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Abstract. This paper is concerned with the following stochastic heat equations:

aut(X)
ot

= 2Au () + w" - u(x), xeRY t>0,

wherew" is a time independent fractional white noise with Hurst paramidtes

(h1, hy, ..., hy), or a time dependent fractional white noise with Hurst parameter
H = (hg, hy, ..., hy). Denote|H| = hy + hy + - - - + hg. When the noise is time
independent, itis shown thatdf < h < 1fori =1,2,...,dandif[H| > d — 1,
then the solution is irf; and theL,-Lyapunov exponent of the solution is estimated.
When the noise is time dependent, it is shown thétiff hi <1lfori =0,1,...,d
andif[H| > d — 2/(2hg — 1), the solution is inC, and theL,-Lyapunov exponent

of the solution is also estimated. A family of distribution spadgsp € R, is
introduced so that every chaos of an elemei,irs in £,. The Lyapunov exponents

in S, of the solution are also estimated.

Key Words. Heat equations, Fractional Brownian field, Multiple integral af It
type, Stochastic integral ofdtype, Chaos expansion, Asymptotic behavior, Mittag—
Leffler function.

AMS Classification. Primary 60H15, 60H05, Secondary 60G60, 35K05, 35R60,
60F25.

* This research was supported by the National Science Foundation under Grant No. EPS-9874732,
matching support from the State of Kansas and General Research Fund of the University of Kansas.



222 Y. Hu
1. Introduction

The following stochastic heat equations with white noise potentials have been studied
by many authors:
U (X)
ot

= 2AU(X) + w - Uy (X), O<t<oo, XeRY,

whereA = Y (32/9x?) andw is the white noise on some probability spage 7, P)
(see [27],[26], [7], [28], [16], and the references therein). The expectatiofR o, P)
is denoted byE. Let

S,=1F: Q> R; Z((n+ DHPE | Fal? <00},
n=0

whereF, is thenth chaos ofF. These spaces have a nice property: for an elefrent
S, p € R, each chao,, n =0,1,2,...,isin L,. Whenp = 0, Sy = £5. In [16]
the asymptotic behaviors ifi; and inS, of the solution of an stochastic heat equation
with white noise potentials have been studied. SpecificallyHf = w(x) is a time
independent white noise anddf< 3, it is shown that the solution is ifl, for certainp
and the Lyapunov exponents of the solution in these spaces have been estimated. Similar
results are also obtainedif?! = w(t, x) is a time dependent white noise andlif= 1.
Generally it is known that the solution is notdf) and the stochastic heat equations are
studied in more singular distribution spaces. There are many reasons why the stochastic
heat equations with white noise potentials are important. One of these reasons is that the
heat equation is one of the simplest second-order partial differential equations and the
white noise is one of the simplest random fields.

On the other hand, there is growing interest in the study of fractional Brownian
motions (FBM). A zero mean Gaussian proc&s0 < t < oo, on some probability
space(2, F, P) is called an FBM with a given Hurst parametee (0, 1) if

E(B'BY) = 3 (It + s/ — |t —s*").

These processes have the following properties: on one hand they are simple Gaussian
processes (though not as simple as standard Brownian motion); on the other hand they
describe random phenomena with long range dependence. These properties enable them
to be potential candidates in applications to various fields.

Itis natural to extend the FBM to multiparameter cases (fractional Brownian fields
= FBF). The fractional white noises can be defined accordingly. It is also natural to study
the heat equation witfractional white noise potentials.

In[21] Lindstrem defines an FBF, with a paramepet (0, 2), as a Gaussian process
LP(x), x € RY. The basic feature of his FBF is

E(LP(OLP(y) = 3 (IX1?P + 1yI?P — |x — y|*P). (1.1)

References of some applications of these FBF are also given in [21]. However, the FBF
LP(x), x € RY, is not positively correlated. This is inconvenient for the purpose of this
paper. For this reason, a new type of FBF is introduced. Since the FBM are fractional
integrals of white noise, it is natural to define our FBF as partial fractional integrals
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of multiparameter white noise. Partial fractional integrals have been studied by many
researchers (see [25], [29], and the references therein). Roughly speaking, we define the
FBF with parameteH = (hy, ..., hy) as a Gaussian proceB§' (x), x € RY, satisfying

1

E(B"(0B" () = 5

d
[T+ 1y P =6 — yi ™). (1.2)
i=1

In Section 2 we state some elementary properties of the BBFx), x € RY.

In order to study the stochastic heat equation with fractional white noise potentials,
we need to develop a stochastic calculus for FBF. We establish this using the ideas in [3],
[9], and the references therein. Our presentation for this part will be brief. Only relevant
results will be sketched.

In Section 3 we define the stochastic integral of deterministic functions with respect
to FBF. We follow the ideas of [11] and [9].

In Section 4 we define multiple stochastic integrals of deterministic kernels with
respect to FBF. The approach is standard (see [24], [23], [9], [19], [5], [6], and the
references therein).

In Section 5 we define the stochastic integral of a general (random) integrand with
respect to FBF in the spirit of the Malliavin calculus. Itis am(Bkorohod) type integral.
Some properties useful to this paper are also obtained.

After the introduction of stochastic calculus for FBF, we study the following stochas-
tic heat equation with time independent fractional white noise potentifix):

aU; (X)
ot

= AU (X) + w (x) - U (x), (1.3)

wherew" (x) is the fractional white noise, i.e., formally™ (x) = (89/8x,9%z - - - 9Xq)
BH (x). This equation will be solved in the mild form. Namely, we seek) such that

t
Ut (X) = Up(X) +/0 /Rd Pr_s(X — Y)Us(y) dB" (y) ds (1.4)

(see Definition 6.1), where; (X) = e—XZ/Zt/«/Z—nt. The above stochastic integral is in
the sense of #=Skorohod and is defined in Section 5 of this paper.

Assume thah; > Zfori =1,2,...,d. Let|H| =hy + - + hq. Itis shown that
when|H| > d — 1, the solution is inC,, and theL,-Lyapunov exponent of the solution
will be estimated. More precisely, we show that for akkOc < 1+ |H| —d,

log(supcgs E | Ut(X)]?)

IiEn sup o < 00. (1.5)
Note thatwherH = (3, . ..., 3), we obtain the usual white noise. The condition

|[H| > d — 1is optimal in the following sense: wheh= 2, H = (h, h), the condition
implies thath > % It is known (e.g., [27], [26], or [16]) that whed = 2 and when
h= % (the white noise case) the solution is not necessarilfLirOur result also states
that although whed = 2,h = % (the white noise potential case), &a solution may
not exist, oncédn > % an L, solution exists. This amuses the author.
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In general itis shown that |H| > d — 2, then there igg such that the solutionisin
S, forall p < pg and the Lyapunov exponentsafix) in these spaces are also obtained.
To have an idea about the conditipd| > d — 2, we considerH = (h,h, ..., h).
|[H| > d — 2 means thalt > (d — 2)/d. Itis known that wher < 4, then the solution
of the stochastic heat equation with time independent white noise potentialsjs in
and wherd > 4, then the solution is not in any,. Whend = 4,h > (d — 2)/d. This
means thah > % Thus although whed = 4, h = % (the white noise potential case)
ans, solution may not exist, onde > % ans, solution exists.

The stochastic heat equation with time dependent fractional white noise potentials
wh(t, x),

AU (x)

e TAU() + wH (%) - u (), (1.6)
is studied in Section 7, wheté = (hg, hy, ..., hg). Equation (1.6) is also solved in its
mild form

t
Up (X) = Uo(X) + / / | Pes(X = y)us(y) dB"(s, y) (1.7)
0 JR

(see Definition 7.1). Again lgH| = hy + - - - + hg. It is shown that when

T 2ho—1

then the solution of (1.6) is iff,. Moreover, for any O< « < po,

lim sup

t—oo

2
Wlogxilﬂig)ﬂi | Ut(X)|* < oo. (1.9)

In general it is shown that ifH | > d + 2 — 4hg, then there ig such that the solution
isinS, for all p < po and the Lyapunov exponents of(x) in these spaces are also
obtained.

If we formally think that the time independent FBF is a special case of the time
dependent FBF withhy = 1, then condition (1.8) becomeé$li| > d — 1 and the
condition|H| > d + 2 — 4hg becomegH| > d — 2. Thus (1.9) is an extension of (1.5).

Two relevant papers have been completed after the the first version of this paper. In
[17], the stochastic partial differential of the form

9
U0 = AU, X) + A, x) - wh(t,x),  teRy, xeRY

is studied, wherel; is a first-order partial differential operator. In [20] the Poisson type
equation

AU x) = —wH(x); xeD, Ux)=0 for xedD,

is discussed. HerB is a bounded open set Bf with a smooth boundary. We refer the
reader to these papers for details.



Heat Equations with Fractional White Noise Potentials 225
2. Fractional Brownian Fields

Let 0 < h < 1. Itis well known that there is a Gaussian stochastic proBss > 0,
such that

E(B)=0,  E(BB})=3{ItI"+Is -t —s*} (2.1)

for all s, t € R,. This process is called the fractional Brownian motion (FBM) with
Hurst parametehn. To simplify the presentation, it is always assumed that the FBM is 0
att = 0.

If h = % then the corresponding FBM is the usual standard Brownian motion.
If h > % then the proces8!" exhibits a long-range dependence, that ig,(if) =
cov(Bf, B, — BI"), then} " ; r (n) = oo. This process is self-similar in the sense that
BN has the same probability law a8 B". A process satisfying this property is called
self-similar with the Hurst parametér

Since, in many problems, the processes under study exhibit the self-similar and the
long-range dependent properties and since the FBM are among the simplest processes
of this kind, there have been many studies of these stochastic processes.

Let B, t € R, be a Brownian motion. Lab; = B; be the white noise. An FBM of
Hurst parameten € (0, 1) can be given by the fractional integral of the white noise (up
to a constant multiple)

t 0
B = cn [ / (t—9"?dBs - / (—s)h‘l/Zst}

t 0
=cpy [/ (t —9)"Y2ysds— / (—s)h‘l/zwsds] , (2.2)
where
00 ) 1\ -12
Ch = / (A+)"M Y2 X2 dx + =
0 2h

and the subtraction of the terfi _(—s)"/2d B is to ensure thaB} = 0. If we define

(t—s)Y2_ (—g)h-¥2  when s <0,
On(t,8) =cn { (t —9)"2 when O<s<t, (2.3)
0 when s>,

thenB! = [ gn(t, s)dBs.
Recall that the Riemann-Liouville fractional integral of ordeof a functiong(t)
over the whole axis is defined as (see, e.g., [29])

1 t 1
[Yp(t) = —— t—9)%"p(s)d
Lo®) F(a)/_oo< )*o(s) ds,
wherel' () = f0°° s*~le~s dsis the gamma function. Thus the FBM of Hurst parameter

h is the fractional integral of orden + % of the white noisew; (up to a constant
multiple).
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In this paper we are concerned with the FBF (or fractional Brownian motions of
several parameters). It is natural to define the FBF as the partial fractional integrals of
the white noise of multiparameters. Partial fractional integrals have been studied in the
literature (see for instance, [29], [25], and the references therein).

We introduce some notations. bet= (X, X2, ..., Xg), Y = (Y1, Y2, . . ., Ya) € R%.
Denotedx = dx dx,---dxq. If fori = 1,2,...,d, % <YV, then we denot < y
ory > x. If x > 0, then we denot&” := (x;*, x3%, ..., xJ"). Letx € RY. Denote

['(xX) = F'(x))T'(x2) - - - T'(Xg), whereI'(x;) is the gamma function. Ik < vy, then we
denote

y Y1 Y2 Yd
f (p(U)dU:/ / / @(Ug, Uy, ..., Ug)dupduy - - - dug.
X X1 X2 Xd

Let w(x) be thed parameter white noise (see [13] and [14] for more discussions).
Now we introduce an FBF with parametelr = (hy, ..., hy), wherehy, ..., hq
€ (0,1).

Definition 2.1. A fractional Brownian field (FBF) with parametét = (hy, ..., hy),
wherehy, ..., hg € (0, 1), is defined as

BH(x) = / gH (X, Yw(y) dy, x € RY, (2.4)
where—oo = (—o0, ..., —00) and
d
g6 y) = [ [ on 06 w0 (2.5)
i=1

(Recall thatgy, is defined by (2.3).)
We compute the covariance Bf (x).

Proposition 2.1. Let B"(x), x € RY, be an FBF with Hurst parameter H (hy, .. .,
hq), where h, ..., hg € (0,1). Then

1

E (B x)B"(x)) = o

d
[T 4+ 12 — 1 = x17"). (2.6)
i=1

Proof. Itis easy to check the following identity (see, e.g., [30]):

min(ty,tp)
/ Oh(t1, S)On(tz, ) ds = 2 [t2" + 2" — |t — t/?"].

oo

Letx AX = (Xg A Xy, ..., Xd A Xg). Then

7

XAX

E (B" (x)B" (x)) =/ gn (X, V)G (X, y) dy

—00
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d X AX
=H/ Oh (i, YD GH (X, Y1) dy

i=1v—%

14 o  2h
= o L1+ X = x = x(12)
i=1
proving the proposition. O
Proposition 2.2. B (x) has a continuous version for all B (hy, hy, ..., hy), where

O<h <1i=12...,d.

Proof LetAn = {x € RY; |x| < n}. First we estimat& (B (x) — BH(y))z. Denote
fori =0,1,2,...,d,

PG;x,y) = (X1, ..., Xi, Yig1s - -+ Yd)-

Thus

E (BH(x) — B ()’

d 2
(Z B (P(i:x.y) — BH(P(i — L x, y)))
i=1
d

E
<CY E(B"(P(:x ) — BY(P(i — Lx, y)*,

where, and in what followsC denotes a constant whose value may vary from place to
place. By (2.6),

E (BH(P(i; . y) — BM(P(i — L x, y)))*

i—1 d

= sz LI TT Py =™ < Clyi —x ™.
j=1 j=i+1

Leth = min(hy, hy, ..., hg). Thus for allx, y € A,, there is a constar@ such that
2 d R
E (B"() —B"() <CY Iy —x /™ < Clx -y
i=1
SinceB(x) is Gaussian, for all X p < oo,
p/2
E | B"(0 - B*WIP = Cp {E (B¥ () - B (v)?}
< Cplx —yIP".

Thus by Kolmogorov’s continuity theorem (see, e.g., pp. 209-212 of B])x) has a
continuous version on,. The proposition follows from a routine argument. O

Let  be the set of all continuous functions frdk{ to R. Let F be theo-algebra
generated by all the coordinate functiofi$x): Q@ — R, x € RY, whereF (x)(w) =
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w(X), Yo € Q. Then the FBFBH (x), x € RY, induces a probability measufe™ on

(22, F). The probability space, F, P") is called the canonical fractional Brownian

field space. The coordinate process(@n F, PM) is called the canonical FBF with

Hurst parameteH = (hg, ..., hy). Sometimes we omit the explicit dependencetbn
The following proposition is easy to show.

Proposition 2.3. Let B"(x), x € RY, be an FBF with Hurst parameter H=
(h1,...,hg), where h, ..., hy € (0,1). Then B'(x) is a self-similar process in the
sense that for any diagonal matrix A diag(ay, a, ..., aq), where a > 0 for all

1 < i < d, the random field B(Ax), x € RY, has the same probability law as
ahB"(x),x e RY, where &' = a"---a])’. As a consequencere obtain that B (ax),

x € RY, has the same probability law aga"++hBH (x), x € RI.

Remark 1. In this paper we only deal with the FBF whose Hurst parametes
(hy, ..., hg) satisfiesh; > 2 fori =1,2,...,d.

3. Stochastic Integral of Deterministic Functions

Let BH (x) be an FBF with Hurst parameter = (hy, h, .. ., hg). Assume thah; > %

fori =1,2,...,d. We first define the stochastic integral with respect to deterministic
kernels. The methodology that we adopt is found in [3], [14], [13], and the references

therein.
Introduce the following Hilbert space:

Ly :{f: RY > R; | f|1? =f (pH(u,v)f(u)f(v)dudv<oo},
R2d

where and in the rest of this papgy is defined as

d
or(u,v) i=[Jeni,v),  U=(Uy,U,...,u) and v=(v1,vp, ..., vg)
i=1
with ¢n(u, v) ;= h(2h — 1)|u — v|?" =2, For anyf € Ly, there are sequencagy € R,
Xnk» Yok iN RY With Xp < Ynk,N=1,2,..., 1 <k <k, < oo, such thatf, — f in
Ly, where
Kn
fn = Zaﬂ,kX(Xn,k,yn.k]- (31)
k=1

Let S be the set of the simple functions frdRf to R of the above form.
Lemma 3.1. Sisalinear spaceS is also dense i .

Proof. It suffices to show thafx,,,y.,) — Xox,.y.,1 IS also a simple function. We
only prove this lemma fod = 2. There are three possibilities: one @f x, ynx] and
Xk Yok is contained in the other; they are overlapped but no one is contained in the
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other; they are disjointed. It is easy to see that in all these three cases, the lemma is
true. O

Let f, € S be of the form (3.1). We define

kn
/ fa0) dB" () =Y " a0 kB (Xnk, YnkD)-
R k=1

It is easy to check that

2
IE{ fn(x)dBH(x)} =/ o (U, v) fo(u) fr(v) du dv.
Rd R2d

(See [11] and [9] for the one-parameter case. The multiple parameter case is similar.)
From this identity, it follows that

/ fn(x)d B (%), n=1,2 ...,
]Rd

is a Cauchy sequence i£y. The limit is independent of the choice of the sequefice
which converges td . This limit, denoted by, f(x)d BH (x), is called the stochastic

He

integral of f € £y with respect to the FBB" (x), x € RY.
This integral has the usual properties as a stochastic integral.

Proposition 3.2. Let f,g € Ly. Then
(i)
/ [f(x)£g(x)]dB" (%) =/ f(x)dB”(x)i/ g(x) dB" (x).
Rd Rd Rd

(i) E (fza fOOdBY () =0.
(i) The following isometric identity holds

2
E (/ f(x)dBH(x)) :/ @ (u, v) f(u) f (v)du dv. (3.2)
]Rd de

4. Multiple Stochastic Integral

This section and the next section follow the idea in [24] and [18]. For the (one-parameter)
FBM, similar results have already been established in [5], [6], [9], and [19].
The Hermite polynomial of degree> 0 is defined by

n
_ nx?/2 d —x2/2
Hh(X) = (—=D)"e We , x € R. (4.1)
The generating function of these polynomials is

2 n
gx—t3/2 _

M2
3|"'

Il
o

lHn(x), t eR.
£ !
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For example,
Ho(X) = 1, Hi(x) = X, Ho(x) = x% — 1, Ha(x) = x3 — 3x.

In general,

=Dkl
Hn(X) = X" n=0,12....
k;;z 2kk! (n — 2K)!

It is also easy to see that

n!
X" = ——— Hp_«(X), n=012,....
k;/:z 2% (n— 21 )

Denote by® the symmetric tensor product. L&, e, ...} be an orthonormal basis
of Ly. Then{e, ®e,® - ®8,, 1 <l iz ...,in < 0o} is an orthonormal basis of
Ly @R") = LJ". Itis easy to see that

n
LuR") = {f: R" — R; / [Tenwi v
Ranizl

- f(uf@wduydvy---duydoy <oo},

where we denote

u = (u17 AR ] un)! v = (U:I.? AR vn)?
and f (uy, ..., Up) is symmetric with respect tay, . .., u,. Lete € Ly be a unit vector
in £y. Thene®" is a function ofxy, ..., X,. It is in £ (R"). We define the multiple

integral of 16 type of this function by

/ (X1, ..., Xn) dB" (x) dB" (xp) - - - d B" () = Hn (/ e(x)dBH(x)).
]Rnd

More generally we define the multiple integral ob ltype of the functiore, ® e, ®
Q8

In(al®a2®"'®an)=/da1®a2®”'®an(xl7"'vxn)

R
~dB" (x) dB" (x2) - - - d B (xn),

by the polarization procedure (see, e.g., [12] and [23]).
To illustrate, we take one example. Since

aRe=1i[E1+e)% — (&1 — )%,

we have

/ L e®e0u,x)d B (x1) dB" (x2)
R

:% kaz e1+62 —kgHZ e1_82 i
k1 ko
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whereHs; is defined by (4.1) and
ki=llet+eln and ko= el —efn.

Denote

Cn = { fe EH(Rn); f= Z Qiis,..in8, D6, Q- Q8 .

finite sum

Let f € C, have the above form. Define

()= Y a6, 06,0 -®¢,).

finite sum

For f, g € L(R"Y) we denote
n
(f, gn =/Zd]"[gaH(ui,w)f(u)g(v)duldvl---dundvn
R4 1
and| f |y = ((f, f)n) Y2 Itis easy to check that wheh e C,, the following isometric
inequality holds:
E (In(f)?=n! || fII3.

Now let f be an element of 4. There is a sequendg € Cy such thatfy — f inC. It

is easy to see by the isometric equality thatfy), k =1, 2, ..., is a Cauchy sequence
in £,. The limit can be shown independent of the choice of the sequgndéne limit

is called the multiple integral ofdtfype and is denoted by

In(f)=/ f(xl,xz,...,xn)dBH(xl)dBH(xz)-~dBH(xn)=klim In(fi).
Rd =00

It is easy to see that

E (In(F)Ia(9)) = nl (f, g)n. (4.2)
The following theorem can be proved in a similar way as in [9].
Theorem4.1. LetH = (hy, ..., hg) withhj > 3. Let B (x), x € RY, be the canoni-
cal FBF in the canonical probability spaa&, F, P™). Then for any square integrable

random variable F onQ, F, P"), i.e, F € L?(Q, F, P"), it admits the following
chaos expansion

F= Z In(fn), (4.3)
n=0

where fisinL(R"Y),n =0, 1, 2, .... The above series is convergent if(2, 7, PH).
Moreovery

EFZ=>"|fl3. (4.4)
n=0

Remark 2. f, is called thenth chaos coefficient oF. F, = I,(f,) is called thenth
chaos ofF.



232 Y. Hu
5. Stochastic Integral of It6 Type

Let F andG be elements i, given by

k k
F=) la(fy) and G =) In(gn. (5.1)
n=0 n=0
wheref,, gy € L4 (R"),n = 1,2, ..., k, are symmetric functions. Define the following

Hilbert scalar product:
k
(F.G)p =Y _(n+ DE [In(fa)In(gn)] -
n=0

Set||F|lp = (F, G)%Z. We defineD as the closure of all random variables of form (5.1)
under the nornj - ||p:
D ={F € La; |Fllp < oo}.

D is a special kind of Meyer—Watanabe distribution space.fl@) be a random field
such that for alk € RY, f(x) € D. Thus f (x) can be written as

FO0 =" In(fa(x)),
n=0

where f,(x) is of the form fo(X; X1, X2, - . ., Xn), X, X1, X2, - . ., Xn € RY, and

0]

Y (n+ DE (In(fa(x))? < 0.

n=0

Let f, be the symmetrization of,(X; X1, X2, ..., Xn) With respect to then + 1 (d-
dimensional) vectors; X1, Xo, ..., Xn:

- 1 n
fa(X1, X2, ..., Xn41) = — Z F (X5 X1y ooy Xim1s Xigds -« s Xng1)-
ni=
We define

/ f(x)dB"(x) = Z In(fa_1). (5.2)
R4 n=1

Lemma5.1. Let ¢, € L4@R"™). Let f, be the symmetrization of,gThen f €
L (R and

I falln < lIgnlln-

The following theorem is easy to prove.
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Theorem 5.2. Let f(x), x € RY, be a random field such that(%) € D for all x € R¢
and the following assumption hotds

/Rm on (X, (T ), f(y)pdxdy< oo, (5.3)

thenfc; Jre F(x)dB" (x) is well-defined as an element4; and

E f (x)dB" (x)

Rd

2
< / on (% V)(F 00, F(y))p dx dy (5.4)
RZd

The following lemma is a Fubini type lemma.

Lemmab5.3. Let f(s,x), s € R™, x € RY, be a random field o2, F, P). Assume
that

/Rm fRqua(x, WI{f (s, Xx), f(S,¥))pldsdxdy< co. (5.5)
Then

/ { f(s,x)ds}dBH(x)z/ U f(s, x)dBH(x)}ds (5.6)

Rd Rm RM Rd

We introduce the following “flat” Hilbert space as in [16]:

S, = {F = Fu: > (n+ DYE|F? < oo} :

n=0 n=0

wherep € R andF, is thenth chaos of-. Since we do not introduce weights as in [26],
we call these spaces the “flaf’ type of distribution (or test) spaces. An elemensjn
has the following property: each chaos isdn

Lemma5.4. Let f(x), x € RY, be a stochastic process @¢f, F, P) such that
/Zd en (X, Y{F(X), f(y))s, dxdy< oco.
R

Then[,q f(x) dB"(x) exists as an element &,

6. Heat Equations with Stationary Fractional Noise Potentials

Let A = Y0, (8%/0x?) be the Laplacian. Letl = (hy, hy, ..., hg) with £ < h; < 1,
1 < i < d. Let B"(x) be the canonical FBF with parameter on the canonical
probability spaceg2, F, P). (For simplicity, we omit the explicit dependence bn)
The expectation with respect to this probability space is denotdd. fhe fractional
white noise is denoted by (x), i.e., formallyw" (x) = (89/3x19%s - - - 3%q) BH (x).
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Consider the following stochastic heat equation with time independent fractional
white noise as the potentials:

dU¢ (X)
ot

whereug(x) is given and (for simplicity) is deterministic.
Let P.(x) = (1/(27t)9/2)e"X*/2 t ¢ R, , x € RY, be the Gaussian kernel associ-
ated withA /2. Denote

= AU (X) + w (x) - u(x), (6.1)

P ) = /Rd Pu(x —y) f(y)dy.

Definition 6.1. A random fieldu: R, x RY x @ — Ris called a solution of (6.1) if

(i) u: [0, 00) x RY x @ — R is jointly measurable;
(i) fé Jre Pi—sus(x — 2) d B (2) dsis well-defined for alt € R andx € R? as
an element of5, for somey € R.
(iii) the following equation holds irb,, :

t
Ue(X) = PrUo() + / / Ps(x — 2Us(2) dB" () ds. 6.2)
0 Rd

We denoteT, = (0<s <SS <--- < <t} andds = dgds---ds,. If we
iterate the above equation, we obtain formally that

Ui (X) = Pug(x) + i In(fa(t, X)), (6.3)
n—
where
f(t, X; X1, X2, ..., Xn)
= Sym{/Tn /Rd Pi_s, (X — Xn)
“+ Poymg (X2 — X1) P, (X1 — Y)Uo(y) dy ds} , (6.4)
where Sym denotes the symmetrization with respegi ta,, . . ., X.

We compute the&, norm of each chaos. Denote
On(t, ) = E (In(fa(t, x)))?.

Assume thatug(x)] < C < oo, where, and in what followsC denotes a positive
constant whose value may differ in different appearances. By the isometric equality
(4.2), we obtain

On(t, X) = n!/ / [TonGE —nm)Pis(x — &)
Tn2 R2d+1) i=1
+++ Py—g (62 — £1) P, (51 — Y)Uo(Y) Pe—r,, (X — 1)
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o Prpry(n2 = n) Py (n1 — Y)uo(Y) dy dy d& dn ds dr
n
scnt [ [ TTonts —mPiax =& Pasa-&)
TP JRY
P, (X = nn) - Pryr,(n2 — n1) dE dpds dr.
Let p(x) be the one-dimensional Gaussian keri@ait)~*2e~**/2 Thus
d
Onl(t, x) < Cn!/ [[@int. x)dsdr
Tzl
where
n
Oin(t, X)) = / [ Jen (o — ) ptos, (6 — on) -+ Psysi (2 — p1)
R? {1
“ Prer,(Xi = Tn) -+ Pry—r, (T2 — T1) dp d7.

Lemma6.1l. LetO < a < 1.Then there is a positive constant Guch that
/ p(x — Yy dy < Cut /2,
R
Proof Itis easy to see that
[ o= yiyredy =c [ ety e gy
R R
_ C/ e E-XIVARR -a/2)g e e
R

< Cct? (/ €17 dé + f e‘f‘x/ﬁ“) dé
{151=1} {1§1>1}

< Ct™/2,

This shows the lemma. O
Now we estimate; ,(t, Xi).

Lemma6.2. There is a constant g such that

n
Oint, %) < Cf [ ] (51— Sc+ Ty =" 1, (6.5)
k=1

where §,1 =1 =t.

Proof Let B, B; be two independent real-valued standard Brownian motions. Then

/]Rpt(X_Y)f(y)dyz]Ef(X‘i‘Bt)-
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Thus

/2 @n, (p1 — T1) Ps—s, (P2 — P1) Prp—r, (T2 — T1) dp1 d 71
R
= / E @h; (p2 + Bsz—Sl —11) prz—r1(1'2 —11) dTl
R
= Egn, (:02 + Bs—s — (12 + éfz—ﬁ))
= Eon, (/02 — T2+ Bs, g — Brz—r1>
= Egn, (PZ — T2+ Bsz—sl+r2—r1)

= / pi(p2 — 2 — YIyIP"2dy
R

< Cpthi-1,

wheret = s, — 5 + rp — r1. Thus we show that (6.5) is true whan= 1. The lemma
follows from iteration . O

Now we estimated,. Denote byCx a generic function ok > 0 such that there is
constanf. > 1 such that I\* < Cyx < A*. Cx may be different in different appearances.
A may depend on the initial conditiamy, H, d, and other parameters. Howeviris
independent of andt.

Lemma6.3. Let|H|=h;+hy+---+hg;letd—|H| <2andlety =2d — 2|H|.
Foranyy < 4,we have

On < Cpt?'n-2d-y/4nm, (6.6)

Proof. LetCy = Cy, ---Cp,. Applying Lemma 6.2, we obtain

n
On < n! C} / [](ser1—sc+rga—ro7/2dsdr
T2 k=1
n
<nl Cﬂ /TZ H (Sks1 — Sk)ﬂ//4 (rgs1 — rk)fy/4ds dr

n k=1

n 2

<nlC} { H(s(+1—&)‘y/4d5} :

T k=1

Now we estimate the integral inside the ab¢vye

n
In ::/ [](scin—s07/*ds
Ta

k=1



Heat Equations with Fractional White Noise Potentials 237

It is easy to see that the above integral exists when4. We obtain an explicit bound.
Making the substitutioni; = s, U, =S — S, ..., Uy = S, — S_1, We obtain

n-1
Iy = Hu;ym(t_Ul_"'_un)_y/4du
Un k=2
< tn/ v = o = = o) T d

T y/"
T TnA-y/H+2)

where

Un ={(Ug, Uy, ..., Uy);U1 >0,...,Uy >0, U +Up+---+ U, <t}
and
Va={(g,vo,...,0n);v1>0,...,0n>0,v1+vo+---+v, <1}.

Thus

Cpt2n!
@n S .
rin(l—y/4 +27?

By the Stirling formula [1], we obtain
n! =n"C,
and
r(n(d—y/4) + 1)2 = Cn?d-r/4n,
Thus the lemma is proved. |

The following lemma deals with the asymptoticsuptx) in S,.

Lemma 6.4. Letd—|H| < 2andlety(x) be defined b6.2). Denoteog = 1+|H|—d.
If p < po, theny(x) € S, forallt > Oand xe RY. Moreoverforall 0 < k < po— p,

log(su u () ||2
imsup 9(SuPere Ut () 12) e

m st ap (6.7)

Proof. We continue to use the notation introduced previously. By Lemma 6.3 and the
definition of S,,,

(o]
2
lu ()12 < > nire,
n=0
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00 n{2n
< Z C"t
=TI ((2A-y/H—-1-p)n+1
Eo1—y/4-1-p(Ct?),

whereE; (x) is the Mittag—Leffler function ok with parameter. From the asymptotic
property of the Mittag—Leffler function [10], it follows that

IA

lur G011 < exp(Ct¥/Ga=7/9=1=m),

Now it is easy to check that> 2d — 2|H| implies that 21 — y /4) — 1 < po. Namely,
k=21-y/4) —1— p < po— p. This proves the lemma. O

Lemma 6.5. u¢(Xx) defined by6.3)is the solution 0f6.1) in the sense of Definitioh 1.

Proof. Letu;(x) be given by (6.3). It suffices to verify (6.2). By the Fubini lemma and
the definition of the integral and the definition &f(t, x), we have

t
/ / Po(X — 2)In(fa(s, 2) dB" (2 ds
0 Rd

t
:/ In </ P_s(X — 2) fn(s, z)ds) dB"(2)
R 0

= Insa(fopa(t, X)),

Thus the lemma follows. O

From the above lemmas, we get

Theorem 6.6. Let B be the canonical FBF with Hurst parameter H (hy, hy, . ..,
hq). DenotelH| =h; + h, + -+ hgandpo = 1+ |H| — d. Let 3 < h; < 1forall
1<i <d.Ifd —|H| < 2,then the solution of6.1)isin S, forallt € Ry, X € RY,
andp < po. Moreoverif 0 < « < pg — p, then

log(SURcge Ut (X)113) -

o (6.8)

lim sup

t—o0

Since, wherp = 0, S is the L, space, we have

Corollary 6.7. Let B" be the canonical FBF with parameter & (hy, hy, ..., hg).
DenotgH| = hy+hy+- - +hg.Let < hj < 1foralll <i <d.If[H| > d—1,thenthe
solution of(6.1)isin £, forallt € R, x € RY. Moreoverforany0 < « < 1+|H|—d,

log(SuRcga E|ut(X)[?)

I||;njgp oI < 00. (6.9)
We take alook at the case thatlallare the saméh; = h, = - - - = hg = h. In this case

|[H| = hd. Thus the conditionH| > d — 1 become$ > 1 — 1/d. Thus
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Corollary 6.8. Let B" be a canonical FBF inR? (d > 2) with parameter H=
(h, h, ..., h)ywith % <h < 1.Ifh > 1-1/d, then the solution of6.1) is in £, for all
t € R,, x € RY. Moreoverfor any0 < k < 1+ d(h — 1),
log(su E ug (X)|?
lim sup 9(SURcezs Elut00I) < 0. (6.10)

t—o0 tZ/K

Remark 3. Whend = 2 we see that the condition in the above corollary becomes
h > 1. Whend = 2 and when the noise is whita & 3), the solution is not irC, when

t is large [16]. This result demonstrates that in ¢e= 2)-dimensional case, although
whenh = % the solution of (6.1) is not i, for all t, onceh > % then the solution is

in £, for all t. This explanation also shows us that the conditions in the above corollary
are the best we can get (in some sense).

7. Heat Equations with Nonstationary Fractional Noise Potentials

In this section we consider the stochastic heat equation with time dependent fractional
white noise potentials. We continue to use the notation previously introduced.

Let B"(t, x), (t, x) € R4+1 be the canonical FBF with Hurst paramekéron the
canonical probability spacg2, F, P), whereH = (hg, hy, ..., hg) with % <h <1,
0 <i < d. The fractional white noise is denoted by (t, x), i.e., formallyw" (t, x) =
(09+1/9tax19%5 - - - 9%g) BH (t, X).

Consider the following stochastic heat equation with time dependent fractional white
noise as the potentials:

8uz;§x) = AU () + wh (t, %) - u(x), (7.1)
where the initial functionug(x) is given and is deterministic.

Let Pi(x) = (1/(2rt)¥/2)e"X*/2 pe the Gaussian kernel associated wit/i2.
Denote

P () = /}R Px — y) () dy.

Definition 7.1. A random fieldu: R, x RY x Q — R is called a solution of (7.1) if
() u: Ry x RY x Q@ — Ris jointly measurable;
(i) fot Jre Pi—sus(x — 2) dB" (s, 2) is well-defined for alt € R, andx € RY as
an element o5, for certainy € R;
(iii) the following equation holds i, :
t
U (X) = Puo(X) + / / Ps(x —2)us(2)dB" (s, 2). (7.2)
0 JRd

The formal chaos expansion of the solution is

U () = Pug() + Y _ In(fa(t, X)), (7.3)
n=1



240 Y. Hu

where

fa(t, X; S1, X1, S, X2, .. ., Sny Xn)
= Sym{/d Pi_s, (X = Xn) - - - Ps,—s; (X2 — X1) Ps, (X1 — Y)Uo(Y) dy} . (7.4)
R

where Sym is the symmetrization with respectnt¢(d + 1)-dimensional) variables
(S_|.7 Xl)a R (s’h Xn) and

In(fn(t,x)) Z/ fn(t,XQ S_|.7Xl7 &’ XZ""7S19 Xn)
([0,t]xRY)"

-d B (s1, x1) dB" (s, %) - - - d B (s, Xn).

We compute the&Z, norm of each chaos, i.e9,(t, X) = E (I,( fa(t, X)))%. Assume that
[Up(X)| < C < oo. By the isometric inequality, we obtain

®n<t,x>=[/ [Tene(s —rden & — ni)P_s,(x — &n)
TnZ R2(d+1) =1

-+ P, (62 — &1) P, (51 — Y)Uo(Y) P—r,, (X — 11n)
o Py (2 — n) P (01 — Y)Uo(Y) dy dy d& dn ds dr

n
<c [ [ TTom(s ~meu —n)Psx -
T2 JRH
ce PSQ—SL(EZ —&1) Pt—rn(x —n) - Prz—rl(nz — 1) dS d’) dsdr.
Let p(x) be the one-dimensional Gaussian keri@ait)~*2e~**/2 Thus
n d
T izl i=1
where
n
Oin(t, X, s, 1) = fz [Ten (o —w)Ps(6 = pn) -+ Ps, s, (02 — 1)
R®j=1
: Pt—rn (Xi - Tn) e Pl'z—l'1(T2 - T]_) dp dT.

Similar to (6.5),0; n(t, X, S, r) is estimated as follows:

n
Oin(t, %, s 1) < Ch [ [ (81— sc+ e — o™,
k=1

wheres,;1 = thy1 = t. As before, lety = 2d — 2|H|. Then

n
On < Cly | 1= 1™ 2 (Ser1 — Sc+ Mwa — ) /2 ds dr

T k=1
n 1/p
<C} {/ [](scr1—sc+rga—ro~™"2ds dr}
T2
N 1/q
- {/ [ ]lsc—r@e29ds dr} :
T2

n k=1
k=1
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Making the substitutios, = tu, andry = tvg, we obtain that there is a constaly ,
such that for any value af such that 1< q < 1/(2 — 2hyp),

. 1/
{/ 1_[|sk — 1|29 (s dr}
T2

n k=1

. 1
_ li@+@n-2an f T 10k — @29 du co
Vi k=1

<Cn t((2+2(h0—2)q)/q)n
— ~p.ho :

Similar to the proof of Lemma 6.3, we obtain thapif < 4, then

n P 1/p Cni2n/p
Sci1 — Sk + k1 — )~ P/2dsdr < .
(ankuﬁ " SE ) F(@/PA - py/4n+1)

Thus we obtain

1/p

n
On = Gy, tErmRan {/ TG0 —sctria—no P/ 2ds dr
Ti k=1

2(hp—1
- CS,H,yt (ho—D)n .
“Ir@/p-v/2n+1
When 1< q < 1/(2 — 2hp),

q 1
= > -
P=9=17 2hp-1

The above condition is equivalent to the following condition:
d<4hg+|H| -2 (7.5)

Thus
2 vy
—— =<
p 2

Hence, similar to the argument for Theorem 6.6, we obtain

2

H| —d.
2ho_1+| |—d

Theorem 7.1. Let B be the canonical FBF with parameter & (ho, hy, ho, ..., hg).
Denote|[H| = hy + h, +--- +hg. Let: < h; < 1forall 0 <i < d.Letpy =
2/(2hg—1) +|H| —d.Ifd < 4hg+ |H| — 2, then the solution of7.1) is in S, for all
p < po- Moreoverfor any0 < « < pg — p,

. 1
limsup——-—log sup|ju(X) ||, < oo. (7.6)
t—o00 t2ho/x xeRd
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Since, wherp = 0, S is the L, space, we have

Corollary 7.2. Let B" be the canonical FBF with parameter B (hy, h, ..., hg).
Denote|H| = hy + hy+ -+ hg. Lets < hj < 1forall1<i <d.If

2
=——+|H -d>0 7.7
£0 Pho— 1 + [H]| >0, (7.7)
then the solution of7.1) is in £,. Moreoverfor any0 < x < po,
: 1 5
“ﬂ‘szt%—w Iogxselﬂ,;EJ]E|ut(x)| < 00. (7.8)
We take a look at the case that hjlare the saméhg =h; =h, =---=hg=h.In

this casg¢H| = hd. Thus condition (7.7) becomés> 1 — 2/(2hg — 1)d. Thus

Corollary 7.3. Let B" be the canonical FBF iRY (d > 2) with parameter H=
(h, h, ..., h) with % <h < 1. Ifh > 1-2/(2hy — 1)d, then the solution of7.1) is
in Lo.
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