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1. Introduction

Throughout this paper M is a finite-dimensional Riemannian manifold with metric
g(·, ·) = 〈·, ·〉 and squared norm |X |2 = g(X, X), and � is an open bounded, con-
nected, compact set of M with smooth boundary � = �0 ∪ �1. We let n denote the
outward unit normal field along the boundary �. Further, we denote by � the Laplace
(Laplace–Beltrami) operator on the manifold M and by D the Levi–Civita connection
on M [D], [Le].

In this paper we study the following wave equation with energy level terms on �:

wtt = �w + F(w)+ f in (0, T ] ×� (1.1)

under the following standing assumptions: the energy-level differential term

F(w) ≡ 〈P(t, x), Dw〉 + p1(t, x)wt + p0(t, x)w, (1.2a)

where p0, p1 are functions on [0, T ] × �, and P(t) is a vector field on M for t > 0,
satisfies the following estimate: there exists a constant CT > 0 such that

|F(w)|2 ≤ CT {|Dw|2 + w2
t + w2}, x, t ∈ Q, (1.2b)

where Dw = ∇gw for the scalar function w. So Dw is a vector field, Dw ∈ X (M) =
the set of all vector fields on M . Two vertical bars |·| denote the norm in the tensor space
Tx or its completion L2(�, T ) [He]. Furthermore, we assume throughout that the forcing
term f in (1.1) satisfies

f ∈ L2(0, T ;�) ≡ L2(Q);
∫

Q
f 2 dQ <∞, (1.3)

where dQ = d� dt, and d� is the volume element of the manifold M in its Riemann
metric g.

Remark 1.1. Property (1.2b) is fulfilled if P ∈ L∞(0, T ;�) [He], p0, p1 ∈ L∞(Q).
In effect, one could relax the regularity assumption on the lower-order coefficient p0 to
read p0 ∈ L p(Q) for p = dim � + 1, see Remark 1.1.1 of [LTZ], by using a Sobolev
embedding theorem.

Main Assumptions. In addition to the standing assumptions (1.2b), (1.3) on the first-
order operator F and the forcing term f , the following assumption is postulated through-
out Section 9 of this paper.

(A.1) There exists a function d: �̄ ⇒ R of class C3 that is strictly convex in the
metric g. This means that the Hessian D2d (a two-order tensor) satisfies D2d(X, X) > 0,
∀x ∈ �̄, ∀X ∈ Mx . By translation and rescaling, we can always achieve (see Remark 1.2
below) that d(x) satisfies the following conditions:

D2d(X, X) ≡ 〈DX (Dd), X〉g ≥ 2|X |2g, ∀x ∈ �, ∀X ∈ Mx ,

min
�̄

d(x) ≡ m > 0, (1.4)
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where, as we said, D2d is the Hessian of d (a second-order tensor) and where Mx is
the tangent space at x ∈ �. In (1.4), we think of m as arbitrarily small, in order not to
deteriorate the threshold time T0 in (1.6b) below.

A working assumption throughout Section 9, to be later relaxed in Section 10, is
that d(x) has no critical point on �̄:

(A.2)

inf
x∈�

|Dd| = p > 0, so that we can take κ = inf
�̄

|Dd|2
d

> 4 (1.5)

by rescaling, see Remark 1.2 below. The above setting is kept throughout Chapter 9.

Pseudo-Convex Function. Having chosen, on the strength of assumption (A.1), a
strictly convex potential function d(x) satisfying condition (1.4), we next introduce
the function ϕ: �× R → R of class C3 by setting

ϕ(x, t) = d(x)− c

(
t − T

2

)2

, 0 ≤ t ≤ T, x ∈ �, (1.6a)

where T > 0 and 0 < c < 1 are selected as follows. We define first T0 by setting, as
usual,

T 2
0 = 4 max

x∈�̄
d(x). (1.6b)

Let T > T0 be given. By (1.6b), there exists δ > 0 such that

T 2 > 4 max
x∈�̄

d(x)+ 4δ. (1.6c)

For this δ > 0, there exists a contstant c, 0 < c < 1, such that

cT2 > 4 max
x∈�̄

d(x)+ 4δ. (1.6d)

Henceforth, let ϕ(x, t) be defined by (1.6a) with T and c chosen as described above,
unless otherwise explicitly noted. Such a function ϕ(x, t) has the following properties:

(a) For the constant δ > 0, fixed in (1.6c), we have via (1.6d) that

ϕ(x, 0) = ϕ(x, T ) = d(x)− c
T 2

4
≤ max

�̄

d(x)− c
T 2

4
≤ −δ,

uniformly in x ∈ �̄. (1.7)

(b) There are t0 and t1, with 0 < t0 < T/2 < t1 < T , such that

min
x∈�̄,t∈[t0,t1]

ϕ(x, t) ≥ σ, 0 < σ < m, (1.8)

since ϕ(x, T/2) = d(x) ≥ m > 0, under the present choice, with m given
by (1.4).
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Remark 1.2. If we rescale the original function d(x) (d(x) ≥ m > 0), i.e., if we
replace d(x) by dnew(x) = ad(x) for a constant a > 1, then

Ddnew = aDd; |Ddnew|2 = a2|Dd|2; D2dnew = aD2d;
T 2

0,new = aT2
0; T 2

new = aT2; D2dnew(Ddnew,Ddnew) = a3 D2d(Dd,Dd);
the coercivity lower bound 2 in (1.4) is replaced by 2a > 2;

κnew = inf�̄
|Ddnew|2

dnew
= aκ = a inf

�̄

|Dd|2
d

.

Hence, condition (1.5, right) can always be achieved by rescaling, if d(x) has no critical
points in �̄. The importance of condition κ > 4 in (1.5) will be seen in (1.21) below, in
asserting that

f (c) ≡ (5 + 3c)κ − 4(1 + 7c) ≥ 0 for all c < 1 and c near 1. (1.9)

Indeed, f (c = 1) > 0 by (1.5, right), and hence (1.9) holds true. Thus, c in (1.6d) can
be taken arbitrarily close to 1, as needed.

Consequences of Assumptions (A.1), (A.2) and of the Scaling Condition in (1.5). Let
d(x) be the strictly convex (potential) function provided by assumptions (A.1), (A.2)
and subject to the translation/scaling conditions in (1.4), (1.5). It then follows that by
choosing the function

α(x) ≡ �d(x)− c − 1, (1.10)

the following two properties, (p1), (p2), hold true (see proof of (1.12) below, while (1.11)
is immediate):

(p1) �d(x)− 2c − α(x) ≡ 1 − c > 0, ∀x ∈ �̄; (1.11)
(p2)

[2c +�d − α]|Dd|2 + 2D2d(Dd,Dd)− 4c2(�d + 6c − α)
(

t − T

2

)2

≥ 4(1 + 7c)ϕ∗(x, t), ∀t, x ∈ Q = [0, T ] ×�, (1.12)

where ϕ∗(x, t) is the function defined by

ϕ∗(x, t) = d(x)− c2

(
t − T

2

)2

, x ∈ �, 0 ≤ t ≤ T . (1.13)

Since 0 < c < 1, we note via (1.6a), (1.13) that

ϕ∗(x, t) ≥ ϕ(x, t), x ∈ �, 0 ≤ t ≤ T . (1.14)

Next, we define two sets, subsets of �× [0, T ]:

Q(σ ) ≡ {(x, t): x ∈ �, 0 ≤ t ≤ T, ϕ(x, t) ≥ σ > 0}, (1.15)

Q∗(σ ∗)≡{(x, t): x ∈�, 0≤ t ≤T, ϕ∗(x, t)≥σ ∗>0}, 0<σ ∗<σ, (1.16)
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for a constant σ ∗ chosen to satisfy 0 < σ ∗ < σ , with σ < m defined in (1.8). Indeed,
recalling (1.8), we readily have

[t0, t1] ×� ⊂ Q(σ ) ⊂ Q∗(σ ∗) ⊂ [0, T ] ×�. (1.17)

Proof of (1.12). By virtue of the choice (1.10) for α and assumption (1.5), we
compute via (1.10), (1.5), (1.9), for all (t, x) ∈ Q:

[2c +�d − α]|Dd|2 + 2D2d(Dd,Dd)− 4c2(�d + 6c − α)
(

t − T

2

)2

= (1 + 3c)|Dd|2 + 2D2d(Dd,Dd)− 4c2(1 + 7c)

(
t − T

2

)2

(1.18)

(by (1.4)) ≥ (5 + 3c)|Dd|2 − 4c2(1 + 7c)

(
t − T

2

)2

(1.19)

(by (1.5)) ≥ (5 + 3c)κd(x)− 4c2(1 + 7c)

(
t − T

2

)2

(1.20)

(by (1.9)) ≥ 4(1 + 7c)

[
d(x)− c2

(
t − T

2

)2
]
≡ 4(1 + 7c)ϕ∗(x, t), (1.21)

recalling (1.13), and (1.12) is proved, as desired.

Critical Property to Absorb Lower-Order Terms. We shall see in Section 4, (4.20)
below, that the following property, derived from (1.12), is critical in the present approach
in absorbing lower-order terms in w: under assumptions (A.1), (A.2) and for the choice
of α in (1.10) we have:

(p′2)

[2c +�d − α]|Dd|2 + 2D2d(Dd,Dd)− 4c2(�d + 6c − α)
(

t − T

2

)2

(by (1.12)) ≥ 4(1 + 7c)ϕ∗(x, t) ≥ 4(1 + 7c)σ ∗ = β1 > 0,

∀(x, t) ∈ Q∗(σ ∗), (1.22)

recalling the definition of the set Q∗(σ ∗) in (1.16).

The term on the left-hand side of (1.22) is precisely the term that will arise as a
coefficient in front of the lower-order term, see (4.5), (4.7), (4.8) below.

2. Main Results of the Paper. Literature

Throughout this paper the “energy” is given by

E(t) =
∫
�

[w2
t + |Dw|2 + w2] d�, (2.1)

see (5.4). This is the quantity which occurs in the estimates.
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Main Results of the Paper. We hereby summarize the main results of the present paper
on the Riemann wave equation (1.1), with the understanding that the standing hypotheses
(1.2) on F and (1.3) on f are in force throughout.

(1) Results under assumptions (A.1) = (1.4) and (A.2) = (1.5). These include, in
order of presentation:

(1a) Carleman-type estimates which contain no lower-order terms (l.o.t.) and are
valid for H 2,2(Q)-solutions of (1.1) (with no B.C.). The first version thereof is Theo-
rem 5.1 (Section 5), while the second, final, version is Theorem 6.1 (Section 6). Their
proof rests on the fundamental lemma of Section 3, which provides a pointwise Carleman-
type estimate (at each (t, x)) for C2-solutions of (1.1), with controlled sign on the coef-
ficient of the l.o.t., at least in a suitable set in space and time of � × [0, T ]. This set is
Q∗(σ ∗) under assumptions (A.1) and (A.2).

(1b) Extension of Theorems 5.1 and 6.1 to the H 1,1(Q)-solution of (1.1), by a
regularizing procedure. This is done in Section 7.

(1c) A Continuous Observability Inequality—a fortiori a global uniqueness theo-
rem—for H 1,1(Q)-solutions, as given in Theorem 8.1 (Section 8) in the case of pure
homogeneous Dirichlet B.C.; and as given in Theorems 9.1 and 9.3 (Section 9) in the
case of pure homogeneous Neumann B.C.

(2) Extension of the results of part (1) to a setting that removes assumption (A.2)
= (1.5). This is done, as in Section 10 of [LTZ], by considering � as the union of two
suitable overlapping subdomains�1 and�2:� = �1 ∪�2, and assuming the existence
of two smooth strictly convex functions d1 and d2 on � (as in (A.1) = (1.4)), with the
additional feature that di has no critical point on �i , thereby eliminating assumption
(A.2), at least on each �i . Accordingly, the main result of the present paper is Theo-
rem 10.1.1. Only some key aspects of the proof of this theorem will be given explicitly
in Section 10—those dealing with the elimination of the l.o.t. in the final Carleman
estimates—as the proof follows rather faithfully the one given in Section 10 of [LTZ].

Literature. To begin with, regarding the generality of model (1.1), we notice that such
a Riemann wave equation includes, in particular, a general second-order hyperbolic
equation defined on a Euclidean bounded domain, with principal part coefficients aij(x)
variable in space, and coefficients of energy level terms variable in both time and space
[LTY1], [LTY2]. The case with no energy level terms was dealt with in [Y], where
the geometric method was introduced. Here in these aforementioned references, the
transformation {gij(x)} = {aij(x)}−1 (two n × n positive symmetric matrices), gives
the coefficients of the Riemann metric g. Indeed, one may more generally start with a
general second-order elliptic operator on the manifold M , and change it into the Laplace–
Beltrami operator as in (1.1), through a similar transformation based on the coefficients.
Having assessed the generality of our model, we may next state our goal: the main goal
of the present paper is then to obtain Carleman-type inequalities for the aforementioned
general model (1.1), with the additional requirement that they do not contain l.o.t. This
is a most desirable feat, which is in contrast with much of the large literature on this
subject, from the canonical equations of the mid-80s [LT3], [LT8], [Lio1], [Lio2] to
the very general geometric optics approach in [BLR], [Lit1], and [Lit2] to the earlier
approaches to Carleman estimates on Euclidean setting [T1], [LT5] to the Riemann geo-
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metric generalization in [LTY1] and [LTY2]. The advantages of eliminating l.o.t. in the
Carleman estimates are then several and substantial. To begin with, as a consequence, this
approach permits one to obtain global uniqueness results of overdetermined problems,
as well as the much stronger continuous observability/uniform stabilization inequalities
in one shot, as part of the same stream of arguments. This is in contrast with much of
the literature on the subject, where elimination of l.o.t. from the estimate would require
appealing to, or invoking or assuming a global uniqueness result, not a readily-available
task in the presence of nonsmooth coefficients, particularly with L∞(Q)-coefficients in
time and space at the energy level. By contrast the present approach establishes—rather
than assumes—global uniqueness results, precisely in the form needed by the COI/US
inequalities, which compare very favorably with the literature [Ho1], [Ho2], [Ho3], [I],
[Lit3], [T2], [T5]. An additional bonus of the present approach is that the final COI/US
inequalities are obtained with explicit constants, certainly so in the case of Dirichlet
B.C., and also in the case of Neumann B.C., if one tolerates geometrical conditions on
the controlled/observed portion �1 of the boundary. Knowledge of explicit constants in
these estimates plays a positive role in dealing with semilinear problems [LT9], [Z1],
[Z2], [Z3] as well as in estimating the minimal norm of the steering controls. Only a
few recent references [T3], [IY], [LTZ] have addressed successfully the issue of ob-
taining Carleman/COI/US estimates with no l.o.t. for control theoretic purposes. Both
[IY] and its more general version [LTZ], done simultaneously and independently, refer,
however, to the case of the Euclidean Laplacian, with particular emphasis on the more
challenging purely Neumann case. Also [KK], which refers to H 2,2(Q)-solutions and
includes the Dirichlet, or Dirichlet/Neumann, but excludes the purely Neumann, case,
refers to the Euclidean Laplacian. All are inspired by a pointwise Carleman-type esti-
mate [LRS, Lemma 1, p. 124]: indeed, [KK] and [IY] invoke such a pointwise Carleman
estimate, while [LTZ] provides a new version of it, more suitable for the purely Neu-
mann B.C. case, in order to relax geometrical conditions. The present paper is a faithful
extension of [LTZ] from the Euclidean to the Riemannian setting. In particular, the pre-
liminary fundamental Lemma 3.1 of Section 3 is the present Riemannian counterpart
of Lemma 3.1 in [LTZ] in the Euclidean setting, in turn related—as recalled above—to
Lemma 1 on p. 124 of [LRS]. One may give serveral classes of examples where all the
necessary assumptions—particularly in the purely Neumann B.C. case—are satisfied.
One such attractive class is given in Appendix B, which is the Riemannian counterpart
of the result given in the Euclidean setting in Appendix A, Theorem A.4.1, of [LTZ].
Further information on the literature is given in Section 2.3 of [LTZ], to which we refer
for lack of space. For additional references on the problems here considered, we cite
[BGW], [FI], [GL], [LT2], [LTY3], and [LiTa]. Regularity results of the Neumann mixed
problem are given in [LT7], [LT10], [LT11], and [T4].

3. A Fundamental Lemma

The following lemma is the key starting point of our analysis. It gives a pointwise estimate
which is the counterpart, in the present Riemann metric, of Lemma 3.1 of [LTZ]. Its proof
is a parallel development, however, in the Riemann metric, of that given in [LTZ] in the
Euclidean metric. To streamline the treatment and write the resulting computations in
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a more concise form, we introduce some notation as well as some operators. We recall
from Section 1 that D denotes the Levi–Civita connection of (M, g) and that X (M) is
the set of all vector fields on M . Here below, we let f (t, x), h(t, x) ∈ C1(R × M) and
X ∈ X (M). Then [GPV]

div X =
N∑

i=1

[D∂/∂xi X ]i , with the property div(fX) = f div X + X ( f ),

satisfying Green’s formula
∫
�

div X d� =
∫
�

〈X, n〉 d� (3.0)

is the divergence operator on the manifold (M, g). At this point, we set by definition

D̂f ≡ ( ft ,−Df ); d̂iv(h, X) ≡ ht + div X; (3.1)

(h, X)( f ) ≡ hf t + X ( f ); Aw ≡ d̂iv D̂w, (3.2)

where the notation “(function, vector field)” means simply a pair, in that order, of the
function and the vector field noted.

Lemma 3.0. As a consequence of the above definitions, we have the following identi-
ties:

(a) Aw = d̂iv(wt ,−Dw) = wtt − div(Dw) = wtt −�w; (3.3)

(b) d̂iv[ f (h, X)] = d̂iv(fh, fX) = (fh)t + div(fX) (3.4)

(by (3.0)) = f (ht + div X)+ hf t + X ( f ) (3.5)

= f d̂iv(h, X)+ (h, X)( f ); (3.6)

(c)

{
(D̂f )(h) = ( ft ,−Df )(h) = ft ht − Df (h), (3.7a)

(D̂h)(h) = h2
t − |Dh|2; (3.7b)

(d) d̂iv f (X) = f d̂iv X + X ( f ). (3.8)

Proof. The steps in (3.3) use: definition (3.2) for A; definition (3.1) for d̂iv; and div
Dw = div∇w = �w for the Laplace–Beltrami operator. Next, the steps from (3.4)–
(3.6) use: (3.1) twice for d̂iv; (3.0); and (3.2, left). Finally, (3.1) for D̂ and (3.2, left)
prove (3.7).

Below, to facilitate the comparison with [LTZ], we generally adhere to its notation.

Lemma 3.1. Let

w(t, x) ∈ C2(R × M); �(t, x) ∈ C2(R × M);
ψ(t, x) ∈ C2 in t and C1 in x (3.9)

be three given functions. Set

θ(t, x) = e�(t,x); v(t, x) = θ(t, x)w(t, x) = e�(t,x)w(t, x),

(t, x) ∈ Q = (0, T ] ×�; (3.10a)

θt = �tθ; Dθ = θD�; vt = �tv + θwt ; Dv = θDw + vD�. (3.10b)
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Then, with reference to Aw = wtt − �w in (3.3), the following pointwise inequality
holds true:

θ2(Aw)2 + (ψtv
2)t + 2 d̂iv{[(a + ψ)v2 − v2

t + |Dv|2]D̂�+ [2D̂�(v)− ψv]D̂v}
≥ −8vt D�t (v)+ 2[��+ �tt − ψ]v2

t + 2(A�+ ψ)|Dv|2

+ 2v〈Dψ, Dv〉 + 4D2�(Dv, Dv)

+ {2 d̂iv[(a + ψ)D̂�] + ψtt + 2aψ}v2, (3.11)

where we have set (via (3.7b) with h = �)

a ≡ D̂�(�)−A�− ψ = �2
t − |D�|2 − �tt +��− ψ, (3.12)

and D2�(·, ·) is the Hessian of � (a second-order tensor).

Proof. Step 1. First, by (3.1) on D̂ and (3.10a, b), we have

D̂θ = (θt ,−Dθ) = θ(�t ,−D�) = θ D̂�; (3.13)

D̂v = (vt ,−Dv) = (�tv + θwt ,−θDw − vD�)

= θ(wt ,−Dw)+ v(�t ,−D�) = θ D̂w + v D̂�. (3.14)

The goal of this step is to show the following result (counterpart of (3.11) of [LTZ]):

θ2(Aw)2 = {Av + [D̂�(�)−A�]v − 2D̂v(�)}2 (3.15)

= (I1 + I2 + I3)
2 (3.16)

≥ 2[I1 I2 + I1 I3 + I2 I3], (3.17)

where we have set (as in (3.10) of [LTZ]), via (3.12),{
I1 ≡ Av + [D̂�(�)−A�− ψ]v = Av + av = vtt −�v + av; (3.18)

I2 ≡ −2D̂v(�) = −2D̂�(v), I3 = ψv. (3.19)

Proof of (3.16). To this end, we first prove that

Av = θAw + vA�+ 2D̂v(�)− v D̂�(�). (3.20)

Indeed, to establish (3.20), we first compute, by (3.2, right), (3.14), (3.8),

Av = d̂iv D̂v = d̂iv(θ D̂w)+ d̂iv(v D̂�) (3.21)

= θ d̂iv D̂w + v d̂iv D̂�+ D̂w(θ)+ D̂�(v) (3.22)

= θAw + vA�+ D̂w(θ)+ D̂�(v). (3.23)

Regarding the last two terms in (3.23), we obtain, via (3.7a) applied repeatedly,
(3.10a, b), and (3.7b),

D̂w(θ) = wtθt − Dw(θ) = θ(wt�t − Dw(�)) = θ D̂w(�), (3.24)

D̂�(v) = �tvt − 〈D�, Dv〉 = �t (�tv + θwt )− 〈D�, θDw + vD�〉
= θ [�twt − Dw(�)] + v[�2

t − D�(�)] (3.25)

= θ D̂w(�)+ v D̂�(�). (3.26)
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Substituting (3.24) and (3.26) into the last two terms of (3.23) yields

Av = θAw + vA�+ 2[θ D̂w(�)+ v D̂�] − v D̂�(�) (3.27)

(by (3.7a))

= θAw + vA�+ 2D̂v(�)− v D̂�(�), (3.28)

and (3.28) proves (3.20), as claimed.
Finally, we use (3.23) in the form θAw = Av + v[D̂�(�)−A�] − 2D̂v(�), where

D̂v(�) = D̂�(v), to obtain (3.15), (3.16).

Step 2. With reference to (3.18), (3.19), the goal of this step is to show the following
result (counterpart of (3.12) of [LTZ]):

I1 I2 = d̂iv[(av2 − v2
t + |Dv|2)D̂�+ 2D̂�(v)D̂v] + (d̂iv(aD̂�))v2

− 4vt D�t (v)+ (�tt +��)v2
t + (A�)|Dv|2 + 2D2�(Dv, Dv). (3.29)

Proof of (3.29). By recalling I1, I2 from (3.18), (3.19), we compute, via (3.2) on A,

I1 I2 = −2(Av + av)D̂v(�) = −2(d̂iv(D̂v))D̂v(�)− 2av D̂v(�). (3.30)

By (3.8) with X = D̂v and f = D̂v(�), we have

(d̂iv(D̂v))D̂v(�) = d̂iv(D̂v(�)D̂v)− D̂v(D̂v(�)). (3.31)

Then (3.31) used in (3.30) along with 2v D̂v(�) = D̂�(v2), yields, with D̂v(�) = D̂�(v),

I1 I2 = −2 d̂iv(D̂v(�)D̂v)+ 2D̂v(D̂v(�))− aD̂�(v2) (3.32)

= −d̂iv(2D̂�(v)D̂v + av2 D̂�)+ d̂iv(av2 D̂�)

+ 2D̂v(D̂v(�))− aD̂�(v2) (3.33)

(by (3.8))

= −d̂iv(2D̂�(v)D̂v + av2 D̂�)+ v2 d̂iv(aD̂�)

+ a✟✟✟✟✯
D̂�(v2)+ 2D̂v(D̂v(�))− a✟✟✟✟✯

D̂�(v2), (3.34)

after applying, in the last step, (3.8) with f = v2 and X = aD̂�.
We next evaluate the term 2D̂v(D̂�(v)) in (3.34). To this end, by (3.7a) with f = v,

h = D̂�(v) = D̂v(�), one first has

2D̂v(D̂�(v)) = 2vt (D̂�(v))t − 2Dv(D̂�(v)) (3.35)

= 2vt [D̂�t (v)+ D̂�(vt )] − 2Dv(�tvt − D�(v)) (3.36)

= 2vt D̂�t (v)+ 2vt D̂�(vt )− 2�t Dv(vt )

− 2vt Dv(�t )+ 2Dv(D�(v)) (3.37)
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(by (3.7a))

= 2vt [�ttvt − D�t (v)] + 2vt [�tvtt − D�(vt )] (3.38)

− 2vt D�t (v)− �t (|Dv|2)t + 2Dv(D�(v)), (3.39)

where D�t (v) = Dv(�t ). By using a key property of the Levi–Civita connection [Le],
we compute the last term of (3.39) as follows:

Dv(D�(v)) = Dv〈D�, Dv〉 = X〈Y, Z〉 = 〈DX Y, Z〉 + 〈Y, DX Z〉 (3.40)

= 〈DDv(D�), Dv〉 + 〈D�, DDv(Dv)〉 (3.41)

(by (1.4))

= D2�(Dv, Dv)+ 〈D�, DDv(Dv)〉, (3.42)

where, in the last step, we have used the definition in (1.4) of the Hessian D2�. It is
shown in Appendix A that

〈D�, DDv(Dv)〉 = 1
2 D�(|Dv|2). (3.43)

Using (3.43) in (3.42), we obtain

2Dv(D�(v)) = 2D2�(Dv, Dv)+ D�(|Dv|2). (3.44)

Substituting (3.44) for the last term in (3.39) yields

2D̂v(D̂�(v)) = 2v2
t �tt − 4vt D�t (v)+ D̂�(v2

t )− �t (|Dv|2)t
+ D�(|Dv|2)+ 2D2�(Dv, Dv) (3.45)

(by (3.7a))

= 2v2
t �tt − 4vt D�t (v)+ D̂�(v2

t − |Dv|2)+ 2D2�(Dv, Dv) (3.46)

by invoking, in the last step, (3.7a) with f = � and h = |Dv|2 on the fourth and fifth
terms in (3.45). Next, recalling (3.8) with f = v2

t − |Dv|2 and X = D̂�, we obtain

d̂iv[(v2
t − |Dv|2)D̂�] = (v2

t − |Dv|2) d̂iv D̂�+ D̂�(v2
t − |Dv|2)

(by (3.2)) = (v2
t − |Dv|2)A�+ D̂�(v2

t − |Dv|2) (3.47)

(by (3.3)) = v2
t (�tt −��)− |Dv|2A�+ D̂�(v2

t − |Dv|2). (3.48)

Substituting the last term in (3.48) for the third term in (3.46), we obtain

2D̂v(D̂�(v)) = v2
t (�tt +��)+ |Dv|2A�+ d̂iv[(v2

t − |Dv|2)D̂�]
− 4vt D�t (v)+ 2D2�(Dv, Dv), (3.49)



342 R. Triggiani and P. F. Yao

which was our present objective. Substituting (3.49) into (3.34) then yields

I1 I2 = −d̂iv[(av2 − v2
t + |Dv|2)D̂�+ 2D̂�(v)D̂v] + v2 d̂iv(aD̂�)

− 4vt D�t (v)+ (�tt +��)v2
t + (A�)|Dv|2 + 2D2�(Dv, Dv), (3.50)

which is precisely (3.29), as desired.

Step 3. The goal of this step is to show that

I1 I3 = d̂iv(ψv D̂v)− 1
2 (v

2ψt )t+( 1
2ψtt + aψ)v2

+ v〈Dv, Dψ〉 + ψ(|Dv|2 − v2
t ). (3.51)

Proof of (3.51). By (3.18), (3.19), we compute, via (3.2) on A,

I1 I3 = (Av + av)ψv = (d̂iv D̂v)ψv + aψv2 (3.52)

(by (3.8))

= d̂iv(ψv D̂v)− D̂v(ψv)+ aψv2 (3.53)

(by (3.7a))

= d̂iv(ψv D̂v)− [vt (ψv)t − Dv(ψv)] + aψv2 (3.54)

= d̂iv(ψv D̂v)− [vt (ψtv + ψvt )− (ψDv(v)+ vDv(ψ))] + aψv2 (3.55)

= d̂iv(ψv D̂v)− v(vtψt − Dv(ψ))− ψ(v2
t − Dv(v))+ aψv2. (3.56)

Using

[−vvtψt + aψv2] = − 1
2 (v

2ψt )t + ( 1
2ψtt + aψ)v2 and Dv(v) = |Dv|2, (3.57)

in (3.56), we finally obtain

I1 I3 = d̂iv(ψv D̂v)− 1
2 (v

2ψt )t+( 1
2ψtt+aψ)v2+vDv(ψ)−ψ(v2

t −|Dv|2), (3.58)

which is precisely (3.51), as desired.

Step 4. By (3.19), we readily have, via (3.8) with f = v2, X = ψ D̂�,

I2 I3 = −2ψv D̂�(v) = −d̂iv(ψv2 D̂�)+ v2 d̂iv(ψ D̂�), (3.59)

since D̂�(v2) = 2v D̂v(�), as noted below (3.31).

Step 5. Inserting (3.29), (3.51), (3.58) in (3.17) yields the desired inequality (3.11). The
proof of Lemma 3.1 is complete.

4. A Basic Pointwise Inequality

We now make suitable choices of the functions �(t, x) andψ(x) involved in Lemma 3.1,
thus obtaining the perfect counterpart of Theorem 4.1 of [LTZ].
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Theorem 4.1. Let

w(t, x) ∈ C2(Rt ×�), d(x) ∈ C3(�), α(x) ∈ C1(�) (4.1)

be three given functions (at this stage, w need not be a solution of (1.1a), d need not be
the function provided by the assumptions (A.1) and (A.2), and α need not be given by
(1.10)). If τ > 0 is a parameter, we introduce the functions

�(t, x) = τ

[
d(x)− c

(
t − T

2

)2
]
= τϕ(t, x); (4.2)

ψ(x) ≡ τα(x); θ(t, x) = e�(t,x) = eτϕ(t,x), (4.3)

where ϕ(t, x) is defined consistently with (1.6a), with constant 0 < c < 1 selected as in
(1.6d). Then, with the above choices, Lemma 3.1 specializes as follows:

ψt = 0; �t = −2τc
(
t − T

2

) ; �tt = −2cτ ; D� = τDd;
Dψ = τDα; D�t = 0; �� = τ�d; �� = τ�d, (4.4)

so that the pointwise estimate (3.11) becomes, with Aw = wtt − �w in (3.3), and
v = θw,

θ2(Aw)2 + 2 d̂iv{[(a + ψ)v2 − v2
t + |Dv|2]D̂�+ [2D̂�(v)− ψv]D̂v}

≥ 2τ(�d − 2c − α)v2
t + 2τ

(
α − 2c −�d − ε

2τ

)
|Dv|2

+ 4τD2d(Dv, Dv)+ θ2 B̃w2, (4.5)

where ε > 0 and

a = τ 2

[
4c2

(
t − T

2

)2

− |Dd|2
]
+ 2cτ + τ�d − ψ

= τ 2

[
4c2

(
t − T

2

)2

− |Dd|2
]
+O(τ ); (4.6)


B̃ = 2β(x, t)τ 3 +O(τ 2); (4.7)

β(x, t) = (2c +�d − α)|Dd|2 + 2D2d(Dd,Dd)

− 4c2(�d + 6c − α)
(

t − T

2

)2

. (4.8)

Proof. We only need to compute the coefficients of all terms on the right-hand side of
inequality (3.11), as well as the term a in (3.12), using the choice of functions made in
(4.2), (4.3). This task is a direct computation which yields (4.4) and (4.6) at once. Then
(4.3), (4.4), (3.3) give

�tt+��−ψ=τ(�d−2c−α); A�+ψ=�tt−��+ψ=τ(α−2c−�d). (4.9)
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We then verify (4.7), (4.8) for the coefficient B̃ of v2 = θ2w2 in (4.5), which is defined
in (3.13). Recalling (3.8), (3.7a), (3.2), (3.3), we find, since ψt ≡ 0 by (4.4),

B̃ ≡ 2 d̂iv[(α + ψ)D̂�] + ψtt + 2aψ = 2(a + ψ) d̂iv D̂�

+ 2D̂�(α + ψ)+ 2aψ (4.10)

= {2(a + ψ)(�tt −��)} + {2(at + ψt )�t − 2D�(a + ψ)} + 2aψ. (4.11)

By (4.6) on a, (4.4) on �tt, and ��, we find

(a + ψ)(�tt −��) =
{
τ 2

[
4c2

(
t − T

2

)2

− |Dd|2
]
+O(τ )+ ψ

}
× (−2cτ − τ�d); (4.12)

(at + ψt )�t =
{
τ 2

[
8c2

(
t − T

2

)]
+O(τ )

}{
−2τc

(
t − T

2

)}
; (4.13)

D�(a) = τDd(a) = τDd

{
τ 24c2

(
t − T

2

)2

− τ 2|Dd|2 +O(τ )
}

= τ 3Dd(|Dd|2)+O(τ ), (4.14)

where by a property of the Levi–Civita connection [Le], and the definition of D2d in
(1.4), one has

Dd(|Dd|2) = Dd〈Dd,Dd〉 = 2〈DDd(Dd),Dd〉 = 2D2d(Dd,Dd). (4.15)

Inserting (4.12)–(4.15) along with D�(ψ) = τDd(ψ) into (4.11), we obtain

B̃ = 2τ 3(2c +�d − α)|Dd|2 + 4τ 3 D2d(Dd,Dd)

+ 8τ 3c2(α − 6c −�d)

(
t − T

2

)2

+O(τ 2), (4.16)

and (4.7), (4.8) are proved, as desired.
We finally verify (4.5). To this end, we insert formulas (4.4), (4.9, left), and (4.15)

into the right-hand side of inequality (3.11), use Dψ = τDα from (4.4) as well as

|v〈Dψ, Dv〉| ≤ ε|Dv|2 + τ

4ε
|Dα|2v2, (4.17)

and obtain (4.5), as desired.

Inequality (4.5), as well as formula (4.7), (4.8) for B̃ are exactly the same as those
obtained in Theorem 4.1, (4.6), and (4.8) of [LTZ] in the Euclidean case. Thus, we next
proceed following [LTZ]. Namely, the pointwise estimate of interest in Corollary 4.2
below is obtained for function d(x) ∈ C3(�̄), α ∈ C1(�̄), such that the following three
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inequalities hold true:

(H.1) �d − 2c − α ≥ ρ > 0, ∀x ∈ �̄; (4.18)
(H.2) D2d(X, X) ≥ 2|X |2g, ∀x ∈ �, ∀X ∈ Mx ; (4.19)
(H.3)

[2c +�d − α]|Dd|2 + 2D2d(Dd,Dd)

− 4c2(�d + 6c − α)
(

t − T

2

)2

≥ β̃ > 0,∀(t, x) ∈ Q∗(σ ∗), (4.20)

where Q∗(σ ∗) is the subset of [0, T ] ×� defined in (1.16).

As noted in Section 1, all three of these inequalities hold true, in particular, in the case
of our interest under assumptions (A.1) and (A.2) (subject to the translation/rescaling
conditions in (1.4), (1.5)) and the choice α(x) = �d(x) − c − 1 in (1.10), to obtain
properties (p1) = (1.11), which is (H.1) = (4.18) with ρ = 1 − c > 0—as well as (p′

2) =
(1.22)—which is (H.3) = (4.20) with β̃ = 4(1 + 7c)σ ∗ > 0. This is the content of the
next corollary.

Corollary 4.2. With 0 < c < 1 chosen in (1.6d), let d(x) ∈ C3(�̄) and α(x) ∈ C1(�̄)

be two functions such that inequalities (H.1) = (4.18), (H.2) = (4.19), (H.3) = (4.20)
hold true. As seen in Section 1, (1.11)–(1.22), this is the case, in particular if d(x) is the
strictly convex function provided by assumptions (A.1) and (A.2) and suitably rescaled
to achieve the conditions in (1.4), (1.5), and then α(x) is chosen to be (see (1.10))

α(x) ≡ �d(x)− c − 1, (4.21)

in which case ρ = 1−c > 0 and β̃ = 4(1+7c)σ ∗ > 0, see (1.22). Letw ∈ C2(Rt ×�).
Then, with such choices in (4.2), (4.3) for �(t, x) and ψ(x), respectively, Theorem 4.1
specializes to the following results for all T > T0: for all ε > 0 suitably small and all
τ ≥ 1, the following inequality holds true:

θ2(Aw)2 + 2 d̂iv{[(a + ψ)v2 − v2
t + |Dv|2]D̂�+ [2D̂�(v)− ψv]D̂v}

≥ τερθ2[w2
t + |Dw|2] + Bθ2w2, ∀t ∈ [0, T ], ∀x ∈ �̄, (4.22)

where, recalling B̃ from (4.7), (4.8), we have, for 0 < ε < min{2ρ, 1},B = B̃ − 2ερτ 3(ϕ2
t + |Dϕ|2) ≥ B̃ − 2ερτ 3r, (4.23a)

r = max
Q̄
(ϕ2

t + |Dϕ|2), |Dϕ| = |Dd|. (4.23b)

Thus, for ε > 0 suitably small, the constant β = βε ≡ β̃ − ερr is positive via (4.20),
and recalling (4.7), (4.8), (4.20), we obtain, from (4.23),{

Bw2 ≥ [2τ 3β +O(τ 2)]w2, ∀(t, x) ∈ Q∗(σ ∗); (4.24)

β = βε = [β̃ − ερr ] > 0, B = O(τ 3), ∀(x, t) ∈ [0, T ] ×�, (4.25)

where Q∗(σ ∗) is the subset of Q defined by (1.16).
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Proof. First, preliminarily, we note that by (4.21), taking 0 < ε < min{2ρ, 1}, we
obtain for 2τ ≥ 1,

α − 2c −�d − ε

2τ
= −1 − 3c − ε

2τ
≥ −3 − c,

for 0 < ε < [2ρ, 1], 2τ ≥ 1. (4.26)

Moreover, the formulas

vt = τϕtv + θwt ; Dv = τvDd + θDw, v = θw, (4.27)

obtained by v = θw and (3.10) imply the inequalities (see (4.28) of [LTZ])

2v2
t ≥ θ2w2

t − 2τ 2ϕ2
t v

2; 2|Dv|2 ≥ θ2|Dw|2 − 2τ 2|Dd|2v2,

v2 = θ2w2. (4.28)

After these preliminaries, we return to the right-hand side of (4.5), use here (4.21), (4.26),
(1.4), and (4.28) and obtain 0 < ε < 1:

RHS of (4.5) ≡ 2τ(�d − 2c − α)v2
t + 2τ

(
α − 2c −�d − ε

2τ

)
|Dv|2

+ 4τD2d(Dv, Dv)+ θ2 B̃w2 (4.29)

(by (4.21), (4.26), (1.4))

≥ 2τρv2
t + 2τρ|Dv|2 + θ2 B̃w2 (4.30)

(by (4.28))

≥ τρ{[θ2w2
t − 2τ 2ϕ2

t θ
2w2] + [θ2|Dw|2 − 2τ 2|Dd|2θ2w2]}

+ B̃θ2w2 (4.31)

≥ τερθ2{w2
t + |Dw|2} + [B̃ − 2ερτ 3(ϕ2

t + |Dd|2)]θ2w2, (4.32)

and (4.32) establishes (4.22) and (4.23a, left). Then (4.23a, right) follows via (4.23d).
Finally, (4.7) and (4.23a) show (4.24), (4.25), except for the positive sign of β̃. We finally
show that β̃ > 0 in the set Q∗(σ ∗) defined in (1.16) and this will yield β > 0 in Q∗(σ ∗)
for ε > 0 sufficiently small. By definition (4.8), we compute, via (4.21), (1.4a), (1.4b),
(1.6a) (same computations as in (1.18)–(1.22), repeated for convenience),

β̃(x, t) = [2c +�d − α]|Dd|2 + 2D2d(Dd,Dd)

− 4c2[�d + 6c − α]

(
t − T

2

)2

(4.33)

(by (4.21))

= [2c + (1 + c)]|Dd|2 + 2D2d(Dd,Dd)

− 4c2[(1 + c)+ 6c]

(
t − T

2

)2

(4.34)
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(by (1.4))

≥ (5 + 3c)|Dd|2 − (1 + 7c)4c2

(
t − T

2

)2

(4.35)

(by (1.5))

≥ (5 + 3c)κd(x)− (1 + 7c)4c2

(
t − T

2

)2

(4.36)

≥ 4c(1 + 7c)

[
d(x)− c2

(
t − T

2

)2
]

(4.37)

(by (1.6a))

≥ 4c(1 + 7c)ϕ∗(x, t) ≥ 4c(1 + 7c)σ ∗ > 0, ∀(t, x) ∈ Q∗(σ ∗), (4.38)

where the set Q∗(σ ∗) is the subset of Q = [0, T ] × � defined by (1.16). Thus, Corol-
lary 4.2 is proved.

We complete this section by providing one Green identity and one notational sim-
plification, to be invoked in the subsequent Section 5.

Claim 1. For any function f ∈ C1(Rt × M) and any vector field X ∈ X (M), we have
the following Green formula via (3.1) and Green formula for div X in (3.0):∫

Q
d̂iv( f, X) dQ =

∫
�

∫ T

0
ft dt dQ +

∫ T

0

∫
�

div X d� dt (4.39)

=
[∫

�

f d�

]T

0

+
∫
�

〈X, n〉 d�. (4.40)

Claim 2. With reference to the second term on the left-hand side of inequality (4.22),
set, via (3.1) for � defined in (4.2), so that D� = τDd,

f1 ≡ (a + ψ)v2 − v2
t + |Dv|2, (4.41)

f2 ≡ 2D̂�(v)− ψv = 2�tvt − 2τDd(v)− ψv (4.42a)

= 2�tvt − 2τ 〈Dv,Dd〉 − ψv. (4.42b)

Then we have, by (4.31), (4.32),

2 d̂iv{[(a + ψ)v2 − v2
t + |Dv|2]D̂�+ [2D̂�(v)− ψv]D̂v}

= 2 d̂iv{ f1 D̂�+ f2 D̂v} = 2 d̂iv{ f1(�t ,−D�)+ f2(vt ,−Dv)}
= 2 d̂iv( f1�t + f2vt ,− f1 D�− f2 Dv). (4.43)
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Hence, by (4.33) and (4.30),

2
∫

Q
d̂iv{[(a + ψ)v2 − v2

t + |Dv|2]D̂�+ [2D̂�(v)− ψv]D̂v} dQ

= 2
∫

Q
d̂iv( f1�t + f2vt ,− f1 D�− f2 Dv) dQ

(by (4.30)) = 2

[∫
�

( f1�t + f2vt ) d�

]T

0

− 2
∫
�

〈 f1 D�+ f2 Dv, n〉 d�. (4.44)

5. Carleman Estimates for Smooth Solutions of (1.1a). First Version

The next key result yields a Carleman-type estimate.

Theorem 5.1. With 0 < c < 1 chosen in (1.6a), let d(x) ∈ C3(�̄), α(x) ∈ C1(�̄) be
two functions such that inequalities (H.1) = (4.18), (H.2) = (4.19), (H.3) = (4.20) hold
true. As seen in Section 1, (1.11)–(1.22), this is the case, in particular, if d(x) is the strictly
convex function provided by assumptions (A.1) and (A.2), and thenα(x) = �d(x)−c−1,
as in (4.21) = (1.11). Let ϕ(x, t) be the pseudo-convex function defined by (1.6). Let
w ∈ C2(Rt × �) be a solution of (1.1) (and no B.C.) under the standing assumptions
(1.2) for F(w) and (1.3) for f . Then the following one-parameter family of estimates
holds true, with ρ > 0 (see (4.18)), ρ = 1 − c under (A.1), (A.2)), and β > 0 (see
(4.25)):

(i) For all τ > 0 sufficiently large and any ε > 0 small,

BT|� + 2
∫ T

0

∫
�

e2τϕ f 2 dQ + C1,T e2τσ
∫ T

0

∫
�

w2 dQ

≥ [τερ − 2CT ]
∫ T

0

∫
�

e2τϕ[w2
t + |Dw|2] dQ

+ (2τ 3β +O(τ 2)− 2CT )

∫
Q(σ )

e2τϕw2 dx dt

− CT τ
3e−2τδ[E(0)+ E(T )], (5.1)

where Q(σ ) is the subset of [0, T ] ×� defined by (1.15), and where we recall
from (4.25, left) that β depends on ε.

(ii) For all τ > 0 sufficiently large and any ε > 0 small,

BT|� + 2
∫ T

0

∫
�

eτϕ f 2 dQ

≥ [τερ − 2CT ]e2τσ
∫ t1

t0

[w2
t + |Dw|2] d� dt

− C1,T e2τσ
∫ T

0
E(t) dt − CT τ

3e−2τδ[E(0)+ E(T )]. (5.2)
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Here, δ > 0, σ > 0, and σ > −δ are the constants in (1.6c), (1.8), while CT

is a positive constant depending on T and d . Moreover, the boundary terms
BT|� , � = [0, T ] × �, are defined by

BT|� = −2
∫
�

[ f1〈D�, n〉 + f2〈Dv, n〉] d�, (5.3)

with f1 and f2 defined by (4.31), (4.32), for which an explicit formula in terms
of w will be provided in Proposition 5.2 below. Moreover, as in (2.1), we have
set

E(t) =
∫
�

[w2
t + |Dw|2 + w2] d�. (5.4)

(iii) The above inequality may be extended to all solutions

w ∈ H 2,2(Q) ≡ L2(0, T ; H 2(�)) ∩ H 2(0, T ; L2(�)).

Proof. Step 1. (i) By (3.3), we rewrite (1.1) as

wtt −�w = Aw = F(w)+ f. (5.5)

Next, withw ∈ C2(Rt ×�), we return to inequality (4.22) of Corollary 4.2 and integrate
it over Q = (0, T ] ×�. Recalling Claim 2 above, (4.31), (4.32), (4.34), we obtain∫

Q
θ2(Aw)2 dQ + 2

∫
Q

d̂iv{[(a + ψ)v2 − v2
t + |Dv|2]D̂�+ [2D̂�(v)− ψv]D̂v} dQ

=
∫

Q
θ2(Aw)2 dQ + 2

[∫
�

( f1�t + f2vt ) d�

]T

0

− 2
∫
�

f1〈D�, n〉 d� − 2
∫
�

f2〈Dv, n〉 d� (5.6)

≥ τερ

∫
Q
θ2[w2

t + |Dw|2] dQ +
∫

Q
θ2 Bw2 dQ. (5.7)

We now analyze and estimate the terms in (5.7). First, since Q ≡ Q∗(σ ∗) ∪ [Q∗(σ ∗)]c,
where [ ]c denotes complement in Q, we obtain, via (4.24),∫

Q
θ2 Bw2 dQ =

∫
Q∗(σ ∗)

θ2 Bw2 dx dt +
∫

[Q∗(σ ∗)]c
θ2 Bw2 dx dt

≥ [2τ 3β +O(τ 2)]
∫

Q∗(σ ∗)
θ2w2 dx dt +

∫
[Q∗(σ ∗)]c

θ2 Bw2 dx dt. (5.8)

Next, via (5.5) and (1.2b), we obtain∫
Q
θ2(Aw)2 dQ =

∫
Q
θ2[F(w)+ f ]2 dQ

≤ 2CT

∫
Q
θ2[w2

t + |Dw|2 + w2] dQ + 2
∫

Q
θ2 f 2 dQ. (5.9)
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Inserting (5.8), (5.9) in (5.7), we obtain, via (5.3),

BT|� + 2
∫

Q
θ2 f 2 dQ −

∫
[Q∗(σ ∗)]c

θ2 Bw2 dx dt

≥ [τερ − 2CT ]
∫

Q
θ2[w2

t + |Dw|2] dQ + [2τ 3β +O(τ 2)]
∫

Q∗(σ ∗)
θ2w2 dx dt

− 2CT

∫
Q
θ2w2 dQ − 2

[∫
�

( f1�t + f2vt ) d�

]T

0

. (5.10)

Step 2. By (4.25), we have B = O(τ 3) on (0, T ]×�. Moreover, we have that ϕ ≤ σ ∗ on
[Q∗(σ ∗)]c by (1.14) and the very definition (1.16). Finally, we have chosen 0 < σ ∗ < σ

below (1.16) and [Q∗(σ ∗)]c is a subset of [0, T ] ×�. Hence, we obtain

−
∫

[Q∗(σ ∗)]c
e2τϕBw2 dx dt = O(τ 3)e2τσ ∗

∫
[Q∗(σ ∗)]c

w2 dx dt

≤ CT e2τσ
∫

Q
w2 dx dt. (5.11)

Step 3. Similarly, for Q = Q(σ ) ∪ [Q(σ )]c with ϕ ≤ σ on [Q(σ )]c, we obtain

−2CT

∫
Q
θ2w2 dQ = −2CT

∫
Q

e2τϕw2 dQ

= −2CT

∫
Q(σ )

e2τϕw2 dx dt − 2CT

∫
[Q(σ )]c

e2τϕw2 dx dt

≥ −2CT

∫
Q(σ )

e2τϕw2 dx dt−2CT e2τσ
∫

[Q(σ )]c
w2 dx dt. (5.12)

Moreover, since Q∗(σ ∗) ⊃ Q(σ ), see (1.17), we have, via (5.12) for the two right terms
of (5.10),

[2τ 3β +O(τ 2)]
∫

Q∗(σ ∗)
e2τϕw2 dx dt − 2CT

∫
Q

e2τϕw2 dQ

≥ [2τ 3β +O(τ 2)]
∫

Q(σ )
e2τϕw2 dx dt − 2CT

∫
Q

e2τϕw2 dQ (5.13)

(by (5.12))

≥ [2τ 3β +O(τ 2)− 2CT ]
∫

Q(σ )
e2τϕw2 dx dt

− 2CT e2τσ
∫

[Q(σ )]c
w2 dx dt, (5.14)

where in the last step we have invoked (5.12).
Finally, since [Q(σ )]c is a subset of [0, T ] ×�, we obtain, from (5.14),

[2τ 3β +O(τ 2)]
∫

Q∗(σ ∗)
e2τϕw2 dx dt − 2CT

∫
Q

e2τϕw2 dQ

≥ [2τ 3β +O(τ 2)− 2CT ]
∫

Q(σ )
e2τϕw2 dx dt − 2CT e2τσ

∫
Q
w2 dx dt. (5.15)
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We return to (5.10): on its left side we use the identity in (5.11), while on its right
side we use inequality (5.15). We thus obtain

BT|� + 2
∫

Q
e2τϕ f 2 dQ+O(τ 3)e2τσ ∗

∫
[Q∗(σ ∗)]c

w2 dx dt+2CT e2τσ
∫

[Q(σ )]c
w2 dx dt

≥ [τερ − 2CT ]
∫ T

0

∫
�

e2τϕ[w2
t + |Dw|2] dQ

+ [2τ 3β +O(τ 2)− 2CT ]
∫

Q(σ )
e2τϕw2 dx dt

− 2

[∫
�

( f1�t + f2vt ) d�

]T

0

. (5.16)

On the other hand, if this time we use the inequality in (5.11), as well as the fact
that [Q(σ )]c is a subset of Q, we obtain

BT|� + 2
∫

Q
e2τϕ f 2 dQ + C1T e2τσ

∫
Q
w2 dQ

≥ LHS of (5.16) ≥ RHS of (5.16). (5.17)

Step 4. We show in Step 5 below that

| f1�t + f2vt | ≤ CT τ
3θ2[w2

t + |Dw|2 + w2]. (5.18)

Once (5.17) is proved, it follows recalling (5.4) for E(t) and (1.7) that

2

∣∣∣∣∣
[∫

�

( f1�t + f2vt ) d�

]T

0

∣∣∣∣∣ ≤ CT τ
3

[∫
�

e2τϕ[w2
t + |Dw|2 + w2] d�

]T

0

(by (1.7)) ≤ CT τ
3e−2τδ[E(T )+ E(0)], (5.19)

where the first inequality is due to (5.17).
Inserting (5.19) into the right side of (5.17) and invoking the right-hand side of

(5.16) yields the estimate

BT|� + 2
∫

Q
e2τϕ f 2 dQ + C1T e2τσ

∫
Q
w2 dQ

≥ [τερ − 2CT ]
∫ T

0

∫
�

e2τϕ[w2
t + |Dw|2] dQ + [2τ 3β +O(τ 2)− 2CT ]

×
∫

Q(σ )
e2τϕw2 dx dt − CT τ

3e−2τδ[E(T )+ E(0)], (5.20)

which is precisely the sought-after estimate (5.1).

Step 5. It remains to show estimate (5.18). We compute

| f1�t + f2vt | ≤ | f1�t | + | f2vt |, (5.21)
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where, recalling (4.41) for f1 and (4.42) for f2, we shall show below that

| f1�t | ≤ CT [τ 3v2 + τv2
t + τ |Dv|2]; (5.22)

| f2vt | ≤ CT τ [v2 + v2
t + |Dv|2]. (5.23)

Taking momentarily (5.22) and (5.23) for granted, we next return to the relationships
(4.27),

vt = τϕtθw + θwt ; Dv = τvDd + θDw, (5.24)

and obtain, with v = θw,{
v2

t ≤ 2[θ2w2
t + τ 2ϕ2

t θ
2w2] ≤ CT θ

2[w2
t + τ 2w2]; (5.25)

|Dv|2 ≤ 2[θ2|Dw|2 + τ 2θ2w2|Dd|2] ≤ CT θ
2[|Dw|2 + τ 2w2]. (5.26)

Using v = θw, (5.25), (5.26) in (5.22) and (5.23), respectively, we readily obtain

| f1�t | ≤ CT τ
3θ2[w2 + w2

t + |Dw|2]; (5.27)

| f2vt | ≤ CT τ
3θ2[w2 + w2

t + |Dw|2]. (5.28)

Using (5.27), (5.28) into (5.21) yields

| f1�t + f2vt | ≤ CT τ
3θ2[w2 + w2

t + |Dw|2], (5.29)

which is precisely the sought-after inequality (5.15). It remains to show (5.22) and (5.23).

Proof of (5.22). By (4.41) on f1, we compute

| f1�t | = |[(a + ψ)v2 − v2
t + |Dv|2]�t | ≤ CT [τ 2v2 + v2

t + |Dv|2]τ, (5.30)

since a = O(τ 2) by (4.6), ψ = τα by (4.3), and �t = O(τ ) by (4.4).
Then (5.28) proves (5.22), as desired.

Proof of (5.23). By (4.42) on f2 and ψ = τα via (4.3), we compute

| f2vt | = |2�tv
2
t − 2τvt 〈Dd, Dv〉 − ταvvt | ≤ CT τ [v2 + v2

t + |Dv|2], (5.31)

since �t = O(τ ) by (4.4) and (5.31) proves (5.23), as desired.
The proof of part (i) of Theorem 5.1—that is, estimate (5.1)—is complete.
(ii) We take τ sufficiently large so that, since β > 0 by assumption, see (4.25),

we then have that the term [2τ 3β + O(τ 2) − 2CT ] is positive and we then drop the
corresponding lower-order interior term involving w2 in (5.1). Moreover, we invoke the
critical property (1.8) for ϕ on the first integral term on the right side of (5.1). Finally,
we majorize

∫
�
w2(t) d� by E(t), see (5.4), thus obtaining the term e2τσ

∫ T
0 E(t) dt on

the right-hand side of (5.2). This way, (5.1) readily yields (5.2).

To complement Theorem 5.1, we next express the boundary terms BT|� in (5.3)
explicitly in terms of w, not v.
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Proposition 5.2. With reference to Theorem 5.1, in particular (5.3), we have the fol-
lowing explicit expression for the boundary terms BT|� :

BT|� = −2
∫
�

[ f1〈D�, n〉 + f2〈Dv, n〉] d� (5.32)

= −2τ
∫
�

( f1 + θw f2)〈Dd, n〉] d� − 2
∫
�

θ f2〈Dw, n〉 d�, (5.33)

where 〈Dd, n〉 = ∂d/∂n and 〈Dw, n〉 = ∂w/∂n and where

f1 + θw f2 = θ2{[|Dw|2 − w2
t ] + [a − τ 2(|Dd|2 + ϕ2

t )+ 2τ�tϕt ]w
2

+ 2[�t − τϕt ]wwt }; (5.34)

θ f2 = 2θ2{�t [wt + τϕtw] − τ 〈Dw,Dd〉 − τ 2w|Dd|2} − τθαw. (5.35)

Proof. To pass from the definition (5.32) = (5.3) to (5.33), we merely use D� = τDd
by (4.4) and Dv = θDw+τθwDd by (4.27). Next, recalling the definition (4.41), (4.42)
for f1 and f2, along with the formulas in (4.27) for vt and Dv whereψ = τα, we readily
obtain

f1 = (a + ψ)v2 − v2
t + |Dv|2

= θ2{(a + ψ)w2 − (wt + τϕtw)
2 + |Dw + τwDd|2}; (5.36)

f2 = 2�tvt − 2τ 〈Dv,Dd〉 − ταv
= 2θ{�t [wt + τϕtw] − τ 〈Dw,Dd〉 − τ 2w|Dd|2} − τθαw. (5.37)

Then (5.36) and (5.37) yield

f1 + θw f2 = θ2{(a + ψ)w2 − (wt + τϕtw)
2 + |Dw + τwDd|2}

+ 2θ2{w�t [wt + τϕtw] − τw〈Dw,Dd〉 − τ 2w2|Dd|2}
− τθαw2, (5.38)

from which (5.34) follows using ψ = τα and

|Dw + τDd|2 − 2τw〈Dw,Dd〉 − 2τ 2w2|Dd|2 = |Dw|2 − τ 2w2|Dd|2. (5.39)

Proposition 5.2 is proved.

6. Carleman Estimate for Smooth Solutions of (1.1a). Second Version

A Preliminary Equivalence. Let u ∈ H 1(�) and let �̃1 be any (fixed) portion of the
boundary � with positive measure. Then the following inequality holds true: there exist
positive constants 0 < k̃1 < k̃2 <∞, independent of u, such that

k̃1

∫
�

[u2 + |Du|2] d� ≤
∫
�

|Du|2 d�+
∫
�̃1

u2 d� ≤ k̃2

∫
�

[u2 + |Du|2] d�, (6.1)
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see (6.1) of [LTZ]. Next, for w ∈ C2(Rt ×�), or even w ∈ H 2,2(Q), we introduce

E(t) ≡
∫
�

[wt + |Dw|2] d�+
∫
�1

w2 d�1, (6.2)

with �1 = �\�0, where �0 will be the uncontrolled/unobserved portion of the boundary
to be defined in Section 8: in (8.2) in the Dirichlet case and in (9.2) in the Neumann case.
Recalling E(t) from (2.1) = (5.4), we then see that (6.1) yields the equivalence

k1 E(t) ≤ E(t) ≤ k2 E(t), (6.3)

for some positive constants k1 > 0, k2 > 0.
We can state the main result of the present section.

Theorem 6.1. With 0 < c < 1 chosen in (1.6d), let d(x) ∈ C3(�̄), α(x) ∈ C1(�̄) be
two functions such that inequalities (H.1) = (4.18), (H.2) = (4.19), (H.3) = (4.20) hold
true. As seen in Section 1, (1.11)–(1.22), this is the case, in particular, if d(x) is the strictly
convex function provided by assumptions (A.1) and (A.2) and suitably scaled to achieve
conditions (1.4b), and then α(x) = �d(x) − c − 1, as in (1.10) = (4.21). Let ϕ(t, x)
be the pseudo-convex function defined by (1.6) and define θ(t, x) = exp(τϕ(t, x))
as in (4.3). Finally, let w ∈ H 2,2(Q) be a solution of (1.1a) (and no B.C.), subject
to the standing assumptions (1.2) on F(w) and (1.3) on f . Then the following one-
parameter family of estimates hold true, for all τ sufficiently large, and any ε > 0 small
as in (4.22):

BT|� +
∫ T

0

∫
�

e2τϕ f 2 dQ + constϕ

∫ T

0

∫
�

f 2 dQ

≥
{[

k1

2
(ετρ − 2CT )(t1 − t2)e

−CT T − C1,T k2

2k1
TeCT T

]
e2τσ − CT τ

3e−2τδ

}
× [E(0)+ E(T )] (6.4)

≥ kϕ[E(0)+ E(T )], for a constant kϕ > 0, (6.5)

since σ > −δ, see (1.8). Here, the boundary terms BT|� are given in terms of the
boundary terms BT|� in (5.3) by

BT|� = BT|� + CT (τ + 1)e2τσ

[∫ T

0

∫
�

∣∣∣∣wt
∂w

∂n

∣∣∣∣ d� +
∫ T

0

∫
�1

|wwt | d�1

+
∫ t1

t0

∫
�1

w2 d�1 dt

]
. (6.6)

Proof. Step 1. We return to estimate (5.2) of Theorem 5.1(ii), add the term

(τερ − 2CT )e
2τσ

∫ t1

t0

∫
�1

w2 d�1 dt
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to both sides, recall (6.2) for E(t), and obtain

BT|� + (ετρ − 2CT )e
2τσ

∫ t1

t0

∫
�1

w2 d�1 dt + 2
∫ T

0

∫
�

e2τϕ f 2 dQ

≥ (τερ − 2CT )e
2τσ

∫ t1

t0

E(t) dt − C1,T e2τσ
∫ T

0
E(t) dt

− CT τ
3e−2τδ[E(0)+ E(T )].0 (6.7)

The remaining part of the proof follows closely the proof of Theorem 6.1 of [LTZ]
and [LT8] and is included for completeness.

Step 2. In a standard way, multiplying (1.1) by wt and integrating over � yields, after
an application of the first Green identity,

1

2

∂

∂t

(∫
�

[w2
t + |Dw|2] d�+

∫
�1

w2 d�1

)
=
∫
�

∂w

∂n
wt d� +

∫
�1

wwt d�1 +
∫
�

[F(w)+ f ]wt d�. (6.8)

Notice that on both sides of (6.8) we have added the term 1
2 (∂/∂t)

∫
�1
w2 d�1 =∫

�1
wwt d�1. Recalling E(t) in (6.2), we integrate (6.8) over (s, t) and obtain

E(t) = E(s)+ 2
∫ t

s

[∫
�

∂w

∂n
wt d� +

∫
�1

wwt d�1

]
dr

+ 2
∫ t

s
[F(w)+ f ]wt d� dr. (6.9)

We apply Schwarz inequality on [F(w) + f ]wt , recall estimate (1.2) for F(w),
invoke the left side E(t) ≤ (1/k1)E(t) of equivalence (6.3), and obtain

E(t) ≤ [E(s)+ N (T )] + CT

∫ t

s
E(r) dr; (6.10)

E(s) ≤ [E(t)+ N (T )] + CT

∫ t

s
E(r) dr (6.11)

(CT includes the constant 1/k1 of equivalence), where we have set

N (T ) =
∫ T

0

∫
�

f 2 dQ + 2
∫ T

0

∫
�

∣∣∣∣∂w∂n
wt

∣∣∣∣ d� + 2
∫ T

0

∫
�1

|wwt | d�1. (6.12)

Gronwall’s inequality applied on (6.10), (6.11) then yields, for 0 ≤ s ≤ t ≤ T ,

E(t) ≤ [E(s)+ N (T )]eCT (t−s); E(s) ≤ [E(t)+ N (T )]eCT (t−s). (6.13)

Set t = T and s = t in the first (left) inequality of (6.13); and set s = 0 in the second
(right) inequality of (6.13), to obtain

E(T ) ≤ [E(t)+ N (T )]eCT T ; E(0) ≤ [E(t)+ N (T )]eCT T . (6.14)



356 R. Triggiani and P. F. Yao

Summing up these two inequalites in (6.14) yields, for 0 ≤ t ≤ T ,

E(t) ≥ E(T )+ E(0)
2

e−CT T − N (T ) (6.15)

≥ k1

2
[E(T )+ E(0)]e−CT T − N (T ), (6.16)

after recalling the left side of the equivalence in (6.3). Similarly, summing up the left
inequality of (6.13) for s = 0 and the right inequality of (6.13) for s = t and t = T , and
using the equivalence (6.3) yields, for 0 ≤ t ≤ T ,

E(t) ≤ 1

k1

[
k2(E(0)+ E(T ))

2
+ N (T )

]
eCT T , (6.17)

and hence, by (6.17),

−C1,T e2τσ
∫ T

0
E(t) dt

≥ −C1,T k2

2k1
TeCT T e2τσ [E(0)+ E(T )] − C1,T T

k1
eCT T e2τσ N (T ). (6.18)

Step 3. We insert (6.16) into the first integral on the right side of (6.7) and use (6.18)
and readily obtain (6.4), (6.6), by invoking (6.12) for N (T ).

Finally, we recall the critical relation σ > 0, δ > 0, σ > −δ from (1.7), (1.18), so
that [ετe2τσ − τ 3e−2τδ] is positive for all τ large enough. Thus, (6.4) yields (6.5).

7. Extension of Estimates to Finite Energy Solutions

So far our estimates have been stated and proved for C2(Rt × �)-solutions, hence
H 2,2(Q)-solutions (Theorems 5.1(iii) and 6.1) of (1.1) with f ∈ L2(Q) as in (1.3). In
this section we point out that it is possible to extend all our previous estimates to finite
energy solutions of (1.1) in the following class:

w ∈ H 1,1(Q) ≡ L2(0, T ; H 1(�)) ∩ H 1(0, T ; L2(�));
wt ,

∂w

∂n
∈ L2(0, T ; L2(�)).

(7.1)

Thus, the present section is the counterpart of Section 8 in [LTZ], from the Euclidean to
the Riemannian setting. As in this reference, we notice that in order to achieve this goal, it
suffices to extend the validity of estimate (5.1) of Theorem 5.1(i) from H 2,2(Q)-solutions
to finite energy solutions defined by the class in (7.1). Here, the main difficulty is the fact
that finite energy solutions subject to homogeneous Neumann B.C. do not produce (in
dimension ≥ 2) H 1-traces on the boundary [LT6]. (By contrast, finite energy solutions
subject to homogeneous Dirichlet B.C. do produce H 1-traces: the ∂w/∂n in L2(�) is
dominated by the (H 1(�)× L2(�))-energy of the initial data, and the L1(0, T ; L2(�))-
norm of f , thanks to sharp results on the regularity of general second-order hyperbolic
equations with Dirichlet B.C. given in [LLT] and [LT1], which hold true also in the
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Riemannian case. To overcome this difficulty, Section 8 of [LTZ] employed a regularizing
procedure inspired by [LaTa]. The same proof of Theorem 8.2 of [LTZ] works in the
Riemannian setting and yields:

Theorem 7.1. Let f ∈ L2(Q). Let w ∈ H 2,2(Q) be a solution of (1.1) for which
inequality (5.1) of Theorem 5.1(i) holds true, at least as guaranteed by Theorem 5.1(iii).
Let u be a solution of (1.1) in the class defined by (7.1). Then estimate (5.1) is satisfied
by such a solution u as well. Accordingly, estimate (5.2) of Theorem 5.1(ii), as well as
estimate (6.5) of Theorem 6.1, can be extended from H 2,2(Q)-solutions of (1.1) to finite
energy solutions in the class (7.1).

8. Continuous Observability Inequality—a Fortiori, a Global Uniqueness
Theorem—with Pure Homogeneous Dirichlet B.C. on �

In this section we consider the following problem:{
wtt = �w + F(w) in (0, T ] ×� ≡ Q; (8.1a)

w|� ≡ 0 in (0, T ] × � ≡ �, (8.1b)

where F(w) satisfies assumption (1.2) and we define

�0,D ≡
{

x ∈ �: 〈Dd(x), n(x)〉 ≡ ∂d(x)

∂n
≤ 0

}
; �1,D = �\�0,D. (8.2)

The following corollary of Theorem 6.1 provides a continuous observability inequality
in the Dirichlet B.C. case; a fortiori, a global uniqueness result.

Theorem 8.1. Assume hypotheses (A.1) and (A.2): thus there exists a strictly convex
function d(x) (rescaled as in (1.5)), which along with the choice α(x) = �d(x)− c − 1
in (1.10) = (4.21), where 0 < c < 1 as in (1.6d), satisfies properties (p1) = (1.11), (p′

2)
= (1.22) so that inequalities (H.1) = (4.18), (H.2) = (4.19), (H.3) = (4.20) hold true. Let
�0,D , �1,D be defined by (8.2), and let T > T0 in problem (8.1), where T0 is defined
in (1.6b). Let w ∈ H 1,1(Q) = L2(0, T ; H 1(�)) ∩ H 1(0, T ; L2(�)) be a solution of
problem (8.1a,b). Then:

(i) the following inequality holds true:∫ T

0

∫
�1,D

(
∂w

∂n

)2

d�1 dt ≥ kϕ[E(0)+ E(T )]; (8.3)

(ii) a fortiori, if w ∈ H 1,1(Q) is a solution of problem (8.1a,b) satisfying, in addi-
tion, (∂w/∂n)|�1 ≡ 0, then w ≡ 0 in Q; in fact, in Rt ×�.

Proof. (i) We first prove the continuous observability inequality (8.3) for a solutionw ∈
H 2,2(Q) of problem (8.1a,b). In this case, then, such a solutionw satisfies Theorem 6.1,
that is estimate (6.5), under present assumptions. Moreover, by (6.6) and (5.32)–(5.35),
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we obtain

w ≡ 0 on � ⇒ BT|� = BT|�, where [ f1 + θw f2]|� ≡ θ2|Dw|2;
θ f2|� = −2τθ2〈Dw,Dd〉, (8.4)

so that

BT|� = BT|�
= −2τ

∫
�

θ2|Dw|2〈Dw, n〉 d� + 4τ
∫
�

θ2〈Dw,Dd〉〈Dw, n〉 d�. (8.5)

However, w ≡ 0 on � implies also Dw = 〈Dw, n〉n, hence

|Dw|2 = |〈Dw, n〉|2, as well as 〈Dw,Dd〉 = 〈Dw, n〉〈Dd, n〉, (8.6)

so that (8.5) becomes

BT|� = BT|� = 2τ
∫
�

θ2|〈Dw, n〉|2〈Dd, n〉 d�

= 2τ
∫
�

θ2

(
∂w

∂n

)2

〈Dd, n〉 d�. (8.7)

Finally, since 〈Dd, n〉 ≤ 0 on �0,D by definition (8.2), estimate (6.5) of Theorem 6.1
becomes, by (8.7),

2τ
∫ T

0

∫
�1,D

θ2

(
∂w

∂n

)2

〈Dd, n〉 d�1 dt ≥ 2τ
∫ T

0

∫
�

θ2

(
∂w

∂n

)2

〈Dd, n〉 d� dt

= BT|� ≥ kϕ[E(T )+ E(0)], (8.8)

and (8.8) shows (8.3), as desired, at least for H 2,2(Q)-solutions w. A density argument
based on the regularity trace inequality [LT1], [LLT] then extends the validity of (8.3)
to H 1,1(Q)-solutions w.

(ii) If a solutionw ∈ H 1,1(Q) of (8.1a,b) also satisfies ∂w/∂n = 0 on�1, then (8.3)
implies E(0) = 0. Since problem (8.1a,b) is well posed—forward and backward—it
follows then that w ≡ 0 on Rt ×�.

9. Global Uniqueness and Continuous Observability with Pure
Homogeneous Neumann B.C. A Global Uniqueness Theorem

In this section we consider the following overdetermined problem:
wtt = �w + F(w) in (0, T ] ×� = Q; (9.1a)

∂w

∂n

∣∣∣∣
�

= 0 in (0, T ] × � = �; (9.1b)

w|�1,N = 0 in (0, T ] × �1,N = �1,N , (9.1c)
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where F(w) satisfies assumption (1.2), and we define

�0,N ≡
{

x ∈ �: 〈Dd(x), n(x)〉 = ∂d(x)

∂n
= 0

}
, �1,N = �\�0,N . (9.2)

The following corollary of Theorem 6.1 provides a global uniqueness result.

Theorem 9.1. Assume hypotheses (A.1) and (A.2): thus, there exists a strictly convex
function d(x) (rescaled as in (1.5)), which along with the choice α(x) = �d(x)− c − 1
in (1.10) = (4.21), where 0 < c < 1 as in (1.6d), satisfies properties (p1) = (1.11), (p′

2)
= (1.22), so that inequalities (H.1) = (4.18), (H.2) = (4.19), (H.3) = (4.20) hold true.
Let �0,N , �1,N be defined by (9.2), and let T > T0 in problem (9.1), where T0 is defined
by (1.6b). Let w ∈ H 1,1(Q) = L2(0, T ; H 1(�)) ∩ H 1(0, T ; L2(�)) be a solution of
problem (9.1a–c). Then w ≡ 0 in Q; in fact, in Rt ×�.

Proof. We first prove the desired uniqueness for a solution w of problem (9.1a–c) of
class H 2,2(Q). In this case, such a solution satisfies Theorem 6.1, that is estimate (6.5).
Our present goal is to show that, for such a solution, the boundary terms BT|� given
by (6.6) do vanish: BT|� = 0. In fact, by (9.1b), we see via (6.6) that BT|� = BT |� ,
the latter being given by (5.32)–(5.35). Indeed, these same identities show at once that
because of (9.1a–c), (9.2), we then have

BT|� = BT|� = −2τ
∫
�1

( f1 + θw f2)〈Dd, n〉 d�1 (9.3a)

on �1: ( f1 + θw f2)|�1 = f1|�1 = θ2|Dw|2. (9.3b)

Finally, on�1, w = 0 and ∂w/∂n = 〈Dw, n〉 imply Dw = 〈Dw, n〉n+〈Dw, τ̄ 〉τ̄ =
0, where τ̄ is a unit tangential vector. Thus Dw = 0 on �, used in (9.3a,b), yields
BT|� = 0, as desired. However, such an H 2,2(Q)-solution satisfies Theorem 6.1, hence
inequality (6.5) holds true and yields E(0) = 0. Then w ≡ 0 on Rt ×�, since problem
(9.1a,b) is well-posed forward and backward.

Now an extension of the result to H 1,1(Q)-solutions employs, critically, Theo-
rem 7.1.

Continuous Observability without Geometrical Conditions on �1. Non-Explicit Con-
stant. Key to the elimination of geometrical conditions on the (controlled or observed)
portion �1 of the boundary �, is the following result from Section 7.2 of [LT8].

Lemma 9.2. Let w be a solution of (1.1) in the class (7.1). Given ε > 0, ε0 > 0
arbitrary, given T > 0, there exists a constant C = Cε,ε0,T > 0, such that∫ T−ε

ε

∫
�̃1

|∇tanw|2 d�̃1 dt

≤ C

{∫ T

0

∫
�̃1

w2
t d�̃1 dt +

∫ T

0

∫
�

(
∂w

∂n

)2

d� dt

+‖w‖2
L2(0,T ;H 1/2+ε0 (�)) + ‖ f ‖2

H−1/2+ε0 (Q)

}
. (9.4)
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Using Lemma 9.2, we shall establish as in Section 9 of [LTZ] the sought-after
continuous observability inequality

Theorem 9.3. Assume hypotheses (A.1) and (A.2). Let w ∈ H 1,1(Q) be a solution of
problem (9.1a,b). Then the following continuous observability inequality holds true for
T > T0, with T0 given by (1.6b): there exists a constant CT > 0 such that∫ T

0

∫
�1

[w2 + w2
t ] d�1 ≥ CT E(0). (9.5)

Proof. As in Section 9 of [LTZ]. (The constant CT is not explicit in this case, as elim-
ination of the l.o.t. in (9.4) requires a compactness/uniqueness contradiction argument,
which employs Theorem 9.1 and loses control of the constant in (9.5), see the proof of
Theorem 9.2 of [LTZ].)

10. Replacement of Assumption (A.2) = (1.5) by Virtue of Two Vector Fields

Orientation. This section is the counterpart of the presently relevant part of Section 10
of [LTZ] from the Euclidean to the Riemannian setting. The goal is to dispense with the
working assumption (A.2) = (1.5). This is done by writing � as the overlapping union
of two “nice” subdomains �1 and �2, in correspondence of two functions di , i = 1, 2,
each strictly convex in � and thus satisfying (1.4), where now, however, each di has no
critical point on �i , i = 1, 2. This way, two radial vector fields are employed.

10.1. Basic Setting Using Two Conservative Vector Fields as in (1.4).
Statement of Main Results

Postulated Setting. We divide the original open bounded set � into two overlapping
subdomains �1 and �2: � = �1 ∪ �2, �1 ∩ �2  = ∅, chosen (in infinitely many
ways) to fulfill all the conditions, in particular, (a)–(c) below (following the treatment of
Section 1).

We assume that there exist two functions di : �̄⇒ R, of class C3, i = 1, 2, which
are strictly convex in the Riemann metric, such that the following preliminary conditions
(a) and (b) are satisfied:

(a)

D2di (X, X) ≡ 〈DX (Ddi ), X〉g ≥ 2|X |2g, ∀x ∈ �, ∀X ∈ Mx , (10.1.1)

min
�̄

di (x) ≥ m > 0, i = 1, 2; (10.1.2)

(b)

inf
�̄i

|Ddi | ≥ p > 0, so that we can take κi = inf
�̄i

|Ddi |
di

> 4, (10.1.3)



Carleman Estimates with No Lower-Order Terms for General Riemann Wave Equations 361

by rescaling, see Remark 1.2. Next, following Section 1, we define the function for
i = 1, 2:

ϕi (x, t) = di (x)− c

(
t − T

2

)2

, x ∈ �, 0 ≤ t ≤ T, (10.1.4)

with 0 < c < 1 and T selected as follow: T > T0,i , i = 1, 2, where

T 2
0,i = 4 max

�̄

di (x), so that cT2 > 4 max
�̄

di (x)+ 4δ, (10.1.5)

for some δ > 0 suitably small and kept fixed henceforth. Such functions ϕi thus have
the following properties:

(i) ϕi (x, 0) = ϕi (x, T ) = di (x)− c
T 2

4
≤ −δ, uniformly in �̄; (10.1.6)

(ii) there are t0 and t1, with 0 < t0 < T/2 < t2 < T , such that

min
x∈�̄,t∈[t0,t1]

ϕi (x, t) ≥ σ, 0 < σ < m. (10.1.7)

Next, we define the function

ϕ∗i (x, t) = di (x)− c2

(
t − T

2

)2

, x ∈ �, 0 ≤ t ≤ T, (10.1.8)

so that, since 0 < c < 1, we have, by (10.1.4) and (10.1.8),

ϕ∗i (x, t) ≥ ϕi (x, t), x ∈ �, 0 ≤ t ≤ T, i = 1, 2. (10.1.9)

Furthermore, we define the sets (subsets of �× [0, T ])

Qi (σ ) ≡ {(x, t): x ∈ �, 0 ≤ t ≤ T, ϕi (x, t) ≥ σ > 0}; (10.1.10)

Q∗
i (σ

∗) ≡ {(x, t): x ∈ �, 0 ≤ t ≤ T, ϕ∗i (x, t) ≥ σ ∗ > 0},
0 < σ ∗ < σ, (10.1.11)

with constant σ ∗ selected to satisfy 0 < σ ∗ < σ < m, see (10.1.2) and (10.1.7). By
recalling also (10.1.7) and (10.1.9), we obtain

�× [t0, t1] ⊂ Qi (σ ) ⊂ Q∗
i (σ

∗) ⊂ �× [0, T ],

by (10.1.6), at t = 0 and t = T :

no point of � belongs to Q∗
i (σ

∗). (10.1.12)

(c) We finally require (assume) that

�i ⊃ orthogonal projections of Q∗
i (σ

∗) onto �,

so that for any (x, t) ∈ Q∗
i (σ

∗)⇒ x ∈ �i ,

and hence |Ddi (x)| ≥ p > 0 by (10.1.3). (10.1.13)

Consequences of the Above Setting. With reference to the above setting, we define
functions αi (x) ∈ C1(�̄), by setting

αi (x) ≡ �di (x)− c − 1, x ∈ �, (10.1.14)
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so that the following properties (p1;i ), (p2;i ) hold true ((10.1.15) is immediate, while
(10.1.16) is proved below):

(p1,i ) �di (x)− 2c − αi (x) ≡ 1 − c > 0, ∀x ∈ �̄; (10.1.15)
(p2;i )

βi (x, t) ≡ [2c +�di − αi ]|Ddi |2 + 2D2di (Ddi ,Ddi )

− 4c2(�di + 6c − αi )

(
t − T

2

)2

(10.1.16)

≥ 4(1 + 7c)ϕ∗i (x, t), ∀x ∈ �i , ∀t ∈ [0, T ];
in particular in Q∗

i (σ
∗) by (10.1.13). (10.1.17)

Proof of (10.1.17). See the proof of (1.12). The steps up to (1.19) continue to hold
true, this time by virtue of (10.1.14), (10.1.1), for i = 1, 2:

βi (x, t) ≥ (5 + 3c)|Ddi |2 − 4c2(1 + 7c)

(
t − T

2

)2

,

∀x, t ∈ Q ≡ [0, T ] ×�. (10.1.18)

The next step from (1.19) to (1.20) requires, however, assumption (1.5), whose present
counterpart is assumption (10.1.3), which is valid, however, only on �̄i . Hence, likewise
(10.1.18) implies

βi (x, t) ≥ (5 + 3c)κi di (x)− 4c2(1 + 7c)

(
t − T

2

)2

(10.1.19)

≥ 4(1 + 7c)

[
di (x)− c2

(
t − T

2

)2
]

≡ 4(1 + 7c)ϕ∗i (x, t), ∀x ∈ �i , t ∈ [0, T ], (10.1.20)

this time only for x ∈ �i ; and (10.1.20) establishes the first statement in (10.1.17), as
desired. To claim, finally, that (10.1.17) holds true, in particular, for (x, t) ∈ Q∗

i (σ
∗),

we invoke property (10.1.13).

Critical Property to Absorb Lower-Order Terms. As a consequence of (10.1.17), we
obtain

(p′
2;i )

βi (x, t) ≡ [2c +�di − αi ]|Ddi |2 + 2D2di (Ddi ,Ddi )

− 4c2(�di + 6c − αi )

(
t − T

2

)2

(10.1.21)

(by (10.1.17))

≥ 4(1 + 7c)ϕ∗i (x, t) ≥ 4(1 + 7c)σ ∗ ≡ β̃ > 0,

∀(x, t) ∈ Q∗
i , (10.1.22)
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recalling the definition of the set Q∗
i (σ

∗) in (10.1.11). The term on the left-hand side
of (10.1.21) is precisely the term that arises as a coefficient in front of the l.o.t., see
(10.2.6)–(10.2.9) below.

The main result of the present paper is the following Theorem 10.1.1 which extends
all the previous results of Sections 1–9 to the setting of the present Section 10, where
assumption (A.2) = (1.5) is removed.

Theorem 10.1.1. Let the setting of Section 10.1 based on assumptions (a) = (10.1.1),
(b) = (10.1.3), and (c) = (10.1.13) be in force. In particular, T is given by T > T0,i , see
(10.1.5). Then:

(a) The Carleman estimates of Theorem 5.1, (5.1), as well as of Theorem 6.1, (6.5),
continue to hold true for H 1,1(Q)-solutions.

(b) The following continuous observability inequality holds true for H 1,1(Q)-solu-
tions of the Dirichlet problem (8.1a,b):∫ T

0

∫
�1,D

(
∂w

∂n

)2

d�1 dt ≥ kϕ[E(T )+ E(0)], (10.1.23)

with�1,D = �\�0,D and�0,D defined by (8.2). A fortiori, this implies a global uniqueness
theorem for H 1,1(Q)-solutions, if, in addition, (∂w/∂n)|�1 ≡ 0; i.e., it follows that, then,
w ≡ 0.

(c) The following continuous observability inequality holds true for H 1,1(Q)-solu-
tions of the Neumann problem (9.1a,b):∫ T

0

∫
�1,N

[w2
t + w2] d�1 dt ≥ kϕ[E(0)+ E(T )], (10.1.24)

with �1,N = �\�0,N and �0,N defined by (9.2). A class of triples {�,�0,N , �1,N } sat-
isfying all these conditions is given in Appendix B. A fortiori, this implies a global
uniqueness theorem for H 1,1(Q)-solutions, if, in addition,w|�1 ≡ 0; i.e., it follows that,
then, w ≡ 0.

10.2. Cut-Off Functions χi (t, x) and Corresponding Subproblems for
wi = χiw

Cut-Off Functions χi . Let χi (t, x) be a smooth cut-off function. At this stage it is not
important to specify how it is constructed. Eventually, in the case of purely Neumann
B.C. associated with (1.1), χi (t, x) will be the complicated function constructed in
Section 10.2 of [LTZ], which has the important feature, among others, of being only
time-dependent (but not space-dependent) on a small interior layer of the boundary �.
This latter goal is dictated by the Neumann B.C. and would not be necessary when dealing
with the Dirichlet B.C. At any rate, we only assume here that such cut-off functions fulfill
the requirement

|χi | ≤ const and χi (t, x) ≡ 1 on Qi (σ ), (10.2.1)

which is one of the properties satisfied by the cut-off functions in Section 10.2 of [LTZ].
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Dynamical System for wi ≡ χiw. Let w ∈ C2(Rt × M) be a solution of (1.1). We
introduce new variables on [0, T ] ×�:

wi (t, x) ≡ χi (t, x)w(t, x); fi (t, x) ≡ χi (t, x) f (t, x), i = 1, 2. (10.2.2)

(The fi here should not be confused with the fi in Sections 4 and 5.) We then see that
each term wi satisfies the following problem:{

wi,tt −�wi = F(wi )+ fi +Kiw, i = 2, 3, (10.2.3a)

wi (0, ·) = wi,0; wi,t (0, ·) = wi,1; (10.2.3b)

Ki ≡ [D2
t −�− F, χi ] = commutator active only on (supp χi ); (10.2.3c)

wi,0 = χi (0, ·)w(0, ·); wi,1 = χi,t (0, ·)w(0, ·)+ χi (0, ·)wt (0, ·). (10.2.3d)

In (10.2.3c), Dt = d/dt, while [ , ] denotes the corresponding commutator of order 1 in
time and space. Accordingly, with χi smooth, we then obtain, via (10.2.3a) and (1.2b)
on F ,

(Awi )
2 ≡ (wi,tt −�wi )

2

≤ CT {|w2
i,t + |Dwi |2 + w2

i + f 2
i + [w2

t + |Dw|2 + w2](supp χi )},
(t, x) ∈ [0, T ] ×�. (10.2.4)

Preliminary Estimate: Counterpart of Corollary 4.2. As constructed above, each prob-
lem wi in (10.2.3), i = 1, 2, satisfies the setting of Section 1. As a result, each problem
(10.2.3) satisfies the counterpart of Theorem 4.1/Corollary 4.2, (4.22)–(4.25); in partic-
ular, we recall (4.7), (4.8) for B̃ and β(x, t). We take this result as our present starting
point.

Proposition 10.2.1. Let w ∈ C2(Rt × �) be a solution of (1.1). Let the setting of
Section 10.1 based on assumptions (a) = (10.1.1), (b) = (10.1.3), and (c) = (10.1.13) be
in force. Then each problem (10.2.3), i = 1, 2, satisfies the following pointwise inequality
for ε > 0 small:

θ2
i (Awi )

2 + 2 d̂iv{[(ai + ψi )v
2
i − v2

i,t + |Dvi |2]D̂�i

+ [2D̂�i (vi )− ψivi ]D̂vi } (10.2.5)

≥ τερθ2
i [w2

i,t + |Dwi |2] + Biθ
2
i w

2
i , ∀t ∈ [0, T ], ∀x ∈ �, (10.2.6)

see (4.22), where ρ = 1 − c > 0 is a constant, and where, for i = 1, 2 and (10.1.22),
we have (recalling (4.7), (4.8), (4.20), (4.23)–(4.25))

Bi = B̃i − 2ερτ 3(ϕ2
i,t + |Dϕi |2) ≥ B̃i − 2ερτ 3r (10.2.7)

≥ [2τ 3β +O(τ 2)], ∀(x, t) ∈ set Q∗
i (σ

∗); (10.2.8)
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β ≡ βε ≡ β̃ − ερr > 0, r = max
i

max
Q̄
(ϕ2

i,t + |Dϕi |2),
|Dϕi | = |Ddi |; (10.2.9)

Bi = O(τ 3), ∀(x, t) ∈ [0, T ] ×�, (10.2.10)

where the set Q∗
i (σ

∗) is defined in (10.1.11), β̃ > 0 is defined in (10.1.22), and β > 0 is a
constant depending on ε > 0. Above, all the quantities with a subscript “i” correspond
to the quantities in Sections 3 and 4 without a subscript. Thus, θi = eτϕi , ϕi as in
(10.1.4); �i = τdi , ψi = ταi , with di and αi given by (10.1.2), (10.1.14). Thus, B̃i on
the left of (10.2.7) is the counterpart of (4.7) via (4.8), while the estimate in (10.2.18) is
a consequence of (10.1.22).

10.3. Carleman Estimate for the wi -Problem

Building up on Proposition 10.2.1, we obtain the counterpart of Theorem 5.1 (Carleman
estimate, first version) for the wi -problems.

Proposition 10.3.1. (i) Let w ∈ C2(Rt ×�) be a solution of (1.1) (and no B.C.). Let
the setting of Section 10.1 based on assumptions (a) = (10.1.1), (b) = (10.1.3), and (c) =
(10.1.13) be in force. Let wi , fi be as in (10.2.2). Let E(t) be defined by (5.4). Then, for
ε > 0 small, as in (10.2.9), and for all τ sufficiently large (with ετ large with respect to
CT in (1.2b)), the following family of estimates holds true:

(BT)wi |� + C1,T e2τσ
∫ T

0
E(t) dt + C2,T

∫ T

0
f 2
i d� dt

≥ [τερ − 2CT ]
∫ T

0

∫
�

e2τϕi [w2
i,t + |Dwi |2] d� dt

+ [2τ 3β +O(τ 2)− 2CT ]
∫

Qi (σ )

e2τϕiw2 dx dt

− CT τ
3e−2τδ[E(0)+ E(T )], (10.3.1)

where Qi (σ ) is the subset of � × [0, T ] defined by (10.1.10); moreover, the constants
σ > 0, δ > 0 are defined in (10.1.7), (10.1.5), while the critical constant β > 0 is
defined by (10.2.9) by use of β̃ in (10.1.22). We do not specify the boundary terms here
(counterpart of (5.3)): they could be made more specific by further specializing the cut-off
functions χi (see (10.3.3) of [LTZ] for χi suitably defined to handle the case of Neumann
B.C.).

(ii) The above inequality (10.3.1) can be extended to H 2,2(Q)-solutions.

Remark 10.3.1. For τ sufficiently large to make [2τ 3β + O(τ 2) − 2CT ] > 0 (see
β > 0 in (10.2.9)), we reach one of our goals and drop the integral term involving w2,
accordingly, from inequality (10.3.1).

Proof. The proof follows closely the one of Proposition 10.3.1 of [LTZ], and thus only
a central part dealing directly with the l.o.t. will be given here explicitly.
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Step 1. To begin with, the first step is the counterpart of (5.6), (5.7) for thew-problem.
We likewise now return to Proposition 10.2.1, estimate (10.2.6) and integrate it over
Q = (0, T ] ×�. We obtain∫

Q
θ2

i (Awi )
2 dQ + 2

∫
Q

d̂iv{[(ai + ψi )v
2
i − v2

i,t + |Dvi |2]D̂�i

+ [2D̂�i (vi )− ψivi ]D̂vi } dQ

≥ τερ

∫
Q
θ2

i [w2
i,t + |Dwi |2] dQ +

∫
Q
θ2

i Biw
2
i dQ. (10.3.2)

This is the exact counterpart of the estimate (10.3.4) of [LTZ].

Step 2. Precisely as in Step 2 of Theorem 10.3.1 in [LTZ], one proves that∫
Q
θ2

i (Awi )
2 dQ =

∫ T

0

∫
�

θ2
i (wi,tt −�wi )

2 d� dt

≤ CT

{∫ T

0

∫
�

e2τϕi [w2
i,t + |Dwi |2] d� dt

+
∫

Qi (σ )

e2τϕiw2
i dx dt + e2τσ

∫ T

0
E(t) dt

+
∫ T

0

∫
�

f 2
i d� dt

}
, (10.3.3)

where the set Qi (σ ) is defined by (1.1.10). The proof of (10.3.3) uses both properties of
χi in (10.2.1) and (10.2.4).

Step 3. We focus on the terms in (10.3.2). (What we do here corresponds to Step 5 in
the proof of Proposition 10.3.1 in [LTZ].) We proceed as in the proof of Theorem 5.1,
below (5.7). We split �× [0, T ] = Q∗

i (σ
∗)∪ [Q∗

i (σ
∗)]c, where [ ]c is the complement

in �× [0, T ], and Q∗
i (σ

∗) is the set defined in (10.1.11). Because of property (10.1.13)
which was assumed in the selection of �i , we have that for any (x, t) ∈ Q∗

i (σ
∗) the

space coordinate x ∈ �i , and hence |Ddi (x)| ≥ p > 0 by (10.1.3). As a result of
property (10.1.13), we obtained the validity of estimate (10.1.17) on all of Q∗

i (σ
∗),

hence of estimate (10.1.22) on all of Q∗
i (σ

∗), finally of estimate (10.2.8) on all of
Q∗

i (σ
∗). Employing (10.2.8) we then estimate the last term in (10.3.2):∫ T

0

∫
�

e2τϕi Biw
2
i d� dt =

∫
Q∗

i (σ
∗)

e2τϕi Biw
2
i dx dt

+
∫

[Q∗
i (σ

∗)]c
e2τϕi Biw

2
i dx dt (10.3.4)

(by (10.2.8)) ≥ [2τ 3β +O(τ 2)]
∫

Q∗
i (σ

∗)
e2τϕiw2

i dx dt

+
∫

[Q∗
i (σ

∗)]c
e2τϕi Biw

2
i dx dt (10.3.5)
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((10.3.5) is the counterpart of (5.8)). As to the last term in (10.3.5), we proceed as in
Step 2 in the proof of Theorem 5.1: first, by (10.2.10), we have Bi = O(τ 3) on all
of � × [0, T ]; second, we have ϕi ≤ ϕ∗i ≤ σ ∗ on [Q∗

i (σ
∗)]c by (10.1.9) and the very

definition of Q∗
i (σ

∗) in (10.1.11). Finally, since we have chosen 0 < σ ∗ < σ in (10.1.11),
we then obtain

−
∫

[Q∗
i (σ

∗)]c
e2τϕi Biw

2
i dx dt ≤ O(τ 3)

∫
[Q∗

i (σ
∗)]c

e2τϕiw2
i dx dt (10.3.6)

≤ O(τ 3)e2τσ ∗
∫

[Q∗
i (σ

∗)]c
w2

i dx dt

≤ O(τ 3)e2τσ
∫

Q
w2

i dx dt ≤ O(τ 3)e2τσ

×
∫

Q
w2 dQ, (10.3.7)

majorizing w2
i by (const w2), see (10.2.1), and majorizing [Q∗

i (σ
∗)]c by � × [0, T ].

Equation (10.3.7) is the counterpart of (5.11), and of (10.3.22) of [LTZ].

Step 4. Next, we substitute (10.3.5) for the last term on the right side of (10.3.2), move
the last term of (10.3.5) on [Q∗

i (σ
∗)]c to the left side of (10.3.2), and apply for it estimate

(10.3.7). Finally, on the first integral term on the left side of (10.3.2), we invoke estimate
(10.3.3). We thus obtain

O(τ 3)e2τσ
∫

Q
w2 dQ + CT

∫
Qi (σ )

e2τϕiw2
i dx dt + CT e2τσ

∫ T

0
E(t) dt

+ CT

∫ T

0

∫
�

f 2
i d� dt

+ 2
∫

Q
d̂iv{[(ai + ψi )v

2
i − v2

i,t + |Dvi |2]D̂�i + [2D̂�i (vi )− ψivi ]D̂vi } dQ

≥ [τερ − CT ]
∫

Q
e2τϕi [w2

i,t + |Dwi |2] dQ + [2τ 3β +O(τ 2)]

×
∫

Q∗
i (σ

∗)
e2τϕiw2

i dx dt. (10.3.8)

Regarding the integral terms on Q∗
i (σ

∗), Qi (σ ), we see that since Q∗
i (σ

∗) ⊃ Qi (σ )

(see (10.1.12)), we have that, for all τ sufficiently large, as in Step 3 in the proof of
Theorem 5.1,

[2τ 3β +O(τ 2)]
∫

Q∗
i (σ

∗)
e2τϕiw2

i dx dt − CT

∫
Qi (σ )

e2τϕiw2
i dx dt

≥ [2τ 3β +O(τ 2)− CT ]
∫

Qi (σ )

e2τϕiw2 dx dt, (10.3.9)

since on Qi (σ ) we have χi ≡ 1 by (10.2.1), hence wi ≡ w by (10.2.2). Thus, using
(10.3.9) in (10.3.8) and recalling E(t) in (5.4), we readily obtain the desired estimate
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(10.3.1), after handling the term
∫

Q d̂iv{ } dQ, which we do not do here, since we have
deliberately left undefined the cut-off functions χi . For the critical case of Neumann
B.C., this is done in Section 10.2 of [LTZ], which admits here a faithful counterpart.

Final Remark. The remaining Sections 10.4–10.7 of [LTZ] admit a faithful counter-
part from the Euclidean to the Riemannian setting and are not repeated. This therefore
leads to Theorem 10.1.1.
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Appendix A. Proof of (3.43)

In this appendix we prove identity (3.43), that is,

〈D�, DDv(Dv)〉 = 1
2 D�(|Dv|2). (A.0)

Step 1. Let M be a manifold. We denote by {E1, E2, . . . , En} a field normal at x ∈ M .
This means that:

(a) E1, . . . , En are vector fields on the tangent space Mx at x ;
(b) on Mx , we have that E1, . . . , En are mutually orthogonal; that is, DEj Ei = 0,

∀i, j ;
(c) E1, . . . , En form an orthonormal basis on the tangent space Mx . Thus, for any

function v, the vector field Dv = ∇gv on Mx is given by

Dv=
n∑

i=1

〈Dv, Ei 〉Ei ; 〈Dv, Ei 〉=Ei (v), |Dv|2=
n∑

i=1

(Ei (v))
2. (A.1)

Step 2. We first show that

DDvDv = 1

2

n∑
i=1

Ei (|Dv|2)Ei at x . (A.2)

Indeed, by the axioms of a connection, if Y is any vector field, we obtain, by (A.1),

DDvY = D∑n

i=1
Ej (v)Ej

Y =
n∑

j=1

Ej (v)DEj Y. (A.3)

Next, we specialize to Y = Dv given by (A.1) and compute

DEj Y = DEj Dv = DEj

(
n∑

i=1

Ei (v)Ei

)
=

n∑
i=1

DEj (Ei (v))Ei

+
n∑

i=1

Ei (v)
✟✟✟✟✟✯DEj Ei , (A.4)
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where vanishing takes place by orthogonality. Inserting (A.4) in (A.3), with DX f =
X ( f ), we arrive at

DDvDv =
n∑

j=1

Ej (v)

n∑
i=1

Ej Ei (v)Ei =
n∑

i, j=1

Ej (v)Ej Ei (v)Ei

=
n∑

i, j=1

Ej (v)Ei Ej (v)Ei , (A.5)

changing the order of the indices. Next, we notice that

Ei [(Ej (v))
2] = DEi (Ej (v))

2 = 2Ej (v)Ei Ej (v), (A.6)

which substituted into (A.5), yields, recalling (A.1),

DDvDv = 1

2

n∑
i, j=1

Ei [(Ej (v))
2]Ei = 1

2

n∑
i=1

Ei

[
n∑

j=1

(Ej (v))
2

]
Ei

(by (A.1))

= 1

2

n∑
i=1

Ei (|Dv|2)Ei , (A.7)

and (A.2) is proved.

Step 3. We finally establish (A.0). Using (A.2), we obtain

〈D�, DDvDv〉 = 1

2

〈
D�,

n∑
i=1

Ei (|Dv|2)Ei

〉
= 1

2

n∑
i=1

〈D�, Ei (|Dv|2)Ei 〉

= 1

2

n∑
i=1

〈D�, X〉 = 1

2

n∑
i=1

X (�)

= 1

2

n∑
i=1

Ei (|Dv|2)Ei (�) = 1

2

n∑
i=1

Ei (�)Ei (|Dv|2). (A.8)

On the other hand, by (A.1) we can write

D� =
n∑

i=1

Ei (�)Ei , hence D�(|Dv|2) =
n∑

i=1

Ei (�)Ei (|Dv|2). (A.9)

Combining (A.8) and (A.9) yields (A.0), as desired.

Appendix B

In this appendix we provide an attractive class of subsets� in a Riemannian manifold M ,
for which it is possible to claim the existence of a smooth function d defined around the
portion �0 of ∂�, such that (i) d is strictly convex on �0, and, moreover, (ii) its normal
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derivative vanishes on�0. The present appendix, in particular Theorem B.1 below and its
proof, are all the close counterparts of Appendix 4 of [LTZ], in particular Theorem A.4.1,
as generalized from the Euclidean setting to the Riemannian setting.

Let {M, g} be an n-dimensional Riemannian manifold, with Levi–Civita connection
D. Let � ⊂ M be an open, connected, compact subset of M , with boundary ∂� =
�0 ∪ �1, �0 ∩ �1 = ∅. The portion �0 of ∂� is defined as follows. Let �: M → R be a
function of class C2. Then we define

�0 = {x ∈ ∂�: �(x) = 0},
with the further provision that D�(= ∇g�)  = 0 on �0. (B.0)

Theorem B.1. In the above setting, assume that (i)

D2�(X, X)(x) ≥ 0, ∀x ∈ �0, ∀X ∈ Mx (B.1)

(“convexity of � near �0”).

(ii) There exists a function d0: �̄→ R of class C2, such that

(ii1) D2d0(X, X)(x) ≥ ρ0|X |2g, ∀x ∈ �0, ∀X ∈ Mx , (B.2)

for some constant ρ0 > 0 (strict convexity of d0 near �0);

(ii2)
∂d0

∂n

∣∣∣∣
�0

= 〈Dd0, n〉g ≤ 0 on �0, (B.3)

where n is the unit outward normal field to �0 on M which points in the same
direction as ∇g� = D�.

Then there exists a function d: �̄→ R of class C2 (which is explicitly constructed in a
layer (collar) of �0, the critical set), such that it satisfies the following two conditions:

(a)
∂d

∂n

∣∣∣∣
�0

= 〈Dd, n〉g = 0 on �0; (B.4)

(b) D2d(X, X)(x) ≥ (ρ0 − ε)|X |2g, ∀x ∈ �0, ∀X ∈ Mx , (B.5)

where ε > 0 is arbitrarily small.

Definition of d . The function d(x) is explicitly constructed near �0, within �, as a
perturbation of the original function d0 assumed in (ii) above, as follows:

d(x) ≡ d0(x)+ z(x), x near �0 in �; (B.6)

z(x) ≡ −∂d0

∂n
(�k)+ λ�2, k ≡ 1

|D�|g , (B.7)

where λ is a sufficiently large parameter, to be selected below in the proof, while

∂d0

∂n
denotes an extension of

∂d0

∂n

∣∣∣∣
�0

from the set �0

(defined by �(x) = 0) to a layer (collar) of �0, within �, (B.8a)
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which is defined by

∂d0

∂n
≡ 〈Dd0, n〉g =

〈
Dd0,

D�

|D�|g

〉
g

= 〈Dd0, kD�〉g. (B.8b)

n ≡ D�/|D�|g (consistently with the statement below (B.3)).

Proof. (a) First we establish property (B.4). To this end, we perform direct computations
and obtain

∂(�k)

∂n

∣∣∣∣
�0

=
[
�
✟✟✟✟✯∂k

∂n
+ k

∂�

∂n

]
�0

= 1
|D�|g 〈D�, n〉g ≡ 1 on �0; (B.9)

∂(�2)

∂n

∣∣∣∣
�0

= 2�
∂�

∂n

∣∣∣∣
�0

= 0, (B.10)

since � = 0 on �0, and recalling n from (B.3) and k from (B.7). Returning to z(x) given
by (B.7), we take its normal derivative at �0, and obtain, by virtue of (B.9), (B.10),

∂z

∂n

∣∣∣∣
�0

=
[
−
(
∂2d0

∂n2

)
(�k)− ∂d0

∂n

∂(�k)

∂n
+ λ ∂(�

2)

∂n

]
�0

= − ∂d0

∂n

∣∣∣∣
�0

. (B.11)

Finally, returning to (B.6), and using (B.11), we obtain

∂d

∂n

∣∣∣∣
�0

=
[
∂d0

∂n
+ ∂z

∂n

]
�0

=
[
∂d0

∂n
− ∂d0

∂n

]
�0

= 0, (B.12)

and thus (B.4) is established, as desired.
(b) We now prove property (B.5) for a suitable large λ. For convenience, we set

near �0: p ≡ −∂d0

∂n
k, so that z = p�+ λ�2, (B.13)

recalling (B.8) and (B.7) for z. Next, from (B.6), we compute preliminarily

D2d(X, X) = D2d0(X, X)+ D2z(X, X). (B.14)

Step 1.

Lemma B.2. The following identities hold true:

(b1)

near �0: D2z(X, X) = pD2�(X, X)+ �D2 p(X, X)+ 2λ�D2�(X, X)

+ 2λ|〈D�, X〉g|2 + 2〈D�, X〉g〈Dp, X〉g; (B.15)

(b2)

on �0: D2z(X, X) = pD2�(X, X)+ 2λ|〈D�, X〉g|2

+ 2〈D�, X〉g〈Dp, X〉g. (B.16)
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Proof. Identity (B.16) in (b2) follows at once from identity (B.15) in (b1) by setting
� = 0 (see (B.0) of �0).

Proof of (b1). By definition of the Hessian tensor:

D2z(X, X) = 〈DX (Dz), X〉g, (B.17)

where, recalling z = p�+ λ�2 (near �0) by (B.13), we find
Dz = pD�+ �Dp + 2λ�D�, (B.18)

DX (Dz) = X (p)D�+ pDX (D�)+ X (�)Dp + �DX (Dp)

+ 2λ[X (�)D�+ �DX (D�)]. (B.19)

Substituting (B.19) in (B.17) yields

D2z(X, X) = X (p)〈D�, X〉g + p〈DX (D�), X〉g

+ X (�)〈Dp, X〉g + �〈DX (Dp), X〉g + 2λX (�)〈D�, X〉g

+ 2λ�〈DX (D�), X〉g. (B.20)

Recalling again the definition of the Hessian tensor for � and p, and recalling likewise
that X ( f ) = 〈Df , X〉g , f = �, p, we recognize at once that (B.20) is precisely (B.15),
as desired.

Step 2. Let ε0 > 0 arbitrary. We estimate the last two terms in (B.16):

2λ|〈D�, X〉g|2 + 2〈D�, X〉g〈Dp, X〉g

≥
[

2λ− 1

ε0

]
|〈D�, X〉g|2 − ε0|〈Dp, X〉g|2. (B.21)

Step 3. Regarding the first term in (B.16), we obtain

on �0: pD2�(X, X) ≥ 0, (B.22)

since, as k > 0 by (B.7), we havep = − ∂d0

∂n

∣∣∣∣
�0

k ≥ 0 on �0, by assumption (B.3);

D2�(X, X)(�0) ≥ 0 on �0, by assumption (B.1).

(B.23)

Thus, dropping the first term in (B.16) by virtue of (B.22) and invoking (B.21) for the
remaining two terms, we obtain, from (B.16),

on �0: D2z(X, X) ≥
[

2λ− 1

ε0

]
|〈D�, X〉g|2 − ε0|〈Dp, X〉g|2 (B.24)

≥ −ε|X |2g, (B.25)
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where, in the last step, we have chosen

2λ− 1

ε0
> 0 and ε ≡ ε0 max

�0

|Dp|2g. (B.26)

Finally, returning to (B.14) and invoking (B.25) and assumption (B.2), we obtain

on �0: D2d(X, X) ≥ D2d0(X, X)− ε|X |2g (B.27)

≥ [ρ0 − ε]|X |2g, ∀x ∈ �0, ∀X ∈ Mx , (B.28)

and (B.28) establishes (B.2), as desired. The proof of Theorem B.1 is complete.

Remark B.1. The same proof works if we interchange the signs in assumptions (B.1)
and (B.3), that is, if we assume instead:

(i′) D2�(X, X)(x) ≤ 0, ∀x ∈ �0, ∀X ∈ Mx (B.29)
(“concavity of � near �0”);

(ii′)
∂d0

∂n

∣∣∣∣
�0

= 〈Dd0, n〉g ≥ 0 on �0. (B.30)

Indeed, (B.29) and (B.30) still produce inequality (B.22), recalling (B.23).
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[Ho3] L. Hörmander, On the uniqueness of the Cauchy problem under partial analyticity assumptions, in

Geometrical Optics and Related Topics (F. Colombini and N. Lerner, eds.), Birkhäuser, Boston, MA,
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