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1. Introduction

In the field of Markov decision processes (MDP), the normal first-passage model is
discussed in some papers, such as [1]-[6]. The aim of the normal model is to maximize
the expected reward of a first passage from an arbitrary state to state 0. Applications of
the normal first-passage model include stochastic search for a hidden object, shares deal,
secretary problem and so on (see [7]).

In this paper we discuss MDP with distribution function criterion of first-passage
time. In this paper we also study the first-passage problem, but our aim (see Definition 1.1
below) is different from the aim of the above normal first-passage model. Our model can
be applied in the field of reliability (for further discussion, see Remark 1.1).

* The research of the first author was supported by the National Natural Science Foundation of China.
The second author’s research was supported by the National Natural Science Foundation of China, Grant No.
19731010.
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Lin Yuanlie [8] discussed an optimal model for the first-passage time distribution
function with a continuous-time parameter. The set of all stationary policies is only
considered in [8]. Algorithms to find some optimal policies are given in [8] when the
state space and action space are finite.

The criterion for our model is similar to the criterion in [8]. Because our model deals
with the case of discrete time, many results in our paper and the methods used by us are
different from those in [8].

Other related work includes [9] and [10] (for details, see Remark 1.2).

In this paper the definition and interpretation of our model are given in Section 1.

Some results of two kinds of optimal policies are given in Section 2. These results
include sufficient conditions for these optimal policies (Theorems 2.3 and 2.5), necessary
conditions for them (Theorems 2.4 and’2.4ufficient and necessary conditions for the
existence of these optimal policies (Corollaries 2.1 and) 2i4d algorithms for them
(Remark 2.1).

Results in Section 3 include the existence ofiamptimal policy and a sequence of
(n, &)-optimal policies (Corollary 3.1, Theorem 3.5 and Corollary 3.3), and an algorithm
to find a sequence @h, ¢)-optimal policies (Remark 3.3).

Our model is{S, (AG),i € S),q, D}, where the state spa&= {0,1,2,...}is
countable. Le§ = {1,2,3,...} C S. We useA(i) to denote the set of possible actions
when the system is in statec S. All A(i) (i € S) are countable. The letterdenotes
the family of stationary one-step transition laws: when the system is inistatd we
take an actiora € A(i), the system moves to a new stgtselected according to the
conditional probabilityq(j | i, a).

The set of general policies = (7o, 71, 72, . . .) (See [1] for the definition ofr) is
denoted byll. A mappingf: S — (J;.gA(i) satisfying f(i) € A(i) foralli € Sis
called a deterministic decision rule. LEtdenote the set of all deterministic decision
rulesf.Letfi e F,i =0,1,2,..., 7 = (fo, f1, fo,...) is called a Markov policy.

Let 1‘[:'@n denote the set of all Markov policies. Léte F, f* = (f, f,...) is called
a stationary policy. Lef1¢ denote the set of all stationary policies. Obviouslf c
nd c 1.

At any stagd (> 0), X; andA; denote the state of the system and action taken in

that state, respectively.

Definition 1.1. We define

D@i,n,7) =P, {t =n| Xp=1i}, ieS, mell, n=12...,
wheret denotes the smallest intege(> 0) such thatX; = 0 whenXy =i, P, {t >
n | Xo = i} denotes the probability oft" > n” using the policyx starting fromi.

Obviously,D(i,1,7) =1,i € &, 7 € II.
We define

D*(i,n) = supD(, n, 7), e, n=12,....

mell

Obviously,D*(i,1) = 1,i € &.
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Definition 1.2. Letn > 1,7 € II. r is called an optimal policy (up to) if

D, k, 7) = D*(i, k), forall i1eS, k=121,2,...,n
7 is called an optimal policy if

DG, k, ) = D*(i, k), forall ieS, k=12, ....

Remark 1.1. From the viewpoint of reliability we explain the above model as follows.
Let the state 0 denote an inefficient state of a system. Thdgnotes the working life
(operating life) of the system ar®, {t > n | Xo = i} denotes the reliability function

of the system using policy starting from staté. Roughly our aim is to find an optimal
policy which maximizes the reliability function of the system. Hence, the background
of our model is an optimization problem in the field of reliability.

Remark 1.2. The optimization problem igfP,{ZZ < c | Xo = i} is studied in [9],
whereZZ denotes the total discounted reward (infinite horizon) using palisjarting
from statei andc is a constant.

The optimization problem sypP,{R > c | Xo =i} is studied in [10], where

N

R= _m Zr(xn,

N—oo n=0

denotes the average reward using poficgtarting from staté andc is a constant.
It is easy to see, the above criteria are different from the criteria (Definition 1.1) of
our model.

Let Xo = ig, Ag = a9 € A(Io), X1 =i, A1 = a1 € A(il),...,Xn = ip.

hy = (ig, @0, 11, a1, ..., 1) is called the history up to stage H, (n > 0) denotes the
set of allh,.
Letr = (mo, w1, 72, ...) € I, hn = (io, ap, il, ai, ..., in) e H, (I’l > l). The

policy n’ = (mg, 71, .. .) € I is defined as follows: fovt > 0, Vh; € H;, we define
m{(@|hy) =m(@lio, @, i1, a1, ..., a1, hy), ae AQ),

where the last component bf isi.
Write 7’ = m(ig, @g, . . ., in—1, @8n_1)-

2. Some Results of Optimal Policies

Theorem 2.1. Letn> 2,7 = (7g, 1, ...) € I1,i € &, then

DG.n.m)= Y m(@li)Y q(j |i,@D(j.n—1x(,a). (2.1)

acAdi) IS
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Proof.
D(i,n,]T)Z Pﬂ{th|XO=|}
= Y Pr=nAg=alXo=1i}

acA(i)
= Y mo@| )Pt =n| Xo=1i,A¢=a}
acA()
= Y m@li)Y Pdr=nXi=]|Xo=i,A0=a}
acA() €S
= Y m@li)Y q( i, P {r=n|Xo=1i,A0=2a, X1 = j}.
acA() €S

By the definition ofr (i, a) (see Section 1), it is easy to see that

Pr{t=n| Xo=1i,Ap=a, X1 = j}
= Pria{t 2n—-1]Xo = j}, n>2 i jeS acAj.

So (2.1) is true. O
Theorem 2.2. Letn> 2,i € §, then

D*(i.m = sup > q(j [i,a)D*(j.n—1).
aEA(I)jESU

Proof. Vm €Il,i € &. By Theorem 2.1 we have
DG,n,m) = ) mo@li)Y a(j [i,D(,n—1 7, a)

acA() €S
< Y m@li)Y q( [i.aD*(j.n—1
acA() €S
< Y mo@li) sup Y q(j|i,aD*(j,n—1)
acA() acAl(i) ieS
= sup » q(j |i,aD*(j.n—1).
acAl) jcg,
So,
D*(i,n < sup » q(j |i,a)D*(j.n—-1), ieS. (2.2)
aEA(i)jes]

Ve > 0,Vi € . Itis evident that there exists e IT such thatD(i,n—1,'7) >
D*(@i,n — 1) — e. The policyr € I is defined as followsr ='n, whenXp =i € S;
7 is an arbitrary policy i1, whenXy = 0. Then

DGi,n—1,7)>D*(i,n—1) —e¢, forall i e%.

Itis evident thatyi € &, 33 € A(i) such that

> a(j 1i,a)D*(j,n—1) > sup » "q(j |i,aD*(j,n—1) —e.
icS aEA(i)jESo
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We definef (i) = g, € §; f(0) € A(0),thenf € F.Letz = (f, 7). By Theorem2.1
we have

DG, n.#) =) _q(j i, f)D(j,n—1,7)

€S
> q(j i, fA)ND*(,n—1) — )
€S
>y qd i, f()D*(j,n—1 —¢
€S
> sup » q(j |i.aD*(j.n-1)—2:, e
aeA(i)ieS’
S0,D*(i, n) > SURca) Zjean(j |i,a)D*(j,n—1) — 2¢, i €.
Lete — 0O, we have
D*@.m = sup } q(j |i.aD*(j.n—-1. ieS. (2.3)
aeA(i)jeSJ
From (2.2) and (2.3) we know that Theorem 2.2 is true. O

Theorem 2.3. Let f € Fsatisfyqj | i, f(i)) = SUpcaq) a(j i, @) foralli, j € &,
then f* is an optimal policy

Proof.  (Apply the induction.) ObviousyD(i, 1, f*°) = D*(i, 1),i € .
Induction hypothesisD(i, n, f*®) = D*(i,n),i € S.
We have by Theorem 2.1 and the induction hypothesis,

DG.n+1 %) =>"q( [i. f())HD(.n, £

€S

=>_q(j |i. f()D*(j.n
€S

=Y 4G 1L,aD (), i€, aeAd).
€S

So, we have by Theorem 2.2,

DGi,n+1, %) > sup > q(j [i,0D*(j,m =D*G(,n+1), i€
aeA(i)jES)
ThatisD(i,n+ 1, f°) = D*(i,n+1),i € S. |

Example 2.1. LetS=1{0,1,2}, S = {1, 2}; A0 = AQD) = {1}, A2 = {1, 2};

gq01]0,1)=1,q0]|1,1)=025q(1]1,1)=05q(2]11) =025q0]|21 =

0.35,q(1]2,1) = 015,92 2,1) = 05,90 ] 2,2) = 0.15,q(1 | 2,2) = 0.3,

g2 | 2,2) = 0.55. It is easy to see thd& = {f, g}, wheref(2) = 1,92 = 2.

Obviously,q(j | i,9()) = SUReas d(j |1,d),1, ] € S. S0,g> is an optimal policy
by Theorem 2.3.
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Lemma?2.l. Letn> 2,i € §. Letxr = (g, m1, 2, ...) € Il satisfy O, n, 7) =

Proof. By Theorems 2.1 and 2.2, we have
D*(i.m =D@.n7)= > m@li)) q(j|i.a)D(j.n—1 x(,a)

acA() jeS
< Y m@li)) adli,ab*(j,n-1
acA() €S
< sup ) q(j |i,8D*(j,n—1)
aeA(i)jes)
= D*(, n).
S0,D*(i,N) = Y acaq) To@ 1) Xjeq, Al [1,0D*(j,n—1). O

We define
ALi) = {ae AG) ) a(jli.aD*(j.n-) =D, ieS nx2
€S
Ifall AGi) (i € &) are finite, then by Theorem 2.2 we know thii(i) # 0,1 € &,
n> 2,

Theorem 2.4. Letn> 2.7 = (mg, 71, ...) € I1is an optimal policyup to ). Then

facAl) [mo@li)>0 c[A). ie%.
k=2

Proof. For2< k < n, by Theorem 2.1, Lemma 2.1 and Theorem 2.2 we have
D*(i.k) = D(.k.m) = Y mo@l|i)Y a(j [i,aD(j.k—1,x(,a)

acA() €S
= Y m@li)) q(j |i,D*(j,k—1)
acA() €S
< Y m@li) sup Y q(j |i,8)D*(j,k—1)
acAdl) acAl) jes
= D*(i, k), i €.
So,
Y mo@l DY a( li,aD*(j,k—1)
acA() €S
= Y mo@li) sup Y q(j li,aD*(j,k—1, i€,
acA() acAl) jeg

On the other hand,
mo@l i)y q(j 1i,aD*(j,k—1)
<%

<m@|i) sup Y q(j |i,D*(j.k—1), ieS aecA.
aEA(i)jGSO
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So,
mo@ 1)) a(j |i,aD*(j, k—1)
%
=mo@l|i) sup Y q(j [i,aD*(j.k—=1), €S acAl).

acA() i

Ifi € §,a€ A(i) andrg(ali) > 0, then

Y- ad li,aD*(j,k—1) = sup Y q(j |i,a)D*(j,k— 1) = D*(, k),
i€ aeA(i)J-ESJ

thatis,a € Ai(i). Sofa € A() | mo(a | i) > 0} C Ai(i), i € S. Hence Theorem 2.4
is true. O

Similarly, we have Theorem 2.4

Theorem 2.4. Letw = (o, 71, ...) € I1 be an optimal policythen

fae A() |mo@l|i)>0 (A, e
k=2

Theorem 2.5. Letn> 2and f € F satisfy f(i) ﬂﬂzz Ai() foralli € &, then
f°° is an optimal policy(up to n).

Proof. (Apply the induction). ObvioushD(, 1, f*°) = D*(i, 1), € S.
Induction hypothesis: for ¥ k < nwe haveD(i, k, f*) = D*(i,k),i € .
Becausef (i) € A, (i), i € S, we have by Theorem 2.1 and the induction
hypothesis,

DG, k+1 )= "q(j |i. f()D(.k )

jeS
= a1, f())D*(j. k
jeS
= D*(@i,k+ 1), i €%
So,D(,k, f*°) = D*(i,k),i e §, k=1,2,...,n. |

Similarly, we have Theorem 2.5

Theorem 2.8. Let f € F satisfy (i) € (N, Ai(i) foralli € &, then f* is an
optimal policy

Theorem 2.6. Let n> 2. If there exists an optimal policfup to n), then there exists
f> e ¢ which is an optimal policyup to ).
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Proof. This follows immediately from Theorem 2.4 and Theorem 2.5. O
Similarly, we have Theorem 2.6

Theorem 2.6. If there exists an optimal policyhen there exists % e MY which is
an optimal policy

Must f> be an optimal policy (up to) if f € F satisfiesD(i, k, f*°) = sup,.
D@,k,g®) foralli € §,k=1,2,...,n? The answer is negative.

Example 2.2. LetS, S, A(i) (i € S)andq(j | 1,1) (j € S be the same as those
in Example 2.1. Leg(0 | 0,1) = 1,q(0 | 2,1) = 0.15,q(1 | 2,1) = 0.15,9(2 |
2,1) =07,q0]2,2 =01,q(1] 2,2 =06,q2 ] 2,2) = 0.3. Itis easy to see
thatF = {f, g}, wheref(2) = 1, g(2) = 2. It is easy to see that by Theorem 2.1,
DG,k g%) =3 .50 11,90)D(j,k—=1,9%),i € S, k> 2.S0,D(1,2,9%) =
0.75,D(2,2,9*) = 0.9, D(1, 3,g*) = 0.6, D(2, 3, g*) = 0.72. Similarly, we have
D@,2 f*) = 0.75,D(2,2, f*) = 0.85,D(1, 3, f*) = 0.5875,D(2, 3, f*) =
0.7075. SoD(i, k,g*) > D(, k, f®),i € §, k=12, 3.

On the other hand, we defime= (f, g*). It is easy to see that by Theorem 2.1,

D23.7) =Y q(j | 2 f(2)D(j. 2 g%) = 0.7425> 0.72= D(2, 3, g%).
s

henceg®™ is not an optimal policy (up to 3).
To sum up, we have Corollary 2.1 and Corollary’2.1

Corollary 2.1. Letn> 2. The following three conditions are equivalent

(1) There exists an optimal poligup to n).
(2) There exists ¥ e ¢ which is an optimal policyup to 1.
() M Asli) # o foralli € S.

Corollary 2.1’. The following three conditions are equivalent

(1) There exists an optimal policy
(2) There exists ¥ € I‘Ig which is an optimal policy
(B) Moy Ak £ foralli € K.

Remark 2.1. To sum up, when S and al\(i) (i € ) are finite an algorithm can
be stated as follows: using Theorem 2.2 we can successivehDffitid k) and A{ (i),
e S, k=23....nIf e, Ai) #0@foralli € S, then we can find > e ¢
which is an optimal policy (up to) by Theorem 2.5. lfip € § andky (2 < kg < n)
such thalﬂt":2 Ai(ip) = ¢ exist, then there is no optimal policy (up m). Using this
algorithm we can judge whether an optimal policy (umte 2) exists and can find an
optimal stationary policy (up ta > 2) if there exists an optimal policy (up to> 2).
Similarly, an algorithm to find an optimal stationary policy can be given.
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Remark 2.2. In Example 2.2 it is easy to see th&§(2) = {2}, A}(2) = {1}. So
A5(2) N A5(2) = . Hence there is no optimal policy (up to 3) or optimal policy for
Example 2.2.

In the normal optimal first-passage model (see [2]) we define the one-step reward
ri,a) =1foralli € § anda € A(i), then we can obtain the following optimization
problem: sup.q Ex{t | Xo=1i},i € S.

We assume thaP,{t = co | Xg =i} = P{Xn #0,n=1,23,... | Xo =
i} =0andE,{t | Xo =i} < +ooforalli € § andzr € IlI. If #* € II such
thatE;-{t | Xo =i} =sup,.q Ex{r | Xo =i} foralli € &, thenzx* is called an
expectation life optimal policy.

Theorem 2.7. Let B {t = o0 | Xo =i} =0and E.{t | Xg =i} < +oo for all
i € Sandr € I1. If #* € I is an optimal policysee Definitiorl.2),thenz* is also
an expectation life optimal policy

Proof. Forallz € I,

(o]
Ex{t | Xo=i} =) nPuit=n|Xo=i}
n=1

M 20 I

D Prfr=k| Xo =i}

k=n

D(@,n, 7™

=

D@,n, )= E.{t | Xo =1}, i €.

>
Il
N

Hencer* is an expectation life optimal policy. O

Remark 2.3. From Corollary 2.1 in [2] we know that an expectation life optimal
policy in Example 2.2 exists. However there is no optimal policy in Example 2.2 (see
Remark 2.2). Hence an expectation life optimal policy need not be an optimal policy in
the general case.

3. Existence Results on am-Optimal Policy and Relevant Results

From Example 2.2 we know that an optimal policy (umtg= 2) need not exist in the
general case. We discuss existence on-aptimal policy and relevant problems in this
section.

Definition 3.1. Letn > 1andx € I1. If D(i,n, 7) = D*(i,n) foralli € &, thenx
is called am-optimal policy.
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Letall AG) (i € §) be finite. Itis evident thatn > 1,3f, € F such that
Y oad i, fa(i)D*(j,n = max > q(j [i,aD*(j,n), ieS (31
je% acAb g,

Theorem 3.1. Letn> 2. Thent™ = (fo_1, faooa, ..., f2, 1) € M4 (x@ = )
is an n-optimal policywhere f is defined by3.1).

Proof. (Apply the induction.) By Theorem 2.1, (3.1) and Theorem 2.2 we have

D(,27®)=DG,2 ) => q(j |i, h()=D*(,2, ieS.
€S
Induction hypothesisD(i, n, ™) = D*(i,n), ie S.
Obviously,7 ™Y = (f,, fo_1, ooz, ..., f2, 1) = (fn, 7). By Theorem 2.1,
the induction hypothesis, (3.1) and Theorem 2.2 we have

DG, n+1,7™) =% "q(j |1, fa()D(j, n, 7 ™)

€S
= q(j |i. fa))D*(j. M)
€S
= D*(i,n+1), ieS. .

Corollary 3.1. Letn> 2.Ifall A(i)(i € S) are finitg then there exists ™ e T4
which is a n-optimal policywhere the definition o ™ can be found in TheoreBi1.

Remark 3.1. From Corollary 3.1 we know that there exist$® e I, which is a
3-optimal policy in Example 2.2. However, there is no stationary policy which is a 3-
optimal policy in Example 2.2. Hence in general case a stationary policy which is an
n(> 2)-optimal policy need not exist.

By the definition ofD*(i, n) it is easy to see thd*(i, n) > D*(i,n+ 1) > 0 for

alli e Sandn=1,2,.... Sowe can defin®*() = lim,_,. D*(i,n),i € S.
Theorem 3.2.
(1) Let Ali) be finite for some £ &, then
D*(i) = sup D _q(j |i,aD*(j). (3-2)
aEA(i)jes)

(2) If S is finite then(3.2)is true for alli € S.

Proof. (1) Leta € A(i).Ve > 0. Becaus{jjeso q(j | i,a) < 1, there exists a positive
integerN such thathiNHq(j | i,a) < e. Itis evident that there exists a positive
integerN such that

ID*(j,n) — D*(| <e, n>N, 1<j<N.
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So, whem > N,

Y a(ili,D*(j,m =Y q(j Ii,aD*(j)

€S €S
<Y q( |i,a)ID*(j,n) — D*(j)|
€S
N o]
=Y _q(jli,®ID*(j,m — D*(HI+ Y qa(j |i,a)ID*(j,n) — D*(j)
j=1 j=N+1
< g+ 2 = 3e.

Hence lim—o Y 5jcs A(j 11, 8)D*(j,n) = 3 .5 a(j |1, 2)D*(j).
By Theorem 2.2 we have
D (I)anLmooD @i,n+1 = lim max%q(J |i,a)D*(j, n)

n—o0 aeA(|)J€

= max lim Zq(j |i,a)D*(j, n)
€S

acA(i) n—oo

max » ~q(j | i,2)D*(j).

aeA(i)jeS,

(2) Ve > 0. Itis evident that there exists a positive integesuch that

So, whem > N,

sup > d(j |i,a)D*(j,nm — sup Y q(j |i,a)D*(j)

aGA(i)J'ESO aEA(I)jES0
< sup Y q(j |i,a)[D*(j,n — D*(j)|
aGA(I)J‘ES)
<e, i €%
So
lim sup Y q(j [i,D*(j,m = sup > a(j |i,aD*(j), ieS.
N acAl) jcg, acAl) jeg
Hence

D*(i) = lim D*(.n+1) = lim sup > ad li.ab*(j.n

“—>°°aeA(i)j€5U

= sup » q(j [i.aD*(j)), ie%. O
aEA(i)jesj

We discuss sufficient conditions &f*(i) = 0 below.
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Assumption A. There exist a real number > 0 and a positive integer N, such that
P.{t <N | Xg=i}>aforalli €e §andnr € II.

If 7 is viewed as the operating life of the system, then Assumption A is satisfied
easily in many actual instances. In many actual instances, such as the life of a man or
the operating life of a machine and so on, there is a limit to the operating bfethe
system, so Assumption A is satisfied.

Lemma 3.1. Under Assumption AP, {t > kN | Xo =i} < (1—a)¥, i € §, 7 €I,
k=12....

Proof. (Apply the induction.) ObviouslyP,{t > N | Xo =i} =1— P, {t < N |
Xo=i}<1l—0a,i € §, 7 € II. So the proposition (Lemma 3.1) is true foe= 1.
Induction hypothesisP, {t > nN | Xg=i} < 1—-a)",i € §, 7 € II.
Fori € S andn € 1T,

Pit>M+1N | Xg=i}
= Pn{XJ_#O, x2¢01"~7an#07 an+17éO,---,XnN+N ¢O| XOZI}
= Z Pr{Ag=a9, X1 =11, A1 =&, Xoa =12, ...,
ageA(i),a1€A(i1),....anN_1€AGnN-1):
i1€9.i12€9.--inNESD

Ann-1 = ann—1, XnN = Inn, Xangr # 0, ..,
XaneN 7# O] Xo =i}

= > Pr{Xnn+1 # 0, ..., Xonan # 0] Xo =1,

ageA(i).a1€A(i1),....anN_1€AGnN-1):
i1€9.i2€5,-.inNES

Ap=ap, X1 =i1, A1 = ay,
Xz =l2,..., ApN-1 = @nN-1, XaN = inn}
X Pr{Ao=a9, Xy =i, A1 =a1, Xa=l2,..., Apn_1 = @nn-1,
XnN =inN | X0=i}~

Letn’ = n(i,ag,i1, a1, ...,inn-1, 8nn-1) (S€€ Section 1). By the definition af it is
easy to see that

Pr{Xnns1 # 0, .o, Xnngn # 0] Xo =i, Ag = a9, X1 =1,
Ar=ay, ..., Apno1 = @n-1, XnN = inn}
=Pu{X1#0,..., XN # 0] Xo = inn}
= Py {t > N | Xo =inn}, inNn € S.

So, we have by the induction hypothesis,

Pt >M+1DN | Xg=1i}
= Z Pr{Ag=a9, X1 =11, A1 =&, Xo=1p,...,

ageA(i).a1€A(i1),...anN_1€A(nN_1):
i1€9.12€9.-inNESD

Ann-1 = ann-1, Xnn = inn | Xo =i}
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X Prft > N | Xo =inn}
<(l-w Z Pr{Aog=a9, X1 =11, Ay =&y, Xoa=1p,...,
ageA(i).a1€A(i1),...anN_1€A(nN_1):
11650112650 inNES
Ann—1 = ann—1, Xnn =Inn | Xo =1}

=1-a > Po{Xy =i, Xo =iz, ..., Xon =linn | Xo =i}
11€9,i2€9,....InneS
=A—-a)P{t >nN| Xo=1i}

<l-a)1l-—a)"=1-a)"h O
Theorem 3.3. Under Assumption A we have*®) = Oforalli € .

Proof. By Lemma 3.1,
D@,kN, ) = P {t > kN | Xo =i}

<Pt >K-=-1DN | Xg=i}
< (1-a)*? i€, well, k=23, ....
So,D*(i,kN) < 1 —a)¥ i e S, k=23, ....Obviously, 0< 1 — o < 1.
HenceD*(i) = limh_ o D*(i,kN) =0,i € . O

Corollary 3.2. If there exists8 > 0 such that 0 | i,a) > g foralli € & and
a € A(i), then the assumption A is trugo D*(i) = Oforalli € .

Proof.
Pt <1 Xo=1i} =P (X1 =0]| Xo =i}
= ) mo@liq@Oli,a)

acA()
> B, ieS, w=(m, m,...)ell
That is, Assumption A is true. From Theorem 3.3 we know théati) = O for all
i €. O

In the case oSand allA(i) (i € S) being countable Assumption A is proposed.
WhenSand allAG) (i € S) are finite we propose the following assumption:
Assumption B. The following are true:

(1) SandallA() (i € S) are finite.
(2) q(0]0,a) = 1foralla € A(0).
(3) Ps={3t > 0,suchthaiX; =0| Xo =i} > Oforalli € Sand f> e I¢.

Assumption B is from [1, p. 33]. Note that we do not requj® | 0, a) = 1 for all
a € A(0) in Assumption A.

Theorem 3.4. Under Assumption B we have*D®) = Oforalli € .
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Proof. From|[1, p.33]we know that lif, o SUP,cf; Pe{Xt 0| Xo=i}=0,i €S
Fori € &, Ve > 0, there exists a positive integr such that sup.; P, {X; # O |
Xo=1} <e¢g,t > N.So,whert > N,

D*(i,t+ 1) <supP.{t >t | Xo=1i} < supP.{Xi#0| Xpo=1} <e.

well mell

HenceD*(i) = lim{_ o D*(i,t) = 0. 0

Remark 3.2. It is evident that Example 2.2 satisfies Assumptions A and B, but there
is no optimal policy (up to 3) in Example 2.2(see Remark 2.2). Hence, an optimal policy
(up ton > 2) need not exist under Assumption A or B.

Definition 3.2. Letn > lands > 0.Letr™® e Mandz® e 1, k=1,2,3,...,n.
(7D, 7@ .., 7™ 709 s called a sequence o, £)-optimal policies ifx® is a
k-optimal policy fork = 1,2, 3, ..., nandD(i, k, 7™®) > D*(i,k) —eforalli € §
andk=n+1n+2,....

Theorem 3.5. LetAssumption Abetru&ivens > 0.Ifall A(i) (i € &) arefinitethen
there existdz @, 7@, ..., 7™ 7™} which is a sequence o, ¢)-optimal policies
wherer® e 14, 1 < k < n, andz™® is an arbitrary policy inIl.

Proof. From the proof of Theorem 3.3 we know tHat(i, kKN) < (1 —a)¥1,i € S,
k=23, ....Fore > 0, itis evident that there exists a positive integgr 2 such that
D*(i,koN) < (1 — )t <¢,i € Q.

Letn = kgN. By (3.1) we can findfy € F, 1 < k < n — 1. We take arbitrarily
7@ end. Letx® = (fi_g, fuz, ..., f2, £2)(@®@ = £°),2 <k <n.From Th.3.1
we know thatr ® e 19 is ak-optimal policy, 1< k < n.

Let 7™ be an arbitrary policy ifl, then

D, k, 7 ™) < D*(i,k) < D*(i,n) <, ieS, k>n.

Thatis,D(i, k, 7™®) > D*(i,k) —¢, i € , k=n+1n+2,.... Hence{x®,
7@, ..., 7™, 7™} s a sequence ah, £)-optimal policies. O

Theorem 3.6. Let S and all Ai)(i € &) be finite Givene > 0. If D*(i) = 0 for
alli € S, then there exister®, 7@, ..., 7™, 7™} which is a sequence o, ¢)-
optimal policieswherer ® e 19, 1 < k < n, andz™# is an arbitrary policy inIT.

Proof. Fore > 0O, it is easy to see that there exists a positive intéger 2 such that
D*(i,N) <¢,i € . Letn = N.By (3.1)we canfindfy ¢ F, 1 <k <n-1.The
remainder of the proof is similar to the proof of Theorem 3.5. O

Corollary 3.3. Let Assumption B be tru&ivens > 0. Then there existgr®, 7@,
.., 7™ 7™} which is a sequence oh, ¢)-optimal policieswherer® ¢ 14, 1 <
k < n andz™® is an arbitrary policy inII.
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Remark 3.3. To sum up, wherSand allA(i) (i € &) are finite, under Assumption A

or B, for an arbitrarys > 0 we can find a sequence @f, ¢)-optimal policies in finite

steps. (These algorithms can be found in the proofs of Theorem 3.5 and 3.6.) In these
cases we can say that the optimization problem discussed in this paper has been solved.
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