indeed, take ψ ∈ C∞o (R
d : [0,∞)) for which ψ(x) = 1 (|x | ≤ 1) and ψ(x) = 0

(|x | ≥ 2), and put ψR(x) := ψ(x/R) for R > 0. Then from (1.1),∫
Rd

ψR(x) f (x)P(1, dx)−
∫

Rd

ψR(x)ϕ(0, x)P(0, dx)

=
∫ 1

0
dt

∫
Rd

ψR(x)

[
∂ϕ(t, x)

∂t
+ 1

2
�ϕ(t, x)+ 〈b(t, x), Dxϕ(t, x)〉

]
P(t, dx)

+
∫ 1

0
dt

∫
Rd

[
〈DxψR(x), Dxϕ(t, x)〉 + 1

2�ψR(x)ϕ(t, x)

+〈b(t, x), DxψR(x)〉ϕ(t, x)

]
P(t, dx). (3.9)

Let R→∞. Then we obtain (3.8) from (1.10), (A.1) and Lemma 3.1.
Lemma 3.1 and (3.8) implies (ii). Indeed,

v∗( f ) = sup

{∫
Rd

f (x)P(1, dx)−
∫ 1

0
dt

∫
Rd

L(t, x; b(t, x))P(t, dx)|

P(0, dx) = P0(dx), {P(t, dx)}0≤t≤1 ⊂M1(Rd),

(b(t, x), P(t, dx)) satisfies (1.1)

}

≤
∫

Rd

ϕ(0, x)P0(dx) (from (3.8))

= sup

{
E

[
f (X (1))−

∫ 1

0
L(t, X (t);βX (t, X)) dt

]∣∣∣∣
P X (0)−1 = P0, X ∈ A

}
(from Lemma 3.1)

= V ∗( f ). (3.10)

Let (�,B, {Bt }t≥0, P) be a complete filtered probability space, let Xo be a (B0)-
adapted random variable, and let {W (t)}t≥0 denote a d-dimensional (Bt )-Wiener process
for which W (0) = o (see, e.g., [11]). For an Rd -valued, (Bt )-progressively measurable
stochastic process {u(t)}0≤t≤1, put

Xu(t) = Xo +
∫ t

0
u(s) ds +W (t) (t ∈ [0, 1]). (3.11)

Then the following is known.

Lemma 3.3. Suppose that E[
∫ 1

0 |u(t)| dt] is finite. Then {Xu(t)}0≤t≤1 ∈ A and

βXu (t, Xu) = E[u(t)|Xu(s), 0 ≤ s ≤ t] (3.12)

(see p. 270 of [11]). Besides, by Jensen’s inequality,

E

[∫ 1

0
L(t, Xu(t); u(t)) dt

]
≥ E

[∫ 1

0
L(t, Xu(t);βXu (t, Xu)) dt

]
. (3.13)
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For P := {Pt (dx)}0≤t≤1 ⊂M1(Rd) and n ≥ 1, put

Vn(P) := inf

{
E

[∫ 1

0
L(t, X (t);βX (t, X)) dt

]∣∣∣∣
P X (t)−1 = Pt

(
t = i

2n
, i = 0, . . . , 2n

)
, X ∈ A

}
, (3.14)

vn(P) := inf

{∫ 1

0
dt

∫
Rd

L(t, x; b(t, x))P(t, dx)

∣∣∣∣
P(t, dx) = Pt (dx)

(
t = i

2n
, i = 0, . . . , 2n

)
,

{P(t, dx)}0≤t≤1 ⊂M(Rd),

(b(t, x), P(t, dx)) satisfies (1.1)

}
. (3.15)

Then we have

Lemma 3.4. Suppose that (A.1)–(A.4) hold. Then for any P := {Pt (dx)}0≤t≤1 ⊂
M1(Rd) and n ≥ 1,

vn(P) = Vn(P). (3.16)

Proof. For i = 0, . . . , 2n − 1, put

Vn,i (P) := inf

{
E

[∫ 1/2n

0
L(t, X (t);βX (t, X)) dt

]∣∣∣∣
P X (t)−1 = Pt+i/2n

(
t = 0,

1

2n

)
, X ∈ A

}
, (3.17)

vn,i (P) := inf

{∫ 1/2n

0
dt

∫
Rd

L(t, x; b(t, x))P(t, dx)

∣∣∣∣
P(t, dx) = Pt+i/2n (dx)

(
t = 0,

1

2n

)
,

{P(t, dx)}0≤t≤1/2n ⊂M(Rd),

(b(t, x), P(t, dx)) satisfies (1.1) on [0, 1/2n]

}
. (3.18)

Then, from Theorem 2.1,

vn(P) =
2n−1∑
i=0

vn,i (P) =
2n−1∑
i=0

Vn,i (P). (3.19)

Since Vn(P) ≥ vn(P) from (3.6)–(3.7), we only have to prove the following:

2n−1∑
i=0

Vn,i (P) ≥ Vn(P). (3.20)
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Suppose that the left-hand side of (3.20) is finite. For i = 0, . . . , 2n − 1, take a
minimizer Xn,i of Vn,i (P) (see Theorem 1.1), and put

Pn,i := P Xn,i

(
· − i

2n

)−1

on

(
C

([
i

2n
,

i + 1

2n

]
: Rd

)
,B

(
C

([
i

2n
,

i + 1

2n

]
: Rd

)))
, (3.21)

Pn
(
d X |C([0,1]: Rd )

)
:= Pn,0

(
d X |C([0,1/2n ]: Rd )

)

× �2n−1
i=1 Pn,i

(
d X |C([i/2n ,(i+1)/2n ]: Rd )

∣∣∣∣Xn,i

(
i

2n

)
= X

(
i

2n

))

(3.22)

on (C([0, 1]: Rd),B(C([0, 1]: Rd))). Under the completion of this measure, the coor-
dinate process {Xn(t)}0≤t≤1 satisfies the following:

Xn(t) = Xn(0)+
2n−1∑
i=0

∫ min((i+1)/2n ,t)

min(i/2n ,t)
bn,i

(
s − i

2n
, Xn(s)

)
ds +WXn (t)

(0 ≤ t ≤ 1), (3.23)

where bn,i denotes the drift vector of Xn,i (see Theorem 1.1). In particular, P Xn(t)−1 =
Pt (t = i/2n, i = 0, . . . , 2n), which implies (3.20).

4. Proofs

In this section we prove our results given in Section 2.
When L = |u|2, the following proof extremely simplifies that of Lemma 2.5 of [12].

Proof of Theorem 2.1. Lemma 3.2(i) and the following complete the proof:

v(P0, P1) ≥ sup
f ∈C∞b (R

d )

{∫
Rd

f (x)P1(dx)− v∗( f )

}
(from (3.3))

≥ sup
f ∈C∞b (R

d )

{∫
Rd

f (x)P1(dx)− V ∗( f )

}
(from Lemma 3.2(ii))

= V (P0, P1) (from Theorem 1.1 (see (3.10))). (4.1)

Proof of Theorem 2.2. We first prove (i). From (3.6)–(3.7), V(P) ≥ v(P). Therefore
we only have to show that

v(P) ≥ V(P). (4.2)

Suppose that v(P) is finite. Then, from Lemma 3.4,

v(P) ≥ vn(P) = Vn(P) (4.3)

and Xn constructed in (3.23) is a minimizer of Vn(P).
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Let bn denote the drift vector of {Xn(t)}0≤t≤1. It is easy to see that
{(Xn(t),

∫ t
0 bn(s, Xn(s)) ds): t ∈ [0, 1]}n≥1 is tight in C([0, 1]: R2d) from (A.1)

(see [23, Theorem 3] or [9]). Take a weakly convergent subsequence
{(Xnk (t),

∫ t
0 bnk (s, Xnk (s)) ds): t ∈ [0, 1]}k≥1 such that

lim inf
n→∞ E

[∫ 1

0
L(t, Xn(t); bn(s, Xn(s))) dt

]

= lim
k→∞

E

[∫ 1

0
L(t, Xnk (t); bnk (s, Xnk (s))) dt

]
. (4.4)

Let {(X (t), A(t))}t∈[0,1] denote the limit of {(Xnk (t),
∫ t

0 bnk (s, Xnk (s)) ds): t ∈ [0, 1]}k≥1

as k →∞. Then {X (t)− X (0)− A(t)}t∈[0,1] is a σ [X (s): 0 ≤ s ≤ t]-Wiener process
and {A(t)}t∈[0,1] is absolutely continuous (see [23, Theorem 5] or [9]). We can also prove,
in the same way as in the proof of (3.17) of [15], the following: from (4.3)–(4.4), (A.2)
and (A.3(ii)) (see Remark 2.1(i)),

v(P) ≥ lim inf
n→∞ E

[∫ 1

0
L(t, Xn(t); bn(t, Xn(t))) dt

]

≥ E

[∫ 1

0
L

(
t, X (t); d A(t)

dt

)
dt

]

≥ Ẽ

[∫ 1

0
L (t, X (t);βX (t, X)) dt

]
(from Lemma 3.3)

≥ V(P). (4.5)

Here Ẽ denotes the mean value by the completion of P X (·)−1 and we used the fact that
P(X (t) ∈ dx) = Pt (dx) for all t ∈ [0, 1]. Indeed,

P(X (t) ∈ dx) = lim
n→∞ P

(
X

(
[2nt]

2n

)
∈ dx

)
weakly,

P

(
X

(
[2nt]

2n

)
∈ dx

)
= P[2n t]/2n (dx)→ Pt (dx) as n→∞ weakly.

Next we prove (ii). Suppose that v(P) is finite. Then (2.2) and (4.5) show the existence
of a minimizer X of V(P). In the same way as in (3.7), Theorem 2.2(i) and the strict
convexity of u �→ L(t, x; u) (see Remark 2.1(i)) imply that βX (t, X) = bX (t, X (t)) and
bX (t, x) is a minimizer of v(P).

Let b1 and b2 be minimizers of v(P). Then for any λ ∈ (0, 1), λb1(t, x) + (1 −
λ)b2(t, x) satisfies (1.1), and

v(P)≤
∫ 1

0

∫
Rd

L(t, x; λb1(t, x)+ (1− λ)b2(t, x))Pt (dx)

≤λ
∫ 1

0

∫
Rd

L(t, x; b1(t, x))Pt (dx)+ (1− λ)
∫ 1

0

∫
Rd

L(t, x; b2(t, x))Pt (dx)

=v(P). (4.6)

The strict convexity of u �→ L(t, x; u) implies the uniqueness of a minimizer
of v(P).
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