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1. Introduction

In a recent paper [10] Raydan introduced the spectral gradient method (SGM) for po-
tentially large-scale unconstrained optimization. The main feature of this method is that
only gradient directions are used at each line search whereas a non-monotone strategy
guarantees global convergence. Surprisingly, this algorithm outperforms sophisticated
conjugate gradient algorithms in many problems. The numerical results in [1], [6], [7],
[10] and others suggested to us that spectral gradient and conjugate gradient ideas could
be combined in order to obtain even more efficient algorithms.

Assume thatf : Rn→ Rhas continuous partial derivatives. The problem considered
in this paper is

Minimize f (x), x ∈ Rn.

Algorithms for solving this problem are iterative. Here, the iterates are denotedxk,
k = 0,1,2, . . .. For each iteration we compute a search directiondk ∈ Rn and successive
iterates are obtained by means of

xk+1 = xk + αkdk.

Moreover, the directions are generated by

dk+1 = −θkgk+1+ βksk (1)

for k = 0,1,2, . . ., wheregk denotes∇ f (xk), x0 ∈ Rn is arbitrary and

d0 = −θ0g0.

Assuming thatxk andxk+1 are two consecutive approximations, we denote

sk = xk+1− xk = αkdk and yk = gk+1− gk.

Suppose, for a moment, thatf is quadratic andH ≡ ∇2 f (x) is positive definite.
This implies thatyk 6= 0. Therefore, the true minimizerx∗ satisfies

x∗ = xk+1+ d∗,

where

Hd∗ = −gk+1.

Pre-multiplying bysT
k , this gives

sT
k Hd∗ = −sT

k gk+1.

Therefore,

yT
k d∗ = −sT

k gk+1.

Thus, the hyper-plane

Hk ≡ {d ∈ Rn | yT
k d = −sT

k gk+1}
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contains the optimum incrementd∗, which givesx∗ = xk+1 + d∗. Observe that the null
directiond = 0 belongs toH only if sT

k gk+1 = 0 which is not our assumption at all.
By the discussion above, it is natural to impose, for the search directiondk+1,

dk+1 ∈ Hk. (2)

Then, by (1),

βk = (θkyk − sk)
T gk+1

sT
k yk

. (3)

For θk = 1 this formula was introduced by Perry in [9]. If we assume thatsT
j gj+1 = 0,

j = 0,1, . . . , k, we obtain

βk = θkyT
k gk+1

αkθk−1gT
k gk

. (4)

If θk = θk−1 = 1 this is the classical Polak–Ribi`ere formula. Finally, assuming that the
successive gradients are orthogonal, we obtain the generalization of the Fletcher–Reeves
formula:

βk =
θkgT

k+1gk+1

αkθk−1gT
k gk

. (5)

In this paper, motivated by the success of the spectral gradient method, we decided
to compare the classical choiceθk = 1 with the spectral gradient choice:

θk = sT
k sk/s

T
k yk. (6)

In fact, the directionsdk = −θkgk are the ones used by Raydan in his spectral
gradient method. The parameterθk given by (6) is the inverse of the Rayleigh quotient

sT
k

[∫ 1

0
∇2 f (xk + tsk)dt

]
sk/s

T
k sk

which, of course, lies between the largest and the smallest eigenvalue of the Hessian
average

∫ 1
0 ∇2 f (xk + tsk)dt.

After some numerical experimentation, we observed that the initial trial choice for
the step-lengthαk is a very important parameter that affects the algorithmic behavior.
So, we decided to test two different alternatives for this choice.

This paper is organized as follows. In Section 2 we present the model algorithm,
giving all the essential features of its implementation. In Section 3 we use the set of test
problems of [10] to answer the following questions:

1. Is the choice (6) better thanθk ≡ 1?
2. Which is the best choice forβk, among (3), (4) and (5)?
3. Which is the best initial choice for the step-length?

In Section 4 we compare the new algorithm against CONMIN (a popular conjugate
gradient code based on [11] and [12]) and SGM [10], using the same test functions
as Section 3. In Section 5 we compare the new method against SGM using a real-life
estimation problem in Optics. Conclusions are given in Section 6.
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2. The Algorithm

Keeping in mind the definitions ofgk, sk andyk given in the Introduction, we define the
scaled conjugate gradient (SCG) method as follows:

Algorithm SCG
Assume thatx0 ∈ Rn, 0< σ < γ < 1. Defined0 = −g0 and setk← 0.

Step1. If gk = 0, terminate the execution of the algorithm.
Step2. Compute (trying firstα = ᾱ(k,dk,dk−1, αk−1)) α > 0 such that

f (xk + αdk) ≤ f (xk)+ σαgT
k dk (7)

and

∇ f (xk + αdk)
Tdk ≥ γgT

k dk. (8)

Defineαk = α and

xk+1 = xk + αkdk.

Step3. Computeθk by (6) (orθk = 1) andβk by (3), (4) or (5).

Define

d = −θkgk+1+ βksk. (9)

If

dT gk+1 ≤ −10−3‖d‖2‖gk+1‖2 (10)

definedk+1 = d. Otherwise, define

dk+1 = −θkgk+1.

Step4. Setk← k+ 1 and go to Step 1.

It is well known (see [4] and [5]) that a step-lengthα satisfying (7), (8) exists iff is
bounded below along the directiondk. We assume that we have an algorithm that either
computesα with those conditions or detects thatf is unbounded below. In this case,
we say that SCG breaks at iterationk. In practice, we adopted the one-dimensional line
search used in CONMIN (see [12]) for computingα.

The search directiond computed by (9) can fail to be a descent direction. This fact
motivated several modifications of Perry’s formula in [11]. In our algorithm, when the
angle betweend and−gk+1 is not acute enough we “restart” the algorithm with the
spectral gradient direction−θkgk+1. More sophisticated reasons for restarting have been
proposed in the literature, but we are interested in the performance of an algorithm that
uses this naive criterion, associated to the spectral gradient choice for restarts. Of course,
the coefficientθk is always well defined and positive, since (8) implies thatsT

k yk > 0.
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Conditions (7), (8) and (10) are sufficient to prove global convergence of the algo-
rithm under reasonable assumptions. If the gradient off is Lipschitz-continuous andf
is bounded below it can be proved that

lim
k→∞
‖gk‖ = 0.

See, for example, Theorem 3.1 of [8] and references therein. This implies that every
limit point of a sequence generated by the algorithm is stationary.

3. Discussion of Alternatives

In this section we use the test problems considered in [10] to answer the questions
formulated in the Introduction. With this purpose, we consider the algorithm SCG with
σ = 10−4 andγ = 0.5.

For each choice ofβk (Perry (3), Polak–Ribi`ere (4) or Fletcher–Reeves (5)) we have
four methods:

M1. θk is computed by (6) and the initial choice ofα is

ᾱ(k,dk,dk−1, αk−1) =
{

1, if k = 0,
αk−1‖dk−1‖2/‖dk‖2, otherwise;

(11)

M2. θk is computed by (6) and̄α(k,dk,dk−1, αk−1) ≡ 1;
M3. θk ≡ 1 and the initialα is computed as in (11);
M4. θk ≡ 1 andᾱ(k,dk,dk−1, αk−1) ≡ 1.

Tables 1–3 display the performance of the algorithms described above. For each
algorithm we state the number of function–gradient evaluations (FGE) and the functional
value achieved at the approximate solution found (f (x)). For terminating the executions,
we used, as in [10], the criterion

‖∇ f (xk)‖2 ≤ 10−6 max{1, | f (xk)|}.
The symbol NaN that appears in some executions of M2 and M4, means that the code
tried to evaluate the function (or its gradient) at some point where it is not well defined.
This can be avoided using some step-length control, but we decided not to do that in this
comparative study.

Let fi be the optimal functional value found by methodMi and let f j be the optimal
functional value found byMj . We say that, in a particular problem, the performance of
Mi was better than the performance ofMj if fi ≤ f j − 10−3 or if | fi − f j | < 10−3

and the number of function–gradient evaluations ofMi was less than the number of
function–gradient evaluations ofMj . The CPU time is not relevant for this comparison
because all the alternatives are implemented in a unique code and the linear algebra per
iteration is, basically, the same for all the methods.

The experiments were run on a SPARCstation Sun Ultra 1, with an UltraSPARC 64
bits processor, 167 MHz clock and 128 MB of RAM memory. All the codes considered
in this paper were written in double precision Fortran and were compiled with the f77
compiler (SC 1.0 Fortran v1.4) using the optimization option -O4.
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Table 1. Performance of Perry.

M1 M2 M3 M4

Problem FGE f (x) FGE f (x) FGE f (x) FGE f (x)

1 100 11 0.0000D+00 8 1.4211D−14 11 0.0000D+00 8 0.0000D+00

1,000 11 1.1369D−13 8 1.1369D−13 11 1.1369D−13 8 2.2737D−13

10,000 11 −1.8190D−12 11 −1.8190D−12 11 5.4570D−12 53 −3.6380D−12

2 100 63 5.0500D+02 79 5.0500D+02 63 5.0500D+02 83 5.0500D+02

500 85 1.2525D+04 124 1.2525D+04 95 1.2525D+04 140 1.2525D+04

1,000 96 5.0050D+04 140 5.0050D+04 90 5.0050D+04 186 5.0050D+04

3 100 11 8.7540D−22 7 1.4666D−24 11 8.7540D−22 7 7.8758D−25

1,000 9 5.2302D−20 6 2.6191D−22 9 5.2302D−20 6 5.4108D−20

10,000 43 0.0000D+00 18 0.0000D+00 43 0.0000D+00 13 0.0000D+00

4 100 94 1.8410D−06 119 1.8410D−06 98 1.8410D−06 83 1.8410D−06

1,000 84 2.3338D−07 121 2.1479D−07 86 2.4019D−07 79 2.4705D−07

10,000 85 2.2553D−08 114 2.2105D−08 96 2.2560D−08 83 2.2370D−08

5 100 55 3.0248D−15 41 4.7262D−15 56 9.0436D−16 99 7.7355D−15

1,000 108 1.4078D+00 142 7.1253D−01 70 4.8690D−15 190 3.9707D−01

3000 98 3.9707D−01 54 8.0081D−15 113 3.9707D−01 203 3.9707D−01

6 100 59 1.2885D−10 94 3.4514D−10 120 1.7172D−10 385 2.7329D−10

1,000 175 3.6787D−10 415 3.4794D−11 306 6.3862D−10 1,794 7.1612D−10

10,000 823 3.7529D−10 2385 2.7418D−10 765 3.1394D−10 7,879 1.4202D−10

7 100 54 7.1131D−24 107 1.9376D−25 49 1.7498D−20 118 3.8934D−15

1,000 60 7.8057D−23 127 4.3936D−26 50 1.1695D−16 113 1.9968D−27

10,000 61 3.2663D−21 93 3.6097D−21 53 2.1468D−17 134 6.4256D−23

8 100 152 9.0249D−04 158 9.0249D−04 110 9.0249D−04 255 9.0249D−04

1,000 104 9.6862D−03 132 9.6862D−03 81 9.6862D−03 579 9.6862D−03

10,000 96 9.9002D−02 89 9.9002D−02 98 9.9002D−02 650 9.9002D−02

9 100 190 2.8146D−15 242 3.5976D−15 181 2.8217D−15 163 1.0748D−15

1,000 746 1.5807D−15 711 8.5520D−16 700 1.5831D−15 615 4.3545D−16

10 100 29 1.0563D−19 22 4.6474D−21 43 5.1365D−21 310 3.6212D−19

1,000 82 1.5639D−18 216 9.3215D−23 114 9.5874D−23 56 NaN

11 100 174 1.4167D−09 359 1.9077D−10 149 1.1705D−10 246 4.2275D−10

1,000 163 1.0096D−10 554 2.9010D−09 98 5.7400D−09 672 3.4859D−09

12 100 694 1.0000D+00 744 1.0000D+00 519 1.0000D+00 3,836 1.0000D+00

500 1,913 1.0000D+00 3,340 1.0000D+00 2,109 1.0000D+00 16,888 1.0000D+00

13 100 32 1.0909D+02 27 1.0909D+02 39 1.0909D+02 45 1.0909D+02

1,000 31 1.1082D+03 22 1.1082D+03 34 1.1082D+03 48 1.1082D+03

10,000 23 1.1099D+04 19 1.1099D+04 36 1.1099D+04 49 1.1099D+04

14 100 85 1.1965D+04 129 1.1965D+04 65 1.1965D+04 527 1.1965D+04

1,000 43 1.2147D+05 77 1.2147D+05 112 1.2147D+05 257 1.2147D+05

10,000 41 1.2165D+06 118 1.2165D+06 38 1.2165D+06 293 1.2165D+06

15 100 120 3.2370D−16 79 3.7810D+02 87 3.7810D+02 386 7.8770D+00

1,000 104 5.3242D−15 166 3.9379D+00 77 3.9306D+03 364 3.9228D+03
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Table 2. Performance of Polak–Ribi`ere.

M1 M2 M3 M4

Problem FGE f (x) FGE f (x) FGE f (x) FGE f (x)

1 100 13 −1.4211D−14 11 5.6843D−14 13 0.0000D+00 11 0.0000D+00

1,000 13 −1.1369D−13 11 3.4106D−13 13 −2.2737D−13 11 0.0000D+00

10,000 13 0.0000D+00 12 0.0000D+00 13 0.0000D+00 11 0.0000D+00

2 100 68 5.0500D+02 81 5.0500D+02 68 5.0500D+02 91 5.0500D+02

500 111 1.2525D+04 123 1.2525D+04 116 1.2525D+04 163 1.2525D+04

1,000 124 5.0050D+04 140 5.0050D+04 128 5.0050D+04 187 5.0050D+04

3 100 11 8.7540D−22 8 4.7974D−19 11 8.7540D−22 5 NaN

1,000 9 5.2302D−20 8 3.1454D−20 9 5.2302D−20 5 NaN

10,000 43 0.0000D+00 74 NaN 43 0.0000D+00 5 NaN

4 100 117 2.4054D−06 121 1.8410D−06 117 2.4054D−06 95 1.8410D−06

1,000 103 2.3339D−07 108 2.2664D−07 103 2.3339D−07 111 2.1427D−07

10,000 116 2.2264D−08 121 2.1983D−08 104 2.2265D−08 94 2.2679D−08

5 100 51 9.3293D−15 52 1.0384D−14 51 9.3293D−15 116 5.4871D−15

1,000 122 7.1253D−01 112 7.1253D−01 124 7.1253D−01 235 7.1253D−01

3000 116 3.9707D−01 61 5.4181D−15 119 3.9707D−01 195 3.9707D−01

6 100 75 8.1586D−11 110 3.3852D−11 75 8.1586D−11 361 1.8057D−10

1,000 270 4.9229D−10 519 4.6150D−10 268 5.1372D−10 1,714 8.0629D−11

10,000 1,117 1.1931D−11 3,469 3.5720D−10 1,064 1.8114D−10 8,308 7.1085D−10

7 100 59 2.7563D−16 113 1.6326D−21 59 2.7563D−16 121 1.2111D−22

1,000 80 6.1238D−17 79 1.0247D−20 66 3.3072D−17 106 5.4745D−17

10,000 52 9.0002D−17 68 8.8774D−16 52 8.9995D−17 129 4.0085D−18

8 100 176 9.0249D−04 164 9.0249D−04 193 9.0249D−04 359 9.0249D−04

1,000 160 9.6862D−03 140 9.6862D−03 150 9.6862D−03 626 9.6862D−03

10,000 100 9.9002D−02 125 9.9002D−02 104 9.9002D−02 840 9.9002D−02

9 100 232 6.6821D−15 241 1.8589D−15 235 1.2005D−14 163 1.1622D−15

1,000 975 1.5198D−14 697 1.3306D−15 977 3.0449D−15 613 5.3448D−16

10 100 29 1.0511D−19 49 7.3915D−21 29 1.0511D−19 934 5.3293D−23

1,000 43 2.2841D−23 482 9.4991D−23 43 2.6460D−23 105 4.3118D+80

11 100 373 3.2342D−09 301 1.1965D−09 520 6.1000 D−10 274 6.1994D−10

1,000 364 4.6163D−10 270 3.6148D−11 322 9.5744D−11 266 1.4964D−11

12 100 868 1.0000D+00 1,030 1.0000D+00 777 1.0000D+00 4,825 1.0000D+00

500 3,034 1.0000D+00 3,990 1.0000D+00 3,092 1.0000D+00 25,400 1.0000D+00

13 100 39 1.0909D+02 24 1.0909D+02 39 1.0909D+02 34 1.0909D+02

1,000 36 1.1082D+03 22 1.1082D+03 36 1.1082D+03 47 1.1082D+03

10,000 30 1.1099D+04 28 1.1099D+04 30 1.1099D+04 32 1.1099D+04

14 100 75 1.1965D+04 129 1.1965D+04 77 1.1965D+04 263 1.1965D+04

1,000 62 1.2147D+05 100 1.2147D+05 72 1.2147D+05 430 1.2147D+05

10,000 65 1.2165D+06 43 1.2165D+06 65 1.2165D+06 225 1.2165D+06

15 100 66 3.8597D+02 80 3.7810D+02 63 3.8597D+02 343 3.9379D+00

1,000 77 3.9267D+03 76 3.9267D+03 77 3.9267D+03 364 3.9228D+03
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Table 3. Performance of Fletcher–Reeves.

M1 M2 M3 M4

Problem FGE f (x) FGE f (x) FGE f (x) FGE f (x)

1 100 13 2.7001D−13 12 9.9476D−14 13 2.5580D−13 13 2.8422D−13

1,000 15 −1.1369D−13 13 1.1369D−13 15 −2.2737D−13 14 3.4106D−13

10,000 15 1.8190D−12 13 0.0000D+00 15 1.8190D−12 118 −1.8190D−12

2 100 87 5.0500D+02 131 5.0500D+02 87 5.0500D+02 104 5.0500D+02

500 135 1.2525D+04 203 1.2525D+04 135 1.2525D+04 169 1.2525D+04

1,000 150 5.0050D+04 235 5.0050D+04 150 5.0050D+04 326 5.0050D+04

3 100 11 8.7540D−22 9 1.6427D−19 11 8.7540D−22 5 NaN

1,000 9 5.2302D−20 8 4.8953D−20 9 5.2302D−20 5 NaN

10,000 43 0.0000D+00 27 NaN 43 0.0000D+00 5 NaN

4 100 9,108 2.0486D−06 514 1.8410D−06 9,171 2.0439D−06 706 1.8410D−06

1,000 489 2.3349D−07 478 2.2725D−07 477 2.3349D−07 1066 2.2725D−07

10,000 298 2.1434D−08 583 1.4611D−08 214 2.1433D−08 946 2.1368D−08

5 100 94 6.1146D−15 88 6.5015D−15 94 6.1146D−15 112 7.3569D−15

1,000 580 3.9707D−01 489 3.9707D−01 357 3.9707D−01 2,496 3.9707D−01

3000 373 1.2611D−14 332 1.4078D−14 368 1.3015D−14 259 3.9707D−01

6 100 72 7.3343D−11 87 6.7439D−11 72 7.3343D−11 335 2.8331D−10

1,000 181 1.5513D−10 653 5.5624D−11 181 1.5532D−10 1,764 1.6422D−10

10,000 749 9.3124D−11 4,604 8.0323D−11 754 6.4120D−11 12,168 4.3333D−11

7 100 243 6.3738D−13 327 2.7771D−13 202 1.5148D−17 3,258 4.5981D−16

1,000 154 6.2276D−15 336 1.6205D−14 149 8.8002D−15 1,825 3.0003D−14

10,000 208 6.7539D−14 1,356 3.6998D−14 184 1.2493D−14 1,339 3.4468D−13

8 100 1,624 9.0249D−04 271 9.0249D−04 1,636 9.0249D−04 1,480 9.0249D−04

1,000 751 9.6862D−03 221 9.6862D−03 751 9.6862D−03 582 9.6862D−03

10,000 489 9.9002D−02 729 9.9002D−02 478 9.9002D−02 1,913 9.9002D−02

9 100 454 2.1190D−15 255 1.3748D−15 454 2.1190D−15 163 1.1146D−15

1,000 2,205 3.8403D−16 740 4.8037D−16 2,205 3.8402D−16 613 5.3410D−16

10 100 29 1.0512D−19 55 5.3176D−19 29 1.0511D−19 929 1.9734D−24

1,000 43 1.6625D−23 503 1.4175D−22 43 1.3398D−23 56 NaN

11 100 232 2.1380D−09 704 4.9650D−10 913 4.6145D−10 16,189 1.0111D−06

1,000 934 2.4712D−09 519 2.6710D−09 487 8.9763D−10 440 1.8797D−09

12 100 9,975 1.0060D+02 21,614 1.0000D+00 9,975 1.0060D+02 8,439 1.0000D+00

500 9,804 2.9171D+02 68,651 1.8331D+02 9,804 2.9171D+02 13,5876 2.1733D+02

13 100 50 1.0909D+02 42 1.0909D+02 50 1.0909D+02 50 1.0909D+02

1,000 40 1.1082D+03 52 1.1082D+03 40 1.1082D+03 28 1.1082D+03

10,000 33 1.1099D+04 19 1.1099D+04 33 1.1099D+04 64 1.1099D+04

14 100 63 1.1965D+04 3,650 1.1965D+04 65 1.1965D+04 2,565 1.1965D+04

1,000 22 1.2147D+05 1,790 1.2147D+05 22 1.2147D+05 531 1.2147D+05

10,000 31 1.2165D+06 44 1.2165D+06 37 1.2165D+06 457 1.2165D+06

15 100 9,041 3.9379D+00 794 3.7810D+02 8,860 3.9379D+00 377 7.8770D+00

1,000 358 7.8770D+00 525 3.9379D+00 111 7.8770D+00 2,217 7.8770D+00

In Table 4 we find a summary of the comparison between the alternatives M1, M2,
M3 and M4 of Perry, Polak–Ribi`ere and Fletcher–Reeves. For example, the first entrance
of this table should be read as follows: when comparing the performance of Perry-M1
and Perry-M2, Perry-M1 was better than Perry-M2 in 25 problems, worse in 14 problems
and they had the same performance in 1 problem.

Comparing the best alternatives of each conjugate gradient formula, we conclude
that: Perry-M1 beat Polak–Ribi`ere-M1: 31-05-04; Perry-M1 beat Fletcher–Reeves-M3:
29-07-04; and Polak–Ribi`ere-M1 beat Fletcher–Reeves-M3: 24-10-06.
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Table 4. Comparison among M1, M2, M3 and M4.

Perry Polak–Ribi`ere Fletcher–Reeves

M1 vs. M2 25-14-01 21-19-00 20-20-00
M1 vs. M3 19-14-07 12-08-20 06-11-23
M1 vs. M4 29-11-00 29-11-00 28-10-02
M2 vs. M3 16-23-01 18-22-00 18-22-00
M2 vs. M4 26-10-04 29-09-02 28-11-01
M3 vs. M4 27-13-00 28-12-00 28-10-02

4. Comparisons with CONMIN and SGM

The experiments in Section 3 seem to indicate that the best scaled conjugate gradient
formula is Perry’s (3) with the spectral choice (6) ofθk and the initial choice (11) of the
step-length. Accordingly, we compared this method against CONMIN [11] and SGM.
We used the original (Fortran) codes of SGM and CONMIN. SGM was used with the
parameters recommended by Raydan [10]. This algorithm uses 3n+ O(1) real storage
positions whereas CONMIN and SCG require 5n+ O(1) real positions.

The results are given in Table 5. We report function evaluations (FE), gradient
evaluations (GE), function–gradient evaluations (FGE), best function value (f (x)) and
CPU time (Time). Since the methods compared here do not have the same linear algebra
overhead, it makes sense to compare computer times. Considering CPU time, we observe
that Perry-M1 beats both CONMIN and SGM (31-03-06 and 23-12-05, respectively).

5. A Parameter Estimation Problem in Optics

In a recent work, SGM has been successfully used for a hard inverse problem that consists
in the estimation of optical parameters of thin films using transmission data. See [1].

The data of the problem is a set ofN transmission observations for different wave-
lengths ((λi , Tobs

i ), i = 1,2, . . . , N) and the objective is to recover the true thickness
and the refractive and absorption parameters of the film. The unconstrained formulation
introduced in [1] is as follows:

Minimize
N∑

i=1

[T(λi ,d,ni , αi )− Tobs
i ]2.

The transmissionT of a thin absorbing film on a transparent substrate depends on a com-
plicated formula that involves the thicknessd, the refractive indexn(λ), the absorption
coefficientα(λ) and the wavelengthλ. The detailed description of the problem, as well
as the pointwise unconstrained optimization strategy of the solution, can be found in [1].
See also [3].

In [2] it has been pointed out that the main reason for slow convergence of SGM
in critical problems is local ill-conditioning at the solution. This complicating charac-
teristic appears very strongly in this problem, because large variations of absorption
coefficients produce an almost null variation of the transmission in the transparent
zone of the spectrum. Therefore, the problem is practically under-determined on that
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Table 5. Performance of SGM, CONMIN and Perry-M1.

SGM CONMIN Perry-M1

Problem FE GE Time f (x) FGE Time f (x) FGE Time f (x)

1 100 8 8 0.00 0.0000D+00 38 0.01 1.6058D−11 11 0.00 0.0000D+00

1,000 8 8 0.01 −1.1369D−13 38 0.05 1.5154D−10 11 0.02 1.1369D−13

10,000 8 8 0.11 1.8190D−12 38 0.51 1.4734D−09 11 0.17 −1.8190D−12

2 100 57 52 0.01 5.0500D+02 81 0.02 5.0500D+02 63 0.01 5.0500D+02

500 80 74 0.07 1.2525D+04 127 0.16 1.2525D+04 85 0.08 1.2525D+04

1,000 91 82 0.14 5.0050D+04 145 0.37 5.0050D+04 96 0.18 5.0050D+04

3 100 3 3 0.00 1.8795D−23 7 0.00 1.4066D−07 11 0.00 8.7540D−22

1,000 4 4 0.00 1.3346D−23 38 0.04 8.1381D−18 9 0.01 5.2302D−20

10,000 56 53 1.82 0.0000D+00 38 1.79 4.6837D−20 43 1.29 0.0000D+00

4 100 80 76 0.04 2.4054D−06 108 0.07 1.8410D−06 94 0.06 1.8410D−06

1,000 104 91 0.43 2.2558D−07 112 0.63 2.2664D−07 84 0.54 2.3338D−07

10,000 99 89 3.64 2.1659D−08 126 6.57 2.2674D−08 85 5.14 2.2553D−08

5 100 34 34 0.01 1.1369D−14 67 0.01 3.0081D−14 55 0.00 3.0248D−15

1,000 40 40 0.04 4.3612D−15 169 0.29 3.9707D−01 108 0.09 1.4078D+00

3000 45 44 0.13 2.0021D−14 71 0.38 1.8685D−14 98 0.25 3.9707D−01

6 100 111 106 0.02 5.5889D−10 99 0.02 6.7141D−10 59 0.00 1.2885D−10

1,000 364 296 0.26 1.4567D−09 320 0.47 1.3921D−10 175 0.16 3.6787D−10

10,000 1,751 1,351 11.54 1.0295D−09 937 16.14 5.3219D−11 823 8.67 3.7529D−10

7 100 91 69 0.01 3.4615D−17 47 0.01 2.9286D−12 54 0.00 7.1131D−24

1,000 118 93 0.06 1.4427D−20 73 0.06 1.4111D−15 60 0.03 7.8057D−23

10,000 92 70 0.46 1.9663D−17 69 0.64 1.4479D−14 61 0.34 3.2663D−21

8 100 49 48 0.01 9.0249D−04 65 0.01 9.0249D−04 152 0.01 9.0249D−04

1,000 57 57 0.05 9.6862D−03 55 0.06 9.6862D−03 104 0.06 9.6862D−03

10,000 70 70 0.56 9.9002D−02 3 0.02 1.1114D+23 96 0.58 9.9002D−02

9 100 191 167 0.03 2.4820D−16 161 0.03 4.9988D−15 190 0.01 2.8146D−15

1,000 1,152 878 0.78 1.6416D−14 613 1.08 6.1288D−16 746 0.65 1.5807D−15

10 100 38 38 0.01 3.1061D−29 29 0.00 2.8874D−18 29 0.00 1.0563D−19

1,000 68 66 0.07 1.6362D−25 62 0.07 1.4308D−20 82 0.06 1.5639D−18

11 100 988 740 0.17 1.1325D−09 95 0.02 1.0019D−09 174 0.01 1.4167D−09

1,000 1,851 1,345 2.19 7.9284D−09 87 0.17 2.0417D−09 163 0.09 1.0096D−10

12 100 1,886 1,429 0.22 1.0000D+00 516 0.09 1.0000D+00 694 0.04 1.0000D+00

500 5,896 4,452 2.03 1.0000D+00 2,180 1.64 1.0000D+00 1,913 0.63 1.0000D+00

13 100 26 26 0.01 1.0909D+02 27 0.01 1.0909D+02 32 0.00 1.0909D+02

1,000 23 23 0.02 1.1082D+03 23 0.03 1.1082D+03 31 0.02 1.1082D+03

10,000 21 21 0.19 1.1099D+04 19 0.27 1.1099D+04 23 0.16 1.1099D+04

14 100 587 438 0.09 1.1965D+04 27 0.01 1.1965D+04 85 0.01 1.1965D+04

1,000 391 288 0.38 1.2147D+05 25 0.04 1.2147D+05 43 0.04 1.2147D+05

10,000 154 119 1.50 1.2165D+06 23 0.41 1.2165D+06 41 0.39 1.2165D+06

15 100 84 81 0.02 3.8597D+02 53 0.01 3.7810D+02 120 0.01 3.2370D−16

1,000 87 80 0.09 7.8770D+00 69 0.11 3.9267D+03 104 0.06 5.3242D−15

zone. On the other hand, SGM is very efficient for finding reasonable suboptimal so-
lutions. For this reason, we conjectured that the spectral conjugate gradient variation
presented in this paper could combine a rapid approach to a solution basin and fast local
convergence.

In our experiments we considered the five films analyzed in [1]. The physically
acceptable results of the estimation procedure were obtained in [1] using 30,000 iterations
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Table 6. Optics problems.

SGM SCG

IT FE Time fRaydan IT FGE Time f (xk)

Problem (seconds) (seconds)

1 30,000 35,825 45.0 6.929605E−07 3,605 6,184 7.7 6.926210E−07
2 30,000 35,568 45.8 2.203053E−07 6,798 11,092 14.1 2.201913E−07
3 30,000 38,113 47.9 6.224862E−06 7,344 13,471 17.5 6.224860E−06
4 30,000 35,687 44.6 1.365270E−06 10,356 17,938 22.3 1.365184E−06
5 30,000 36,290 46.3 2.120976E−07 7,611 13,205 16.5 2.066100E−07

of SGM. Here we used, as stopping criterion for SCG (Perry-M1), the inequalityf (xk) <

fRaydanwhere fRaydan is the minimum value reached by SGM. In Table 6 we give the
results. We report IT (number of iterations), FE (functional evaluations), FGE (function–
gradient evaluations) and Time (CPU time). Observe that SCG arrives at the same solution
as SGM using between one-third and one-half of the computer time used by the spectral
gradient method.

6. Final Remarks

In the classical paper [11], Perry’s basic idea was modified in order to overcome the lack
of positive definiteness of the matrix that, implicitly, defines the search direction. As a
result, the algorithmic framework of CONMIN was obtained. In this paper we followed
a different direction, motivated by the necessity of preserving the nice geometrical prop-
erties of Perry’s direction. On one hand, we observed that scaling the gradient by means
of the spectral parameter of [10] is worthwhile and, on the other hand, we detected that
the initial choice of the step-length crucially affects the practical behavior of the method.
With the proper parameters, Perry’s algorithm clearly outperforms Polak–Ribi`ere and
Fletcher–Reeves and is competitive with CONMIN and Raydan’s [10] method.

Moreover, as observed by Raydan [10], the spectral gradient method needs precon-
ditioning in ill-conditioned problems in a more dramatic way than conjugate gradient
methods do. This is the reason why, in the hard inverse problem studied in Section 5,
SGM is outperformed by the M1 version of Perry’s method.
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