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Abstract. For problems in the calculus of variations with isoperimetric side con-
straints, we provide in this paper a set of points whose emptiness, independently of
nonsingularity assumptions, is equivalent to the nonnegativity of the second variation
along admissible variations. The main objective of introducing a characterization
of this condition should be, of course, to obtain a simpler way of verifying it. There
are two other sets of points available in the literature, introduced by Loewen and
Zheng (1994) and Zeidan (1996), for which this necessary condition implies their
emptiness. However, we show that verifying membership of these sets may be more
difficult than checking directly if that condition holds. Contrary to this behavior,
we prove that the desired objective of characterizing that condition is achieved by
means of the set introduced in this paper.
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1. Introduction

In order to illustrate the main objective of this paper, we start by briefly considering the
following example. Suppose that we are interested in minimizing

I (x) =
∫ π

0
t{ẋ2(t)− 4x2(t)} dt
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over all piecewise C1 functions x : [0, π ] → R satisfying x(0) = x(π) = 0 and∫ π
0 x(t) dt = 0. For such a calculus of variations problem, involving an isoperimetric

constraint, necessary and sufficient conditions are well established. In particular, one
readily verifies that x0 ≡ 0 is a normal extremal for which the corresponding conditions
of Legendre and Weierstrass hold. These conditions, therefore, leave x0 as a candidate
for optimality. On the other hand, the condition stating that the second variation with
respect to x0 is nonnegative along admissible variations corresponds to the inequality∫ π

0
t{ẏ2(t)− 4y2(t)} dt ≥ 0

for all piecewise C1 functions y: [0, π ] → R satisfying y(0) = y(π) = 0 and∫ π
0 y(t) dt = 0. The verification of this condition is thus equivalent to the question

of optimality of x0.
One could try to apply the classical theory of “conjugate points” which, for the

simple fixed-endpoint problem in the calculus of variations, plays a fundamental role
in establishing both necessary and sufficient conditions for optimality. In particular, if
H denotes the set of trajectories for which the second variation is nonnegative along
admissible variations, Jacobi’s necessary condition states that if x is nonsingular and
x ∈ H , then there are no conjugate points with respect to x in the underlying open time
interval. One can extend this notion to isoperimetric problems. Also, one can transform
the original calculus of variations problem into one involving a system of differential
equations, and try to apply results such as those of [25] which generalize in optimal
control, from a classical point of view, the notion of conjugate points. However, for
both cases, the nonexistence of conjugate points is implied only if the trajectory under
consideration is nonsingular. For the above example, x0 is singular, and none of these
theories can be applied.

The question posed is essentially to find a characterization of the nonnegativity of
a quadratic form. Several attempts in this direction have been made and, in particular,
those by Bernhard [4], Breakwell and Ho [5], Caroff and Frankowska [6], Dmitruk [7],
[8], Hestenes [9], [10], [12]–[15], Loewen and Zheng [16], Popescu [17], Stefani and
Zezza [21], [22], Zeidan [23], [24], and Zeidan and Zezza [25]–[28] deserve special
attenion.

It might be extremely complicated to compare these, or more, approaches to con-
jugacy, in particular when dealing with the isoperimetric problem. In this paper we
concentrate on one line of research which has been widely quoted. It corresponds to the
one initiated in 1994 by Loewen and Zheng [16] and extended to more general problems
in 1996 by Zeidan [24].

For certain classes of optimal control problems, Loewen and Zheng [16] introduced a
set G(x)whose emptiness in the open time interval, without nonsingularity assumptions,
becomes in the normal case a necessary condition for optimality. This follows by showing
that x ∈ H ⇒ G(x) ∩ (t0, t1) = ∅. When reduced to the fixed-endpoint problem
in the calculus of variations, if the trajectory x is nonsingular, G(x) contains the set
of usual conjugate points in the interior of the time interval. This new condition is
thus a generalization of that of Jacobi both for more general problems as well as for
singular extremals. For the problems considered in [16], the initial endpoint is fixed and
a convexity assumption on the control set is required. For problems where both endpoints
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vary and the control set is not necessarily convex, Zeidan [24] introduced a set Z(x),
containing that of Loewen and Zheng, and shows that a necessary condition for a normal
extremal is again the nonexistence of such points in the open time interval. This condition
is implied by H in the normal case, that is, if x is a normal extremal and x ∈ H , then
Z(x)∩ (t0, t1) = ∅. Problems in the calculus of variations with isoperimetric constraints
can be seen to be a particular case of the optimal control problems considered in those
papers when one adds a certain system of differential equations.

The main objective of introducing a characterization of the nonnegativity of a
quadratic form should be, in general, to obtain a simpler way of verifying it. We point out
that this is successfully achieved by means of the theory of Jacobi and the classical notion
of conjugate points since the original question is reduced to solving Jacobi’s differential
equation (Euler’s equation for the secondary problem). However, as mentioned before,
this theory excludes the singular case.

With respect to the sets introduced in [16] and [24], as we shall see in this paper,
one can easily find examples for which solving the question of their nonemptiness may
be more difficult than verifying directly the existence of negative second variations. In
those examples, one can exhibit an admissible variation y for which the second variation
at x is negative, showing that x �∈ H , but y does not satisfy the conditions defining
membership of these sets. In other words, by using the theories of [16] or [24], one may
fail to achieve the main objective of introducing a characterization of the second-order
necessary condition.

The main purpose of this paper is to introduce a new set of pointsR(x), applicable
to the fixed-endpoint problem in the calculus of variations involving isoperimetric side
constraints, for which x ∈ H ⇔ R(x) = ∅, and the objective of simplifying the condi-
tions defining membership of H is achieved. This set corresponds to a generalization of a
set of points introduced in [1] which is applicable to the fixed-endpoint problem without
isoperimetric conditions. The idea underlying the definition of R(x) is simple. Given a
trajectory x , a point s belongs to R(x) if there exist two functions y, u, depending on
s, satisfying certain conditions. IfR(x) �= ∅, then (extending y to the whole interval by
zero) the choice of an admissible variation u + εy makes the second variation along x
strictly negative for sufficiently small ε of appropriate sign. Conversely, if the second
variation along x is negative for some variation y, then, by choosing u ≡ y, one of the
endpoints belongs toR(x).

A further property of R(x) should be mentioned. We shall prove that R(x) con-
tains G(x) for any trajectory x and, therefore, it also generalizes (both for isoperimetric
problems as well as for singular trajectories) the usual notion of conjugate points and
Jacobi’s necessary condition. We emphasize that the classical conjugate point theory
concerns the solution of a two points boundary value problem for a linear ordinary
differential equation. The notion which is proposed here consists in finding a trajec-
tory with special properties which assure the possibility of making the quadratic form
negative.

Since we are dealing with a problem concerning a quadratic form, and the question of
characterizing it can be seen independently of the variational problem, the set introduced
in this paper can certainly be extended to more general optimal control problems such
as those treated in [16] and [24]. We have chosen the case of isoperimetric constraints
not only because of its importance in itself, but to be able to concentrate mainly on the
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unique aspects of the approach initiated in [16] and improved in several respects in the
theory developed in this paper.

For the example we are dealing with, observe that the function y(t) = sin 2t (t ∈
[0, π ]) satisfies the required conditions y(0) = y(π) = 0 and

∫ π
0 y(t) dt = 0, but∫ π

0 t{ẏ2(t)−4y2(t)} dt = 0. The condition that the second variation along x0, evaluated
at y, should be nonnegative, is not violated. However, as is easily proved, this function
can be used to show that 0 ∈ R(x) for any trajectory x , and hence one concludes that
the problem has no solution. On the other hand, this particular function cannot be used
in trying to prove that the point s = 0 belongs to G(x0) or Z(x0).

The paper is organized as follows. In Section 2 we state the isoperimetric problem
we deal with, and give a summary of well-known necessary conditions for optimality. In
Section 3, by transforming the original problem into one involving a system of differential
equations, we derive the corresponding sets of “generalized conjugate points” G(x) and
“generalized coupled points” Z(x) introduced in [16] and [24], respectively. These sets
are originally defined in the underlying open time interval. For completness we prove that,
even if we include the (corresponding) endpoint in the definition, we have G(x) ⊂ Z(x)
and, if x is a normal trajectory, then x ∈ H ⇒ Z(x) = ∅. Section 4 is devoted to two
simple examples which illustrate serious difficulties in trying to prove nonemptiness of
these sets. These examples motivate the need for introducing a new set of points for which
these difficulties do not occur. In Section 5 we introduce such a setR(x), prove that its
emptiness is equivalent to the necessary condition x ∈ H , and show, by an application
of this result, that the problems of Section 4 have no solution.

2. Isoperimetric Problems

This paper concerns a characterization of the nonnegativity, along a set W , of a quadratic
form given by∫ t1

t0

{〈y(t), Fxx (x̃(t))y(t)〉 + 2〈y(t), Fxẋ (x̃(t))ẏ(t)〉 + 〈ẏ(t), Fẋ ẋ (x̃(t))ẏ(t)〉} dt,

where (x̃(t)) is short for (t, x(t), ẋ(t)),

F(t, x, ẋ) = L(t, x, ẋ)+
m∑
1

λi Li (t, x, ẋ),

and W is the set of all piecewise C1 functions y: [t0, t1] → Rn satisfying y(t0) =
y(t1) = 0 and∫ t1

t0

{〈Lix (x̃(t)), y(t)〉 + 〈Li ẋ (x̃(t)), ẏ(t)〉} dt = 0 (i = 1, . . . ,m).

This specific quadratic form corresponds to the second variation of a calculus of variations
problem involving isoperimetric side constraints. We state the problem together with
well-known necessary conditions for a normal solution. A full account of these results
can be found in [11] and [20].

Suppose we are given an interval T := [t0, t1] in R, two points ξ0, ξ1 in Rn , an open
set A in T ×Rn×Rn , constants α1, . . . , αm in R, and functions L , L1, . . . , Lm mapping
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T ×Rn ×Rn to R. Denote by X the vector space of all piecewise C1 functions mapping
T to Rn , set

X (A) := {x ∈ X | (t, x(t), ẋ(t)) ∈ A (t ∈ T )},
Xe(A) := {x ∈ X (A) | x(t0) = ξ0, x(t1) = ξ1},

consider the functionals I, I1, . . . , Im : X → R given by

I (x) :=
∫ t1

t0

L(t, x(t), ẋ(t)) dt (x ∈ X),

Ii (x) := αi +
∫ t1

t0

Li (t, x(t), ẋ(t)) dt (x ∈ X, i = 1, . . . ,m),

and let

Ze(A) := {x ∈ Xe(A) | Ii (x) = 0 (i = 1, . . . ,m)}.
The problem we deal with, which we label (P), is that of minimizing I over Ze(A).

Elements of X are called arcs or trajectories and they are admissible if they belong
to Ze(A). An admissible trajectory x is said to solve (P) if I (x) ≤ I (y) for all y ∈ Ze(A).
For any x ∈ X we use the notation (x̃(t)) to represent (t, x(t), ẋ(t)) (t ∈ T ), and we
assume throughout that L , Li ∈ C2(A) (i = 1, . . . ,m).

Definition 2.1. If F is any function mapping T × Rn × Rn to R and

J (x) =
∫ t1

t0

F(t, x(t), ẋ(t)) dt (x ∈ X),

then, for all x ∈ X , we define (whenever the derivatives involved exist) the first variation
of J at x by

J ′(x; y) :=
∫ t1

t0

{〈Fx (x̃(t)), y(t)〉 + 〈Fẋ (x̃(t)), ẏ(t)〉} dt (y ∈ X),

and the second variation of J at x by

J ′′(x; y) :=
∫ t1

t0

2�(t, y(t), ẏ(t)) dt (y ∈ X)

where, for all (t, y, ẏ) ∈ T × Rn × Rn ,

2�(t, y, ẏ) := 〈y, Fxx (x̃(t))y〉 + 2〈y, Fxẋ (x̃(t))ẏ〉 + 〈ẏ, Fẋ ẋ (x̃(t))ẏ〉.

Denote by Y the space of trajectories y ∈ X satisfying y(t0) = y(t1) = 0.

Definition 2.2. An admissible trajectory x is said to be normal to (P) if {I ′i (x; ·)}m1 is
linearly independent on Y .
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Note 2.3. Following the definition given in [11], if J (x) = ∫ t1
t0

F(t, x(t), ẋ(t)) dt
(x ∈ X ), a trajectory x0 is called an extremaloid for J if J ′(x0; y) = 0 for all y ∈ Y .
Clearly, x0 is a normal arc to (P) if it is not an extremaloid for an integral of the form
J (x) = ∑ λi Ii (x) where λ1, . . . , λm are constants, not all zero. It is also a simple fact
(see [11]) to show that x0 is normal to (P) ⇔ there exist y1, . . . , ym ∈ Y such that
|I ′i (x0; yj )| �= 0 (i, j = 1, . . . ,m).

Let C(x) := {y ∈ X | I ′i (x; y) = 0 (i = 1, . . . ,m)}, and for all

λ = (λ1, . . . , λm) ∈ Rm define

F(t, x, ẋ; λ) := L(t, x, ẋ)+
m∑
1

λi Li (t, x, ẋ) ((t, x, ẋ) ∈ T × Rn × Rn),

Jλ(x) := I (x)+
m∑
1

λi Ii (x) =
m∑
1

λiαi +
∫ t1

t0

F(t, x(t), ẋ(t); λ) dt (x ∈ X),

and consider the following sets:

Eλ := {x ∈ X | J ′λ(x; y) = 0 for all y ∈ Y },
Hλ := {x ∈ X | J ′′λ (x; y) ≥ 0 for all y ∈ Y ∩ C(x)},
Lλ := {x ∈ X | Fẋ ẋ (x̃(t); λ) ≥ 0 for all t ∈ T },
Wλ(A) := {x ∈ X (A) | Eλ(t, x(t), ẋ(t), u) ≥ 0

for all (t, u) ∈ T × Rn with (t, x(t), u) ∈ A},
where

Eλ(t, x, ẋ, u) = F(t, x, u; λ)− F(t, x, ẋ; λ)− 〈u − ẋ, Fẋ (t, x, ẋ; λ)〉.

The following theorem corresponds to a set of necessary conditions for a normal
trajectory solving (P).

Theorem 2.4. If x solves (P) and is normal to (P), then there exists a unique λ ∈ Rm

such that x ∈ Eλ. Moreover, x ∈ Hλ ∩ Lλ ∩Wλ(A).

The sets Eλ and Hλ depend explicitly on the first and second variations of Jλ,
respectively. The first one is usually characterized as follows:

Proposition 2.5. Let x ∈ X (A) and λ ∈ Rm . Then x ∈ Eλ⇔ there exists c ∈ Rn such
that

Fẋ (x̃(t); λ) =
∫ t

t0

Fx (x̃(s); λ) ds + c (t ∈ T ).

The theory of “conjugate points” in the calculus of variations, leading to Jacobi’s
necessary and sufficient conditions, characterizes the conditions that are expressed in
terms of the second variation. This theory depends upon the hypothesis that the trajec-
tory under consideration is nonsingular which, for the problem we are dealing with,
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corresponds to the assumption that |Fẋ ẋ (x̃(t); λ)| �= 0 for all t ∈ T . As explained in the
introduction, for isoperimetric problems such as the one we are considering, one can find
in the literature two sets of points for which the nonnegativity of the second variation
implies their emptiness independently of the nonsingularity of the trajectory. We devote
the next section to a study of these two sets.

3. Generalized Conjugate and Coupled Points

The problem we are dealing with can be transformed into one involving a system of
differential equations for which the notions of “generalized conjugate points” and “gen-
eralized coupled points,” introduced in [16] and [24], respectively, can be applied.

To do so, let α := (α1, . . . , αm) and, for any (t, x, z, u) ∈ T × Rn × Rm × Rn ,
define

L̃(t, x, z, u) := L(t, x, u), f (t, x, z, u) := (u, L1(t, x, u), . . . , Lm(t, x, u)).

Denote by X̃ the space of all piecewise C1 functions (x, z)mapping T to Rn ×Rm , and
by U the space of all piecewise continuous functions u mapping T to Rn . As one readily
verifies, our original problem (P) is equivalent to the problem, which we label (P̃), of
minimizing

Ĩ (x, z, u) :=
∫ t1

t0

L̃(t, x(t), z(t), u(t)) dt

over all (x, z, u) ∈ X̃ ×U satisfying

(ẋ(t), ż(t)) = f (t, x(t), z(t), u(t)) (t ∈ T ),
(t, x(t), u(t)) ∈ A,
(x(t0), z(t0), x(t1), z(t1)) = (ξ0, 0, ξ1,−α).

An element of X̃ ×U is called a process and it is admissible if it satisfies the above three
conditions. For this class of problems define, for all (t, x, z, u, p, q) ∈ T × Rn+m ×
Rn × Rn+m ,

H(t, x, z, u, p, q) := 〈(p, q), f (t, x, z, u)〉 − L̃(t, x, z, u).

According to the definition given in [16], an admissible process (x, z, u) is called extremal
if there exists (p, q) ∈ X̃ such that

( ṗ(t), q̇(t)) = (−Hx ,−Hz) and 0 = Hu, (1)

where the partial derivatives ofH are evaluated at (t, x(t), z(t), u(t), p(t), q(t)).
Now, for any s ∈ [t0, t1), set Ts := [s, t1], let X̃s be the space of piecewise C1

functions mapping Ts to Rn×Rm , let Us be the space of piecewise continuous functions
mapping Ts to Rn , and let Ỹs(x, z, u) be the set of functions (y, w, v) ∈ X̃s × Us such
that (y(s), w(s)) = (y(t1), w(t1)) = (0, 0) and(

ẏ(t)
ẇ(t)

)
= A(t)

(
y(t)
w(t)

)
+ B(t)v(t) (t ∈ Ts),
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where A(t) = ( fx , fz), B(t) = fu , and the partial derivatives are evaluated at (t, x(t),
z(t), u(t)). Denote by Ỹ (x, z, u) the set Ỹt0(x, z, u).

We are now in a position to define, for the problem (P̃), the set of “generalized
conjugate points” introduced in [16].

Definition 3.1. Let (x, z, u) ∈ X̃ ×U be an extremal and let (p, q) ∈ X̃ satisfy (1). A
point s ∈ [t0, t1) is called a generalized conjugate point (to t1 with respect to (x, z, u))
if there exist (y, w, v) ∈ Ỹs(x, z, u) and (q1, q2) ∈ X̃s such that if

µ(t) := B∗(t)
(

q1(t)
q2(t)

)
+ (Hux ,Huz)

(
y(t)
w(t)

)
+Huuv(t) (t ∈ Ts),

then:

(i)

(
q̇1(t)
q̇2(t)

)
+ A∗(t)

(
q1(t)
q2(t)

)
= −

(
Hxx Hxz

Hzx Hzz

)(
y(t)
w(t)

)
−
(
Hxu

Hzu

)
v(t)

(t ∈ Ts).

(ii) (q1(s), q2(s)) �= (0, 0).
(iii) 〈v(t), µ(t)〉 ≥ 0 (t ∈ Ts) and either (a) or (b) holds:

(a) 〈v(t), µ(t)〉 > 0 on a set of positive measure.
(b) There exists (y1, w1, v1) ∈ Ỹ (x, z, u) such that

(i) 〈y1(s), q1(s)〉 + 〈w1(s), q2(s)〉 > 0,
(ii) 〈v1(t), µ(t)〉 ≥ 0 (t ∈ Ts).

For the specific functions we are dealing with, this definition can be simplified as
follows. Observe first that the functionH corresponds to

H(t, x, z, u, p, q) = 〈p, u〉 +
m∑
1

qi Li (t, x, u)− L(t, x, u).

Hence (x, z, u) in X̃ × U is an extremal if and only if it is admissible and there exists
λ = (λ1, . . . , λm) ∈ Rm such that

p(t) = Lẋ (x̃(t))+
m∑
1

λi Li ẋ (x̃(t))

⇒ ṗ(t) = Lx (x̃(t))+
m∑
1

λi Lix (x̃(t)) (t ∈ T ).

Observe that A(t) and B(t) are (n+m)×(n+m) and (n+m)×n matrices, respectively,
given by

A(t) =




0n×n 0n×m

L1x (x̃(t)) 01×m
...

...

Lmx (x̃(t)) 01×m


 , B(t) =




In×n

L1u(x̃(t))
...

Lmu(x̃(t))




and so the differential equation appearing in the definition of Ỹs(x, z, u) is equivalent to

ẏ(t) = v(t) and ẇi (t) = Lix (x̃(t))y(t)+ Liu(x̃(t))v(t) (i = 1, . . . ,m).
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For any s ∈ [t0, t1) let Xs be the space of piecewise C1 functions mapping Ts to Rn , let
Ys be the set of functions y ∈ Xs for which y(s) = y(t1) = 0 and, for all x ∈ Xs , let

Cs(x) :=
{

y ∈ Xs

∣∣∣∣
∫ t1

s
{〈Lix (x̃(t)), y(t)〉 + 〈Li ẋ (x̃(t)), ẏ(t)〉} dt = 0

(i = 1, . . . ,m)

}
.

It follows that if (x, z, u) is an admissible process and (y, w, v) ∈ Ỹs(x, z, u), then
y ∈ Ys ∩ Cs(x).

In view of these remarks, we can redefine the set introduced in [16] as follows:

Definition 3.2. For all x ∈ X and λ ∈ Rm let Gλ(x) be the set of points s ∈ [t0, t1) for
which there exist y ∈ Ys ∩ Cs(x), q ∈ Xs , and k = (k1, . . . , km) ∈ Rm such that if

µ(t) := q(t)+
m∑
1

ki Li ẋ (x̃(t))−Fẋx (x̃(t); λ)y(t)−Fẋ ẋ (x̃(t); λ)ẏ(t) (t ∈ Ts),

then:

(i) q̇(t)+∑m
1 ki Lix (x̃(t)) = Fxx (x̃(t); λ)y(t)+ Fxẋ (x̃(t); λ)ẏ(t) (t ∈ Ts).

(ii) (q(s), k) �= (0, 0).
(iii) 〈ẏ(t), µ(t)〉 ≥ 0 (t ∈ Ts)

and either (a) or (b) holds:
(a) 〈ẏ(t), µ(t)〉 > 0 on a set of positive measure.
(b) There exists u ∈ Y ∩ C(x) such that if

ρi (t) :=
∫ t

t0

{〈Lix (x̃(τ )), u(τ )〉 + 〈Li ẋ (x̃(τ )), u̇(τ )〉} dτ (t ∈ T ),

then
(i) 〈u(s), q(s)〉 +∑m

1 kiρi (s) > 0,
(ii) 〈u̇(t), µ(t)〉 ≥ 0 (t ∈ Ts).

The main result in [16] relating this set to the condition that the second variation
is nonnegative along admissible variations states that, for any x ∈ X and λ ∈ Rm , x ∈
Hλ ⇒ Gλ(x) ∩ (t0, t1) = ∅ [16, Theorem 4.3]. Combining this result with Theorem 2.4
we obtain that if x is a normal solution of P(A), then there exists λ ∈ Rm such that
Gλ(x) ∩ (t0, t1) = ∅ [16, Theorem 4.6].

We turn now to the set of points defined in [24]. Consider the system(
ẏ(t)
ẇ(t)

)
= A(t)

(
y(t)
w(t)

)
+ B(t)v(t) (t ∈ T ),

(
y(t0)
w(t0)

)
=
(

0
0

)

for all (y, w, v) ∈ X̃ ×U . Let �: T → Rn+m × Rn+m satisfy

�̇(t) = −�(t)A(t) (t ∈ T ), �(t1) = I

so that any solution (y, w, v) of the above system can be expressed as(
y(t)
w(t)

)
= �−1(t)

∫ t

t0

�(τ)B(τ )v(τ ) dτ (t ∈ T ).
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The definition of “generalized coupled points” given in [24], applied to problem (P̃), is
the following:

Definition 3.3. Let (x, z, u) ∈ X̃ ×U be an extremal and let (p, q) ∈ X̃ satisfy (1). A
point s ∈ [t0, t1) is called a generalized coupled point (to t1 with respect to (x, z, u)) if
there exist (y, w, v) ∈ Ỹs(x, z, u) and (q1, q2) ∈ X̃s such that if

µ(t) := B∗(t)
(

q1(t)
q2(t)

)
+ (Hux ,Huz)

(
y(t)
w(t)

)
+Huuv(t) (t ∈ Ts),

then:

(i)

(
q̇1(t)
q̇2(t)

)
+ A∗(t)

(
q1(t)
q2(t)

)

= −
(
Hxx Hxz

Hzx Hzz

)(
y(t)
w(t)

)
−
(
Hxu

Hzu

)
v(t) (t ∈ Ts).

(ii) 〈v(t), µ(t)〉 ≥ 0 (t ∈ Ts).
(iii) If the inequality in (ii) is equality for all t ∈ Ts , then, for any α ∈ Rn × Rm

satisfying

〈r(t), µ(t)− B∗(t)�∗(t)α〉 ≤ 0 for all t ∈ Ts

and r : Ts → Rn piecewise continuous,

there exists v1: [t0, s]→ Rn piecewise continuous with

〈(
y1(s)
w1(s)

)
,�∗(s)α −

(
q1(s)
q2(s)

)〉
< 0,

where (y1, w1) is the solution of

(
ẏ1(t)
ẇ1(t)

)
= A(t)

(
y1(t)
w1(t)

)
+ B(t)v1(t) (t ∈ [t0, s]),(

y1(t0)
w1(t0)

)
=
(

0
0

)
.

One can easily verify that the matrix �(t), for the specific functions delimiting the
problem, is given by

�(t) =




In×n 0n×m∫ t1
t L1x (x̃(τ )) dτ

... Im×m∫ t1
t Lmx (x̃(τ )) dτ


 = I(n+m)×(n+m) +

∫ t1

t
A(τ ) dτ.

In view of this fact and the remarks following Definition 3.1, we can redefine the
set of points defined in [24] as follows:
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Definition 3.4. For all x ∈ X and λ ∈ Rm let Zλ(x) be the set of points s ∈ [t0, t1) for
which there exist y ∈ Ys ∩ Cs(x), q ∈ Xs and k = (k1, . . . , km) ∈ Rm such that if

µ(t) := q(t)+
m∑
1

ki Li ẋ (x̃(t))− Fẋx (x̃(t); λ)y(t)− Fẋ ẋ (x̃(t); λ)ẏ(t) (t ∈ Ts),

then:

(i) q̇(t)+∑m
1 ki Lix (x̃(t)) = Fxx (x̃(t); λ)y(t)+ Fxẋ (x̃(t); λ)ẏ(t) (t ∈ Ts).

(ii) 〈ẏ(t), µ(t)〉 ≥ 0 (t ∈ Ts).
(iii) If the inequality in (ii) is equality for all t ∈ Ts , then, for any (α, β) ∈ Rn×Rm

satisfying

µ(t) = α +
(

L1ẋ (x̃(t))+
∫ t1

t
L1x (x̃(τ )) dτ, . . . , Lmẋ (x̃(t))

+
∫ t1

t
Lmx (x̃(τ )) dτ

)
β (t ∈ Ts),

there exists u: [t0, s]→ Rn piecewise C1 with u(t0) = 0 such that if

ρi (t) :=
∫ t

t0

{〈Lix (x̃(τ )), u(τ )〉 + 〈Li ẋ (x̃(τ )), u̇(τ )〉} dτ (t ∈ [t0, s]),

then〈
u(s), α +

(∫ t1

s
L1x (x̃(t)) dt, . . . ,

∫ t1

s
Lmx (x̃(t)) dt

)
β

〉

+
m∑
1

βiρi (s) < 〈u(s), q(s)〉 +
m∑
1

kiρi (s).

In [24] it is proved (by applying a weak version of Pontryagin’s maximum principle)
that if x is a normal solution to (P), then there exists λ ∈ Rm such thatZλ(x)∩(t0, t1) = ∅
[24, Theorem 5.1].

Now, it is a simple fact to show that the set of generalized coupled points contains
that of generalized conjugate points (see Lemma 5.2 in [24]). Moreover, if x is normal
to P(A), then x ∈ Hλ ⇒ Zλ(x) = ∅. For completness we prove these results when they
are reduced to the problem we are considering in this paper, and including the endpoint
t = t0.

Note 3.5. For any (x, λ) ∈ X × Rm , Gλ(x) ⊂ Zλ(x).

Proof. Let s ∈ Gλ(x) and let y ∈ Ys ∩Cs(x), q ∈ X , and k = (k1, . . . , km) ∈ Rm be as
in Definition 3.2. If (a) holds, then s ∈ Zλ(x). If (a) does not hold, then the inequality in
(ii) of Definition 3.4 is equality for all t ∈ Ts and there exists u ∈ Y ∩ C(x) such that if

ρi (t) :=
∫ t

t0

{〈Lix (x̃(τ )), u(τ )〉 + 〈Li ẋ (x̃(τ )), u̇(τ )〉} dτ (t ∈ T ),
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then 〈u(s), q(s)〉 +∑m
1 kiρi (s) > 0 and 〈u̇(t), µ(t)〉 ≥ 0 (t ∈ Ts). Assume, without

loss of generality, that there exists (α, β) ∈ Rn × Rm such that, for all t ∈ Ts ,

µ(t) = α +
(

L1ẋ (x̃(t))+
∫ t1

t
L1x (x̃(τ )) dτ, . . . , Lmẋ (x̃(t))

+
∫ t1

t
Lmx (x̃(τ )) dτ

)
β.

Since u ∈ C(x), we have∫ s

t0

{〈Lix (x̃(t)), u(t)〉 + 〈Li ẋ (x̃(t)), u̇(t)〉} dt

= −
∫ t1

s
{〈Lix (x̃(t)), u(t)〉 + 〈Li ẋ (x̃(t)), u̇(t)〉} dt

and therefore, as one readily verifies,〈
u(s), α +

(∫ t1

s
L1x (x̃(t)) dt, . . . ,

∫ t1

s
Lmx (x̃(t))dt

)
β

〉
+

m∑
1

βiρi (s)

= −
∫ t1

s
〈u̇(t), µ(t)〉 dt ≤ 0 < 〈u(s), q(s)〉 +

m∑
1

kiρi (s).

Theorem 3.6. Suppose x is normal to (P). Then, for any λ ∈ Rm , x ∈ Hλ ⇒
Zλ(x) = ∅.

Proof. Suppose there exists s ∈ Zλ(x). Let y, q, k, µ be as in Definition 3.4, and define
z(t) := 0 for t ∈ [t0, s] and z(t) := y(t) for t ∈ [s, t1]. Then z ∈ Y ∩ C(x) and

J ′′λ (x; z) =
∫ t1

t0

2�λ(t, z(t), ż(t)) dt = −
∫ t1

s
〈ẏ(t), µ(t)〉 dt ≤ 0,

where 2�λ is the integrand of the second variation of Jλ at x . If condition (ii) of Defini-
tion 3.4 holds strictly on a set of positive measure, then J ′′λ (x; z) < 0, contradicting that
x ∈ Hλ. Therefore, the inequality in (ii) of Definition 3.4 is equality for all t ∈ Ts and
so J ′′λ (x; z) = 0. In this event, z is a (normal) minimum of the isoperimetric problem of
minimizing J ′′λ (x; ·) over Y ∩ C(x). Hence (applying Proposition 2.5 to this so-called
accesory problem) there exists a unique ν = (ν1, . . . , νm) ∈ Rm such that if

p(t) = Fẋx (x̃(t); λ)z(t)+ Fẋ ẋ (x̃(t); λ)ż(t)+
m∑
1

νi Li ẋ (x̃(t)) (t ∈ T ),

then

ṗ(t) = Fxx (x̃(t); λ)z(t)+ Fxẋ (x̃(t); λ)ż(t)+
m∑
1

νi Lix (x̃(t)) (t ∈ T ).
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Let α := q(t1)− p(t1) and β := k + ν. By (i) of Definition 3.4 we have

µ(t) = q(t)− p(t)+
m∑
1

βi Li ẋ (x̃(t)) = α +
m∑
1

∫ t1

t
βi Lix (x̃(τ )) dτ

+
m∑
1

βi Li ẋ (x̃(t)) (t ∈ Ts).

Observe that, up to this point, s can take any value in the half-open interval [t0, t1).
Now, by condition (iii) of Definition 3.4, there exists u: [t0, s]→ Rn piecewise C1 with
u(t0) = 0 such that if

ρi (t) :=
∫ t

t0

{〈Lix (x̃(τ )), u(τ )〉 + 〈Li ẋ (x̃(τ )), u̇(τ )〉} dτ (t ∈ [t0, s]),

then

0 <

〈
u(s), q(s)− α −

m∑
1

βi

∫ t1

s
Lix (x̃(t)); dt

〉
−

m∑
1

νiρi (s).

This implies, in particular, that the assumption s = t0 yields the desired contradiction.
For the case s > t0, observe that the right-hand side of the last expression is equal to

〈u(s), p(s)〉 −
∫ s

t0

{〈 ṗ(t), u(t)〉 + 〈p(t), u̇(t)〉} dt = 0

and so, in all cases, we reach a contradiction.

4. Examples

As mentioned in the Introduction, there are examples where one can exhibit a function y
for which the second variation along a normal extremal x ∈ Eλ is negative, showing that
x �∈ Hλ, but y does not satisfy the conditions defining membership of Gλ(x) or Zλ(x).
The first example we consider in this section illustrates this fact.

Example 4.1. Minimize I (x) = ∫ 7
0 t{ẋ2(t) − x2(t)} dt subject to x(0) = x(7) = 0

and
∫ 7

0 x(t) dt = 0.
In this case n = m = 1, T = [0, 7], ξ0 = ξ1 = α1 = 0, A = T × R2, L(t, x, ẋ) =

t (ẋ2 − x2), and L1(t, x, ẋ) = x .
We want to see if x0 ≡ 0 is a solution of the problem. First observe that, since

I1(x) =
∫ 7

0 x(t) dt , we have I ′1(x; y) = ∫ 7
0 y(t) dt , and x ∈ Ze(A) is normal if

there exists y ∈ X with y(0) = y(7) = 0 such that | ∫ 7
0 y(t) dt | �= 0. Thus, any

trajectory x ∈ Ze(A) is normal. Also, x ∈ Lλ ∩Wλ(A) for any x ∈ X and λ ∈ R, since
Fẋ ẋ (x̃(t); λ) = 2t ≥ 0 (t ∈ T ) and the “excess” function Eλ is given by t (u− ẋ)2. Now,
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for all λ ∈ R,

Jλ(x) =
∫ 7

0
F(x̃(t); λ) dt =

∫ 7

0
{L(x̃(t))+ λx(t)} dt

and so

J ′λ(x; y) =
∫ 7

0
{2t (ẋ(t)ẏ(t)− x(t)y(t))+ λy(t)} dt.

Thus x0 belongs to E0. One necessary condition remains to be verified, namely, that x0

belongs to H0. By definition, this set corresponds to those x ∈ X for which

∫ 7

0
t{ẏ2(t)− y2(t)} dt ≥ 0

for all y ∈ X satisfying y(0) = y(7) = 0 and
∫ 7

0 y(t) dt = 0. Let a := 7
4 and define

y(t) :=



t if t ∈ [0, a],
2a − t if t ∈ [a, 3a],
t − 4a if t ∈ [3a, 4a].

By construction, y(0) = y(7) = 0 and
∫ 7

0 y(t) dt = 0. Moreover, as one readily verifies,∫ 7

0
t{ẏ2(t)− y2(t)} dt

=
∫ a

0
t{1− t2} dt +

∫ 3a

a
t{1− (2a − t)2} dt +

∫ 4a

3a
t{1− (t − 4a)2} dt

= a2

(
8− 3a2 + a2

3

)
= −49

96
< 0

and therefore x0 �∈ H0. Thus x0 is not a solution of the problem. Also, since Hλ is
independent of λ, the same proof shows that the problem has no solution at all.

We turn now to the sets Gλ(x) and Zλ(x). By definition, s belongs to Gλ(x) if
s ∈ [0, 7) and there exist y ∈ Ys with

∫ 7
s y(t) dt = 0, q ∈ Xs , and k ∈ R such that if

µ(t) := q(t)− 2t ẏ(t) (t ∈ Ts), then:

(i) q̇(t)+ k = −2t y(t) (t ∈ Ts).
(ii) (q(s), k) �= (0, 0).

(iii) ẏ(t)µ(t) ≥ 0 (t ∈ Ts)

and either (a) or (b) holds:
(a) ẏ(t)µ(t) > 0 on a set of positive measure.
(b) There exists u ∈ Y with

∫ 7
0 u(t) dt = 0 such that if ρ(t) := ∫ t

0 u(τ ) dτ
(t ∈ T ), then
(i) u(s)q(s)+ kρ(s) > 0,

(ii) u̇(t)µ(t) ≥ 0 (t ∈ Ts).
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On the other hand, Zλ(x) is given by those points s ∈ [0, 7) for which there exist
y ∈ Ys with

∫ 7
s y(t) dt = 0, q ∈ Xs , and k ∈ R such that if µ(t) := q(t) − 2t ẏ(t)

(t ∈ Ts), then:

(i) q̇(t)+ k = −2t y(t) (t ∈ Ts).
(ii) ẏ(t)µ(t) ≥ 0 (t ∈ Ts).

(iii) If the inequality in (ii) is equality for all t ∈ Ts then, for any (α, β) ∈ R2

satisfying µ(t) = α+β(7− t) (t ∈ Ts), there exists u: [0, s]→ Rn piecewise
C1 with u(0) = 0 such that if ρ(t) := ∫ t

0 u(τ ) dτ (t ∈ [0, s]), then

u(s)(α + β(7− s))+ βρ(s) < u(s)q(s)+ kρ(s).

It follows that if a point s ∈ [0, 7) belongs to Gλ(x) or Zλ(x), then, necessarily,
there exist c, k ∈ R and y ∈ Ys with y �≡ 0 and

∫ 7
s y(t) dt = 0, such that

ẏ(t)

(
c − kt − 2

∫ t

s
τ y(τ ) dτ − 2t ẏ(t)

)
≥ 0 for all t ∈ [s, 7].

Consider now the function y defined above satisfying y(0) = y(7) = 0 and∫ 7
0 y(t) dt = 0, and for which the second variation along any trajectory is strictly

negative. Observe that, in view of the above inequality, we require the constants c, k ∈ R
to satisfy

c − kt − 2
∫ t

0
τ 2 dτ ≥ 2t for all t ∈ [0, 7

4 ]

and

c − kt − 2
∫ 7/4

0
τ 2 dτ −

∫ t

7/4
τ(7− 2τ) dτ ≤ −2t

for all t ∈ [ 7
4 ,

7
2 ].

However, there are no constants c, k ∈ R for which both relations hold, and so y fails to
satisfy the conditions defining membership of these two sets.

This fact can be easily generalized to any function y whose derivative does not
vanish and it changes sign in an interval (for such functions the condition y ∈ Cs(x)
is not even required). These functions, just like the one defined above, are natural to
be considered in trying to prove nonemptiness of Gλ(x) or Zλ(x) since the conditions
y ∈ Ys and y �≡ 0 imply that ẏ changes sign along the interval [s, 7]. Suppose then that,
as in the previous case, for some b, ε > 0 with [b−ε, b+ε] contained in (s, 7), ẏ(t) > 0
for t ∈ [b − ε, b] and ẏ(t) < 0 for t ∈ [b, b + ε]. In this event the constants c, k ∈ R
must satisfy

c − kt − 2
∫ t

s
τ y(τ ) dτ ≥ 2t ẏ(t) > 0 for all t ∈ [b − ε, b]
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and

c − kt − 2
∫ t

s
τ y(τ ) dτ ≤ 2t ẏ(t) < 0 for all t ∈ [b, b + ε],

which is not possible.

In the next example, posed in the Introduction, the verification that a certain trajectory
does not belong to Hλ is not as simple as in the previous one. One can exhibit, however,
an admissible variation for which the second variation vanishes and this function fails
to satisfy the conditions defining membership of Gλ(x) and Zλ(x).

Example 4.2. Minimize I (x) = 1
2

∫ π
0 t{ẋ2(t)−4x2(t)} dt subject to x(0) = x(π) = 0

and
∫ π

0 x(t) dt = 0.
In this case n = m = 1, T = [0, π ], ξ0 = ξ1 = α1 = 0, A = T × R2, L(t, x, ẋ) =

t (ẋ2 − 4x2)/2, and L1(t, x, ẋ) = x .
As in Example 4.1, any trajectory x ∈ Ze(A) is normal and x ∈ Lλ ∩ Wλ(A) for

any x ∈ X and λ ∈ R. Also, x0 ≡ 0 belongs to E0, and we want to see if it is a solution
of the problem.

By definition, Hλ is given by those x ∈ X for which

∫ π

0
t{ẏ2(t)− 4y2(t)} dt ≥ 0

for all y ∈ X satisfying y(0) = y(π) = 0 and
∫ π

0 y(t) dt = 0. To begin with, a function
like the one defined in the previous example (setting a := π/4, so that it vanishes at 0
and π and satisfies

∫ π
0 y(t) dt = 0), yields a positive value to the above integral. On the

other hand, for the function y(t) = sin 2t (t ∈ [0, π ]), the required conditions hold but
the above integral vanishes. It is in fact not clear (at this point) how to exhibit a function y
satisfying the endpoint conditions and for which the second variation is strictly negative.

Though the function sin 2t does not yield a negative value to the second variation, let
us see if it can be used to prove nonemptiness of the sets defined in [16] and [24]. Similar
arguments to the ones given in Example 4.1 show that if a point s belongs to Gλ(x) or
Zλ(x), then, necessarily, there exist c, k ∈ R and y ∈ Ys with y �≡ 0 and

∫ π
s y(t) dt = 0

such that

ẏ(t)

(
c − kt − 4

∫ t

s
τ y(τ ) dτ − t ẏ(t)

)
≥ 0 for all t ∈ [s, π ].

Note that, for the function y(t) = sin 2t (t ∈ [0, π ]), we require that

2 cos 2t

(
c − kt − 4

∫ t

0
τ sin 2τ dτ − 2t cos 2t

)
= 2 cos 2t (c − kt − sin 2t)

≥ 0 for all t ∈ [0, π ].

However, as before, there are no constants c and k in R for which this relation holds.
Indeed, observe that t = π/2⇒ 2c ≤ kπ , and t = π ⇒ c ≥ kπ , implying that k ≤ 0.



A New Notion of Conjugacy for Isoperimetric Problems 225

If k = 0, then c = 0 which is clearly not possible. Thus k �= 0 and so c < 0. However,
t = 0⇒ c ≥ 0 which is a contradiction.

5. A New Notion of Conjugacy

In this section we introduce a new set of points whose emptiness is equivalent to the
nonnegativity of the second variation, and for which the difficulties that appear in trying
to apply the theories of [16] and [24] do not occur. Moreover, as mentioned in the
Introduction, this set achieves (contrary to the sets defined in [16] and [24]) the main
objective of introducing a characterization of this second-order necessary condition,
namely, to obtain a simpler way of verifying it.

This new set of points corresponds to a generalization of a set first introduced in
[1] for problems without isoperimetric constraints. We refer the reader to [2], [3], [18],
and [19] for further properties of that set.

Definition 5.1. For any x ∈ X and λ ∈ Rm let Rλ(x) be the set of points s ∈ [t0, t1)
for which there exists y ∈ Ys ∩ Cs(x) such that if

v(t) := Fẋx (x̃(t); λ)y(t)+ Fẋ ẋ (x̃(t); λ)ẏ(t),
w(t) := Fxx (x̃(t); λ)y(t)+ Fxẋ (x̃(t); λ)ẏ(t) (t ∈ Ts),

then:

(i)
∫ t1

s {〈ẏ(t), v(t)〉 + 〈y(t), w(t)〉} dt ≤ 0.
(ii) There exists u ∈ Y ∩C(x) such that γ := ∫ t1

s {〈u̇(t), v(t)〉+〈u(t), w(t)〉} dt �=
0.

Theorem 5.2. For all x ∈ X (A) and λ ∈ Rm , x ∈ Hλ ⇔ Rλ(x) = ∅.

Proof. (⇒) Suppose there exists s ∈ Rλ(x), and let y, u be as in Definition 5.1. Since
γ �= 0, we have y �≡ 0. Let z(t) := 0 for t ∈ [t0, s] and z(t) := y(t) for t ∈ [s, t1]. Note
first that

J ′′λ (x; z) =
∫ t1

t0

2�λ(t, z(t), ż(t)) dt =
∫ t1

s
{〈y(t), w(t)〉 + 〈ẏ(t), v(t)〉} dt ≤ 0.

Set k := J ′′λ (x; u), α := −(γ + k/2γ ), and yα := u+ αz. Then yα belongs to Y ∩C(x)
and

J ′′λ (x; yα) =
∫ t1

t0

2�λ(t, yα(t), ẏα(t)) dt = k + α2 J ′′λ (x; z)

+2α
∫ t1

s
{〈u(t), w(t)〉 + 〈u̇(t), v(t)〉} dt

≤ k + 2αγ = −2γ 2 < 0.

(⇐) Suppose x �∈ Hλ. Let y ∈ Y ∩ C(x) be such that J ′′λ (x; y) < 0 and let u ≡ y.
Then t0 ∈ Rλ(x).
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Combining Theorems 2.4 and 5.2 we obtain the following necessary condition:

Theorem 5.3. If x is a normal solution of (P), then there exists λ ∈ Rm such that
Rλ(x) = ∅.

Note 5.4. Denote by R̃λ(x) the set of points s ∈ [t0, t1) for which there exists y ∈ Ys ∩
Cs(x) satisfying strictly the inequality in (i) of Definition 5.1. Then R̃λ(x) ⊂ Rλ(x). This
follows simply by setting u(t) := 0 for t ∈ [t0, s] and u(t) := y(t) for t ∈ [s, t1]. Then
u ∈ Y ∩C(x) and γ < 0. A similar reasoning shows that s ∈ Rλ(x)⇔ [t0, s] ⊂ Rλ(x),
so thatRλ(x) �= ∅ is always an interval containing the point t0.

We now return to the sets defined in [16] and [24]. A simple proof provided below
shows that, for any x ∈ X and λ ∈ Rm ,Rλ(x) contains all generalized conjugate points
with respect to x and λ. With respect to the set of generalized coupled points observe
that, by Theorems 3.6 and 5.2, if x is normal to (P), thenZλ(x) �= ∅ ⇒ Rλ(x) �= ∅. This
implies, in particular, that if one detects nonoptimality of x by applying the theories of
[16] or [24], proving nonemptiness of any of these sets, one also detects it by means of
the set introduced in this paper.

Theorem 5.5. For any (x, λ) ∈ X × Rm , Gλ(x) ⊂ Rλ(x).

Proof. Let s ∈ Gλ(x) and let y ∈ Ys ∩Cs(x), q ∈ X and k = (k1, . . . , km) ∈ Rm be as
in Definition 3.2. Note that, in terms of these functions, v,w defined in Definition 5.1
satisfy

v(t) = q(t)+
m∑
1

ki Li ẋ (x̃(t))− µ(t) and

w(t) = q̇(t)+
m∑
1

ki Lix (x̃(t)) (t ∈ Ts).

Condition (i) of Definition 5.1 is a consequence of condition (iii) of Definition 3.2 since∫ t1

s
{〈ẏ(t), v(t)〉 + 〈y(t), w(t)〉} dt

=
m∑
1

ki

∫ t1

s
{〈ẏ(t), Li ẋ (x̃(t))〉 + 〈y(t), Lix (x̃(t))〉} dt −

∫ t1

s
〈ẏ(t), µ(t)〉 dt

= −
∫ t1

s
〈ẏ(t), µ(t)〉 dt ≤ 0.

If (a) holds, then s ∈ R̃λ(x) ⊂ Rλ(x). If (b) holds, then

γ =
∫ t1

s
{〈u̇(t), v(t)〉 + 〈u(t), w(t)〉} dt

= −〈u(s), q(s)〉 −
m∑
1

kiρi (s)−
∫ t1

s
〈u̇(t), µ(t)〉 dt < 0.
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We now consider the examples given in Section 4.
For Example 4.1, the function y for which the second variation at x is negative

shows that 0 ∈ R̃λ(x), and an application of Theorem 5.3 implies that the problem has
no solution.

For Example 4.2, Rλ(x) is given by those points s ∈ [0, π) for which there exists
y ∈ Ys with

∫ π
s y(t) dt = 0 such that:

(i)
∫ π

s t{ẏ2(t)− 4y2(t)} dt ≤ 0.
(ii) There exists u ∈ Y ∩ C(x) such that γ := ∫ πs t{u̇(t)ẏ(t)− 4u(t)y(t)} dt �= 0.

We claim that 0 ∈ Rλ(x). Let y(t) := sin 2t (t ∈ [0, π ]). Since y(0) = y(π) = 0 and∫ π
0 y(t) dt = 0, we have y ∈ Y0 ∩ C0(x) = Y ∩ C(x), and condition (i) holds since∫ π

0
t{ẏ2(t)− 4y2(t)} dt = 4

∫ π

0
t cos 4t dt = 0.

To show that (ii) also is satisfied observe first that if we set

v(t) := 2t cos 2t (= t ẏ(t)) and w(t) := −4t sin 2t (= −4t y(t)),

then w(t)− v̇(t) = −2 cos 2t and, therefore,

γ =
∫ π

0
{u̇(t)v(t)+ u(t)w(t)} dt = u(π)v(π)+

∫ π

0
u(t){w(t)− v̇(t)} dt

= u(π)v(π)− 2
∫ π

0
u(t) cos 2t dt.

Let, for example, u(t) := sin 8t for t ∈ [0, π/4] and u(t) := 0 for t ∈ [π/4, π ]. We
have u(0) = u(π) = 0 and

∫ π
0 u(t) dt = 0, so that u ∈ Y ∩ C(x). Moreover, as one

readily verifies,

γ = −2
∫ π/4

0
sin 8t cos 2t dt = − 8

15 .

Hence (ii) holds and so 0 ∈ Rλ(x) for any x ∈ X and λ ∈ R. This proves the claim. By
Theorem 5.3, (P) has no solution.
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