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Abstract. In this paper the generalized nonlinear complementarity problem
(GNCP) defined on a polyhedral cone is reformulated as a system of nonsmooth
equations. Based on this reformulation, the famous Levenberg–Marquardt (L-M)
algorithm is employed to obtain its solution. Theoretical results that relate the
stationary points of the merit function to the solution of the GNCP are presented.
Under mild assumptions, we show that the L-M algorithm is both globally and
superlinearly convergent. Moreover, a method to calculate a generalized Jacobian
is given and numerical experimental results are presented.
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1. Introduction

The generalized nonlinear complementarity problem, denoted by GNCP(F,G,K), is to
find a vector x∗ ∈ Rn such that

F(x∗) ∈ K, G(x∗) ∈ K◦, F(x∗)�G(x∗) = 0, (1)
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dong, China (Grant No. Y2003A02), and the Postdoctoral Fellowship of Hong Kong Polytechnic University.
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where F and G are continuous functions from Rn to Rm ,K is a nonempty closed convex
cone in Rm , and K◦ denotes the polar cone of K.

This problem has many interesting applications and its solution using special tech-
niques has been considered extensively in the literature. See [11], [14], [22], and refer-
ences therein. In particular, ifK = Rn

+ and G(x) = x , then the GNCP reduces to the clas-
sical nonlinear complementarity problem [7]. Furthermore, the GNCP is closely related
to the variational inequality problem in the sense that x∗ is a solution of GNCP(F,G,K)
if and only if F(x∗) is a solution of VI(G ◦ F−1,K) if F is invertible (see Lemma 6
in [1]).

To solve the GNCP, one usually reformulates it as a minimization problem over
a simple set or an unconstrained optimization problem, see [22] for the case that K is
a general cone and see [11] and [14] for the case that K = Rn

+. The conditions under
which a stationary point of the reformulated optimization is a solution of the GNCP were
provided in this literature.

Now, we consider the case that m = n, F and G are both continuously differentiable
on Rn , and K is a polyhedral cone in Rn , that is, there exist A ∈ Rs×n, B ∈ Rt×n such
that

K = {v ∈ Rn | Av ≥ 0, Bv = 0},
where s and t are both positive integers. It is easy to verify that its polar coneK◦ has the
following representation:

K◦ = {u ∈ Rn | u = A�λ1 + B�λ2, λ1 ≥ 0, λ1 ∈ Rs, λ2 ∈ Rt }.
Obviously, if A is an identity matrix and B = 0, then this version of the GNCP

reduces to the case considered in [14].
From now on, the GNCP is specialized over a polyhedral cone.
For the GNCP, Andreani et al. reformulated it as a smooth simple constrained

optimization problem in which the objective function preserves all derivatives of the
functions that define the GNCP [1]. They also gave some sufficient conditions under
which a stationary point of the optimization problem is a solution of the GNCP. However,
since the second-order derivative, i.e, Hessian matrix, of the objective function becomes
complicated due to its structure, it may be difficult to establish superlinear convergence
of the algorithm.

To propose a superlinearly convergent algorithm for the solution of the GNCP,
we now formulate the GNCP as a system of equations via the Fischer function [9]
φ : R2 → R1 defined by

φ(a, b) =
√

a2 + b2 − a − b, for a, b ∈ R.

A basic property of this function is that

φ(a, b) = 0⇔ a ≥ 0, b ≥ 0, ab = 0.

For arbitrary vectors a, b ∈ Rn , we define a vector-valued function as follows:

	(a, b) =



φ(a1, b1)

φ(a2, b2)

· · ·
φ(an, bn)


 .
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Obviously,

	(a, b) = 0⇔ a ≥ 0, b ≥ 0, a�b = 0.

Before giving our reformulation of the GNCP, we first give some notations needed in
this paper. The inner product of vectors x, y ∈ Rn is denoted by x�y. Let ‖ ·‖ denote the
2-norm of vectors in Euclidean space. The transposed Jacobian F ′(x) of a vector-valued
function F(x) is denoted by ∇F(x). The nonnegative orthant of Rn is denoted by Rn

+.
Now, we give some equivalent statements relative to the solution of the GNCP.

x∗ is a solution of the GNCP(F,G,K)

⇔



F(x∗) ∈ K = {v ∈ Rn | Av ≥ 0, Bv = 0},
G(x∗) ∈ K◦ = {u ∈ Rn | u = A�λ1 + B�λ2, λ1 ∈ Rs

+, λ2 ∈ Rt },
F(x∗)�G(x∗) = 0

⇔ there exist λ∗1 ∈ Rs, λ∗2 ∈ Rt , such that




AF(x∗) ≥ 0,
B F(x∗) = 0,
G(x∗) = A�λ∗1 + B�λ∗2,
λ∗1 ≥ 0,
F(x∗)�G(x∗) = 0

⇔ there exist λ∗1 ∈ Rs, λ∗2 ∈ Rt , such that




AF(x∗) ≥ 0,
λ∗1 ≥ 0,
(λ∗1)

�AF(x∗) = 0,
B F(x∗) = 0,
G(x∗) = A�λ∗1 + B�λ∗2

⇔ there exist λ∗1 ∈ Rs, λ∗2 ∈ Rt , such that



	(AF(x∗), λ∗1) = 0,
B F(x∗) = 0,
G(x∗)− A�λ∗1 − B�λ∗2 = 0.

It is known that G(x) is the gradient of a function f : Rn → R if G ′(x) is symmetric.
So in this case, if F(x) ≡ x in addition, from the last equivalent statement above, we
can see that x∗ is a solution of the GNCP if and only if it is a KKT point of the following
linearly constrained optimization:

min f (x)
s.t. Ax ≥ 0,

Bx = 0.

Define a vector-valued function 
 : Rn+s+t → Rn+s+t and a real-valued function
f : Rn+s+t → R as follows:


(x, λ1, λ2) :=

 	(AF(x), λ1)

B F(x)
G(x)− A�λ1 − B�λ2


 , (2)

f (x, λ1, λ2) := 1
2
(x, λ1, λ2)

�
(x, λ1, λ2) = 1
2‖
(x, λ1, λ2)‖2, (3)

then the following result is straightforward.
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Theorem 1.1. x∗ is a solution of the GNCP if and only if there exist λ∗1 ∈ Rs, λ∗2 ∈ Rt

such that 
(x∗, λ∗1, λ
∗
2) = 0.

2. Preliminaries

In this section we review some definitions and basic results which will be used in what
follows.

Definition 2.1.

(a) An n×n matrix M is a P0-matrix if every principal minor of M is nonnegative.
(b) An n × n matrix M is a P-matrix if every principal minor of M is positive.

The properties and applications of a P(P0)-matrix are given in [4].
For vector a ∈ Rn , Da = diag(a) denotes the diagonal matrix in which the i th

diagonal element is ai . The following result is useful in the analysis of our algorithm,
and its proof can be found in [15] and [17].

Lemma 2.1.

(a) Let M be a P0-matrix and let Da and Db be negative definite diagonal matrices
in Rn×n , then the matrix Da + Db M is nonsingular.

(b) Let M be a P-matrix and let Da and Db be negative semidefinite diagonal
matrices in Rn×n such that Da + Db is negative definite, then the matrix Da +
Db M is nonsingular.

The function	(AF(x), λ1) is not differentiable everywhere with respect to (x, λ1)

∈ Rn× Rs even though F(x) is. However, it is locally Lipschitzian due to the continuity
of F , and therefore has a nonempty generalized Jacobian in the sense of Clarke [3]. In
the following, for a locally Lipschitzian mapping � : Rn → Rm , we let ∂�(x) denote
Clarke’s generalized Jacobian of �(x) at x ∈ Rn which can be expressed as the convex
hull of the set ∂B�(x) [20], where

∂B�(x) =
{

V ∈ Rn×n | V = lim
xk→x

�′(xk),�(x) is differentiable at xk for all k

}
.

Now, we recall some basic definitions about semismoothness and strong semis-
moothness. A locally Lipschitz continuous vector-valued function� : Rn → Rm is said
to be semismooth at x ∈ Rn , if the limit

lim
V∈∂�(x+th′)

h′→h,t↓0

{V h′}

exists for any h ∈ Rn . It is well known that the directional derivative, denoted by�′(x; h),
of� at x in the direction h exists for any h ∈ Rn if� is semismooth at x . The following
properties about the semismooth function are due to Qi and Sun in [21].
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Lemma 2.2. Suppose that � : Rn → Rm is a locally Lipschitz function and semi-
smooth, then

(a) for any V ∈ ∂�(x + h), h → 0,

V h −�′(x; h) = o(‖h‖);
(b) for any h → 0,

�(x + h)−�(x)−�′(x; h) = o(‖h‖).

Semismooth functions lie between Lipschitz functions and continuously differen-
tiable functions, and both continuously differentiable functions and convex functions
are semismooth. A stronger notion than semismoothness is strong semismoothness. The
function � : Rn → Rm is said to be strongly semismooth at x if � is semismooth at x
and for any V ∈ ∂�(x + h), h → 0, it holds that

V h −�′(x; h) = O(‖h‖2).

Now, we discuss the differential properties of the functions defined by (2) and (3). In
particular, we present an overestimate of Clarke’s generalized Jacobian of	(AF(x), λ1).
For simplicity, we denote Clarke’s generalized Jacobian of 	(AF(x), λ1) with respect
to (x, λ1) ∈ Rn × Rs by ∂	(AF(x), λ1). Similar to the discussion of Proposition 3.1 in
[8], we have the following result.

Lemma 2.3. For any x ∈ Rn and λ1 ∈ Rs , we have

∂	(AF(x), λ1) ⊆
(
Da AF ′(x)+ Db

)
,

where

ai = [AF(x)]i√
[λ1]2

i + [AF(x)]2
i

− 1, bi = [λ1]i√
[λ1]2

i + [AF(x)]2
i

− 1

if

[λ1]2
i + [AF(x)]2

i > 0

and

ai=ξi − 1, bi=ηi − 1 for every (ξi , ηi ) ∈ R2 such that ‖(ξi , ηi )‖≤1

if

[λ1]2
i + [AF(x)]2

i = 0.

A favorable property of the function f (x, λ1, λ2) is that it is continuously differ-
entiable on the whole space Rn+s+t although 
(x, λ1, λ2) is not in general. We
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summarize the differential properties of
 and f defined by (2) and (3) in the following
lemma [8], [23].

Lemma 2.4. For the vector-valued function 
 and the real-valued function f defined
by (2) and (3), the following statements hold:

(a) If F and G are both continuously differentiable, then
 is semismooth, and if F ′

and G ′ are both locally Lipschitzian in addition, then
 is strongly semismooth.
(b) If F and G are both continuously differentiable, then f is continuously differ-

entiable, and its gradient at a point (x, λ1, λ2) ∈ Rn × Rs × Rt is given by
∇ f (x, λ1, λ2) = V�
(x, λ1, λ2), where V is an arbitrary element belonging
to ∂
(x, λ1, λ2).

Finally, we give the definition of BD-regularity which plays a crucial role in the
proof of the convergence rate of our algorithm in Section 4.

Definition 2.2. A function � : Rn → Rn is said to be BD-regular at x if any V ∈
∂�(x) is nonsingular.

The following result is an immediate consequence of z∗ being a BD-regular solution
to the semismooth equation �(z) = 0 [12], [16], [19], [21], [23].

Lemma 2.5. Suppose that � : Rn → Rn is semismooth and z∗ ∈ Rn is a solution of
�(z) = 0. Then for sufficiently small ε > 0, there exists a constant c1 > 0 such that

‖�(z)‖ ≤ c1‖z − z∗‖, for z with ‖z − z∗‖ ≤ ε.

Moreover, if � is BD-regular at z∗, then there exists a constant c2 > 0 such that the
matrices V ∈ ∂�(z) are nonsingular and

‖V−1‖ ≤ c2, for z with ‖z − z∗‖ ≤ ε.

3. Existence and Uniqueness of the Solutions

In this section we discuss the existence and uniqueness of the solutions to GNCP
(F,G,K). First, we prove that GNCP(F,G,K) has at most one solution if the map-
pings F and G satisfy the following condition: there exists a constant µ > 0 such
that

(F(x)− F(y))�(G(x)− G(y)) ≥ µ‖x − y‖2, ∀ x, y ∈ Rn. (4)

Lemma 3.1. Assume that the mappings F,G : Rn → Rn satisfy condition (4) for
some µ > 0, then GNCP(F,G,K) has at most one solution.
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Proof. Suppose that x∗ and y∗ are two different solutions of GNCP(F,G,K), then
there exist nonnegative vectors λx∗

1 , λ
y∗
1 ∈ Rs and vectors λx∗

2 , λ
y∗
2 ∈ Rt such that

G(x∗) = A�λx∗
1 + B�λx∗

2 , G(y∗) = A�λy∗
1 + B�λy∗

2 .

By (4) and the definition of GNCP(F,G,K), we have

0 < µ‖x∗ − y∗‖2

≤ (F(x∗)− F(y∗))�(G(x∗)− G(y∗))

= −[F(x∗)]�G(y∗)− [F(y∗)]�G(x∗)

= −[F(x∗)]�
(

A�λy∗
1 + B�λy∗

2

)− [F(y∗)]�
(

A�λx∗
1 + B�λx∗

2

)
= −[AF(x∗)]�λy∗

1 − [AF(y∗)]�λx∗
1

≤ 0.

This contradiction implies that GNCP(F,G,K) has at most one solution.

As noted in Section 1, GNCP(F,G,K) is equivalent to the variational inequality
problem VI(G◦F−1,K) if the mapping F is invertible. The following result is concerned
with the existence and uniqueness of the solutions to VI(H,K) (see Corollary 3.2 in [7]).

Theorem 3.1. Suppose the continuous mapping H : Rn → Rn is strongly monotone,
i.e., there exists a constant ρ > 0 such that

(H(x)− H(y))�(x − y) ≥ ρ‖x − y‖2, ∀x, y ∈ Rn.

Then VI(H,K) has a unique solution.

Using a similar way to the proof of Lemma 5.2 in [14], we can prove the following
result.

Lemma 3.2. Assume that the mappings F,G satisfy condition (4) for some µ > 0 and
F is invertible and Lipschitz continuous on Rn . Then the mapping G ◦ F−1 is strongly
monotone.

Using Lemma 3.2 and Theorem 3.1, we can easily obtain the existence and unique-
ness of solutions to GNCP(F,G,K).

Theorem 3.2. Assume that the conditions in Lemma 3.2 hold and the mapping F−1 is
continuous in addition. Then GNCP(F,G,K) has a unique solution.
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4. Stationary Point and Nonsingularity Conditions

From Theorem 1.1, we know that a point x∗ is a solution of the GNCP if and only if
there exist λ∗1 ∈ Rs, λ∗2 ∈ Rt such that z∗ = (x∗, λ∗1, λ∗2) solves the following system of
equations:


(z) = 0,

or, equivalently, z∗ is a global minimizer with a zero objective function value of the
unconstrained optimization problem

min
z∈Rn+s+t

f (z). (5)

Since most unconstrained minimization methods always generate a sequence con-
verging to a local minimizer or a stationary point rather than a global minimizer, it
is therefore crucial to study the conditions under which a stationary point of (5) is its
global minimizer with the objective value zero. The following theorem gives a suitable
condition which guarantees that every stationary point of (5) solves GNCP(F,G,K).

Theorem 4.1. Suppose that z∗ = (x∗, λ∗1, λ
∗
2) is a stationary point of (5), F ′(x∗) is

nonsingular, and G ′(x∗)[F ′(x∗)]−1 is positive definite in the null space of B, then x∗ is
a solution of GNCP(F,G,K).

Proof. Let

U ∗ = 	(AF(x∗), λ∗1),
V ∗ = B F(x∗),
W ∗ = G(x∗)− A�λ∗1 − B�λ∗2,
M∗ = G ′(x∗)[F ′(x∗)]−1.

Since z∗ is a stationary point of (5),

∇ f (z∗) = 0,

which, according to Lemmas 2.3 and 2.4, implies that

V�
(z∗) = 0,

where

V� =

∇F(x∗)A�Da ∇F(x∗)B� ∇G(x∗)

Db 0 −A
0 0 −B


 ,

and both Da and Db are diagonal matrices given in Lemma 2.3. Thus

∇F(x∗)A�DaU ∗ + ∇F(x∗)B�V ∗ + ∇G(x∗)W ∗ = 0, (6)
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DbU ∗ − AW ∗ = 0, (7)

−BW ∗ = 0. (8)

Since F ′(x∗) is nonsingular, from (6) and (7), it holds that

A�DaU ∗ + B�V ∗ + (M∗)�W ∗ = 0, (9)

AW ∗ = DbU ∗. (10)

Combining (8)–(10) yields

0 = 〈W ∗, A�DaU ∗〉 + 〈W ∗, B�V ∗〉 + 〈W ∗, (M∗)�W ∗〉
= 〈AW ∗, DaU ∗〉 + 〈BW ∗, V ∗〉 + 〈W ∗, (M∗)�W ∗〉
= 〈DbU ∗, DaU ∗〉 + 〈W ∗, (M∗)�W ∗〉
= (U ∗)�Db DaU ∗ + 〈W ∗, (M∗)�W ∗〉.

Since W ∗ belongs to the null space of B, N (B), using the positive semidefiniteness of
Da Db from Lemma 2.3 and the positive definiteness of M∗ in N (B), we have

W ∗ = 0. (11)

Substituting this result into (9) and (10), we have

A�DaU ∗ + B�V ∗ = 0, (12)

DbU ∗ = 0. (13)

Premultiplying (12) by F(x∗)� yields

(AF(x∗))�DaU ∗ + ‖B F(x∗)‖2 = 0. (14)

Now, we assert that

U ∗i = 0, i = 1, 2, . . . , s.

Otherwise, there exists an index 1 ≤ i0 ≤ s such that

U ∗i0
�= 0. (15)

From (13), we can deduce that (Db)i0 = 0, and hence from Lemma 2.3, (Da)i0 = −1
and

[λ∗1]i0 ≥ 0, [AF(x∗)]i0 = 0.

Thus U ∗i0
= 0, which contradicts (15). Therefore,

U ∗ = 0. (16)

By (14), we have

V ∗ = B F(x∗) = 0. (17)

Finally, (11), (16), and (17) imply that


(x∗, λ∗1, λ
∗
2) = 0.
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From this theorem, the condition under which a stationary point of (5) is a solution
of the GNCP is the same as that of the reformulation given by Andreani et al. in [1].

To establish a superlinear (quadratic) convergence rate of our algorithm, it is nec-
essary to study the conditions under which every element of the generalized Jacobian
∂
(z) is nonsingular at a solution point z∗ of the equation 
(z) = 0.

Theorem 4.2. For z∗ = (x∗, λ∗1, λ
∗
2) ∈ Rn × Rs × Rt , if F ′(x∗) and G ′(x∗) are

nonsingular, matrix B has full row rank, and AF ′(x∗)[G ′(x∗)]−1 A� is a P-matrix, then
for any V ∈ ∂
(z∗), V is nonsingular.

Proof. From Lemma 2.3 we know that for any V ∈ ∂
(z∗), it has the following form:

V� =

∇F(x∗)A�Da ∇F(x∗)B� ∇G(x∗)

Db 0 −A
0 0 −B


 ,

where Da and Db are defined in Lemma 2.3.
We denote D = V� and M = [G ′(x∗)[F ′(x∗)]−1]�.
In what follows, we prove the nonsingularity of D through a system of transforma-

tions without changing its rank.
Since F ′(x∗) is nonsingular, we make a transformation to D as follows:

[∇F(x∗)]−1 0 0

0 Is 0
0 0 It


 D =


A�Da B� M

Db 0 −A
0 0 −B


 := D1.

We partition B as B = (
B1 B2

)
such that B2 is a square matrix. Since B has full

row rank, without loss of generality, we can assume that B2 is nonsingular. Now A has
the corresponding partition A = (

A1 A2
)

and D1 has the following corresponding
partition:

D1 =




A�1 Da B�1 M11 M12

A�2 Da B�2 M21 M22

Db 0 −A1 −A2

0 0 −B1 −B2


 ,

where

A1∈ Rs×(n−t), A2∈ Rs×t , B1∈ Rt×(n−t), B2∈ Rt×t , M=
(

M11 M12

M21 M22

)
,

M11∈ R(n−s)×(n−s), M12∈ R(n−s)×s, M21∈ Rt×(n−t), M22∈ Rt×t .

Since B2 is nonsingular, we can make a column transformation to D1 and obtain



A�1 Da B�1 M11 − M12 B−1
2 B1 M12

A�2 Da B�2 M21 − M22 B−1
2 B1 M22

Db 0 −A1 + A2 B−1
2 B1 −A2

0 0 0 −B2


 .
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Thus, to prove that D is nonsingular, it suffices to show the nonsingularity of the principal
submatrix of the matrix above by deleting the last t rows and columns, which we denote
by D2, i.e.,

D2 =




A�1 Da B�1 M11 − M12 B−1
2 B1

A�2 Da B�2 M21 − M22 B−1
2 B1

Db 0 −A1 + A2 B−1
2 B1


 .

Making a simple row transformation to D2 leads to the following matrix:



A�1 Da−(B−1
2 B1)

�A�2 Da 0 M11−M12 B−1
2 B1−(B−1

2 B1)
�(M21−M22 B−1

2 B1)

A�2 Da B�2 M21 − M22 B−1
2 B1

Db 0 −A1 + A2 B−1
2 B1


.

Hence, to prove the nonsingularity of D, it suffices to show the nonsingularity of the
following matrix:

D3 :=

A�1 Da − (B−1

2 B1)
�A�2 Da M11 − M12 B−1

2 B1 − (B−1
2 B1)

�(M21 − M22 B−1
2 B1)

Db −A1 + A2 B−1
2 B1


.

Now, we make a decomposition of matrix D3.

D3=




(
In−t −(B−1

2 B1)
�)(A�1 Da

A�2 Da

) (
In−t −(B−1

2 B1)
�)(M11 M12

M21 M22

)(
In−t

−(B−1
2 B1)

)

Db − (A1 A2

)( In−t

−(B−1
2 B1)

)




=


(

In−t −(B−1
2 B1)

�) 0

0 Is






A�Da M

Db −A






Is 0

0

(
In−t

−(B−1
2 B1)

)

 .

Since


(
In−t −(B−1

2 B1)
�) 0

0 Is


 and




Is 0

0

(
In−t

−(B−1
2 B1)

)



have full row rank and full column rank, respectively, we only need to show that


A�Da M

Db −A



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is nonsingular. Since M is nonsingular, a row transformation to the matrix above yields
that (

A�Da M
Db −A

)
−→

(
A�Da M

Db + AM−1 A�Da 0

)
.

Since AM−1 A� is a P-matrix, by Lemma 2.2,

Db + AM−1 A�Da

is nonsingular, and thus the matrix
(

A�Da M
Db −A

)
is nonsingular. Hence, V is nonsingular

and the desired result follows.

If z∗ = (x∗, λ∗1, λ∗2) is a stationary point of (5), i.e.,

0 = ∇ f (z∗) = V�
(z∗),

where V ∈ ∂
(z∗), then x∗ is a solution of GNCP(F,G,K) under the condition of
Theorem 4.2. Thus, the following conclusion holds.

Corollary 4.1. If z∗ = (x∗, λ∗1, λ∗2) is a stationary point of (5), if either of the conditions
given in Theorems 4.1 or 4.2 holds, then x∗ is a solution of GNCP(F,G,K).

If B = 0, then the optimization problem (5) becomes

min
x,λ

1
2

(
‖	(AF(x), λ)‖2 + ‖G(x)− A�λ‖2

)
. (18)

In this case, from Theorem 4.2, we have the following result.

Corollary 4.2. If (x∗, λ∗) is a stationary point of (18), G ′(x∗) is nonsingular, and
the matrix AF ′(x∗)[G ′(x∗)]−1 A� is a P-matrix, then for any V ∈ ∂
̄(x∗, λ∗), V is
nonsingular, where


̄(x, λ) =
(
	(AF(x), λ)
G(x)− A�λ

)
.

To guarantee the superlinear (quadratic) convergence of the L-M method for solving
a system of equations H(x) = 0, Yamashita and Fukushima provided a weaker condition
than nonsingularity of the Jacobian recently [24], which requires that the local error bound
of H(x) holds near a solution point x∗, i.e., there exists a positive scalar c such that

‖H(x)‖ ≥ c · d(x, S), ∀x ∈ N (x∗, ε),

where S is the solution set of H(x) = 0, N (x∗, ε) is a neighborhood of the solution x∗,
and d(x, S) is the distance from x to S.

For the linear complementarity problem, one reformulated system of equations can
provide a local error bound near its solution set [10]. It is uncertain whether the function

(z) can provide a local error bound near the solution set of the affine GNCP(F,G,K)
such that F and G are both affine, this is a topic for further research.
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5. Algorithm and Convergence

In this section an L-M method for solving the GNCP is outlined. It is similar to that in
[6]. For convenience, let zk = (xk, λk

1, λ
k
2) in what follows.

Algorithm 5.1

Step 1: Choose any point z0 ∈ Rn+s+t , parameters σ, β ∈ (0, 1) and ε ≥ 0. Let
k = 0.

Step 2: If ‖∇ f (zk)‖ ≤ ε, stop; otherwise, go to Step 3.
Step 3: Choose an element V k ∈ ∂
(zk). Let dk ∈ Rn+s+t be the solution of the

linear system

((V k)�V k + µk I )d = −(V k)�
(zk),

where µk = ‖
(zk)‖.
Step 4: Let mk be the smallest nonnegative integer m such that

f (zk + σmdk) ≤ f (zk)+ βσm∇ f (zk)�dk .

Let zk+1 := zk + σmk dk , k := k + 1, go to Step 2.

It is easy to verify that dk is a descent direction of f (z) at zk and the algorithm is
well defined. Obviously, if ∇ f (zk) = 0, then zk is a stationary point of problem (5),
and thus xk is a solution of GNCP(F,G,K) under suitable conditions. In the following
convergence analysis, we assume that ε = 0 and Algorithm 5.1 generates an infinite
sequence. Following the proof in [13], we can obtain the convergence and superlinear
convergence of Algorithm 5.1.

Theorem 5.1. Any accumulation point of the sequence {zk} generated by Algorithm
5.1 is a stationary point of (5).

Theorem 5.2. Let {zk} be the sequence generated by Algorithm 5.1. Assume that z∗ is
an accumulation point of {zk} and a B D-regular solution of 
(z) = 0, then

(a) the entire sequence {zk} superlinearly converges to z∗, and
(b) {zk} converges to z∗ Q-quadratically if F ′ and G ′ are both Lipschitzian in

addition.

From Theorem 2.1 in [24], we know that for a system of equations H(x) = 0, where
H is a twice continuously differentiable mapping from Rn to Rn , if H(x) provides a
local error bound near a solution of H(x) = 0, then the sequence generated by the L-M
method converges locally and quadratically [24].

Now, consider the system of equations
(z) = 0 defined in (2). If one of its solutions
z∗ is nondegenerate, i.e., (λ∗1)i + (AF(x∗))i > 0 for i = 1, 2, . . . , s, and F and G are
both twice continuously differentiable, then 
(z) is twice continuously differentiable
near z∗. Thus, from Theorem 2.1 in [24], we have the following convergence result of
Algorithm 5.1.
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Theorem 5.3. Suppose F(x) and G(x) are both twice continuously differentiable, if an
accumulation point z∗ of the sequence {zk} generated by Algorithm 5.1 is nondegenerate,
the local error bound of 
(z) holds near z∗, and the condition in Theorem 4.1 holds at
z∗, then the sequence converges to z∗, a solution of 
(z) = 0, quadratically.

6. Computational Experiments

Before making our computational experiments, we should find a way to calculate an
element of ∂	(AF(x), λ1). The following theorem gives an approach to calculate an
element of ∂	(AF(x), λ1), and its proof can be referred to Theorem 27 of [17].

Lemma 6.1. For x ∈ Rn and λ1 ∈ Rs , choose v ∈ Rs such that vi �= 0 for any index
i with [λ1]i = 0 and [AF(x)]i = 0.

Let

W = Da AF ′(x)+ Db,

where

ai = [AF(x)]i√
[λ1]2

i + [AF(x)]2
i

− 1, bi = [λ1]i√
[λ1]2

i + [AF(x)]2
i

− 1

if

[λ1]2
i + [AF(x)]2

i > 0,

and

ai = [AF ′(x)x]i√
ν2

i + [AF ′(x)x]2
i

− 1, bi = νi√
ν2

i + [AF ′(x)x]2
i

− 1

if

[λ1]2
i + [AF(x)]2

i = 0.

Then

W ∈ ∂	(AF(x), λ1),

or more precisely,

W ∈ ∂B	(AF(x), λ1).

Changing v, we will obtain a different element of ∂B	(AF(x), λ1). In our code, we
choose to set vi = 0 if [λ1]2

i + [AF(x)]2
i > 0 and vi = 1 otherwise. Thus, an element
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V ∈ ∂
(z) can be calculated as

V� =

∇F(x)A�Da ∇F(x)B� ∇G(x)

Db 0 −A
0 0 −B


 ,

where Da and Db are defined in Lemma 6.1.
In the following we implement Algorithm 5.1 in Matlab and run it on a Pentium IV

computer. Here, we do not give a comparison with the method given by Andreani in [1],
since the efficiency of their method mainly depends on the efficiency of the method for
solving smooth box-constrained minimization problem.

Throughout our computation, we take parameters σ = 0.6, β = 0.4, and terminate
our computation whenever ‖∇ f (z)‖ ≤ 10−14.

First, we consider the example given in [18] which was also considered by Jiang et al.
in [11]. For completeness, we give the example in detail.

Example 6.1. Find x∗ ∈ Rn such that

F(x∗) ≥ 0, x∗ − m(x∗) ≥ 0, and 〈F(x∗), x∗ − m(x∗)〉 = 0,

where

F(x) =




2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2


 x +




1
1
1
1




and m(x) = ϕ(F(x)) : Rn → Rn is twice continuously differentiable.
Table 1 lists the numerical results of this example with different starting points for

the following two choices of function ϕ(·):
(1) ϕi (t) = −0.5− ti , i = 1, 2, 3, 4;
(2) ϕi (t) = −0.5− 1.5ti + 0.25t2

i , i = 1, 2, 3, 4.

In Table 1, Iter denotes the number of iterations, which is equal to the number of
Jacobian evaluations for the functions F and G, and is also equal to the number of linear

Table 1. Numerical results for Example 6.1.

ϕ Starting point Iter f ∗ NF CT

(1) (0, . . . , 0)� 10 3.2× 10−30 19 0.06
(2) (0, . . . , 0)� 11 6.2× 10−32 21 0.05
(1) (−0.5, . . . ,−0.5)� 8 1.8× 10−32 15 0.05
(2) (−0.5, . . . ,−0.5)� 8 1.8× 10−31 15 0.05
(1) (−1, . . . ,−1)� 9 2.6× 10−32 17 0.06
(2) (−1, . . . ,−1)� 9 4.6× 10−32 17 0.11
(1) (0.5, . . . , 0.5)� 15 2.6× 10−32 29 0.11
(2) (0.5, . . . , 0.5)� 16 6.6× 10−32 31 0.11
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systems solved. NF represents the number of evaluations for the function f , f ∗ is the
final value of f when the algorithm terminates, and CT denotes the computing time.

For this problem, Jiang et al. also gave an encouraging numerical experiment using
the trust region method in [11].

Our next numerical experiment is about the following two sets of problems con-
structed by Andreani et al. in [1] and [2]. For simplicity of description, we make a slight
modification.

Example 6.2. Consider the problem of finding x∗ ∈ Rn such that


x ∈ K = {v ∈ Rn | Av ≥ 0},
N x + d ∈ K◦ = {v ∈ Rn | v = A�λ, λ ∈ Rs

+},
x�(N x + d) = 0,

where the polyhedral coneK is generated by s faces whose edges are the following lines:


x

y
z


 =




cos

(
2π

s
i

)

r sin

(
2π

s
i

)

1



τ, τ ∈ R, i = 1, 2, . . . , s.

Thus, the i th row of matrix A ∈ Rs×3 can be computed as




sin

(
2π

s
i

)(
cos

2π

s
− 1

)
− cos

(
2π

s
i

)
sin

2π

s

cos

(
2π

s
i

)(
1− cos

2π

s

)
− sin

(
2π

s
i

)
sin

2π

s

r sin
2π

s




�

.

For each family, we choose r ∈ {0.1, 1, 10} and s ∈ {3, 5, 9, 12}. The vector d
is generated randomly from the interval (−10, 10). Matrix N is generated as follows.
Denote the orthogonal Householder matrix Q(·) = I − 2(u(·)u�(·)/‖u(·)‖2), where the
components of vector u(·) are generated randomly from (−1, 1). Let DN be the diagonal
matrices whose diagonal elements are generated randomly from (1, 10). We define matrix
N = QN L DN QN R .

For this problem, we divide the set of test problems into three families:

(1) N is nonsymmetric and indefinite;
(2) N is symmetric and positive definite;
(3) N is symmetric and positive semidefinite.

Obviously, the problems in Families (1) and (3) do not satisfy the hypothesis of
Theorem 4.1. For each family with different r and s, 20 problems are tested with z =
(0, . . . , 0)� being the starting point. The numerical results are reported in Table 2.

To take into account the possibility of convergence to a stationary point of f (z)
which is not a solution of the GNCP, we call a case successful if the value of f is
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Table 2. Average numerical results for Example 6.2.

s Family r Iter SP NF

0.1 187.67 0.3 374.30
(1) 1 50.92 0.55 100.82

10 78.8 0.5 157.4

0.1 399.92 0.6 799.25
3 (2) 1 68.35 1 135.70

10 28.47 0.95 57

0.1 319.30 0.5 637.60
(3) 1 77.63 0.8 154.25

10 98.8 0.5 197

0.1 442 0.55 883
(1) 1 122.33 0.45 243.67

10 76.67 0.30 152.33

0.1 344.83 0.30 690.33
5 (2) 1 29.5 1 58

10 63.4 1 129.05

0.1 497.36 0.55 993.82
(3) 1 76.59 0.85 152.18

10 40.75 0.40 82.50

0.1 273.43 0.35 545.86
(1) 1 208.78 0.45 417.22

10 134.67 0.45 269.22

0.1 397.25 0.20 793.5
9 (2) 1 221.33 0.9 441.72

10 28.4 1 56.6

0.1 382.83 0.3 764.67
(3) 1 234.87 0.75 469.07

10 215.46 0.65 431.23

0.1 417.89 0.45 834.78
(1) 1 262.5 0.3 554.31

10 86.80 0.5 173.8

0.1 523.75 0.2 1046
12 (2) 1 106.50 1 213.55

10 67.1 1 134.7

0.1 291.33 0.15 581.67
(3) 1 221.70 0.50 442.80

10 71.23 0.65 143.85

less than 10−10 within 1000 iterations and we denote by SP the successful rate. For
all successful cases, Iter denotes the average number of iterations, and NF denotes the
average number of evaluations for the function f . The numerical results are reported in
Table 2, from which we can see that except for the case that r = 0.1, Algorithm 5.1
performs well for this set of problems.
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Example 6.3. Consider the GNCP of finding x∗ ∈ Rn such that

Mx + c ∈ K, N x + d ∈ K◦, and (Mx + c)�(N x + d) = 0,

where

K = {v ∈ Rn | Av ≥ 0, Bv = 0},
K◦ = {u ∈ Rn | u = A�λ1 + B�λ2, λ1 ∈ Rs

+, λ2 ∈ Rt },
with M, N ∈ Rn×n , A ∈ Rs×n, B ∈ Rt×n, and c, d ∈ Rn .

The matrices M, N , A and vectors c, d will be generated following the pattern in
Example 6.2. Let the diagonal elements of DM and DN be generated randomly from
(−5, 5), and let DA ∈ Rs×s be the diagonal matrix whose diagonal elements are generated
randomly from (−10, 10). We define matrices M, N , and A as follows:

M=QM L DM QM R, N=QN L DN QN R, A=Q AL(DA 0s×(n−s))Q AR .

Let the components of vectors c, d ∈ Rn be generated randomly from (−10, 10).
To complete the problem data, we generate matrix B as follows: take y = Md + c and
make a QR factorization to the matrix

(
y

(
It

0(n−t)×t

))
,

and form matrix B� by the last t columns of the Q factor.
For this problem, we divide the set of test problems into three families:

(1) M = N , indefinite and nonsymmetric;
(2) M = N , indefinite and symmetric;
(3) M �= N , indefinite, nonsymmetric.

To generate a singular matrix, we force 20% of the diagonal elements of the diagonal
matrix D(·) to be zero. To generate an indefinite matrix, each diagonal element of D(·) is
multiplied by the sign of a random number.

For each family, six sets for the dimensions (n, s, t) are considered:

(5, 5, 1), (10, 10, 1), (10, 15, 1), (10, 5, 5), (10, 10, 5), (10, 15, 5).

For each set of dimensions, 20 problems are generated with different seeds. The detailed
numerical experiments are reported in Table 3. From Table 3, we see that the algorithm
performs well except for Family (3).

7. Discussion

In this paper we formulate the GNCP defined on a polyhedral cone as an unconstrained
optimization problem and a globally and superlinearly convergent L-M method was
proposed to solve the transformed optimization problem. Some encouraging numerical
results are also reported in this paper. Certainly, there exists an accumulation point of the
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Table 3. Average numerical results for Example 6.3.

(n, s, t) Family Iter SP NF

(1) 157.47 0.85 319.76
(5, 5, 1) (2) 194.67 0.75 390.40

(3) 402.00 0.35 866.71

(1) 387.08 0.75 840.87
(10, 10, 1) (2) 228.21 0.70 506.50

(3) 113.00 0.05 225.00

(1) 294.92 0.60 588.83
(10, 15, 1) (2) 400.45 0.55 817.00

(3) 854.00 0.10 1759

(1) 228.64 0.55 463.45
(10, 5, 5) (2) 354.62 0.65 783.87

(3) 721.00 0.15 1442.3

(1) 498.56 0.45 1185.8
(10, 10, 5) (2) 513.5 0.60 1015.3

(3) 538.33 0.15 1323.00

(1) 248.08 0.60 495.83
(10, 15, 5) (2) 486.22 0.45 988.11

(3) 493.50 0.20 1092.9

generated sequence if the level set L(z0) = {z | f (z) ≤ f (z0)} for some z0 ∈ Rn+s+t is
bounded. For this issue, we consider a special case such that B = 0 and A is a symmetric
and nonsingular matrix. Then the function defined by (2) becomes


(x, λ1) =
(
	(AF(x), λ1)

G(x)− Aλ1

)
.

Thus, the function defined in (3) can be written as

f (x) = 1
2‖	(AF(x), A−1G(x))‖2.

For this function, we have a result which is similar to Theorem 6.2 in [14].

Theorem 7.1. Assume that mappings F,G : Rn → Rn are Lipschitz continuous and
satisfy (4) for some µ > 0. Then the level set L(x0) = {x ∈ Rn | f (x) ≤ f (x0)} is
bounded for all x0 ∈ Rn.

Obviously, this stronger condition confines the wide applications of Algorithm 5.1,
and thus under what conditions the level set L(z0) = {z | f (z) ≤ f (z0)} is bounded is
an interesting topic for further research.
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