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Abstract. We consider a problem concerning the distribution of a solid material
in a given bounded control volume with the goal to minimize the potential power
of the Stokes flow with given velocities at the boundary through the material-free
part of the domain. We also study the relaxed problem of the optimal distribution of
the porous material with a spatially varying Darcy permeability tensor, where the
governing equations are known as the Darcy–Stokes, or Brinkman, equations. We
show that the introduction of the requirement of zero power dissipation due to the
flow through the porous material into the relaxed problem results in it becoming a
well-posed mathematical problem, which admits optimal solutions that have extreme
permeability properties (i.e., assume only zero or infinite permeability); thus, they
are also optimal in the original (non-relaxed) problem.

Two numerical techniques are presented for the solution of the constrained
problem. One is based on a sequence of optimal Brinkman flows with increasing
viscosities, from the mathematical point of view nothing but the exterior penalty
approach applied to the problem. Another technique is more special, and is based
on the “sizing” approximation of the problem using a mix of two different porous
materials with high and low permeabilities, respectively.

This paper thus complements the study of Borrvall and Petersson (Internat.
J. Numer. Methods Fluids, vol. 41, no. 1, pp. 77–107, 2003), where only sizing
optimization problems are treated.
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1. Introduction

While topology optimization of structures in (very) rough terms can be described as the
science of introducing holes in the structure to improve the structural performance, in the
vast majority of the literature on the subject, especially computationally oriented ones,
the appearence of holes is precluded from the very beginning by the requirement that
the minimal structural dimension is positive at every point.

The reason for introducing such a constraint is twofold. From the numerical point
of view, the FEM-stiffness matrix of the governing differential equation is guaranteed
to be positive definite in this case, resulting in stable numerical procedures. However,
more importantly, allowing some structural parts to disappear we often end up with an
optimization problem having a non-closed feasible set and, as a result, lacking optimal
solutions.

In topology optimization of solids and structures the classic problem of minimizing
the structural compliance is known to possess optimal solutions, if we allow microstruc-
tures to be used in the optimal structure (see Appendix 5.2 in [BS3]). At the same
time, if we are interested in a pure solid–void design, free of microstructures, the same
problem lacks optimal solutions. Since the “grey” optimal solutions (the ones involving
microstructures, as opposed to “black–white” pure solid–void solutions) are usually dif-
ficult to interpret and to manufacture, various restriction or regularization methods are
considered in order to reduce the amount of “microstructural material” in the optimal
structure; see the bibliographical notes (8) in [BS3]. The pure void parts, the very heart
of topology optimization, are not allowed to appear in such methods and are usually
modelled by a very compliant material. However, the limits of optimal designs as the
properties of the compliant substitute approach those of void are not investigated.

In the case of topology optimization of truss structures, the question of the continuity
of the optimal solutions with respect to the lower bound on the minimal structural
dimension has received significant attention in the literature (see, e.g., the bibliographical
notes (16) in [BS3] on the “stress singularity phenomenon”). Despite the abundant
amount of literature on the topology optimization of linearly elastic continuous systems,
similar studies have not been conducted for fluid mechanics.

Recently, topology optimization techniques have been applied to optimization prob-
lems in flow mechanics [BP], where traditionally shape optimization methods were pre-
vailing (see the pioneering works of Pironneau [Pi1], [Pi2] on the optimality conditions
for shape optimization in fluid mechanics; see also the bibliographical notes (2) in [BS3]
for classical references, and [GS] for some recent advances in this area). The benefits of
using topology optimization (or control in coefficients) over shape optimization include
easier implementation and sensitivity analysis, and better integration with existing FEM
codes (the monographs [BS3] and [Al] constitute excellent references for using control
in coefficients in structural optimization). Borrvall and Petersson [BP] considered the
optimal design of flow domains for minimizing the total power of the Stokes flows. The
set of admissible designs is a set of porous materials with a spatially varying Darcy
permeability tensor, under a constraint on the total volume of fluid in the control region.
The appearence of internal walls in the domain (regions with pure solid material, not
permitting flow; these can be interpreted as “holes in the flow”) is not permitted. Thus,
the topology, i.e., connectivity of the flow region does not change, and, carrying over
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the terminology from optimization in solid mechanics, we refer to this case as that of a
“sizing” optimization.

In the present paper we study the “real” topology optimization case of the Stokes
flow, i.e., pure solid and pure flow regions are allowed. We show that the relaxed problem
of distributing porous material, as well as the pure solid–void (zero–one) problem, pos-
sesses optimal solutions. Furthermore, we show that the sizing optimal solutions have
limits as the permeability of the porous material is allowed to vanish (i.e., converge to
the permeability of solid material).

The outline of the present paper is as follows. In the next section we describe the
necessary notation and state precisely the weak formulation of the governing equations,
its interpretation, and the objective functional. Section 3 is dedicated to the proof of
the existence of the optimal solutions to the relaxed problem, while in Section 4 we
introduce a well-posed formulation of the zero–one optimal problem and establish the
well-posedness of the latter. Two numerical approaches for the solution of the zero–
one control problem are the topics of Sections 5 and 6. In Section 7 we show that for
functionals other than the total power of the flow, the control problem might be ill-posed,
even if rather strong continuity requirements are imposed on the objective functional.
We end the paper with a brief discussion of further research topics.

2. Prerequisites

2.1. Notation

We follow standard engineering practice and denote vector quantities, such as vectors
and vector-valued functions, using the bold font. However, for functional spaces of both
scalar- and vector-valued functions we use regular font.

Let� be a connected bounded domain ofRd , d ∈ {2, 3},with a Lipschitz continuous
boundary �. In this domain we would like to control the Darcy–Stokes, or Brinkman,
equations [NB] with the prescribed flow velocities g on the boundary, and forces f acting
in the domain by adjusting the inverse permeability α of the medium occupying�, which
depends on the control function ρ:

−ν∆u+ α(ρ)u+∇p = f
div u = 0

}
, in �,

u = g, on �.
(1)

In system (1), u is the flow velocity, p is the pressure, and ν is the kinematic viscosity.
Of course, the function g must satisfy the compatibility condition∫

�

g · n = 0,

where n denotes the outward unit normal. Roughly speaking, if α(ρ(x)) = +∞ for
some x ∈ �, we simply require u(x) = 0 in the first equation of (1) (the formalization
and well-posedness of this requirement is discussed later).

Our control setH is defined as follows:

H =
{
ρ ∈ L∞(�) | 0 ≤ ρ ≤ 1, a.e. in �,

∫
�

ρ ≤ γ |�|
}
,
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where 0 < γ < 1 is the maximal volume fraction that can be occupied by the fluid, and
| · | denotes the Lebesgue measure of ·. Every element ρ ∈ H describes the scaled Darcy
permeability tensor of the medium at a given point x ∈ � in the following (informal)
way: ρ(x) = 0 corresponds to zero permeability at x (i.e., solid, which does not permit
any flow at a given point), whileρ(x) = 1 corresponds to infinite permeability (i.e., 100%
flow region; no structural material is present). Formally, we relate the permeability α−1

to ρ using a convex, decreasing, and non-negative function α: [0, 1] → R+ ∪ {+∞},
defined as

α(ρ) = ρ−1 − 1.

Modelling the Stokes flow, we are interested only in the two extreme values of
permeability, α−1 = 0 or α−1 = +∞. For this purpose, we introduce the following
subset of extreme points of a convex setH:

H̃ = {ρ ∈ H | ρ ∈ {0, 1}, a.e. in �}.
However, both from the analytical and the computational points of view, it is impossible
to state the control problem in the set H̃, because it is non-convex, and not weakly∗

closed. Therefore, we first study the properties of the relaxed control problem posed
over the convex, whence weakly∗ closed, set H = hull(H̃) (where hull(·) denotes the
operation of taking the convex hull of ·).

In the rest of the paper we use the symbol χA for A ⊂ � to denote the characteristic
function of A: χA(x) = 1 for x ∈ A; χA(x) = 0 otherwise.

2.2. Weak Formulation

To state the problem in a more analytically suitable way, and to incorporate the special
case α = +∞ into the first equation of system (1), we introduce a weak formulation of
the equations. We consider the set of admissible flow velocities and test functions

U = {v ∈ H 1(�) | tr v = g on �},
V = {v ∈ H 1(�) | tr v = 0 on �},

and pressures

L2
0(�) =

{
q ∈ L2(�) |

∫
�

q = 0

}
.

Then the weak formulation of (1) reads as follows: for f ∈ L2(�), compatible g ∈
H 1/2(�), and ρ ∈ H find (u, p) ∈ U × L2

0(�) such that

ν

∫
�

∇u ·∇v+
∫
�

α(ρ)u · v−
∫
�

p div v =
∫
�

f · v, ∀ v ∈ V,
(2)∫

�

q div u = 0, ∀ q ∈ L2
0(�).

(In the system above we use the usual convention∞ · 0 = 0.)
Allowing designs with zero permeability significantly increases the complexity of

the control problem. From the purely technical side, the inverse permeability α may be
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infinite on sets of positive measure, and thus does not belong to any of the common func-
tional spaces. Even worse, internal walls that do not permit flows with the given boundary
conditions might appear as limits of designs that admit flow, making the space of admis-
sible designs not closed. The latter difficulty is demonstrated in the following example.

Example 2.1 (Diminishing Permeability). Let g be some compatible non-zero bound-
ary condition, let f be arbitrary in L2(�). Let ρk ≡ 1/k in�, ρ ≡ 0 in�, so that ρk → ρ

in L∞(�) as k →∞. It is not difficult to check (this follows from the standard theory
for the Stokes equations as well as from the results in [BP]) that for each k = 1, 2, . . . ,
there is a solution (uk, pk) to (2). However, since α(ρ) ≡ +∞ in �, from the first
equation in (2) it follows that u ≡ 0 in �, which is clearly not compatible with the
boundary conditions. In other words, there is no solution (u, p) to (2) corresponding to
the limiting control ρ, which means that the set of admissible controls is not closed even
in the strong topology of L∞(�)!

This is in vast contrast with the sizing case, which can be modelled by requiring
ρ ≤ ρ ≤ ρ, a.e. in �, for some constants 0 < ρ ≤ ρ ≤ 1. Under these conditions,
Borrvall and Petersson [BP] show that the set of admissible controls is closed in the
weak∗ topology of L∞(�). (In fact, the case ρ = 1 or α = 0 is not allowed in the cited
work; however, the arguments used there work for this case as well because, owing to
Fredrichs’ inequality, the semi-norm | · |1 is equivalent to the norm of H 1(�) in the
problem we consider; see also Theorem 3.3).

Example 2.1 demonstrates that the lower semicontinuity of the objective functional
alone is not sufficient for the topology optimization of the Darcy–Stokes flow to possess
optimal solutions; e.g., take the problem of minimizing the “volume of the flow”

∫
�
ρ to

recover a situation similar to that of Example 2.1. However, if the objective functional
also enjoys an inf-compactness property with respect to the set of admissible controls,
every minimizing sequence converges, thus making the control problem well-posed. In
what follows we establish that the power functional, introduced below, for the Darcy–
Stokes flow is both lower semicontinuous and inf-compact, thus extending the results
of [BP] from sizing to topology optimization.

Let J S : U → R denote the potential power of the Stokes flow:

J S(u) = 1

2

∫
�

∇u ·∇u−
∫
�

f · u.

Let us further define the additional power dissipation JD: H × U → R ∪ {+∞}, due
to the presence of the porous medium:

JD(ρ,u) = 1

2

∫
�

α(ρ)u · u.

Finally, let J (ρ,u) = J S(u)+ JD(ρ,u) denote the total power of the Darcy–Stokes
flow.

Assuming α(ρ) < +∞, one can derive the variational formulation of system (1)
(see [BP]):

ϕ(ρ) = min
u∈U
J (ρ,u),

s.t. div u = 0, weakly in �, (3)



268 A. Evgrafov

system (2) being the first-order necessary optimality conditions for (3). In particular, the
pressure p ∈ L2

0(�) is defined as a Lagrange multiplier for the constraint div u = 0. In
what follows, we denote the feasible set of problem (3) by Udiv.

Now, assume that for a given ρ ∈ H there exists a solution u ∈ H 1(�) to the
variational problem (3). Let us consider a new domain �̌ := int[supp(u)] ⊆ �. Clearly,
α < +∞, a.e. in �̌. Furthermore, if �̌ is regular enough (e.g., with Lipschitz continuous
boundary), then u solves the variational problem (3) in the domain �̌ with the boundary
conditions tr u = g on ∂�̌∩�, tr u = 0 on ∂�̌\�, and there exists an associated pressure
p: �̌ → R such that the pair (u, p) solves the weak formulation of the Darcy–Stokes
equation in the domain �̌ with the already described boundary condition. (In particular,
if α = 0 a.e. in �̌, then (u, p) is a weak solution to the Stokes equation in the domain �̌.)
With this interpretation, we use the variational formulation (3) of the problem instead
of (2) in the development that follows.

2.3. Objective Functional

The objective functional in our problem is to minimize the total potential power of the
flow, which in the case of f = 0 amounts to minimizing the power dissipated by the
flow. (The same problem can be interpreted as a minimization of the average pressure
drop, provided f = 0 and g = gn [BP].)

Therefore, the optimization problem we consider can be written as follows:

min
ρ∈H

ϕ(ρ), (4)

where ϕ: H→ R ∪ {+∞} is defined in (3).
As has been announced above, with this functional the control problem (4) possesses

optimal solutions despite the fact that the set of admissible controls is not closed (see
Corollary 3.4). Furthermore, in contrast to the situation in the case of linear elasticity, the
“discrete” problem of minimizing the total power of the Stokes flow with controls in H̃
possesses optimal solutions. However, special approximation techniques are necessary
to find them (see Sections 5 and 6).

3. Existence of Optimal Solutions

In this section we prove that problem (4) admits optimal solutions; see Theorem 3.3 and
its corollary. However, we need a few auxiliary results first.

Proposition 3.1. The function h: [0, 1] × Rd → R+ ∪ {+∞} defined as h(x, y) =
x−1 y · y with the conventions 0−1 = +∞ and +∞ · 0 = 0 is convex and lower
semicontinuous.

Proof. The proof is elementary and can be found on p. 83 in [Ro].

Lemma 3.2. Let {(ρk,uk)} ⊂ H× Udiv be such that:

◦ lim infk→+∞ JD(ρk,uk) = C , for some constant C < +∞;
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◦ w∗-limk→+∞ρk = ρ in L∞(�);
◦ w-limk→∞uk = u in H 1(�).

Then the pair (ρ,u) ∈ H× Udiv, and JD(ρ,u) ≤ C .

Proof. The first claim is obvious.
Since

∫
�
α(ρk)uk · uk =

∫
�

h(ρk,uk) −
∫
�

uk · uk , where h is defined in Proposi-
tion 3.1, and the last integral converges to

∫
�

u · u, it remains to estimate lim infk→+∞∫
�

h(ρk,uk). The weak lower semicontinuity of (ρ,u) �→ ∫
�

h(ρ,u) follows from the
(pointwise) convexity and lower semicontinuity of h (Proposition 3.1), Fatou’s lemma,
and Corollary 2.2 in [ET].

Now we are ready to establish the existence result.

Theorem 3.3 (Existence of Optimal Solutions). The optimization problem

min
(ρ,u)∈H×Udiv

J (ρ,u) (5)

possesses at least one optimal solution (ρ∗,u∗).

Proof. Let u0 be the solution to the Stokes problem in� (i.e., the solution to (3) corre-
sponding to ρ ≡ 1 in �); set ρ0 ≡ γ /|�|. Then (ρ0,u0) ∈ H × Udiv, and J (ρ0,u0) <

+∞. Furthermore, for all (ρ,u) ∈ H × Udiv it holds that J (ρ,u) ≥ J (1,u0) > −∞,
i.e., problem (5) is feasible and J is proper with respect to its feasible set.

The setH is weakly∗ compact in L∞(�), and the setUdiv is weakly closed in H 1(�).
Owing to the weak lower semicontinuity ofJ S in H 1(�) (see Theorem 2.3 in [Da]),

and lower semicontinuity of JD in the weak∗×weak topology of L∞(�)× H 1(�) (see
Lemma 3.2), it remains to show that every minimizing sequence {(ρk,uk)} of (5) has
bounded second components.

The valid inequality +∞ > lim supk→+∞ J (ρk,uk) ≥ lim supk→+∞ J (1,uk) =
lim supk→+∞ J S(uk) implies that {|uk |1} is bounded. Since� is bounded, and tr uk = g,
Fredrichs’ inequality implies that {‖uk‖} is bounded.

Corollary 3.4. The optimization problem (4) possesses at least one optimal solution.

Proof. Let (ρ∗,u∗) be optimal solution to (5); then ρ∗ is optimal in (4).

4. Existence of Black–White Solutions

From the engineering point of view, it is important to find optimal solutions to problem (4)
that also lie in H̃. Such optimal solutions are traditionally called zero–one, or black–white,
solutions in the topology optimization literature. Zero–one optimal solutions are easy to
interpret and to manufacture (e.g., one does not need to include microstructures into the
final design in linear elasticity, or materials with varying porosity in Darcy–Stokes flow
mechanics).
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Let u∗ be a flow that is optimal in problem (4). We can always obtain an optimal
control ρ∗ for this flow as a solution to the following opimization problem:

min
ρ∈H
J (ρ,u∗). (6)

For problem (6) to admit optimal solutions at the extreme points of the control set H,
i.e., in H̃, it is necessary for the inverse permeability α to depend on ρ in a concave way.
At the same time, the lower semicontinuity of the objective functional J depends on
the fact that α (in fact, h, see Lemma 3.2) depends on its arguments in a convex manner.
Clearly, there is no function mapping [0, 1] onto [0,+∞] satisfying both requirements.
Therefore, we need to specify the requirement that there must be at least one solution
to (4) in H̃ as an additional constraint. As will be shown in Theorem 4.1, this can be
achieved by adding a requirement of zero energy dissipation due to the flow through the
porous material, i.e., JD(ρ, v) = 0.

On the other hand, in the case of the sizing optimization problems considered in [BP],
the design space H describes inverse permeabilities α which belong to the bounded
subset {0 < α ≤ α ≤ α < +∞} of L∞(�). Therefore, one has a freedom to choose
an affine mapping (that is, both convex and concave) α(�)(ρ) = α + (α − α)ρ to
describe the dependence of the inverse permeability on the design; with such a choice,
there is always an optimal solution ρ∗ ∈ H̃ to the sizing optimization problem (see
Corollary 3.1 in [BP]). However, the zero–one optimal solutions obtained in [BP] are
not black–white in the traditional interpretation (i.e., black denotes solid material, and
white is its opposite: void in linear elasticity, or flow region in flow mechanics), but
rather “dark-grey–light-grey”! Namely, they are composed of two porous materials with
high and low permeabilities, respectively. A priori, it is not clear how close they are to
the real black–white solutions (if any of the latter exist).

Therefore, our further goals are as follows. In this section we show how to set up, in an
analytically suitable manner, an optimization problem for minimizing the potential power
of the Stokes flow that possesses black–white solutions. This problem is not suitable for
numerical computations though, because the zero–one solution requirement is posed as a
complementarity condition between the inverse permeability and the velocity of the flow.
(Complementarity conditions are known to generate highly non-convex feasible sets,
which often violate standard constraint qualifications [LPR] and are therefore extremely
hard to solve to global or even local optimality.) As a remedy, in the two subsequent sec-
tions we propose two computational approaches to the zero–one problem: one is based on
a penalty function, with the viscosity of the flow playing the role of a penalty parameter;
the other one is based on the aforementioned “dark-grey—light-grey” approximations.

Theorem 4.1 (Existence of 0–1 Solutions). The optimization problem{
min(ρ,u)∈H×Udiv J S(u),

s.t. JD(ρ,u) = 0,
(7)

possesses at least one optimal solution (ρ̃,u∗) ∈ H̃× Udiv.

Proof. The constraint of problem (7) can be equivalently written as JD(ρ,u) ≤ 0,
which, together with Lemma 3.2, implies the closedness of the feasible set of problem (7)
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in the weak∗ × weak topology of L∞(�) × H 1(�). Therefore, following the proof of
Theorem 3.3, we can establish existence of the optimal solution (ρ∗,u∗) ∈ H × Udiv,
provided there is at least one solution that is feasible in (7).

To construct a feasible solution, we choose a closed set �0 � �, such that |�0| =
(1 − γ )|�| and �\�0 is connected and has a Lipschitz continuous boundary. Let uS

be the Stokes flow in �\�0 with boundary conditions uS = g on � and uS = 0 on
∂(�\�0)\�; set ρS = χ�\�0 . When J S(uS) < +∞ and JD(ρS ,uS) = 0.

Now, let ρ̃ = χ�nz(u∗), where �nz(u∗) is defined up to the sets of measure zero as
{x ∈ � | ‖û∗(x)‖ �= 0}, and û∗: � → R

d is an arbitrary representative of u∗. Then∫
�
ρ̃ ≤ ∫

�
ρ∗ and JD(ρ̃,u∗) = 0, yielding an optimal solution (ρ̃,u∗) ∈ H̃× Udiv.

We stress the fact that, owing to Theorem 4.1, for every optimal solution to (7), there
is an optimal solution to the following zero–one problem,

min(ρ,u)∈L∞(�)×Udiv J S(u),

s.t.


ρ(x) = 0 �⇒ u(x) = 0, a.e. in �,
u(x) �= 0 �⇒ ρ(x) = 1, a.e. in �,∫
�

ρ ≤ γ |�|,
(8)

having the same objective value. Therefore, every optimal solution to (8) is also optimal
in (7). In this sense, problems (8) and (7) are equivalent, i.e., neither one is a relaxation
nor a restriction of the other. Such an equivalence is a very important and unique fact
about the topology optimization of Stokes flows. We recall that the zero–one problem
“as is” in linear elasticity is ill-posed, and either relaxation or restriction is necessary to
guarantee the existence of optimal solutions (see the bibliographical notes (8) in [BS3]
for an extensive account of relaxation and restriction methods in topology optimization
in solid mechanics).

5. Black–White Solutions Via Increasing the Viscosity

There is a school of thought arguing that under some circumstances the viscosity ν and
permeabilityα−1 in system (1) alone do not adequately describe the Stokes flow in porous
media. An additional parameter µ is introduced into the first PDE as follows [NB]:

−ν∆u+ µα(ρ)u+∇p = f .

Now, the parameter µ is the viscosity of the flow, while ν is an “effective viscosity.”
Repeating the arguments of Section 1, we then arrive at the following formulation of the
optimization problem (4):

min
(�,v)∈H×Udiv

J S(v)+ µJD(�, v). (9)

Clearly, this is nothing but the exterior penalty reformulation of problem (7), with the
viscosity µ playing the role of a penalty parameter. The arguments of Theorem 3.3
are applicable to problem (9) as well, so that there exists a family of optimal solutions
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{ρ∗µ,u∗µ}, µ > 0, to (9). From the standard theory for non-linear programs (see Theo-
rem 9.2.2 in [BSS]), it follows that every weak∗ × weak limit point of this sequence as
µ→+∞ (and there is at least one) is an optimal solution to (7).

We note that problem (9) does not contain any complicating state constraints, and
thus is much easier to solve than (7). While the penalty method might converge quite
slowly, and the approximating designs might contain quite a large amount of porous
material with intermediate values of permeability, we think it is instructive to mention
this approach, owing to its clear mathematical and physical interpretations (compare
with, e.g., the most popular “SIMP” approach [BS1] in the topology optimization of
elastic materials, or the more material science-compatible “RAMP” method [SS]; see
also the discussion on p. 64 in [BS3].

6. Black–White Solutions as Limits of “Dark-Grey–Light-Grey” Solutions

In this section we approximate the zero–one problem (7) using the aforementioned two-
value “dark-grey–light-grey” optimal controls obtained in [BP]. To perform such an
approximation, we introduce two sequences, {αk} ↓ 0 and {αk} ↑ +∞, of extreme
inverse permeabilities. Further, we let ρ

k
= (αk + 1)−1, ρk = (αk + 1)−1, and define

an affine function α(�,k): [ρ
k
, ρk] → R+ so that α(�,k)(ρ

k
) = αk , α(�,k)(ρk) = αk . To

simplify the discussion somewhat, we assume that the sequence {(αk, αk)} is chosen
so that the inequality ρkγ + ρk

(1 − γ ) ≤ γ is satisfied. Then we can also define the

approximating control sets Hk = {� ∈ H | ρk
≤ � ≤ ρk, a.e. in �} and H̃k = {� ∈

H | � ∈ {ρ
k
, ρk}, a.e. in �}. Finally, we define JDk (�, v) = 1

2

∫
�
α(�,k)(�)v · v and

Jk(�, v) = J S(v)+ JDk (�, v).
Throughout this section we also use the following notion. For u ∈ H 1(�), we

denote by �(u) a subset of �, which we define as follows. We choose and fix an
arbitrary representative û: �→ R

d of u (i.e., û = u, a.e.), and define a constant Cγ by

Cγ := inf{C : |{û > C}| < γ |�|}.
We then choose an arbitrary set �(u) of measure γ |�| such that �(u) ⊇ {û > Cγ } and
�(u) ⊆ {û ≥ Cγ }. The fact that �(u) is not uniquely defined (even up to the sets of
measure zero) will not make any difference for the discussion that follows.

The main result of this section is Theorem 6.3, establishing the convergence (under
some arguably mild conditions) of the “dark-grey–light-grey” approximations towards
the black–white limits. We begin with some auxiliary results.

The following lemma allows us to define a “limiting” design ρ̃ ∈ H̃, corresponding
to the limiting flow u, even though the sequence of “dark-grey–light-grey” controls {ρk}
might have no limit points in H̃ in the usual weak∗ sense.

Lemma 6.1. Let {uk} ⊂ H 1(�)weakly converge to u ∈ H 1(�). Define ρk = ρkχ�(uk )

+ ρ
k
χ�\�(uk ), and assume that ρk ∈ H̃k (i.e.,

∫
�
ρk ≤ γ |�|), and that

lim inf
k→+∞

JD(ρk,uk) = lim inf
k→+∞

1

2

[
αk

∫
�(uk )

uk · uk + αk

∫
�\�(uk )

uk · uk

]
≤ C,
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for some constant C < +∞. Then there is ρ̃ ∈ H̃ such that

JD(ρ̃,u) = 0. (10)

In particular, |�nz(u)| ≤ γ |�|, where �nz(u) is defined up to the sets of measure zero
as {x ∈ � | ‖û(x)‖ �= 0}, and û: �→ R

d is an arbitrary representative of u.

Proof. The existence of limit points follows from the inclusion H̃k ⊂ H, k = 1, 2, . . . ,
and the weak∗-compactness of the latter. Therefore, we assume that the original sequence
{ρk} weakly∗ converges to ρ ∈ H.

The control function ρk is a solution to the following optimization problem with a
linear objective functional and weak∗-compact feasible set:

max
�∈Hk

∫
�

�uk · uk . (11)

Since {uk · uk} converges strongly in L1(�), from Proposition 4.4 in [BS2] it follows
that ρ must solve the following optimization problem:

max
�∈H

∫
�

�u · u. (12)

Further, since the objective functional of (12) is linear (in �), the problem possesses a
zero–one optimal solution ρ̃ ∈ H̃; we can always take ρ̃ = χ�(u).

Clearly,

2C ≥ lim inf
k→+∞

∫
�

α(ρk)uk · uk = lim inf
k→+∞

αk

∫
�\�(uk )

uk · uk,

which implies that

0 = lim inf
k→+∞

∫
�\�(uk )

uk · uk = lim
k→+∞

∫
�

ρkuk · uk =
∫
�

ρ̃u · u =
∫
�\�(u)

u · u,

where we used the convergence of optimal values for problem (11) to the one of prob-
lem (12) as k goes to+∞ (again, by Proposition 4.4 in [BS2]). We conclude that u ≡ 0
on �\�(u), which implies (10).

Corollary 6.2. In addition to the assumptions of Lemma 6.1, assume that |�nz(u)| =
γ |�|. Then the sequence {ρk} converges to ρ̃ ∈ H̃ strongly in L1(�).

Proof. The additional assumption implies that problem (12) possesses the only optimal
solution ρ̃ = χ�(u) = χ�nz(u) ∈ H. This implies the weak∗ convergence of the sequence
{ρk} towards ρ̃ in L∞(�). Strong convergence in L1(�) then follows from Corollary 3.2
in [Pe].

Now, the main result of this section can be established.
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Theorem 6.3 (Convergence of “Dark-Grey–Light-Grey” Approximations). Consider
the sequence of sizing optimization problems:

min
(�,v)∈Hk×Udiv

Jk(�, v), k = 1, . . . . (13)

Let {(ρ∗k ,u∗k)} be a sequence of “dark-grey–light-grey” optimal solutions to (13) (i.e.,
(ρ∗k ,u∗k) ∈ H̃k × Udiv, k = 1, 2, . . .), which exists by Corollary 3.1 in [BP]. Then an
arbitrary weak limit point u of the sequence {u∗k} ⊂ H 1(�) (and there is at least one)
defines a control ρ = χ�(u) ∈ H̃ such that (ρ,u) is an optimal solution to problem (7).

If, in addition, |�nz(u)| = γ |�|, then {ρk} strongly converges to ρ in L1(�) (�nz(·)
is defined in Lemma 6.1).

Proof. Let uS be the Stokes flow constructed in the proof of Theorem 4.1; set ρk =
ρkχ�nz(uS ) + ρk

χ�\�nz(uS ). Then (ρk,uS) is feasible in (13), k = 1, 2, . . . . Therefore,
the following inequalities hold:

lim sup
k→+∞

Jk(ρ
∗
k ,u∗k) ≤ lim sup

k→+∞
Jk(ρk,uS)

≤ J S(uS)+ lim
k→+∞

1/2αk‖uS‖L2(�)

= J S(uS) < +∞.
This directly implies the boundedness of the sequence {u∗k}; we therefore assume that
the original sequence weakly converges to u. Furthermore, owing to Lemma 6.1, the pair
(ρ,u), with ρ = χ�(u), is feasible in (7).

Let (ρ∗,u∗) ∈ H̃ × Udiv be an arbitrary zero–one optimal solution to (7). By the
weak lower semicontinuity of J S , we have

J S(ρ∗,u∗) ≤ J S(ρ,u) ≤ lim inf
k→+∞

J S(u∗k) ≤ lim inf
k→+∞

Jk(ρ
∗
k ,u∗k).

On the other hand, letting ρ̃k = ρkχ�(u∗)+ρk
χ�\�(u∗), we obtain the reverse inequality:

J S(ρ∗,u∗) = J (ρ∗,u∗) = lim
k→+∞

Jk(ρ̃k,u∗) ≥ lim sup
k→+∞

Jk(ρ
∗
k ,u∗k),

owing to the feasibility of (ρ̃k,u∗) in (13), k = 1, 2, . . . . This establishes the optimality
of (ρ,u) in (7).

The last claim is a simple application of Corollary 6.2.

Now we are ready to discuss the additional assumption of Theorem 6.3 (the as-
sumption of Corollary 6.2), which guarantees the strong convergence of the optimal
approximating controls. This condition necessarily holds if the flow volume constraint∫
�
ρ ≤ γ |�| is active (binding) at every control that is optimal in (7). While we do not

know if this condition holds in every instance of problem (7), it can always be satisfied
by decreasing the flow volume factor γ , if the convergence towards the flow u with
|�nz(u)| < γ |�| is observed, and resolving the problem.

There is an obstacle, however, which might prevent this from working in practice:
each of the approximating problems (13) is non-convex, and, therefore, we cannot expect
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them to be solved to global optimality by numerical algorithms. (Many structural opti-
mization problems are rather difficult to approximate due to the inherent non-convexity
of the approximating problems; see [SS].) Despite this fact, in realistic instances of (7)
we expect the flow volume constraint to be binding.

7. Bilevel Programming in Flow Mechanics: a Possible Generalization?

Assume that we are interested in the optimal control of the Darcy–Stokes equations with
respect to an alternative objective functional F : H × H 1(�) → R ∪ {∞}, where H
denotes the abstract control set. Formally, we would like to solve the following bilevel
(see p. 10 in [LPR]) programming problem:{

min(ρ,u)∈H×H 1(�) F(ρ,u),

s.t. u ∈ argminv∈Udiv
J (ρ, v).

(14)

Similarly, if we are interested only in pure Stokes flows, the optimization problem
can be posed as follows:

min(ρ,u)∈H×H 1(�) F(ρ,u),

s.t.

{
u ∈ argminv∈Udiv

J (ρ, v),
JD(ρ,u) = 0.

(15)

Of course, the minimization of the power function is the simplest problem one can
consider in flow topology optimization, owing to the fact that we can join the lower-level
and upper-level optimization problems into one: then the bilevel program (14) reduces
to (5). This fact allows us to minimize the objective functional F ≡ J simultaneously
with respect to (ρ,u), resulting in a problem with an inf-compact, lower semicontinuous
functional (with respect to the weak∗ × weak topology of L∞(�)× H 1(�)) that, thus,
possesses optimal solutions. In the bilevel case the mapping ρ → argminv∈Udiv

J (ρ, v)
is not closed in the weakly∗ × weakly topology of L∞(�)× H 1(�). The next example
shows that this mapping is not closed even in the strong topology of L1(�) × H 1(�),
which in particular prevents us from using the weak∗ topology of BV (�) (or even
SBV (�), see [AFP]) for the design space of problems (14) and (15).

Example 7.1 (Disappearing Wall in the Driven Cavity Flow Problem). Let�=(0,1)
× (−1, 1) ⊂ R2, �+ = (0, 1) × (0, 1), �− = �\�+, f ≡ 0 in �, g ≡ (1, 0) on the
“upper” boundary (the line connecting the points (0, 1) and (1, 1)), and g ≡ 0 otherwise.
Define u+ to be the solution to the “lid-driven cavity flow” problem (see, e.g., p. 146 in
[Ji]) in �+, u+ = 0 in �−.

Consider a sequence {ρk} ⊂ L∞(�) ∩ BV (�), with ρk ≡ 1− χ(1,0)×(−1/k,0) in �,
k = 1, 2, . . . . The solution to the Darcy–Stokes problem (2) in this case is uk = u+;
thus {(ρk,uk)} → (1,u+) strongly in L1(�) × H 1(�). At the same time, the flow
corresponding to ρ ≡ 1 in� is the solution to the driven cavity flow problem in�, which
is not equal to u+. Thus, the mapping ρ → argminv∈Udiv

J (ρ, v) is not closed even in
the strong topology of L1(�)× H 1(�), even though lim supk→+∞ J (ρk,uk) < +∞.



276 A. Evgrafov

Now, define F(�, v) = ‖1− �‖BV (�) + ‖v− u+‖H 1(�), H = {� ∈ BV (�) | 0 ≤
� ≤ 1, a.e. in �}. Then the sequence {(ρk,uk)} is a minimizing sequence for both
problems (14) and (15), which does not converge to a feasible point of either of the
problems. Therefore, the classic “flow tracking problem” posed as a bilevel topology
optimization problem of Darcy–Stokes flow has no solutions.

If we restrict the set of admissible controls so that ρ ≥ ρ > 0 in �, problem (14)
becomes well-posed for every continuous enough objective functional; however, making
such a restriction we arrive at a less interesting, for us, sizing case. Therefore, the
problem of choosing practically interesting and well-posed formulations of the topology
optimization of Stokes flows with objective functionals other than the total power J
remains open.

8. Conclusions and Further Research

We have shown that the topology optimization problem of the Darcy–Stokes equations
with respect to total power minimization admits optimal solutions, even if the limiting
zero and infinite permeabilities are included in the design domain. We have further
established that the problem of finding a zero–one optimal control, or optimal pure
Stokes flow, can be set up in a well-posed way; no additional restriction techniques are
necessary in contrast to the case of linear elasticity (see [BS3]). Two techniques were
proposed for solving the zero–one optimal control problem. We have also shown that the
topology optimization problem with respect to alternative functionals might be ill-posed,
and might lack optimal solutions.

It would be particularly interesting to study the zero–one topology optimization
problem of Navier–Stokes or Euler flows. For the Navier–Stokes flows, which are of
much engineering interest, one can take the same design parametrization as for the Stokes
flows [Ge]. The problematic part, as is typical in topology optimization, is to establish
the inf-compactness property of the chosen objective functional on the set of admissible
designs [Ev]. The theory for the sizing case is straightforward, and only the numerical
part needs to be investigated. For the Euler flows, even the design parametrization is
unclear, partly due to the fact that flows of inviscid fluids through porous media are not
so well investigated in the literature.

As for the Stokes flow, further study of bilevel optimization problems might be
interesting, as well as consideration of alternative flow boundary conditions (see [Sec-
tion 8.2.2 in [Ji]).
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