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1. Introduction

In the field of Markov decision processes (MDP), the normal first-passage model is
discussed in some papers, such as [1]–[6]. The aim of the normal model is to maximize
the expected reward of a first passage from an arbitrary state to state 0. Applications of
the normal first-passage model include stochastic search for a hidden object, shares deal,
secretary problem and so on (see [7]).

In this paper we discuss MDP with distribution function criterion of first-passage
time. In this paper we also study the first-passage problem, but our aim (see Definition 1.1
below) is different from the aim of the above normal first-passage model. Our model can
be applied in the field of reliability (for further discussion, see Remark 1.1).

∗ The research of the first author was supported by the National Natural Science Foundation of China.
The second author’s research was supported by the National Natural Science Foundation of China, Grant No.
19731010.
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Lin Yuanlie [8] discussed an optimal model for the first-passage time distribution
function with a continuous-time parameter. The set of all stationary policies is only
considered in [8]. Algorithms to find some optimal policies are given in [8] when the
state space and action space are finite.

The criterion for our model is similar to the criterion in [8]. Because our model deals
with the case of discrete time, many results in our paper and the methods used by us are
different from those in [8].

Other related work includes [9] and [10] (for details, see Remark 1.2).
In this paper the definition and interpretation of our model are given in Section 1.
Some results of two kinds of optimal policies are given in Section 2. These results

include sufficient conditions for these optimal policies (Theorems 2.3 and 2.5), necessary
conditions for them (Theorems 2.4 and 2.4′), sufficient and necessary conditions for the
existence of these optimal policies (Corollaries 2.1 and 2.1′) and algorithms for them
(Remark 2.1).

Results in Section 3 include the existence of ann-optimal policy and a sequence of
(n, ε)-optimal policies (Corollary 3.1, Theorem 3.5 and Corollary 3.3), and an algorithm
to find a sequence of(n, ε)-optimal policies (Remark 3.3).

Our model is{S, (A(i ), i ∈ S),q, D}, where the state spaceS = {0,1,2, . . .} is
countable. LetS0 = {1,2,3, . . .} ⊂ S. We useA(i ) to denote the set of possible actions
when the system is in statei ∈ S. All A(i ) (i ∈ S) are countable. The letterq denotes
the family of stationary one-step transition laws: when the system is in statei and we
take an actiona ∈ A(i ), the system moves to a new statej selected according to the
conditional probabilityq( j | i,a).

The set of general policiesπ = (π0, π1, π2, . . .) (see [1] for the definition ofπ ) is
denoted by5. A mapping f : S→ ⋃

i∈S A(i ) satisfying f (i ) ∈ A(i ) for all i ∈ S is
called a deterministic decision rule. LetF denote the set of all deterministic decision
rules f . Let fi ∈ F , i = 0,1,2, . . . , π = ( f0, f1, f2, . . .) is called a Markov policy.
Let 5d

m denote the set of all Markov policies. Letf ∈ F , f∞ = ( f, f, . . .) is called
a stationary policy. Let5d

s denote the set of all stationary policies. Obviously,5d
s ⊂

5d
m ⊂ 5.

At any staget (≥ 0), Xt and1t denote the state of the system and action taken in
that state, respectively.

Definition 1.1. We define

D(i,n, π) = Pπ {τ ≥ n | X0 = i }, i ∈ S0, π ∈ 5, n = 1,2, . . . ,

whereτ denotes the smallest integert (≥ 0) such thatXt = 0 whenX0 = i , Pπ {τ ≥
n | X0 = i } denotes the probability of “τ ≥ n” using the policyπ starting fromi .
Obviously,D(i,1, π) = 1, i ∈ S0, π ∈ 5.

We define

D∗(i,n) = sup
π∈5

D(i,n, π), i ∈ S0, n = 1,2, . . . .

Obviously,D∗(i,1) = 1, i ∈ S0.
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Definition 1.2. Let n ≥ 1,π ∈ 5. π is called an optimal policy (up ton) if

D(i, k, π) = D∗(i, k), for all i ∈ S0, k = 1,2, . . . ,n.

π is called an optimal policy if

D(i, k, π) = D∗(i, k), for all i ∈ S0, k = 1,2, . . . .

Remark 1.1. From the viewpoint of reliability we explain the above model as follows.
Let the state 0 denote an inefficient state of a system. Thenτ denotes the working life
(operating life) of the system andPπ {τ ≥ n | X0 = i } denotes the reliability function
of the system using policyπ starting from statei . Roughly our aim is to find an optimal
policy which maximizes the reliability function of the system. Hence, the background
of our model is an optimization problem in the field of reliability.

Remark 1.2. The optimization problem infπ Pπ {Zπ∞ ≤ c | X0 = i } is studied in [9],
whereZπ∞ denotes the total discounted reward (infinite horizon) using policyπ starting
from statei andc is a constant.

The optimization problem supπ Pπ {R≥ c | X0 = i } is studied in [10], where

R= lim
N→∞

1

N + 1

N∑
n=0

r (Xn,1n)

denotes the average reward using policyπ starting from statei andc is a constant.
It is easy to see, the above criteria are different from the criteria (Definition 1.1) of

our model.

Let X0 = i0, 10 = a0 ∈ A(i0), X1 = i1, 11 = a1 ∈ A(i1), . . . , Xn = i n.
hn = (i0,a0, i1,a1, . . . , i n) is called the history up to stagen. Hn (n ≥ 0) denotes the
set of allhn.

Let π = (π0, π1, π2, . . .) ∈ 5, hn = (i0,a0, i1,a1, . . . , i n) ∈ Hn (n ≥ 1). The
policy π ′ = (π ′0, π ′1, . . .) ∈ 5 is defined as follows: for∀t ≥ 0,∀ht ∈ Ht , we define

π ′t (a | ht ) = πn+t (a | i0,a0, i1,a1, . . . ,an−1, ht ), a ∈ A(i ),

where the last component ofht is i .
Write π ′ = π(i0,a0, . . . , i n−1,an−1).

2. Some Results of Optimal Policies

Theorem 2.1. Let n≥ 2,π = (π0, π1, . . .) ∈ 5, i ∈ S0, then

D(i,n, π) =
∑

a∈A(i )

π0(a | i )
∑
j∈S0

q( j | i,a)D( j,n− 1, π(i,a)). (2.1)
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Proof.

D(i,n, π) = Pπ {τ ≥ n | X0 = i }
=

∑
a∈A(i )

Pπ {τ ≥ n,10 = a | X0 = i }

=
∑

a∈A(i )

π0(a | i )Pπ {τ ≥ n | X0 = i,10 = a}

=
∑

a∈A(i )

π0(a | i )
∑
j∈S0

Pπ {τ ≥ n, X1 = j | X0 = i,10 = a}

=
∑

a∈A(i )

π0(a | i )
∑
j∈S0

q( j | i,a)Pπ {τ ≥ n | X0 = i,10 = a, X1 = j }.

By the definition ofπ(i,a) (see Section 1), it is easy to see that

Pπ {τ ≥ n | X0 = i,10 = a, X1 = j }
= Pπ(i,a){τ ≥ n− 1 | X0 = j }, n ≥ 2, i, j ∈ S0, a ∈ A(i ).

So (2.1) is true.

Theorem 2.2. Let n≥ 2, i ∈ S0, then

D∗(i,n) = sup
a∈A(i )

∑
j∈S0

q( j | i,a)D∗( j,n− 1).

Proof. ∀π ∈ 5, i ∈ S0. By Theorem 2.1 we have

D(i,n, π) =
∑

a∈A(i )

π0(a | i )
∑
j∈S0

q( j | i,a)D( j,n− 1, π(i,a))

≤
∑

a∈A(i )

π0(a | i )
∑
j∈S0

q( j | i,a)D∗( j,n− 1)

≤
∑

a∈A(i )

π0(a | i ) sup
a∈A(i )

∑
j∈S0

q( j | i,a)D∗( j,n− 1)

= sup
a∈A(i )

∑
j∈S0

q( j | i,a)D∗( j,n− 1).

So,

D∗(i,n) ≤ sup
a∈A(i )

∑
j∈S0

q( j | i,a)D∗( j,n− 1), i ∈ S0. (2.2)

∀ε > 0, ∀i ∈ S0. It is evident that there existsiπ ∈ 5 such thatD(i,n− 1, iπ) ≥
D∗(i,n− 1)− ε. The policyπ ∈ 5 is defined as follows:π = iπ , whenX0 = i ∈ S0;
π is an arbitrary policy in5, whenX0 = 0. Then

D(i,n− 1, π) ≥ D∗(i,n− 1)− ε, for all i ∈ S0.

It is evident that,∀i ∈ S0, ∃ai ∈ A(i ) such that∑
j∈S0

q( j | i,ai )D
∗( j,n− 1) ≥ sup

a∈A(i )

∑
j∈S0

q( j | i,a)D∗( j,n− 1)− ε.
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We definef (i ) = ai , i ∈ S0; f (0) ∈ A(0), then f ∈ F . Let π̂ = ( f, π). By Theorem 2.1
we have

D(i,n, π̂) =
∑
j∈S0

q( j | i, f (i ))D( j,n− 1, π)

≥
∑
j∈S0

q( j | i, f (i ))(D∗( j,n− 1)− ε)

≥
∑
j∈S0

q( j | i, f (i ))D∗( j,n− 1)− ε

≥ sup
a∈A(i )

∑
j∈S0

q( j | i,a)D∗( j,n− 1)− 2ε, i ∈ S0.

So,D∗(i,n) ≥ supa∈A(i )

∑
j∈S0

q( j | i,a)D∗( j,n− 1)− 2ε, i ∈ S0.
Let ε→ 0, we have

D∗(i,n) ≥ sup
a∈A(i )

∑
j∈S0

q( j | i,a)D∗( j,n− 1), i ∈ S0. (2.3)

From (2.2) and (2.3) we know that Theorem 2.2 is true.

Theorem 2.3. Let f ∈ F satisfy q( j | i, f (i )) = supa∈A(i ) q( j | i,a) for all i , j ∈ S0,
then f∞ is an optimal policy.

Proof. (Apply the induction.) Obviously,D(i,1, f∞) = D∗(i,1), i ∈ S0.
Induction hypothesis:D(i,n, f∞) = D∗(i,n), i ∈ S0.
We have by Theorem 2.1 and the induction hypothesis,

D(i,n+ 1, f∞) =
∑
j∈S0

q( j | i, f (i ))D( j,n, f∞)

=
∑
j∈S0

q( j | i, f (i ))D∗( j,n)

≥
∑
j∈S0

q( j | i,a)D∗( j,n), i ∈ S0, a ∈ A(i ).

So, we have by Theorem 2.2,

D(i,n+ 1, f∞) ≥ sup
a∈A(i )

∑
j∈S0

q( j | i,a)D∗( j,n) = D∗(i,n+ 1), i ∈ S0.

That isD(i,n+ 1, f∞) = D∗(i,n+ 1), i ∈ S0.

Example 2.1. Let S = {0,1,2}, S0 = {1,2}; A(0) = A(1) = {1}, A(2) = {1,2};
q(0 | 0,1) = 1, q(0 | 1,1) = 0.25,q(1 | 1,1) = 0.5, q(2 | 1,1) = 0.25,q(0 | 2,1) =
0.35, q(1 | 2,1) = 0.15, q(2 | 2,1) = 0.5, q(0 | 2,2) = 0.15, q(1 | 2,2) = 0.3,
q(2 | 2,2) = 0.55. It is easy to see thatF = { f, g}, where f (2) = 1, g(2) = 2.
Obviously,q( j | i, g(i )) = supa∈A(i ) q( j | i,a), i, j ∈ S0. So,g∞ is an optimal policy
by Theorem 2.3.
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Lemma 2.1. Let n ≥ 2, i ∈ S0. Let π = (π0, π1, π2, . . .) ∈ 5 satisfy D(i,n, π) =
D∗(i,n), then D∗(i,n) =∑a∈A(i ) π0(a | i )

∑
j∈S0

q( j | i,a)D∗( j,n− 1).

Proof. By Theorems 2.1 and 2.2, we have

D∗(i,n) = D(i,n, π) =
∑

a∈A(i )

π0(a | i )
∑
j∈S0

q( j | i,a)D( j,n− 1, π(i,a))

≤
∑

a∈A(i )

π0(a | i )
∑
j∈S0

q( j | i,a)D∗( j,n− 1)

≤ sup
a∈A(i )

∑
j∈S0

q( j | i,a)D∗( j,n− 1)

= D∗(i,n).

So,D∗(i,n) =∑a∈A(i ) π0(a | i )
∑

j∈S0
q( j | i,a)D∗( j,n− 1).

We define

A∗n(i ) =
{

a ∈ A(i ) |
∑
j∈S0

q( j | i,a)D∗( j,n−1) = D∗(i,n)

}
, i ∈ S0, n ≥ 2.

If all A(i ) (i ∈ S0) are finite, then by Theorem 2.2 we know thatA∗n(i ) 6= ∅, i ∈ S0,
n ≥ 2.

Theorem 2.4. Let n≥ 2.π = (π0, π1, . . .) ∈ 5 is an optimal policy(up to n). Then

{a ∈ A(i ) | π0(a | i ) > 0} ⊂
n⋂

k=2

A∗k(i ), i ∈ S0.

Proof. For 2≤ k ≤ n, by Theorem 2.1, Lemma 2.1 and Theorem 2.2 we have

D∗(i, k) = D(i, k, π) =
∑

a∈A(i )

π0(a | i )
∑
j∈S0

q( j | i,a)D( j, k− 1, π(i,a))

=
∑

a∈A(i )

π0(a | i )
∑
j∈S0

q( j | i,a)D∗( j, k− 1)

≤
∑

a∈A(i )

π0(a | i ) sup
a∈A(i )

∑
j∈S0

q( j | i,a)D∗( j, k− 1)

= D∗(i, k), i ∈ S0.

So, ∑
a∈A(i )

π0(a | i )
∑
j∈S0

q( j | i,a)D∗( j, k− 1)

=
∑

a∈A(i )

π0(a | i ) sup
a∈A(i )

∑
j∈S0

q( j | i,a)D∗( j, k− 1), i ∈ S0.

On the other hand,

π0(a | i )
∑
j∈S0

q( j | i,a)D∗( j, k− 1)

≤ π0(a | i ) sup
a∈A(i )

∑
j∈S0

q( j | i,a)D∗( j, k− 1), i ∈ S0, a ∈ A(i ).
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So,

π0(a | i )
∑
j∈S0

q( j | i,a)D∗( j, k− 1)

= π0(a | i ) sup
a∈A(i )

∑
j∈S0

q( j | i,a)D∗( j, k− 1), i ∈ S0, a ∈ A(i ).

If i ∈ S0, a ∈ A(i ) andπ0(a | i ) > 0, then∑
j∈S0

q( j | i,a)D∗( j, k− 1) = sup
a∈A(i )

∑
j∈S0

q( j | i,a)D∗( j, k− 1) = D∗(i, k),

that is,a ∈ A∗k(i ). So{a ∈ A(i ) | π0(a | i ) > 0} ⊂ A∗k(i ), i ∈ S0. Hence Theorem 2.4
is true.

Similarly, we have Theorem 2.4′.

Theorem 2.4′. Letπ = (π0, π1, . . .) ∈ 5 be an optimal policy, then

{a ∈ A(i ) | π0(a | i ) > 0} ⊂
∞⋂

k=2

A∗k(i ), i ∈ S0.

Theorem 2.5. Let n ≥ 2 and f ∈ F satisfy f(i ) ∈ ⋂n
k=2 A∗k(i ) for all i ∈ S0, then

f∞ is an optimal policy(up to n).

Proof. (Apply the induction). Obviously,D(i,1, f∞) = D∗(i,1), i ∈ S0.
Induction hypothesis: for 1≤ k < n we haveD(i, k, f∞) = D∗(i, k), i ∈ S0.
Becausef (i ) ∈ A∗k+1(i ), i ∈ S0, we have by Theorem 2.1 and the induction

hypothesis,

D(i, k+ 1, f∞) =
∑
j∈S0

q( j | i, f (i ))D( j, k, f∞)

=
∑
j∈S0

q( j | i, f (i ))D∗( j, k)

= D∗(i, k+ 1), i ∈ S0.

So,D(i, k, f∞) = D∗(i, k), i ∈ S0, k = 1,2, . . . ,n.

Similarly, we have Theorem 2.5′.

Theorem 2.5′. Let f ∈ F satisfy f(i ) ∈ ⋂∞k=2 A∗k(i ) for all i ∈ S0, then f∞ is an
optimal policy.

Theorem 2.6. Let n≥ 2. If there exists an optimal policy(up to n), then there exists
f∞ ∈ 5d

s which is an optimal policy(up to n).
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Proof. This follows immediately from Theorem 2.4 and Theorem 2.5.

Similarly, we have Theorem 2.6′.

Theorem 2.6′. If there exists an optimal policy, then there exists f∞ ∈ 5d
s which is

an optimal policy.

Must f∞ be an optimal policy (up ton) if f ∈ F satisfiesD(i, k, f∞) = supg∈F
D(i, k, g∞) for all i ∈ S0, k = 1,2, . . . ,n? The answer is negative.

Example 2.2. Let S, S0, A(i ) (i ∈ S) andq( j | 1,1) ( j ∈ S) be the same as those
in Example 2.1. Letq(0 | 0,1) = 1, q(0 | 2,1) = 0.15, q(1 | 2,1) = 0.15, q(2 |
2,1) = 0.7, q(0 | 2,2) = 0.1, q(1 | 2,2) = 0.6, q(2 | 2,2) = 0.3. It is easy to see
that F = { f, g}, where f (2) = 1, g(2) = 2. It is easy to see that by Theorem 2.1,
D(i, k, g∞) = ∑j∈S0

q( j | i, g(i ))D( j, k − 1, g∞), i ∈ S0, k ≥ 2. So,D(1,2, g∞) =
0.75, D(2,2, g∞) = 0.9, D(1,3, g∞) = 0.6, D(2,3, g∞) = 0.72. Similarly, we have
D(1,2, f∞) = 0.75, D(2,2, f∞) = 0.85, D(1,3, f∞) = 0.5875, D(2,3, f∞) =
0.7075. So,D(i, k, g∞) ≥ D(i, k, f∞), i ∈ S0, k = 1,2,3.

On the other hand, we defineπ = ( f, g∞). It is easy to see that by Theorem 2.1,

D(2,3, π) =
∑
j∈S0

q( j | 2, f (2))D( j,2, g∞) = 0.7425> 0.72= D(2,3, g∞),

henceg∞ is not an optimal policy (up to 3).

To sum up, we have Corollary 2.1 and Corollary 2.1′.

Corollary 2.1. Let n≥ 2. The following three conditions are equivalent:

(1) There exists an optimal policy(up to n).
(2) There exists f∞ ∈ 5d

s which is an optimal policy(up to n).
(3)

⋂n
k=2 A∗k(i ) 6= ∅ for all i ∈ S0.

Corollary 2.1′. The following three conditions are equivalent:

(1) There exists an optimal policy.
(2) There exists f∞ ∈ 5d

s which is an optimal policy.
(3)

⋂∞
k=2 A∗k(i ) 6= ∅ for all i ∈ S0.

Remark 2.1. To sum up, when S and allA(i ) (i ∈ S0) are finite an algorithm can
be stated as follows: using Theorem 2.2 we can successively findD∗(i, k) and A∗k(i ),
i ∈ S0, k = 2,3, . . . ,n. If

⋂n
k=2 A∗k(i ) 6= ∅ for all i ∈ S0, then we can findf∞ ∈ 5d

s
which is an optimal policy (up ton) by Theorem 2.5. Ifi0 ∈ S0 andk0 (2 ≤ k0 ≤ n)
such that

⋂k0
k=2 A∗k(i0) = ∅ exist, then there is no optimal policy (up ton). Using this

algorithm we can judge whether an optimal policy (up ton ≥ 2) exists and can find an
optimal stationary policy (up ton ≥ 2) if there exists an optimal policy (up ton ≥ 2).
Similarly, an algorithm to find an optimal stationary policy can be given.
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Remark 2.2. In Example 2.2 it is easy to see thatA∗2(2) = {2}, A∗3(2) = {1}. So
A∗2(2) ∩ A∗3(2) = ∅. Hence there is no optimal policy (up to 3) or optimal policy for
Example 2.2.

In the normal optimal first-passage model (see [2]) we define the one-step reward
r (i,a) = 1 for all i ∈ S0 anda ∈ A(i ), then we can obtain the following optimization
problem: supπ∈5 Eπ {τ | X0 = i }, i ∈ S0.

We assume thatPπ {τ = ∞ | X0 = i } ≡ Pπ {Xn 6= 0, n = 1,2,3, . . . | X0 =
i } = 0 and Eπ {τ | X0 = i } < +∞ for all i ∈ S0 andπ ∈ 5. If π∗ ∈ 5 such
that Eπ∗ {τ | X0 = i } = supπ∈5 Eπ {τ | X0 = i } for all i ∈ S0, thenπ∗ is called an
expectation life optimal policy.

Theorem 2.7. Let Pπ {τ = ∞ | X0 = i } = 0 and Eπ {τ | X0 = i } < +∞ for all
i ∈ S0 andπ ∈ 5. If π∗ ∈ 5 is an optimal policy(see Definition1.2), thenπ∗ is also
an expectation life optimal policy.

Proof. For allπ ∈ 5,

Eπ∗ {τ | X0 = i } =
∞∑

n=1

nPπ∗ {τ = n | X0 = i }

=
∞∑

n=1

∞∑
k=n

Pπ∗ {τ = k | X0 = i }

=
∞∑

n=1

D(i,n, π∗)

≥
∞∑

n=1

D(i,n, π) = Eπ {τ | X0 = i }, i ∈ S0.

Henceπ∗ is an expectation life optimal policy.

Remark 2.3. From Corollary 2.1 in [2] we know that an expectation life optimal
policy in Example 2.2 exists. However there is no optimal policy in Example 2.2 (see
Remark 2.2). Hence an expectation life optimal policy need not be an optimal policy in
the general case.

3. Existence Results on ann-Optimal Policy and Relevant Results

From Example 2.2 we know that an optimal policy (up ton ≥ 2) need not exist in the
general case. We discuss existence on ann-optimal policy and relevant problems in this
section.

Definition 3.1. Let n ≥ 1 andπ ∈ 5. If D(i,n, π) = D∗(i,n) for all i ∈ S0, thenπ
is called ann-optimal policy.
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Let all A(i ) (i ∈ S0) be finite. It is evident that∀n ≥ 1, ∃ fn ∈ F such that∑
j∈S0

q( j | i, fn(i ))D
∗( j,n) = max

a∈A(i )

∑
j∈S0

q( j | i,a)D∗( j,n), i ∈ S0. (3.1)

Theorem 3.1. Let n≥ 2. Thenπ(n) = ( fn−1, fn−2, . . . , f2, f∞1 ) ∈ 5d
m(π

(2) = f∞1 )

is an n-optimal policy, where fk is defined by(3.1).

Proof. (Apply the induction.) By Theorem 2.1, (3.1) and Theorem 2.2 we have

D(i,2, π(2)) = D(i,2, f∞1 ) =
∑
j∈S0

q( j | i, f1(i )) = D∗(i,2), i ∈ S0.

Induction hypothesis:D(i,n, π(n)) = D∗(i,n), i ∈ S0.

Obviously,π(n+1) = ( fn, fn−1, fn−2, . . . , f2, f∞1 ) = ( fn, π
(n)). By Theorem 2.1,

the induction hypothesis, (3.1) and Theorem 2.2 we have

D(i,n+ 1, π(n+1)) =
∑
j∈S0

q( j | i, fn(i ))D( j,n, π(n))

=
∑
j∈S0

q( j | i, fn(i ))D
∗( j,n)

= D∗(i,n+ 1), i ∈ S0.

Corollary 3.1. Let n ≥ 2. If all A(i )(i ∈ S0) are finite, then there existsπ(n) ∈ 5d
m

which is a n-optimal policy, where the definition ofπ(n) can be found in Theorem3.1.

Remark 3.1. From Corollary 3.1 we know that there existsπ(3) ∈ 5d
m which is a

3-optimal policy in Example 2.2. However, there is no stationary policy which is a 3-
optimal policy in Example 2.2. Hence in general case a stationary policy which is an
n(≥ 2)-optimal policy need not exist.

By the definition ofD∗(i,n) it is easy to see thatD∗(i,n) ≥ D∗(i,n+ 1) ≥ 0 for
all i ∈ S0 andn = 1,2, . . . . So we can defineD∗(i ) = limn→∞ D∗(i,n), i ∈ S0.

Theorem 3.2.

(1) Let A(i ) be finite for some i∈ S0, then

D∗(i ) = sup
a∈A(i )

∑
j∈S0

q( j | i,a)D∗( j ). (3.2)

(2) If S is finite, then(3.2) is true for all i ∈ S0.

Proof. (1) Leta ∈ A(i ). ∀ε > 0. Because
∑

j∈S0
q( j | i,a) ≤ 1, there exists a positive

integerN such that
∑∞

j=N+1 q( j | i,a) ≤ ε. It is evident that there exists a positive

integerÑ such that

|D∗( j,n)− D∗( j )| ≤ ε, n ≥ Ñ, 1≤ j ≤ N.
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So, whenn ≥ Ñ,∣∣∣∣∣∑
j∈S0

q( j |i,a)D∗( j,n)−
∑
j∈S0

q( j | i,a)D∗( j )

∣∣∣∣∣
≤
∑
j∈S0

q( j | i,a)|D∗( j,n)− D∗( j )|

=
N∑

j=1

q( j |i,a)|D∗( j,n)− D∗( j )| +
∞∑

j=N+1

q( j | i,a)|D∗( j,n)− D∗( j )|

≤ ε + 2ε = 3ε.

Hence limn→∞
∑

j∈S0
q( j | i,a)D∗( j,n) =∑j∈S0

q( j | i,a)D∗( j ).
By Theorem 2.2 we have

D∗(i ) = lim
n→∞ D∗(i,n+ 1) = lim

n→∞ max
a∈A(i )

∑
j∈S0

q( j | i,a)D∗( j,n)

= max
a∈A(i )

lim
n→∞

∑
j∈S0

q( j | i,a)D∗( j,n)

= max
a∈A(i )

∑
j∈S0

q( j | i,a)D∗( j ).

(2) ∀ε > 0. It is evident that there exists a positive integerN such that

|D∗( j,n)− D∗( j )| ≤ ε, n ≥ N, j ∈ S0.

So, whenn ≥ N,∣∣∣∣∣ sup
a∈A(i )

∑
j∈S0

q( j | i,a)D∗( j,n)− sup
a∈A(i )

∑
j∈S0

q( j | i,a)D∗( j )

∣∣∣∣∣
≤ sup

a∈A(i )

∑
j∈S0

q( j | i,a)|D∗( j,n)− D∗( j )|

≤ ε, i ∈ S0.

So

lim
n→∞ sup

a∈A(i )

∑
j∈S0

q( j | i,a)D∗( j,n) = sup
a∈A(i )

∑
j∈S0

q( j | i,a)D∗( j ), i ∈ S0.

Hence

D∗(i ) = lim
n→∞ D∗(i,n+ 1) = lim

n→∞ sup
a∈A(i )

∑
j∈S0

q( j | i,a)D∗( j,n)

= sup
a∈A(i )

∑
j∈S0

q( j | i,a)D∗( j ), i ∈ S0.

We discuss sufficient conditions ofD∗(i ) ≡ 0 below.
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Assumption A. There exist a real numberα > 0 and a positive integer N, such that
Pπ {τ ≤ N | X0 = i } ≥ α for all i ∈ S0 andπ ∈ 5.

If τ is viewed as the operating life of the system, then Assumption A is satisfied
easily in many actual instances. In many actual instances, such as the life of a man or
the operating life of a machine and so on, there is a limit to the operating lifeτ of the
system, so Assumption A is satisfied.

Lemma 3.1. Under Assumption A, Pπ {τ > kN | X0 = i } ≤ (1− α)k, i ∈ S0, π ∈ 5,
k = 1,2, . . . .

Proof. (Apply the induction.) Obviously,Pπ {τ > N | X0 = i } = 1− Pπ {τ ≤ N |
X0 = i } ≤ 1− α, i ∈ S0, π ∈ 5. So the proposition (Lemma 3.1) is true fork = 1.

Induction hypothesis:Pπ {τ > nN | X0 = i } ≤ (1− α)n, i ∈ S0, π ∈ 5.
For i ∈ S0 andπ ∈ 5,

Pπ {τ > (n+ 1)N | X0 = i }
= Pπ {X1 6= 0, X2 6= 0, . . . , XnN 6= 0, XnN+1 6= 0, . . . , XnN+N 6= 0 | X0 = i }
=

∑
a0∈A(i ),a1∈A(i1),...,anN−1∈A(inN−1),

i1∈S0,i2∈S0,...,inN∈S0

Pπ {10 = a0, X1 = i1,11 = a1, X2 = i2, . . . ,

1nN−1 = anN−1, XnN = i nN, XnN+1 6= 0, . . . ,

XnN+N 6= 0 | X0 = i }
=

∑
a0∈A(i ),a1∈A(i1),...,anN−1∈A(inN−1),

i1∈S0,i2∈S0,...,inN∈S0

Pπ {XnN+1 6= 0, . . . , XnN+N 6= 0 | X0 = i,

10 = a0, X1 = i1,11 = a1,

X2 = i2, . . . , 1nN−1 = anN−1, XnN = i nN}
× Pπ {10 = a0, X1 = i1,11 = a1, X2 = i2, . . . , 1nN−1 = anN−1,

XnN = i nN | X0 = i }.
Let π ′ = π(i,a0, i1,a1, . . . , i nN−1,anN−1) (see Section 1). By the definition ofπ ′ it is
easy to see that

Pπ {XnN+1 6= 0, . . . , XnN+N 6= 0 | X0 = i,10 = a0, X1 = i1,

11 = a1, . . . , 1nN−1 = anN−1, XnN = i nN}
= Pπ ′ {X1 6= 0, . . . , XN 6= 0 | X0 = i nN}
= Pπ ′ {τ > N | X0 = i nN}, i nN ∈ S0.

So, we have by the induction hypothesis,

Pπ {τ > (n+ 1)N | X0 = i }
=

∑
a0∈A(i ),a1∈A(i1),...,anN−1∈A(inN−1),

i1∈S0,i2∈S0,...,inN∈S0

Pπ {10 = a0, X1 = i1,11 = a1, X2 = i2, . . . ,

1nN−1 = anN−1, XnN = i nN | X0 = i }
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× Pπ ′ {τ > N | X0 = i nN}
≤ (1− α)

∑
a0∈A(i ),a1∈A(i1),...,anN−1∈A(inN−1),

i1∈S0,i2∈S0,...,inN∈S0

Pπ {10 = a0, X1 = i1,11 = a1, X2 = i2, . . . ,

1nN−1 = anN−1, XnN = i nN | X0 = i }
= (1− α)

∑
i1∈S0,i2∈S0,...,inN∈S0

Pπ {X1 = i1, X2 = i2, . . . , XnN = i nN | X0 = i }

= (1− α)Pπ {τ > nN | X0 = i }
≤ (1− α)(1− α)n = (1− α)n+1.

Theorem 3.3. Under Assumption A we have D∗(i ) = 0 for all i ∈ S0.

Proof. By Lemma 3.1,

D(i, kN, π) = Pπ {τ ≥ kN | X0 = i }
≤ Pπ {τ > (k− 1)N | X0 = i }
≤ (1− α)k−1, i ∈ S0, π ∈ 5, k = 2,3, . . . .

So, D∗(i, kN) ≤ (1− α)k−1, i ∈ S0, k = 2,3, . . . . Obviously, 0≤ 1− α < 1.
HenceD∗(i ) = limn→∞ D∗(i, kN) = 0, i ∈ S0.

Corollary 3.2. If there existsβ > 0 such that q(0 | i,a) ≥ β for all i ∈ S0 and
a ∈ A(i ), then the assumption A is true, so D∗(i ) = 0 for all i ∈ S0.

Proof.

Pπ {τ ≤ 1 | X0 = i } = Pπ {X1 = 0 | X0 = i }
=

∑
a∈A(i )

π0(a | i )q(0 | i,a)

≥ β, i ∈ S0, π = (π0, π1, . . .) ∈ 5.
That is, Assumption A is true. From Theorem 3.3 we know thatD∗(i ) = 0 for all
i ∈ S0.

In the case ofS and all A(i ) (i ∈ S) being countable Assumption A is proposed.
WhenSand allA(i ) (i ∈ S) are finite we propose the following assumption:

Assumption B. The following are true:

(1) Sand allA(i ) (i ∈ S) are finite.
(2) q(0 | 0,a) = 1 for all a ∈ A(0).
(3) Pf∞{∃t > 0, such thatXt = 0 | X0 = i } > 0 for all i ∈ Sand f∞ ∈ 5d

s .

Assumption B is from [1, p. 33]. Note that we do not requireq(0 | 0,a) = 1 for all
a ∈ A(0) in Assumption A.

Theorem 3.4. Under Assumption B we have D∗(i ) = 0 for all i ∈ S0.
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Proof. From [1, p. 33] we know that limt→∞ supπ∈5 Pπ {Xt 6= 0 | X0 = i } = 0, i ∈ S.
For i ∈ S0, ∀ε > 0, there exists a positive integerN such that supπ∈5 Pπ {Xt 6= 0 |
X0 = i } < ε, t ≥ N. So, whent ≥ N,

D∗(i, t + 1) ≤ sup
π∈5

Pπ {τ > t | X0 = i } ≤ sup
π∈5

Pπ {Xt 6= 0 | X0 = i } < ε.

HenceD∗(i ) = limt→∞ D∗(i, t) = 0.

Remark 3.2. It is evident that Example 2.2 satisfies Assumptions A and B, but there
is no optimal policy (up to 3) in Example 2.2(see Remark 2.2). Hence, an optimal policy
(up ton ≥ 2) need not exist under Assumption A or B.

Definition 3.2. Letn ≥ 1 andε ≥ 0. Letπ(n,ε) ∈ 5 andπ(k) ∈ 5, k = 1,2,3, . . . ,n.
{π(1), π(2), . . . , π(n), π(n,ε)} is called a sequence of(n, ε)-optimal policies ifπ(k) is a
k-optimal policy fork = 1,2,3, . . . ,n andD(i, k, π(n,ε)) ≥ D∗(i, k)− ε for all i ∈ S0

andk = n+ 1,n+ 2, . . . .

Theorem 3.5. Let Assumption A be true.Givenε > 0.If all A(i ) (i ∈ S0)are finite, then
there exists{π(1), π(2), . . . , π(n), π(n,ε)} which is a sequence of(n, ε)-optimal policies,
whereπ(k) ∈ 5d

m, 1≤ k ≤ n, andπ(n,ε) is an arbitrary policy in5.

Proof. From the proof of Theorem 3.3 we know thatD∗(i, kN) ≤ (1− α)k−1, i ∈ S0,
k = 2,3, . . . . Forε > 0, it is evident that there exists a positive integerk0 ≥ 2 such that
D∗(i, k0N) ≤ (1− α)k0−1 ≤ ε, i ∈ S0.

Let n = k0N. By (3.1) we can findfk ∈ F, 1 ≤ k ≤ n − 1. We take arbitrarily
π(1) ∈ 5d

m. Letπ(k) = ( fk−1, fk−2, . . . , f2, f∞1 )(π(2) = f∞1 ), 2≤ k ≤ n. From Th.3.1
we know thatπ(k) ∈ 5d

m is ak-optimal policy, 1≤ k ≤ n.
Let π(n,ε) be an arbitrary policy in5, then

D(i, k, π(n,ε)) ≤ D∗(i, k) ≤ D∗(i,n) ≤ ε, i ∈ S0, k > n.

That is, D(i, k, π(n,ε)) ≥ D∗(i, k) − ε, i ∈ S0, k = n + 1,n + 2, . . . . Hence{π(1),
π(2), . . . , π(n), π(n,ε)} is a sequence of(n, ε)-optimal policies.

Theorem 3.6. Let S and all A(i )(i ∈ S0) be finite. Givenε > 0. If D∗(i ) = 0 for
all i ∈ S0, then there exists{π(1), π(2), . . . , π(n), π(n,ε)} which is a sequence of(n, ε)-
optimal policies, whereπ(k) ∈ 5d

m, 1≤ k ≤ n, andπ(n,ε) is an arbitrary policy in5.

Proof. Forε > 0, it is easy to see that there exists a positive integerN ≥ 2 such that
D∗(i, N) ≤ ε, i ∈ S0. Let n = N. By (3.1) we can findfk ∈ F, 1 ≤ k ≤ n− 1. The
remainder of the proof is similar to the proof of Theorem 3.5.

Corollary 3.3. Let Assumption B be true. Givenε > 0. Then there exists{π(1), π(2),
. . . , π(n), π(n,ε)} which is a sequence of(n, ε)-optimal policies, whereπ(k) ∈ 5d

m, 1 ≤
k ≤ n andπ(n,ε) is an arbitrary policy in5.
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Remark 3.3. To sum up, whenSand allA(i ) (i ∈ S0) are finite, under Assumption A
or B, for an arbitraryε > 0 we can find a sequence of(n, ε)-optimal policies in finite
steps. (These algorithms can be found in the proofs of Theorem 3.5 and 3.6.) In these
cases we can say that the optimization problem discussed in this paper has been solved.
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