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1. Introduction

This paper is the continuation of the paper “Dirichlet boundary control of semilinear
parabolic equations. Part 1: Problems with no state constraints” [3]. In this part we
study control problems for equations and cost functionals similar to Part 1, but with
pointwise state constraints. Notation and assumptions are the ones of Part 1. Recall the
state equation

%+Ay+d>(x,t,y,m=0 inQ, y=v onx, yO =y inQ, (1)
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whereQ = Q@ x10, T[, Q ¢ RN, ¥ =T' x]0, T[, I' is the boundary of2, T > 0, A
is a second-order elliptic operator, the distributed conirbelongs tdU,q C L9(Q),
and the boundary contrel belongs toVay € L*(X) (for simplicity, we here suppose
that the initial conditionsy is fixed and belongs t6(2)). We look for solutions of (1)
satisfying constraints of the form

g(y) €C, )

whereg is a mapping fromC,(Q\X) into Cp(Q\X), andC C Cy(Q\X) is a closed
convex subset with a nonempty interior@g(Q\ X). Consider the problem

(P) inf{I(y,u,v) | (Y, u,v) € Ch(Q\Z) x Uag x Vaq satisfying(1) and(2)},
with
J(y, u, v) =/ F(x,t,y,u) dxdt—i-/ G(s t,v) dsdt+/ L(x, y(T)) dx
Q P> Q

We have already obtained optimality conditions for Dirichlet boundary control problems
of the form(P), whenV,qis convex ands (s, t, -) is differentiable, by using a Lagrange
multiplier theorem [1]. Here, we are mainly interested in optimality conditions in the
form of Pontryagin’s principles.

As pointed out in [8] and [15], the main difficulty in proving optimality conditions
for (P) is the following:

Since the state constraif®) is well posed irC,(Q\ X) (orin L*(Q)), the multiplier
associated with this constraint belongg@(Q\ X)) (or to (L*(Q))"). Therefore,
it is a finitely additive measure (and notaadditive one) and the corresponding
adjoint equation cannot be studied in Sobolev spaces.

To bypass this difficulty, Fattorini and Murphy [8] consider a terminal constraint in
Q, ={xeQ|dx,TI) > 1}, with r > 0 (but the passage to the limit whertends to

zero is not carried out). Mordukhovich and Zhang [15], [16] obtain an adjoint equation
as the limit of adjoint equations for penalized problems, but the limit equation cannot be
interpreted in the sense of distributions.

In [2] we have presented a new tool to overcome this kind of difficulty. By introducing
the Stone€ech compactification of the domaii X, we have obtained a decomposition
theorem for additive measurese (Cp(Q\ X))’ (see Theorem 2.1). Roughly speaking,
each¢ e (Co(Q\X)) is decomposed in a regular part, which is a bounded Radon
measure orQ\ X, and an additional part, which acts on the boundarDue to this
decomposition, we prove that only the regular part intervenes in the adjoint equation.
The additional part intervenes only in Pontryagin’s principle for the boundary control
(Theorem 2.3).

As a consequence of these new optimality conditions, in the case of bilateral con-
straints of the forma < y < b on Q (wherea andb are continuous oK), we are able
to obtain classical pointwise Pontryagin’s principles (in other words, the nonregular part
of the multipliers associated with state constraints may be dropped out in the optimality
conditions, see Theorem 6.1).

Optimality conditions in Theorem 2.3 are proved with the Ekeland variational prin-
ciple. For this, we define a sequence of approximate problems in which state constraints
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are penalized only oQ™ = {x € Q | d(x, ") > 7} x ]w, T[, with limyr = 0 (see
Section 5.2). Due to a suitable choice of a distance on the set of controls, which is
different from the Ekeland distance, we obtain approximate optimality conditions (see
Theorem 5.2) by using Taylor expansions stated in Theorem 5.2 of [3]. In these ap-
proximate optimality conditions, the multiplier associated with the penalization of state
constraints is a Radon measure@n. Due to our decomposition theorem for additive
measures ifC,(Q\ X)), to some stability condition (assumptié¥, see also Proposi-
tion 2.4), and to the choice of the metric of the control set, we can pass to the limit in
approximate optimality conditions whep tends to zero.

Contrary to Theorem 2.1 of [1], we need neither differentiability assumptions on
d(x,t,y, ), F(x,t,y, ), andG(s, t, y, -), nor a convexity assumption ofyg.

2. Assumptions and Main Result

Notation and assumptiosl—A4 are the ones of Part 1 [3]. For the convenience of the
reader, recall the notatidn, = {x € @ | d(x, ') > t} (d is the Euclidean distance) and
Qf = Q. x ], T[. Throughout what followsCN+! denotes th&N + 1)-dimensional
Lebesgue measure addf denotes thél-dimensional Lebesgue measure. For simplicity,
(.)..6\5 Stands for the duality pairing betwe€B,(Q\%))" and Co(Q\X). If u €
Myp(Q\X) (the space of bounded Radon measureQgi) andy € C,(Q\ ), we set

(s Yo\ = fQ\E‘; y(x, t) du(x, t).

2.1. Additional Assumptions

In addition to assumption&1-A4 of Part 1 [3], the following is assumed.

A5. L is a Caratkodory function fronf2 x R into R. For almost alk € @, L(X, -) is
of classC*. The following estimates hold:

IL(X, Y1 < LioOn(lyD, ILL (X, W < L2000 (YD,

wherelL; € LX), L, € LP(Q), p > 1 is the same exponent asA3, andy is as in
A2. In addition, we assume thé&P) admits solutions.

A6. In (2), gis a mapping of clas€® from Cp(Q\X) into Cp(Q\X). Moreover, for
all M > 0, there existy > 0,0< 3 < 1, and O< y; < 1 such that

9ty — 9(¥2)llegry = CaM) Iy — Yllggry + 77 forall 0 <z <1,
19'(y1) — g/(yz)”/;(cb(Q\)‘:)) < Co(M)[Iy1 — V2l élb(@\fl)’

forall y1 € Co(Q\), all y2 € Co(Q\T) satisfyinglyilc,qs) < M. I¥2llcyqs) <
M. (£(Cp(Q\X)) denotes the space of linear continuous mapppings fgtQ\ x)
into C,(Q\X).)

We give some examples of state constraints satisf§igg
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Example 1. Letg be a bounded continuous function 6@\ X) x R. Suppose thagy
belongs taC,((Q\ ) x R) and that, for some; €10, 1], we have

oy (X, t, Y1) — @{ (X, 1, Y2)| < Clyr — Y|
forall (x,t)e Q\E andall (yi,y) € R2
The state constraint
(X, t,y(x,1) <0 on Q\E &)

is of the form (2) by setting = {z € Cp(Q\X) | z < 0in Q\E} andg(y)(x,t) =
(X, 1, y). Moreover,,_AG_is satisfied. Observe thatdf € Cp(Q\X) andb € C,(Q\X)
satisfya + ¢ < bon Q\X (for somes > 0), then the constraints

a(x,t) < y(x,t) < b(x,t) on Q\Z
may be written in the form (3).

Example 2. We can also construct other situations mixing pointwise and integral con-
straints. For example, the mappiggy — ny y(X, t) dx dtsatisfiesA6.

2.2. Stability Conditions

For everyr > 0, set

(P;) inf {J(Yuw U,v) | (U, v) € Uag X Vagand infljz — g(Yuv)”C(§) = 0} s
zeC

wherey,y is the solution of (1) corresponding to, v). We say that P) is weakly stable
on the right if assumptioA7 holds.

A7. inf(P) = limoinf(Py).

AssumptionA7 is satisfied in classical situations (see Proposition 2.4), and it is
weaker than conditions ensuring the properness of the relaxation procedure by Young
measures (see [4]). More precisely, if we associate With a relaxed problentRP)
defined with Young measures, taking advantage of the linear structure of the relaxed
problem with respect to control variables, we can obtain optimality condition&ier
in an easy way. We recover optimality conditions &) if inf (P) = min(RP). In [4]
we have proved that this properness condition is satisfied if, and only if,

inf(P) = sup sup(inf(Ps..)), 4)
§>0 >0

where
(Pes)  inf{I(Yov, U, v) | (U, ) € Uag x Vagand infliz — g(yw)llcgr) = 9)-

Observe that conditiof) is stronger tham\7.
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2.3. The StoneSech Compactification

As proved in [2], every; € (Co(Q\E))' may be identified with a measuge e
M(Q x (Q\X)#), where(Q\X)* denotes the Ston€ech compactification o\ X.
(For notational simplicity, we identify andz .) We denote byr the canonical projection
from M(Q x (Q\%)*) onto M(Q) defined by

m: ¢ € M(Q x (Q\2)") — 1, € M(Q),

(e ) pm@c@ = (& Pl m@x@smxcex@sy  forall ¢ eC(Q).

Throughout what follows, it € (Cp(Q\ X)), then|¢| stands for the total variation
of ¢.

Theorem 2.1 [2, Corollary 4.8]. Let¢ € (Co(Q\X)), there exists a bounded linear
transformationA;: Co(Q\X) — L2 (Q) such that

g

(¢, hg) a5 = (e, ho)p o\ 5 +/ Ay (Mg dm (®)

b
for all (h, @) € Co(Q\Z) x C(Q). If h is a nonnegative function ing@Q\ %), then
[z Ac(h)ydm, > 0. Moreover for everyh in C(Q), we have 5 A (h)dm, =

{7z, D) js)xe)-

Remark 2.2. SinceC(Q) is dense iri_}rm(Q), it is clear that for a givers, identity
(5) uniquely defines\,.
2.4. Statement of the Main Result
Define the Hamiltonian functions:
Ho(X, t,y,u, p,A) = AF(X, t,y,U) + pP(X,t,y,U)
forall (x,t,y,u, p,A) € Q x R,
Hs(s,t,v, p,A) = AG(s,t,v) +pv  forall (s,t,v,p,1) € = x RS,

existA > 0, p € LY0, T; Wy'(R)), and ¢ € (Cp(Q\)), such that the following
conditions hold

o Nontriviality condition

(. 2) #0. (6)
e Complementarity condition

(€. 2=9M)a\s
= (m;, 2= 9oz + /: A¢[z—g(Y]drg <0 7

forall z € C, whereA; is the operator associated with defined in Theorer®.1.
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o Adjoint equation

8 " _
_a_f + AP+ D (x,t, 7. 0)p+ AF) (X, 1, 7. 0)
+ W rEllo=0  inQ, ©

P, T) + ALy (X, Y(T) + [g (D 77lle, =0 in g,

where ¢(y)*r; denotes the Radon measure@Xx defined by (V)*7z, 2)p,6\5
= (7. 9 (V) 2y, 5 forall z € Co(Q\ ), [g'(9)*7;]| o denotes the restriction of
g'(y)*n; to Q, and[g'(y)*7;] e, denotes the restriction of @)z to €2 x {T}.
e Optimality condition foru:
Ho(x, t, y(X, 1), G(x, 1), P(X, 1), 1)
= min Ho(X,t, ¥(x, 1), u, p(x, t), 1) 9)

ueKy (x,t)

for all (x,t) € Q, whereQ is a measurable subset of Q satisfyitlyt1(Q) =

£N+1(Q)_
e Optimality condition forv:

op - op -
/(H; <S,t,v,—p,)\)—H2 <s,t,ﬁ,—p,k>> dsdt
= anA BnA

+/_ Ag(g/(y)(zv — z,;))d:r‘g| >0 forall v € Vagq, (20)
X

where z (with 0 = v or v = v) is the solution of

d . .

a—tZ+Az=0 in Q, Z=1 onx, z-,0=0 IinQ. (12)

We can obtain optimality conditions f@P) without the weak stability conditioA7,
but under additional conditions v, andG. In this case the optimality condition for
boundary controls is stated in a Lagrangian form (see [1]).

In Proposition 2.4 below, we show that the weak stability condifi@ris satisfied
in classical situations.

Proposition 2.4. Suppose thaA1-A6 are satisfied and that

(i) G(s,t,-) is convexF(x,t,y, ) is convex F(x,t,y,u) > Cslul9 C3 > O,
G(s, t,v) > 0,and L(x, y) > 0,
(i) Uagis convexVyqis convexand
(i) ®(x,t,y,u) = @(y) + u, whereg is of class C.

ThenAY7 is satisfied
Proof. First observe that & inf(P,) < inf(P). For everyr > 0, let(y,, u,, v;) be

a t- solution of (P;). Due to assumption (i) in the proposition andAt, (u., v;); is
bounded inL9(Q) x L*(X). Let (uy, v, )k be a subsequence af., v;)., converging
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to (G, v) for the weakL9(Q) x weak-L>®(X) topology. Then using results in [3], and
condition (iii), we can prove thaty,, )x converges t§ (the solution of(1) corresponding
to (0, 9)) uniformly on every subcylinde®é, for all ¢ > 0. Since(y, 0, 7) is admissible
for (P), by using classical lower semicontinuity results we can prove that

inf(P) < J(¥,0,v) < Iipﬂ inf J(Yg, Ugs V),

and the proof is complete. O

3. Interior Estimates for the State Equation
Proposition 3.1. Letg be in LY(Q), with 1 < £ < co. The solution y of the equation

0
a—?[/-f-Ay:(p in Q, y=0 onxk, y(0) =0 ingQ,

belongs to 4(0, T; W9(2)) for every? < d < oo satisfyingl/¢ —1/d < 1/(N +2).
Moreover

IYllLdeweay < Cllglle.q-

Proof. This result may be proved as in Proposition 3.1 of [19] or by using maximal
regularity results [11] and interpolation results [9], [20]. O

We now state estimates in the interior of the cylin@eas a function of the distance
to 9 Q. Such estimates are next used to obtain optimality conditions.

Proposition 3.2. Let a be a nonnegative function if(Q) (d > N/2 + 1), let ¢ be
in LY(Q), and let(y, yo) be in L°(X) x L>(). For all A € [1, oo the solution y of

3 _ .
8_}[/_|_Ay-|-ay=<p in Q, y=v onx, y(@ =y ing

satisfies
IYller < Cllellaq+ 2 I¥llzs + v "2 llyoll.e)

for all ¢ > 0, where C= C(Q2, A, g, ») and ny denotes the first positive integer such
that —no/(N +2) < 0.

Proof. Lety; be the solution of

%+Ay-|—ay=<p in Q, y=0 onZ, y©0) =Yo ing.
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Sinced > N/2 + 1, by using estimates on the semigrouihQ) generated by- A
(with Dirichlet boundary condition), and with the estimates in Chapter 3 of [10], we can
prove that there exists a const&ht= C(d, 1), not depending oa, such that

Vil < Cllglla.o + 7V Iyolls.e)

forall >0 andall A €[1,oo[. (12)

Let y, be the solution of

0 . .
a—{+Ay+ay=0 in Q, y=v¢% onx, y(0) =0 in<.

We know that]| yz|lc.0 < | lleo,x- From Section 9.2 in Chapter 3 of [14] it follows that
IV2ll2.0 < CliYrll2,=. Letng be the first positive integer such tlﬂéat— no/(N +2) < 0.
Using interior estimates (as on pp. 172-173 of [13]), we have

2 2
ToNY2llLan (@, x0T = CToUY2llLz0,T;H2Q ) = CllY2ll2.Q = CliY 2z,

where Y1 = % — 1/(N + 2). Iterating this process, times, we obtain

-2
IYalle@r < Ct ™l l2x.

The proof is complete. O

4. Metric Spaces of Controls

Let(y, u, v) beinL*(Q) x L9(Q) x L*(X). Denote by, the solution to the equation

0z . .
§+Az+d>/y(-,y,u)z=0 in Q, Z=v Onx, z(0)=0 inQ. (13)

Introduce the Ekeland distance 0qg, Vag, andULg X Vag:
du (ug, u2) = LN{(X, 1) € Q | ur(X, t) # Ua(X, D)},
dv (v1, v2) = LN({(s.1) € T | va(s, 1) # va(S, D)),
de ((Ug, v1), (U2, v2)) = dy(Ug, U2) + dy (v, v2).

Set

dt((u].? U]_), (u25 UZ))
= de((U1, v1), (U2, v2)) + IY1 — Yallgar) + 122 — Z2llc ) (14)

where, fori = 1, 2, y; is the solution of (1) corresponding {0;, vi), andz; = zy,y,y, is
the solution to (13) associated with , u;, v;). We can easily check thdt is a distance
onUgq x Vag. We explain in Remark 5.2 why we have chosen the distdpaeplace of
de, and whydg cannot be used to prove Theorem 2.3.
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Proposition 4.1. Let(uy, v1) (resp (Uz, v2)) be in L9(Q) x Vaq, and let y (resp ys)
be the corresponding solution ¢f). Then we have

Iyr = Yallegry < C(x~2™dy (v1, v2)72 + | (-, Y2, Up) — P (-, Y2, UDlg,Q),

for all © > 0, where ry is the first positive integer such thét— no/(N +2) < 0.

Proof. The functiony; — y» is the solution of

0z .
i +Az+az= (., Yo, U2) — P(-, Yo, U1) INQ, Z=v,—v1 ONx,

z(0)=0 inQ,
wherea = fol CI>;,(-, 0y; + (1 — 60)y», uy) dé > 0. Due to Proposition 3.2, we have

Iy1 = Yelleiar) = C(t™2|lvy — vall2z + D, Y2, U2) — @ (-, Y2, Un)|lq.Q)
< C(r72™dy (v, v2)Y2 + | D, Y2, Up) — D(-, Y2, U1 lq.Q)-

The proof is complete. O

Proposition 4.2. Let (yi, Uz, v1) and (yz, Uz, v2) be in L°(Q) x L4(Q) x Vqq. Let
71 = Zy,un» 22 = Zy,uy, D€ the corresponding solutions @f3). Then we have

1Z1 — Z2ll gy < C(x 72y (v1, v2) 72 + [| @}, Y2, U2) — DU, Y1, Un)llg.Q)

forall T > 0,where C= C(22, A, g, M), M > |[v1]lco.s + lv2]l00. =, @Nd 1y is the first
positive integer such th% —ng/(N+2) <0.

Proof. The proof still relies on Proposition 3.2. O

When the set of distributed controls is bounded #i(Q), all sequences converging
in (Uyg, dy) also converge irL%(Q), and (Uyq, dy) is a complete metric space. For
unbounded controls, these properties are no longer true. To overcome this difficulty, as
in [18], we introduce a new metric space. For a giden Usgand 0< M < oo, consider
the set

Uad(G, M) = {u € Uaq | |u(x, t) — G(x, t)| < M for almost everyx, t) € Q}.

The mappingly is a distance olJa¢(G, M) and if (u,), converges tar in (Uaq(G, M),
du), then(u,), converges ta in L9(Q). For a givenr > 0, we endowJ4(0, M) x Vaqg
with the metricd, defined in(14).

Lemma 4.3. The metric spac@Jq(l, M) x Vaq, d;) is completeMoreoverthe map-
ping which associates (v, U, v) with (u, v) is bounded and continuous frofd 44(0,
M) x Vaq, d;) into R.

Proof. Let(un, vn)n C Uag(l, M) x Vagbe a Cauchy sequence(lt,g(G, M) x Vag, d;).
Following [18], we can prove thatl,, v,), converges to som@l, v) in Uag(l, M) x Vaq
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for dg. Due to_Propositions 4.1 and 4.2, it follows th@k,,., , Zu,,)n CONverges to
(Yuvs Zuy) In C(Q?), for everye > 0. With assumptions od and with these convergence
results, we can prove the continuity result. O

5. Proof of Theorem 2.3

5.1. The Distance Function

Let r > 0O be fixed. Since the spa&@ Q") is separable, there exists a norm|c(§)
equivalent to the usual norih- e such that(C(Q?), | - le@a) is strictly convex
and(M(Q7), | - |m@) (where| - |m@ is the dual norm of - |C(§)) is also strictly
convex. Moreover, there exist two positive constabhandC such that

Cl lo = I e <Cl-le@,  forall >0 (15)

(See pp. 106-120 of [7] for the construction of the equivalent nofg &r,- In this

construction, we can observe thatthe cons@rﬁsdé are independent af.) We denote
by C. the closure, for the usual topology©f Q7), of the convex sezlgr | z € C} (Z|6

denotes the restriction afto Q7). Consider the distance functiondo:
de, (p) = Z|€an lo — Zlcam forall ¢ e C(QY).
Observe that the mapping—> dc. (¢) is convex and Lipschitz of rank 1.

Lemmab5.1. For everyr > 0 and every Mthe mappingu, v) —> dc. (Q(Yw)) IS
continuous fromUq(U, M) x Vag, d;) into R.

Proof. Lett > O, let (uy, vy)n be a sequence converging @, v) in (Uag(d, M) x
Vag, d;), and lety, andy,, be the corresponding states. From Proposition 4.1 it follows
that

10 = Yuvllcigry < CUPYuvs Un) = D (Yuvs W llg, + 7270y (vn, v)7?).
Thus, for everyr > 0,
|de, (9(Yn)) — de, (I(Yu))|
< 19(¥n) — 90w legr) < éHQ(Yn) — 90wl < Cllyn — Yulleor,
< CUIP (Yo Un) — D (Yuw Wllg.q + T2y (vn, 1)),

whereC is a constant independent of The continuity result follows from the conver-
gence of(up), tou in L9(Q) and the convergence oy (vn, v))n, to zero. O
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5.2. Approximate Optimality Conditions
Let (y, U, v) be a solution of problemP). For evenk > 1, we setry = 1/Kk,

1 +
Ky, u,v) = [(J(y, u, v) —inf(P,) + E) ]

and

(P'L'k) mf{\]k()/uv, u’ U) | (u9 U) € Uad X Vadv dC,k (g(yUV)) = 0}7

wherey,, is the solution of (1) corresponding tao, v). We have sety = 1/k, but
any functionzy such that lim_, .,z = 0 could be convenient. Lek(Yy, 4, v) = ok2 =
J(y, 4, v) —inf(P,) + 1/k. For everyk > 1, the functionalu, v) — J(Yuv, U, v) iS
bounded and continuous on the metric spa¢g[a, (ok) %] x Vag, d;, ). Moreover,

2

1/2
+ (de,, (g(y)))z} ,

I (Yavs U, v) > 0 forevery (u,v) € Uadd, (010) Y2] x Vag,

J(Y,0, ) < inf I (Yuy, U, v) + 02,

Uad[ 0, (0k) ~2/29] X Vag
Due to the Ekeland variational principle, there existg vk) € Uad[0, (ox) 29] X Vaq
such that
d,, (@, V), (Uk, ve)) < ok, (16)
Kk (Yk» Uk, vk) < Jk(Yuvs U, v) + ok dg, (U, v), (Uk, vk)), (17)

for every(u, v) € Uad[0, (ox) ~Y?9] x Vag, Whereyy is the solution of (1) corresponding
to (uk, vy).

Remark 5.2. Due to the choice of the distandg, if (uk, vk) satisfies (16), then
M 1y = Ydleigey =0 and - lim iz — Z gy = O,

wherezg = zy,,,,, iS the solution of (13) associated withi, Uk, vk), andz; = zyg; is

the solution of (13) associated witly, G, v). These convergence properties are needed

in Section 5.3. They cannot be deduced from Propositions 4.1 and 4.2, and they cannot
be obtained if we replace the distard:eby de.

Theorem 5.3. Assume thaA1-A6 are fulfilled Let k > 1 such thatd < v < 70 (70
appears inAB), and let (yk, Uk, vk) in L®(Q) x Uad[l, (ox)Y24] x V,q satisfy (16)
and (17) (y is the solution of1) corresponding tqug, vk)). Then there existy > 0,
pk € L1(O, T; Wy 1(R)), and ek € M(Q%) such that

ikl m + 02 =1 {1k 2= 9O pq@mpxc@m) < O (18)
forall z € Cy,

_on
ot

Pk, T) = =Ly (M) = [g' ()" midle;,  In €, (19)

+ Apc+ D4 (Y, Ui P+ AkFy (Vi U) + [0/ (V0 1uidle=0  inQ,
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/(HQ(X’t» Vi U, P Ak) — Ho(X, t, Yk, Uk, Pr, Ak)) dx dt
Q

> o (LNTHQ) + 1P, Yk, Uk) — P, Yk UD Nlg, Q)

forall u®e U, 20
e 3
/ <HE (S, t,v, ﬂ, Ak) — Hyx <S, t, vk, ﬂ’ Ak)) ds dt
D) BnA anA
> —o(LN(Z) + Cllv — wkllo,x)  forall v e Vag, 21)
where
. _ 1 1/2q
wx, t) = wx,t) i ul(x, t) — d(x, t)] < (o_k) ’

a(x, t) otherwise
and d(y)* ik is the bounded Radon measure definedQonby
Z— (e Y2 p@mxcan  forall ze Co(Q\D).
Proof. The proof is split into two steps.
Stepl: Optimality Conditions for the Boundary Contra). Letv € Vyq, and let O<
p < 1besuch that, < 7 < 7o, 7, = pP/0+99/@=D with g > § > N/2+ 1. Due
to Theorem 5.2 and Remark 5.5 of [3], there exists a measurable Stib8etch that
LN sk = pLN (), and
Yoo = Yk + P (Zev — Zky) + ko> (22)
Zy = Zoy, + 0 (Zov — Zy) + Fp,s (23)
with
1 :
fim 2 I e, = 1im ~lrk leigm) = O
1 1
Jj@ogllrkpllc(ﬁ) = Llinozllfkpllc(@) =0,
J(Ykp» Uk, Ukp) — I (Y, Uk, vk) = pAxJ 4+ 0(p), (24)

wherewy, is defined by

vk (S, 1) onx\ ke,

Vg, (S, 1) =
(S v(s, 1) on oK@,
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Yk, IS the solution of(1) corresponding t@uy, vk,), andzyy, z,, andz, stand for the
solutions of (13) respectively corresponding¥®, Uk, v), (Y, Uk, vk), and(Yk, Uk, Vk,),
and where

Agd = / Fy (X, t, i, Ui (Ziy — Ziy,) X it
Q

+ / L;/(X, V(T (Zkv — Ziw ) (T) dx+ / (G(s, t,v) — G(s, t, vy)) dsdt
Q by

On the other hand, sinag < 7, with A6 and (22), we have

H 9(Yko) — 9(Yk + 0(Zkv — Zky))
0

C(Q%)
- H I(Yko) — 9(Yk + o (Zkv — Ziew))
B p c@)
_ Yo R
< cMellegm + @)™ _ (”rkf’”c:@fﬁ) n pp'—1+qq/<q—q>> ‘
o o

It follows that

HMW»—mW)

0 - g/(yk)(zkv - Zkvk)

C(Q%)
=+ 2wy — Z — ,
< H 90k + 2 (Zv — Zw)) — (W) 8/ (Y10 (Zew — Zew)
p @)
+HMWJ—mw+paw—aw)
p c@%)
=+ Zvy — Z - ,
< H g(Yk + p(Zky kw)) g(y) — g (Y (Zy — Zka)
p c@®)
1cC (”rk""ﬂ n pp’—1+qq/<q—q>> ‘
0

Therefore, settindv, = 9(Yi,) — 9(Yk) — p g;,(yk)(zk\, — Z,), We have proved that

1
/IJanO P Ifio llc i@y = O (25)
Set(u, v) = (Uk, vk,) in (17). From (22)—(25), it follows that

—MkAkd = (ks 9 (M) (Zev = Zeu)) g (@) (@)

Je(Yic: Uk vi) = Jk (Yo Uk,
< limsup k (Vi Ui, Vi) k(Yip» Uk, Vkp)
p—0 1Y

< ok(LN (D) + 120 — Zll o) < k(LN (D) + Cllv — wklloo 5), (26)
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where

_ (J(yka Uk, Uk) - inf(P‘Ek) + 1/k)+

B Ik (Yk» Uk, vk)
de, (9(¥) Ve, (9(%))

Ak

’

if d 0,
Jk (Y Uk, v) e, (9(¥k) >

0 otherwise

Consider the weak solutiop, € L*(0, T; Wé’l(Q)) of (19). With the Green formula of
Theorem 4.2 of [3], we obtain

- / JEL O b, Yio Ui (Zhy — Zey) X lt— / ML (% Y(T)) (Zw — Zey (T) X
Q Q

0
5% =—/ P (v — o dst

—(uk, g Zy — 2 e —
(ks 9 (Vi) (Zw kvk)>M(Q K)x C( 5 9NA

Taking the definition ofAxJ and (26) into account, we have

d 0
f Hs S,t,vk,ﬁ,)»k — Hy S,t,v,ﬂ,kk dsdt
= ana ana
< ok(LN(Z) + Cllv — vklloo,x)-
Finally, from the definition ofux andA, it follows that
|kl + 02 =1 and (e 2= 90Y0) py gy xeam) < O

forallz e C,,.

Step2. Optimality Conditions for the Distributed Controku The approximate Pon-
tryagin’s principle (20) may be obtained in the same way as in [18]. O
5.3. Proof of the Optimality Conditions

Stepl: Convergence Results Observe that the weak stability condition on the right,
stated inA7 (Section 2.2), implies the convergence of the sequésge to zero, when
k tends to infinity. Indeed,

1
0< kIim of = kIim (inf(P) —inf(Py,) + E) =0.

Moreover, since the sequenc& )k is bounded ink*, there exists a subsequence con-
verging to some. > 0. From Theorem 4.2 of [3], it results that

Il Prll Lo wery

< CUFC Yo Ul + ILYC V(M) e + 19 YVl 2 ey 89 14K )
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foreverys > 1,d > 1, satisfyingN/2d + 1/8 < 3 (where£(Cyp(Q\X)) is the space of
linear continuous mappings fro@L(Q\ L) into C,(Q\ X)). Since the sequenceésy)x,
(Yi)k, and(uy), are bounded ioV1(Q%), C,(Q\X), andL9(Q), the sequencepy)x is
boundedirL® (0, T; W ()) foreverys > 1,d > 1, satisfying\N/2d+1/5 < 3. Then
there exist a subsequence, still indexeckbgnd p such that(px)x weakly converges
to pin L¥(0, T; Wr9(Q)) for everys > 1,d > 1, satisfyingN/2d + 1/8 < 1.
From the embedding theorems, it follows thiak), weakly converges t@ in L9 (Q).
Observe that(uy)x and (ud)x converge respectively ta and u® in L9(Q). (Indeed
JQ 18X, H—uk(x. ] dxdt = (1/(01)2) dy (@, U) = (o1)*/2) Moreover(dy (vk. 7))k
converges to zerdyk)x converges tg/ in C(Q¢), for everye > 0. From assumptions
on®, F, andL, with Lebesgue’s theorem of dominated convergence, we obtain

k'LrTgo Dy Vi W) — DY, Y, Wllq.Q = 0,
kIiﬁrrgo IFy (s Yo Uk) — Fy(, ¥, )l =0,
kli_[TQO ILY Gy V(™)) = LYC, Y(T)llne = 0.
The measurgy induces a measug € (C,(Q\ X)) via the formula
(€ h)ovs = (k6 M) yomyxc@m  forevery he Co(Q\D).

It follows that||uk||M(@) = [kl cy0\5)y - ON the other hand, for evetyin clQn
Co(Q\X), we have

/Q (pk% + ;aj DihDj pic + (X, t, Yic, Uk) pkh> dx dt
= (K, I M) vy @) @) — /QAKF)’,(x,t, Yk, Uh dx dt
- fg ML ((THRCT) dx
= (6 G YO, 015 /Q MFJX. . Yio Uigh dx t

- /Q ML %, y(THACT) dx (27)

Since the sequendg)x is bounded iNC,(Q\ X)), there exists a generalized sequence,
still indexed byk, such that¢k)k weak-star converges to a lingitin (Cp(Q\X))'. From
Theorem 2.1, there exists a bounded linear transformatjorCp,(Q\X) — L, (Q),
such that

F.oh), o5 = (17 oo ous + f oA; () dr; (28)
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for everyp € C(Q) and everyh € Cp(Q\X). Besides, for everit € Cp(Q\X), we
have

1, D)o — (G 9 VO, o 5]

< ¢ = &6 I D). vs ]+ 1k (@) — g )N, o5

< ¢ = & YD) gzl + ik (@) = GO v igmyxciam|

<€ =t D) a2l + CIYW) — IV lle g

<€ = 8o I DN g1zl + CIIY = Wl o,
< (¢ = & 9 (D), gy 5] + Cdr, (U, vi), (T, D))
< ¢ = & g (M), 651 + Claw)™,

whereC is a positive constant independentkoft follows that

Jim (G g'(Yoh), iz = (€, g (D), g forevery heCy(Q\D).

With (28), we obtain

Jim (z g (Moh). g = (€. I Dh).qis = (77,9 DN \5

for everyh € Co(Q\X). Therefore, by passing to the limit whé&rtends to infinity in
(27), we prove thap is the solution of8).

Step2: Integral Pontryagin’s Principle fod. With the convergence results previously
stated and using classical arguments, by passing to the lirt20jnwve obtain

f Ho(X, t, ¥(X, t), G(X, t), P(X, ), ») dx dt
Q

5/ Ho (X, t, (X, 1), u(x, 1), px, 1), 1) dx dit
Q

foreveryu € Uyq. The pointwise Pontryagin’s principle may be obtained asin Section 5.2
of [18].

Step3: Integral Pontryagin’s Principle fo. Inequality(10) is obtained by passing to
the limit in (21), with the following convergence result:

lim / %(v—vk)dsdt
b

k— o0 3nA
ap _ ny
=/EaTA(v_u)dsdtJr/iAg(g (V)@ — 2y)) dryg (29)

for everyv € Vuq (recall thatz, andz; are the solutions to (11) correspondinguto
andv).
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We prove(29). With the Green formula in Theorem 4.2 of [3], we have

/XkF§(X,t,Yk, Uk)(Zkv—szk)dxdtJr/AkL;,(x, V(M) (Zy — Zky,) X
Q Q

/ 9Pk
= _(Mkv g (yk)(zkv - Zka))M(W)xC(W) + /X m(v — Uk) dsdt

d
= — (% 9 V) (2w — Zw)) w05 + / aﬁ(v — ) dsdt
% dNa

wherez,, (respectivelyz, ) is the solution to (13) corresponding g, Uk, v) (respec-
tively (Y, Uk, vk)). In the same way, we have

/ ARy (X, t, ¥, 0)(Z, — 2,;)dxdt+/ ALY (X, Y(T) (2, — Z5) dX
Q Q
(s o dp _
= —(n;, (V2 — Z5))p6\5 +f2 m(v — v)dsdt
= E. 9O - 2hon+ [ MG )@ -2 drg
z
Ip _
+L m(v — U)det

wherez, (respectivelyz;) is the solution of (13) corresponding ®, U, v) (respectively
(y, 0, v)). By setting

3 ap
/ (ﬂ(v_vk)_ _p(v_,;)) dsdt—/ A GG @ — ) dz |
- anp =

I =
anp

it follows that

e < IAF)CL . 020 — Z5) — McFy (X, t, Vi Ui) (Zkv — Zew) 1@
+ ALY G V(T (@0 — Zo)(T) = MLy G (T (2w — Z) (Ml
+ 12 TWN@ — Z0)) w615 — Tk I V) (2w — Zew)) w615

< (A = M Fy o ¥s D) o+l Py G ¥, 0 = Fy G Yo U 11.0) 1120 = Zi lloo.0

+ IFSC Yo WO (2 = Z5) — (Zov — Zw)) 11,0
+ (A = Al 1Ly G YT lne + Al 1LY G Y(T))
— Ly V(M) l.2) 120 = Zslloo.q
+ LG YT = Z) — (Za — Za)(Mllne

+1E IWN @~ Z))y 008 — Gk 900w — Za))s 015 -
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Using_the previous convergence results, the convergengg &y, kv )k to (Y, Z,, Z;)
in C(Q#), for everye > 0, we obtain

kll—>rr<:o ” F;l(? )_/» u) - F)//(v yk, uk)”l,Q

= lemoo ILYC, ¥(T) = Ly (M) llne =0, (30)
k'Lngo IFy G Yo U) (2 = Z) — (Zow — Zaw)) @ = O, (31)
k"_[To\C ILY G (TN 20 = Z3) — (Zv — Zw)) (T llne = 0. (32)

On the other hand, notice that
E I D@ = Z0))w6v5 — (Gk 9 () (Zew — Zew)) s 5|
< ks 9 (Vi) (Zww — Zkw) — 9 (D20 — Z0)) . o\ 5
+ 1=, 9@ — Z0)s 05
and due tdA6, (16), and Proposition 4.2
[(¢ks 9" (Vi) (Zkv — Zkw) — 9 (V20 — Z9)) s 05|
= Ik, 9 (V) (2w — Zew) — 9 D@2 — Z9)) @70y x|
< Kk (@ V) = I D2y = Z9)) pq a7y wc )|
+ i 9 MO (Zo = Zo) — (Zov = Zaw)) (@) (@)
< CUG V) — I Dl geimy + 120 — Bllegm, + 120 — Zollogm)
< CUIYK = Y12, + 120 = Zilleigmy + 20— Zollegm)
< C((a1)™ + ok + 1D} (-, Yk, Uk) — Dy (-, ¥, B)llg,Q)-
From (30)—(32) and these estimates, we deduce that

lim 1 = 0. (33)

k— o0

On the other hand, sine — z, = z; — z; = 0 on = U Qg (z, andz; are the solutions
of (11) corresponding to andv, andz, andz; are the solutions of (13) corresponding
to (Y, U, v) and(y, 4, v)), then

f A (@ (N(zZy — 2p) drrg = / A (@ (N(Z — Z5)) drg,. (34)
z z
Therefore, (29) follows froni33) and(34).

Step4: Complementarity Condition From the definition ofgx and from (18), we
deduce

(¢, 2= 9(Yi)) w005 <0 forevery zeC. (35)
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As above, we can write

(Z, 9D ans — (Cko IVK)) 615
< = & 9V ov5l + 1k 9T — (V) 615
<€ = 8o 9w ovs | + 1tk 99) = GO aq ) oo™
< (& = & 9 wa\sl + CIIT) — IV lle o)
<€ = & 9wzl + CIY — Yl c o,
< (¢ = & 9,015 + Cox,

whereC is a positive constant independentkofUsing this estimate and passing to the
limit in (35), whenk tends to infinity, we obtain

E.2- 9005 = (12— 90prs + [ Acz—a@) dr
forallze C.
Step5: Nontriviality Condition  Using(15) and passing to the limit in
1= 28+ Il gm < M+ Clladicy@sn)?

we have 1< 22+ C2(limyl|¢l c,0\5),)? (C is the constant in (15)). & > 0, the proof
is complete. Ifx = O, we must prove thaf¢||c,a\s) > 0. Since ing,5,5,C # 9,

there exists a baB(z, 2p) C C in C,(Q\ X), with centerz and radius 2 > 0. We can
choosezc € B(0, 2p) such that(¢k, Z).. a5 = oll¢kllc,o\5)y- Sincez + z € C, we
have

(¢, 2+ Zc — 9(¥i)) 1008 < O

By passing to the limit,

Co+ (0. 2= 95 <0,
and it follows that; # 0. Observe that # 0 is equivalent tar; |6, 5. 77 15) # O (itis
a direct consequence of Theorem 2.1). O
6. Application to the Case of Bilateral Constraints
Consider state-constraints of the form

aix,t) <y(x,t) <b(x,t) forall (x,t) e Q\Z, (36)
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wherea andb are two functions irC(Q) satisfyinga(x, t) < b(x, t) on Q. The state
constraintg36) may be written in the forng2) by setting

yeC={zeCyQ\Z)|a<z<bh}. (37)

Theorem 6.1. Suppose that the assumptions of Theo?e3rare satisfiedSuppose in
addition that ax, 0) + &€ < yo(X) < b(x,0) — £ in @ and that there exist§ € Vuq

satisfying ds,t) + & < v(s t) < b(s,t) — £ on X (for somes > 0). Then there exist
2 >0,pe L0 T; Wal(Q)), fta € Mp(Q\E), and jip, € Mp(Q\E) such that

Ha =0, fp = 0, (La, fin, &) # 0, (38)
</'_va y)b,(j\f} = (ﬁbv b)b,Q\)_:a <lla» y)b,Q\)_: = (lla, a)b,Q\)_:a (39)
p satisfieg8) with g'(y)*7; = jib — fla, (40)

Ho(X, t, y(X, 1), G(X, t), p(X, ), A) = min_Ho(X, t, ¥(X, t), u, p(x, t), 1)
ueKy (x,t)
forall (x,t) € Q,

e ey OB N ; 9P 5
Hs (s,t, Y. 0. 9(S. 1. o= k) = min Hs (S,t, ysn,v, anA’k>

veKy (s,t)

forall (s, t) € =, whereQ is ameasurable subset of Q satisfyitfy(Q) = LNTLD),
¥ is a measurable subset BfsatisfyingCN () = £N(2), andKy (s, 1) = Ky (s, 1) N
fveV]a(st) <v=<h(st)}.

Proof. With Theorem 2.3 and with arguments similar to those in the proof of The-
orem 7.3 in [2], we can prove that there exist> 0, p € L*0, T; Wy'()), ¢ €
(Co(Q\X)), two bounded linear transformatioms,: Cp(Q\Z) —> L°° (Q) and

A_: Ch(Q\Z) — L;‘;_(Q) such that

(T[E*7 jTE+’ X-) # Oa
(41)
(e, Vno\s = (T4, Do\ 5> (7, Voos = (77— Apo\5»

/EA+()7) dmze = (74, B) 5y xc(s)» /EA_(Y) dmz- = (-, @) mE)xC(E),

p satisfies(8) with g'(y)*7; = nz+ — 7z, (42)

Ho(X, t, ¥(X, 1), G(X, 1), p(X, ), 1)

= min Hg(x,t, ¥(x, 1), u, p(x,t), 1)

ueKy (x,t)
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forall (x, t) € Q, whereQ is ameasurable subset@fsatisfyingCNt1(Q) = £N+1(Q),
and

__ 9P - P -
Hs | - L —Hs |- _
‘/;:< E(vysvv anA9)\f> E(,y, U, anA,)\z>> det
S/_Af(zi—zv)dﬂg——/_ Ay (Z; — 2,) dmze (43)
z z

for all v € Vaq, 2, is the solution of(11) corresponding t@. Forv € Vuq, let ¢, be the
solution of

0 . .
8—¥+Ay=0 in Q, y=v onx, y0) =vyo inQ.

Observing thay —g; belongs taCo(Q\ £), and that, for every € Vag, z,—2; = ¢, — 93
on Q\X, we obtain

[ Acs=9dme. = [ A - gydn =0 (44)

b b

/: A (Z; — 2)drze = / Ay (95 — @) drrgs forall v e Vg, (45)
p) >

f A_(Z; — z,)dmz- = / A (g5 — @) drrz- forall v € Vg (46)
b )

From (41), (43)—(46), it follows that
o ap - 9P -
Hs (- —Z A)—=Hs|- — A dsdt
\/;:< 2<5yav’ 8nA7 ) E(ayav’ anA7 >> S
< (T, @ m)xeE) — (T P) pm(s)xc(s)
+/_ A (py) drgs —/_ A_(py) drrg- (47)
p)) P

forall v € Vaq. )

1. We claim that(ng+©\i, T o\8 A) # 0. Arguing by contradiction, we sup-
pose that(”éﬂé\i’”iwo\i’)_‘) = 0. It follows that p = 0. With (41), we have
(”Z*@ ”Zﬂi) # 0, and with (47), we have

Oif_ Ay (oy) dﬂ§+ —f A_(py) dTFg—‘Hﬂgﬂ a)M(i)xC()i)_<7T§+v b)M(i)xC(i)
X X
for all v € V4. In particular,

0= [ Avtgndne. — [ A dry
z z

+ (e, A pms)xeE) — Tee D) avs)xes)- (48)
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With a comparison principle, we prove that
Yase(X, 1) < @p(X, 1) < yp_a(x,t)  forall (x,t) € Q\Z,
wherey, (forh =a+ £ orh = b — &) is the solution of

%+A¢=o iNQ, Y=hy onZ, ¥(©=hO inQ.

Notice thatyy,_; andy,,; belong toC(Q). From Theorem 2.1, it follows that
(Tz+, A mEyxeE) T 577&@)
=[A+(¢a+g)dn5+ < / A (g5) drzs S/iAJr(wb—E)d”&
) X )
= (Mg, D) sy we(s) — B (D),
and
(e—, &) pmsyxcE) T g775—(5_3)
- / A (o) dr;- < / A(gp) dr;. < / A_(fos) drz
% z z
= (17, B) s yxcs) — Emz- ().

Therefore
/_ Ay (93) d7T§+ - /_ A_(¢3) dﬂg— + (775—, A ME)xCE) — <7T§+, b)/\/t()':)xc(i)
b b

< =&l () + 7 (D],
which is in contradiction with48). By settingji, = T 1605 andjp = mz+
obtain(38), (39), and(40).
2. By a comparison principle, we prove that, for everg V,qobeyinga < v < b,
we have

/_ Ay (py) d7T§+ = /: Ay (Yp) d7T§+ = (7z+, O) pm(5)xc(5)
> >

6\50 WE

f_l\—(lﬂa)dﬂg— = (Tr, A MmE)xcE) = / A_(py) drz-.
) D)

Taking (47) into account, we obtain

__ 9P - 9P -
Hy (- 9.9, —. &) —Hg (. V.0, —. %) ) dsdt
[ (#s (50 g 2) = s (7005 7))

< (s A pmsyxes) — (e B ams)xes) + A Ay (py) Az — /): A_ (@) drrz-

<0 forall veVy with a<v<h

The pointwise Pontryagin’s principle may be obtained as in Section 5.2 of [18].

proof is complete. O

The
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