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Abstract
Environmental stressors in aquatic organisms can be assessed using a bioenergetic approach based on the evaluation of 
changes in their physiological parameters. We evaluated the chronic effects of cadmium (Cd2+) on the energy balance as well 
as the survival, growth, metabolism, nitrogen excretion, hepatosomatic index, oxidized energy substrate, and osmoregulation 
of the shrimp Penaeus vannamei with the hypothesis that the high energy demand related to the homeostatic regulation of 
Cd2+could disrupt the energy balance and as a consequence, their physiological functions. The shrimp exposed to Cd2+ had 
higher mortality (30%), directed more energy into growth (33% of energy intake), ingested 10% more energy, and defecated 
less than control animals. Cd2+ exposure caused a tendency to decrease metabolism and ammonia excretion but did not alter 
the hepatosomatic index, type of energy substrate oxidized, and the hyperosmorregulatory pattern of the species. The Cd+2 
exposure may have induced a trade-off response because there was a growth rate increase accompanied by increased mortality.

Penaeus vannamei is the most cultivated shrimp world-
wide, with an annual production of nearly 6 million tons, 
representing 50% of all cultivated crustaceans (FAO 2022). 
This species is considered a good model for toxicity tests 
with contaminants, as they have a short life cycle, live and 
feed near sediments where there is a significant accumula-
tion of toxins, and are responsible for much of the nutrient 
cycling and processing of organic matter in the environment 
(Loghmani et al. 2023). In general, P. vannamei farms are 
located in coastal areas and have contact with seawater that 
may be contaminated by various contaminants, including 

metals (Li et al. 2021; Fu et al. 2022). The effects of metals 
on crustaceans include oxidative damage and morphophysi-
ological changes in tissues such as the gills and hepatopan-
creas (Das et al. 2019).

The integrity of animals exposed to metals can be 
assessed by investigating various physiological functions 
to detect their effects on individuals and populations. For 
example, the energy balance describes the energy gained by 
animals and its distribution among different physiological 
functions, such as growth, metabolism, nitrogen excretion, 
feces, and also exuviae in the case of arthropods (Mantoan 
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et al. 2021; Green and Hou 2024). Several factors can alter 
the energy balance of species, such as diet (Coelho et al. 
2019; Mantoan et al. 2021), salinity (Xiong et al. 2020), 
and ontogenetic stages (Augusto et al. 2020). Furthermore, 
pollutants such as metals can affect any of the parameters 
of energy balance, from energy intake to energy channeled 
to growth and metabolism (Ferrari et al. 2011; Sadeq and 
Beckerman 2019; Hansul et al. 2021). Metals can impair the 
organism’s ability to acquire energy from the environment, 
and animals may expend more energy to compensate for the 
adverse effects of the pollutant.

One of the metals becoming increasingly prevalent in 
coastal waters is cadmium (Cd2+). This metal is among 
the most toxic at low concentrations and has been used to 
manufacture batteries, phosphate fertilizers, cement, and 
electro-plating (Arisekar et al. 2022). Cd2+ has already 
been detected in the tissues of several crustaceans, such as 
Callinectes danae (Bordon et al. 2016), Carcinus maenas, 
and Palaemon elegans (Butler and Zou 2021). Although the 
response pattern is not uniform, this metal can cause ener-
getic metabolism disturbances, changes in the molt cycle, 
and endocrine disruption (Hauser-Davis et al. 2022; Liu 
et al. 2022; Mourão et al. 2023). Knowledge about the effects 
of Cd2+ on crustaceans is of particular interest because they 
are significant invertebrates in the aquatic ecosystem, play 
an essential role in the food chain, are of economic interest, 
and are being fished and farmed in several regions of the 
world.

Therefore, given the ecological and economic impor-
tance of the marine shrimp P. vannamei, the present study 
aimed to evaluate the effects of chronic exposure to Cd2 in a 
network of physiological processes such as energy balance, 
metabolism, growth, excretion, hepatosomatic index, and 
oxidized substrate type of this species. We hypothesize that 
the high energy demand related to the homeostatic regula-
tion of Cd2+ could disrupt the energy balance and, conse-
quently, the physiological functions of P. vannamei.

Material and Methods

Collection and Acclimation of Animals 
in the Laboratory

Juvenile marine shrimp P. vannamei (3.00 ± 0.11 g) were 
collected from farms in the state of Santa Catarina, Brazil 
(26°12′32.3ʺS 48°44′23.7ʺW), with the aid of tarrafa nets. 
The animals were transported in boxes containing water 
from the collection site with constant aeration to the Sustain-
able Aquaculture Laboratory/UNESP in São Vicente, Bra-
zil (23°58ʹS 46°23ʹW). This lasted about six hours, and no 
animals died during the transport. Shrimps were acclimated 
to laboratory conditions in individual aquariums containing 

water with salinity (20‰) and temperature (30 °C) similar 
to the collection site for seven days. The water variables at 
the collection site, salinity, temperature, and ammonia total 
were verified daily, with a refractometer, thermometer, and 
colorimetry (Koroleff 1983), respectively. Pilot experiments 
in our laboratory (oxygen consumption, ingestion taxa) show 
that this acclimatization period is necessary to minimize the 
stress caused by transport and for the animals to get used 
to the characteristics of the laboratory. During this period, 
the animals were fed about 7% of their biomass daily with 
commercial marine shrimp feed (Guabi, 40% protein). All 
shrimp used were in the intermolt because pre- and post-
molt stages can alter tissue hydration. The experiments were 
performed with a total of 10 animals per treatment (N = 10).

Exposure of P. vannamei to Cadmium

Penaeus vannamei were exposed to 0.1 mg L−1 (nominal 
concentration) of Cd2+ (CAS number, 7440-43-9) at an envi-
ronmentally relevant concentration (Aguiarla et al. 2008) 
and at a chronic to sublethal dose for this species (Wu and 
Chen 2004). The control group remained in filtered brack-
ish water and reconstituted without adding metal. Cadmium 
(Dinâmica® Contemporary Chemistry Ltda.) was diluted in 
filtered brackish water (20‰). The brackish water used in 
the experiments was prepared from fresh water and sea salt 
(Hiker Ocean Prosea Salt©, Qingdao Haike General Sea 
Salt). The animals were kept in individual aquariums con-
taining 6 L of water with constant aeration, photoperiod of 
12 h light–12 h dark, at 25 °C. The aquarium water was 
changed every three days to avoid increasing ammonia 
concentration and maintain control of the metal concentra-
tion. The animals were kept for 30 days under these experi-
mental conditions so that the species’ physiology could be 
evaluated. The animals were fed daily with commercial feed 
(Guabi, 40% crude protein, and 18.56 kJ) during this period.

Analysis of Cadmium in Water

The cadmium determinations in water samples were car-
ried out by atomic absorption spectrometry in a graphite 
furnace, using a Shimadzu AA-6800 spectrometer (Osaka, 
Japan) equipped with a background absorption corrector 
with a deuterium lamp and a self-reverse system (SR), a 
pyrolytic graphite tube with an integrated platform and an 
ASC-6100 automatic sampler. A Shimadzu hollow cathode 
mercury lamp (Osaka, Japan) was used and operated at a 
current of 12 mA. The wavelength was 228.7 nm, and the 
spectral resolution was 0.5 nm. The inner walls of the pyro-
lytic graphite tubes with integrated platforms used in the 
mercury analyses were coated with tungsten. For this pur-
pose, 25 μL aliquots of 1000 mg L−1 sodium tungstate solu-
tion (Merck, Darmstadt, Germany) were injected into the 
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atomizer, which was then subjected to the program described 
by Bittarello et al. (2020). Tungsten ions were deposited 
on the graphite tube platform by heating it up to 500 °C, 
forming a tungsten carbide layer as a permanent chemical 
modifier. An analytical curve was done in the concentration 
range 1.0–5.0 μg L −1, using Titrisol Merck standard (Merck, 
Darmstadt, Germany). Zirconium nitrate (Merck, Darmstadt, 
Germany) was added to the standard solutions to give final 
concentrations of 20 mg L−1 zirconium, which acted as a 
chemical modifier. Then, 20 µL of the standard solutions was 
injected into the spectrometer atomization system by using 
an autosampler. For the cadmium determinations, 20 µL ali-
quots of samples (composed of 10 µL of water samples with 
4 µL of 100 mg L−1 zirconium nitrate and 6 µL of ultrapure 
water) were used. The 20 µL sample aliquots were injected 
into the spectrometer atomization system using an autosa-
mpler. Measurements were conducted in triplicate using the 
graphite tube heating program described as follows: Dry-
ing–160 °C/220 °C, 10 s/10 s; Pyrolysis–500 °C/800 °C, 
10 s/10 s; Atomization–2100 °C, 3 s; Cleaning–2300 °C, 
10 s. The absorbance values were measured in the peak area. 
The linear correlation coefficient (r) obtained for the analyti-
cal curve was 0.9999. The limits of detection (LOD) and 
quantification (LOQ) of the determination method, calcu-
lated based on the standard deviation of 10 readings of the 
standard solution blank and on the slope of the analytical 
curve (LOD = 3/slope and LOQ = 10/slope), as described 
by Currie (1999), were 0.011 and 0.037 μg L-1 respectively. 
The optimized experimental conditions for cadmium deter-
minations were validated through analysis of Standard Ref-
erence Material—1640 Trace Elements in Natural Water 
(National Research Council Canada Measurement Science 
and Standards Research Centre, Ottawa—Canada) contain-
ing 22.79 ± 0.96 μg L−1. The results obtained in the cad-
mium determination by GFAAS were 22.62 ± 0.26 μg L−1. 
The determined values presented recovery percentages of 
99.25%, demonstrating the excellent accuracy of the analyti-
cal method optimized for cadmium determination.

Evaluation of the Physiology of P. vannamei Exposed 
to Cadmium

Survival

During the 30 days of experiments, the survival of the ani-
mals in the aquariums was verified three times a day: at 8:00 
a.m., 2:00 p.m., and 8:00 p.m. All animals that died were 
removed from the aquariums.

Ingestion and Egestion Rates

The ingestion and egestion rates were evaluated according 
to Augusto et al. (2020). The animals were fed daily at the 

end of the day with marine shrimp ration (Guabi, 40% pro-
tein), corresponding to 7% of their body biomass. After six 
hours, unconsumed food was removed from the aquariums 
by siphoning. Then, the foods were dried on filter paper, 
weighed (wet mass), dried in an oven at 60 °C for 48 h, and 
weighed again (Metler Toledo, 1 μg). Control food samples 
were weighed initially and placed in tanks without animals 
under the same experimental conditions to analyze the lix-
iviation rate. These values were used to correct uneaten feed. 
Diet ingestion was determined by the difference between the 
dry mass of the diet supplied and the unconsumed diet. The 
samples were stored in plastic tubes (15 ml) and frozen for 
later analysis of energy content. Feces were collected from 
the tanks, each 6 h with a plastic pipette, placed on alu-
minum plates, and dried at 60 °C for 48 h in an oven. They 
were then weighed on an analytical scale (Metler Toledo, 
1 μg) and stored frozen until energy analysis using a calori-
metric pump (IKA, C2000 basics).

Growth and Exuviae

The animals were weighed (Mars, AS 2000C) on the first 
and last days of the experiment (days 1 and 30). The seed-
lings of any ecdysis that occurred during the experimental 
period were collected and weighed so that the frequency of 
ecdysis could be associated with physiological data.

Metabolism, Nitrogen Excretion, and O/N Ratios

Oxygen consumption and ammonia excretion were evalu-
ated on the last day of the experiment (30° day). The oxygen 
consumption was evaluated in 1200 mL closed individual 
respirometric chambers equipped with an oximeter (YSI, 
mod 52) and a probe with a precision of 0.01 mg L−1 (YSI, 
mod 5905). Every animal was subjected to 24-h starvation 
to reduce the calorigenic effect of food. After acclimation 
for 30 min under aeration, the first measurement of oxygen 
content within the chamber was made, and one hour later, 
another measurement was made. Control chambers were also 
used, and oxygen consumption was calculated. The excre-
tion (TAN = unionized plus ionized ammonia, as nitrogen) 
of shrimps was measured from samples of water obtained 
from the respirometry chamber at the end of procedures to 
determine oxygen consumption. TAN concentration was 
determined by colorimetry (Koroleff 1976), and the effect of 
salinity upon ammonia-N readings was corrected using fac-
tor 1.06 (Koroleff 1983). The animals present in the respiro-
metric chambers were killed by a freezing meter, weighed 
(wet mass), oven-dried at 60 °C for 48 h, and weighed again 
(dry mass). Oxygen consumption and TAN excretion were 
expressed as an individual rate (μg ind−1 h−1) and dry mass 
rate (μg mg DM−1 h−1). To calculate the energy channeled 
into metabolism, the calorigenic effect of food was added 
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to the oxygen consumption rate, considering an increase 
of 70% (Zuniga-Romero 1983; Chu and Ovsianico-Kou-
likowsky 1994). Metabolic energy was calculated, assuming 
that 1 mg of O2 consumed is equivalent to 1406 J (Gnaiger 
1983) and the energy lost in excretion as 1 mg of TAN 
excreted is equivalent to 24.87 J (Gnaiger 1983).

The major metabolic substrate for the production of 
energy used by animals was estimated by the atomic ratio 
O/N calculated by dividing the number of gram atoms of 
oxygen consumed by the number of gram atoms of nitro-
gen excreted (Mayzaud and Conover 1988; Brown 2006; 
Augusto et al. 2020). According to Mayzaud and Conover 
(1988), pure protein catabolism will yield O/N ratios in the 
range 3–16, whereas equal amounts of lipid and protein 
catabolism will yield values between 16 and 60; above 60, 
there is a predominance of lipids.

Evaluation of the Hepatosomatic Index (HSI)

After the animals were euthanized, the hepatopancreas was 
dissected and weighed (Metler toledo, 1 μg) to determine the 
HSI based on the ratio below (Ramaglia et al 2018):

Evaluation of the Hemolymph Osmolality

Hemolymph samples (30 μl) were taken from the region 
located at the cephalothorax to P. vannamei using an insulin 
syringe coupled to a #25-8 (Ramaglia et al. 2018). Hemo-
lymph osmolality was measured using a vapor pressure 
osmometer (Wescor, Modelo 5500) and the results are pre-
sented in mOsm Kg−1 water.

Statistical Analysis

The effect of Cd2+ in the physiology of animals was evalu-
ated for Test-T, followed by the Student–Newman–Keuls 
multiple means test (SNK) to identify significant differences 
between groups. The analyses were performed using Sigma 
Stat 3.5, and a minimum significance level of P < 0.05 was 
applied. The figures were presented using the data entered 
into the program Graphpad 5.01.

Results

Analysis of Cadmium in Water

Results were not detected (Recovery 99.02%) for the con-
trol and 0.152 ± 0.0018 mg L-1 (Recovery = 99.02%) for the 
nominal 0.1 mg L−1 of Cd2 + . In this case, the nominal 

HSI (%) = (hepatopancreas mass × 100)∕body mass.

concentration was accepted because it was less than 1% dif-
ferent from the measured concentration.

Mortality

Control animals had no mortality during the 30 days of the 
experiment, but those exposed to Cd2+ had a 30% death rate. 
These mortalities occurred about three days after molting. 
The relationship between survival rate and cycle molt is 
observed in Fig. 1.

Energetic Content of Body, Feces, and Diet

The energy content of the body and feces of the animals is 
shown in Table 1. There was no difference in the energy 
value of the animal’s bodies (± 18  kJ  g−1) controls or 
exposed to Cd2+. The energy value of the feed for both treat-
ments was 18.56 ± 0.07 (kJ g−1 DW) (7 ≤ N ≤ 10).

Ingestion, Egestion, Growth, Metabolism, 
and Nitrogen Excretion of P. vannamei

The rates of ingestion, egestion, growth, metabolism, and 
nitrogen excretion of P. vannamei are shown in Table 2. In 

Fig. 1   Relationship between survival probability and days after molt-
ing of Penaeus vannamei exposed to cadmium at concentrations 0 
and 0.1 mg L−1 for 30 days

Table 1   Energy content (kJ−1 g DW) of the body, feces, and feed of 
shrimp P. vannamei kept for 30 days in control water or with metal 
cadmium (0.1 mg L−1)

(Mean ± SE; 7 ≤ N ≤ 10)

Control Cadmium P

Body 18.10 ± 0.12 18.43 ± 0.17 0.114
Feces 8.57 ± 0.24 8.15 ± 0.162 0.204
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animals exposed to Cd+2, the ingestion rate was similar to 
that of control animals (about 3% of its biomass) (P = 0.88). 
However, animals exposed to Cd+2 had a lower defecation 
rate (57% of the feed ingested) and an 80% higher growth 
rate. The animals suffered molt about three times during the 
experiments (30 days) (7 ≤ N ≤ 10).

Metabolism and Nitrogen Excretion

Oxygen consumption and nitrogen excretion in individual 
mass are shown in Table 2, and in specific dry mass (µg 
mg DW−1 h−1) are shown in Fig. 2. Although both physi-
ological parameters in specific dry mass show a tendency 
to decrease in animals exposed to Cd2+, such alteration was 
not statistically proven, respectively (P = 0.398) (P = 0.086) 
(7 ≤ N ≤ 10).

Energy Budget

The energy ingested and channeled to the different physi-
ological functions is expressed in percentage in Fig. 3. The 
animals exposed to Cd2+ ingested 2.07 ± 0.12 kJ ind−1 day−1, 
corresponding to about 10% more energy than the control 
animals. Shrimp exposed to Cd2+ also channeled more 
energy into growth (33% of energy intake) relative to con-
trols (20% of energy intake) (7 ≤ N ≤ 10).

Atomic Ratio, Hepatosomatic Index, 
and Hemolymph Osmolality

The O/N ratio in P. vannamei suggests the use of main pro-
teins as energy substrate, the hepatosomatic index (about 
6.6; P = 0.872), and the hemolymph osmolality (about 
705 mOsm Kg−1 water) in P. vannamei did not change with 
the presence of metal in water (7 ≤ N ≤ 10).

Table 2   Daily rates of ingestion 
(C), defecation (F/C), growth 
(P), breathing (R), excretion 
(U), and O/N of P. vannamei 
kept in water control or exposed 
to cadmium (0.1 mg L−1) for 
30 days

Values are mean ± SE (7 ≤ N ≤ 10). Values with different letters in the same line differ statistically by test 
T followed by SNK test. Atomic ratio O/N indicates the major metabolic substrate for the production of 
energy used by animals
WW: wet weight, WWi: initial wet weight, P = protein

Control Cadmium P

C/WWi (%) 2.97 ± 0.23a 2.92 ± 0.26a 0.881
C (mg WW day−1) 102.02 ± 6.94a 106.15 ± 7.06a 0.694
F/C (%) 62.161 ± 1.39a 57.64 ± 1.45b 0.025
P/WWi (%) 23.14 ± 3.39a 43.57 ± 5.85b 0.021
P (mg WW day−1) 18.94 ± 1.84a 33.94 ± 4.29b 0.001
R (mg O2 ind−1 day−1) 33.36 ± 2.33a 29.17 ± 1.85a 0.219
U (mg TAN ind−1 day−1) 4.30 ± 0.49a 3.45 ± 0.50a 0.250
O/N 3.99 ± 0.57a (protein) 5.25 ± 0.48a (protein) 0.250
HIS 6.73 ± 2.31a 6.49 ± 0.94a 1.000

Fig. 2   A Oxygen consumption of Penaeus vannamei exposed to cad-
mium at concentrations 0 and 0.1 mg L−1 for 30 days (P = 0.208). B 
Nitrogen excretion of Penaeus vannamei exposed to cadmium at con-
centrations 0 (control) and 0.1 mg L−1 for 30 days. Data are presented 
as Mean ± Standard Error (7 ≤ N ≤ 10; P = 0.054)
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Discussion

Mortality and Molting Cycle Relationship

The mortality rate in P. vannamei exposed to Cd2+ was 
observed around the third day post-molting. The endocrine 
system regulates the molting cycle of crustaceans, and stud-
ies have indicated that animals in the post-molt stage might 
be more susceptible to the toxic effects of chemical pollut-
ants (Tumburu et al. 2012) due to alterations in epithelial 
permeability (Abidi et al. 2016). Some decapods experi-
ence increases in epithelial permeability during the post-
molt phase, which typically lasts an average of five days and 
facilitates ion exchange and the hardening of the new exo-
skeleton (Rasmussen and Andersen 1996). However, there is 
evidence that body permeability might decrease in animals 
exposed to water containing metal cations as a defensive 
mechanism to prevent exchanges across membranes in an 
unfavorable environment, the decreased uptake hypothesis 
(Tumburu et al. 2012). Given the high post-molt mortal-
ity rate, it is plausible that this mechanism was active in P. 
vannamei exposed to Cd2+. Decreased body permeability 
induced by Cd2+ may have limited the uptake of ions and 
minerals necessary for hardening the new exoskeleton. How-
ever, since the presence of the metals did not impact the 
osmolality of the hemolymph, it is also possible that during 
post-molting, there was a more significant influx of cadmium 
into the animals’ bodies, and this caused greater mortality.

The Relationship Between Growth, Ingestion, 
and Defecation

Animal growth corresponds to the energy gained through 
food consumption and stored as bodily reserves. In the con-
trol group, growth was only 23% relative to the initial mass, 
while in the group exposed to Cd2+, growth increased by 

approximately 44%. As a result, the animals directed more 
energy toward growth when exposed to Cd2+, about 30% of 
their daily energy intake. Several hypotheses could explain 
this response. Although the Cd2+ concentration used in 
this study is comparable to levels found in contaminated 
waters (Aguiarla et al. 2008; Arcega-Cabrera et al. 2021), 
it is roughly ten times lower than the LC50 for P. vannamei 
(Wu and Chen 2004). This discrepancy might have trig-
gered a biological response known as hormesis (Calabrese 
2008), a phenotypic ability to shape the responses to envi-
ronmental changes, such as metals, microplastics, pharma-
ceutical products, reduced pH, and variable temperatures 
(Hendry et al. 2008; Xiaoxue et al. 2014; Rix et al. 2022). 
This is a response to the disruption of homeostasis and is 
stimulated by low concentrations of contaminants (Jusselino 
Filho 2002). Such responses include increases in growth 
and reproduction rates, longevity, and disease resistance 
(Kmecl and Jerman 2000). Generally, the stimulating effect 
of hormesis may be 30% greater in animals exposed to the 
contaminant than in a control situation (Chapman 2001). 
However, to prove this hormesis hypothesis, future studies 
must be tested by exposing a dose–response curve P. van-
namei exposure to Cd2+. Although cadmium intoxication 
did not influence the value of the adenylate energy charge 
in shrimp Palaemon serratus (Théabalt et  al. 1996), in 
P.vannamei PACAP (pituitary adenylate cyclase-activating 
polypeptide) promotes the growth of the animals (Lugo et al. 
2013) and similar mechanism may have occurred here. In 
addition, for aquaculture, it is observed that the survival rate 
in cultivation is close to 89% within the considered ideal 
salinity range (between 15 and 25 ppt) (Furtado et al. 2016; 
Bray et al. 1994). Our work has shown that, although the 
growth is higher, their survival rate decreases to 70%, which 
could negatively affect the cultivation of P. vannamei.

Furthermore, Cd2+ might act as an endocrine disruptor 
related to growth and molting in P. vannamei, as has been 

Fig. 3   Energy partitioning 
(expressed as a percent-
age of ingested energy) in 
P. vannamei for each treat-
ment (control or exposed to 
cadmium–0.1 mg L−1). Values 
are expressed as the mean and 
standard error of the mean 
in brackets (7 ≤ N ≤ 10). Values 
with different letters in the same 
category differ statistically 
by Test T followed by SNK. 
Figure of shrimp P. vannamei 
available in FAO (2009). Data 
from energy channeled to the 
molt were inserted in the figure 
according to Coelho et al. 
(2019)
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suggested for other organisms (Cribiu et al. 2020; Chong 
2022; Ortega et al. 2022). Future research should investigate 
whether the increased growth rate and molting frequency 
might be associated with an adjustment related to Cd2+ elim-
ination through molting. In the crab C. danae, Cd2+ has been 
observed to deposit in the exoskeleton during the post-molt 
phase when mineralization occurs. Still, it adversely affects 
the formation of the exoskeleton’s organic matrix (Butler 
and Zou 2021). Molting was considered a mechanism of 
depuration of metals in the fiddler crab Uca pugnax (Ber-
gey and Weis 2007) and Minuca burgersi (Ramos and Leite 
2022), and the shrimp, Palaemonetes pugio (Keteles and 
Fleeger 2001). Metals in the hemolymph migrate to the exo-
skeleton, which is discarded in the environment through the 
ecdysis process (Bergey and Weis 2007).

Animals exposed to Cd2+ ingested slightly more energy 
than control animals, at 2.1 and 1.8 kJ ind−1 day−1, respec-
tively, suggesting that Cd2+ exposure did not impact their 
ability to forage or handle food. This minor increase in 
intake rate might have promoted P. vannamei growth. Fur-
thermore, the lower defecation rate implies improved uti-
lization of ingested food. In this context, Cd2+ might have 
enhanced intestinal nutrient absorption through alterations 
in the microbiota or by increasing the expression of diges-
tive enzymes produced in the hepatopancreas and intestine, 
changes that have already been observed in the crayfish 
Procambarus clarkii and the crab Scylla paramamosain 
when exposed to Cd2+ (Zhang et al. 2020; Zhu et al. 2018). 
Furthermore, Duan et al. 2021 found that exposure to Cd2+ 
increases and alters the composition of the intestinal micro-
biota of P. vannamei. This increase in diversity could con-
tribute to neutralizing the adverse effects of Cd2+ exposure.

Metabolism and Nitrogen Excretion

Metabolism, broadly defined as the culmination of all chemi-
cal reactions within an organism, is often quantified by 
estimating an animal’s oxygen consumption. Fluctuations 
in oxygen consumption generally occur when the homeo-
static balance is disrupted, leading to an escalated demand 
for energy (Nicholls 2013; Rodriguez-Armenta et al. 2018). 
In P. vannamei, there was a tendency to decrease individ-
ual oxygen consumption and specific dry mass, but there 
were no significant statistical differences. Therefore, even 
though P. vannamei exhibited enhanced growth upon Cd2+ 
exposure, a condition that should theoretically increase 
energy demands, no corresponding rise in metabolic 
rate was observed. Juveniles of the shrimp Exopalaemon 
carinicauda, when exposed to the same concentration, also 
showed no statistical differences in their oxygen consump-
tion (Zhang et al. 2014). Reduction in oxygen consump-
tion has already been observed in juveniles of P. vannamei 
exposed to 0.3 mg L−1 of Cd2+ in salinity 15 (Wu and Chen 

2004) and Palaemon macrodactylus exposed to 2.7 mg L−1 
of Cd2+ in salinity 31 (Zhang et al. 2021). These differences 
between species may be due to different concentrations of 
the Cd2+, ontogenetic stage, and salinity to which the ani-
mals were exposed. The Cd2+ exposure is believed to insti-
gate cellular modifications or damage within the gills and 
disrupt oxygen-copper binding, the fundamental respiratory 
pigment in decapods (Ortega et al. 2017; Zhang et al. 2021).

Ammonia (unionized plus ionized ammonia) is the prin-
cipal nitrogenous excreta of most aquatic animals. It results 
from the catabolism of free amino acids and is toxic in 
high concentrations, mainly due to its deleterious effect on 
enzyme activity. Quantifying nitrogen excretion is an impor-
tant tool to assess the influence of abiotic factors and diet 
on animal protein metabolism (Uliano et al. 2010; Augusto 
et al. 2020). Like metabolism, nitrogen excretion in P. van-
namei exposed to Cd2+ tended to decrease, but there were 
no statistical differences, suggesting that at low Cd2+ con-
centrations, as investigated here, physiological mechanisms 
related to changes in protein or free amino acid catabolism 
and excretion of nitrogenous compounds are not affected. 
Similar results were found in Litopenaeus schmitti, Farfan-
tepenaeus paulensis, Exopalaemon carinicauda (Barbieri 
2007; Barbieri et al. 2017; Zhang et al. 2014). Furthermore, 
the trend in reduced ammonia excretion could be related 
to the decreased utilization of amino acids as a strategy to 
channel more energy for growth, as observed in juvenile 
crabs Portunus trituberculatus when exposed to Cd2+ (Wang 
et al. 2022).

Hepatosomatic Index, Energy Substrate Oxidation, 
and Osmoregulation

In P. vannamei, exposure to Cd2+ did not affect processes 
associated with energy supply, such as the hepatosomatic 
index and the oxidation of energy substrates, nor did it 
impact the osmoregulatory capacity. The hepatopancreas in 
crustaceans plays vital roles in secreting digestive enzymes, 
absorbing nutrients, and storing and supplying energy 
essential for growth, reproduction, and metabolism. Under 
stress conditions, the energy reserves stored in the hepato-
pancreas can be mobilized to meet the increased energy 
demand (James et al. 2013). Additionally, the hepatopan-
creas is known to accumulate Cd2+ in crustaceans (Ghasem-
ian et al. 2016), making the hepatosomatic index a potential 
biomarker of pollutant toxicity. In this study, no significant 
changes were observed in the hepatosomatic index of P. 
vannamei. This suggests that despite alterations in impor-
tant parameters such as mortality and growth, the energy 
reserves stored in hepatopancreas were not accessed. In Pro-
cambarus clarkii, no statistically significant difference in 
the hepatosomatic index was observed following exposure 
to low concentrations of Cd2+ (Martín-Díaz et al. 2005). In 
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shrimp Macrobrachium nipponense, hepatosomatic index 
increases when exposed to zinc and cadmium, respectively 
(Zhang et al. 2021). Some studies have shown that in shrimp 
exposed to high concentrations of Cd2+, there is bioaccumu-
lation of the metal in the hepatopancreas, especially in low 
salinities. For example, in P. vannamei, high Cd2+ toxicity 
was demonstrated during exposure to salinity of 5S, but not 
at 20‰ (Ardianshyah et al. 2012). In the shrimp F. paulen-
sis, the Cd2+ was also toxic at high concentrations (40 mg 
L−1), but only when the animals were kept at 5S (Barbieri 
and Paes 2011). Therefore, the salinity to which P. vannamei 
was exposed in the present study (20‰) may have influ-
enced the results.

Moreover, the animals continued to oxidize proteins, 
regardless of the presence of Cd2+. Changes in the oxida-
tion of energy substrates may be linked to increased neo-
glucogenesis due to the heightened energy demand follow-
ing Cd2+ exposure or to variations in the catabolism of free 
amino acids used in osmoregulation (Felten et al. 2008). The 
exposure to the pollutant did not alter the hyper-osmoregula-
tory capacity of P. vannamei, as indicated by the unchanged 
hemolymph osmolality. This may have happened because 
the animal is within its isosmotic point, keeping it in condi-
tions close to its homeostasis (Jaffer et al. 2020). However, 
in other invertebrates such as shrimp, crabs, and mussels, 
exposure to dissolved metals like copper, cadmium, zinc, 
and nickel has been shown to modify osmoregulatory capac-
ity, possibly due to intense competition for ion transporters 
such as Mg2+, Ca2+, and Na+ (Capparelli et al. 2017; Zhou 
et al. 2021).

Energy Balance

Most of the energy consumed by crustaceans is typically 
allocated to metabolism, which can vary depending on envi-
ronmental conditions that challenge maintaining homeostasis 
(Xue et al. 2021; Mantoan et al. 2021). Both biotic and abiotic 
factors, including contaminants in the aquatic environment, 
can disrupt this process. Some authors suggest that environ-
mental pollutants can affect individual-level energy balance 
and be used for predictions at the population level (Klok et al. 
2012; Hansul et al. 2021). Penaeus vannamei, M. amazonicum, 
and C. danae allocate most of their energy intake to metabo-
lism (approximately 40%), regardless of the treatment (Rama-
glia et al. 2018; Augusto et al. 2020). The increased growth 
observed in Cd2+ exposed animals leads to a redistribution 
of the ingested energy. While control shrimps allocate 20% 
of the energy intake to growth, those exposed to Cd+2 allo-
cate 33%. For example, Wang et al (2022) showed that shrimp 
Fenneropenaeus chinensis and crab Portunus trituberculatus 
exposed to cadmium occurred hormesis based on the altera-
tions of enzymes as the superoxide dismutase, catalase, and 
reduced glutathione. Therefore, the hormesis mechanism may 

have influenced changes in the energy balance of the species. 
Hormetic dose–response relationships have been observed 
in various aspects of biology, but little is known about their 
effects on energy distribution within an organism’s body 
(Calabrese 2008; Wang et al 2022). It has been suggested in 
the literature that crustaceans may reduce the energy allocated 
to certain functions at the expense of mechanisms involved 
in eliminating contaminants from the organism (Calow and 
Sibly 1990). This may be the case for P. vannamei if the high 
growth observed is related to removing Cd2+ through molt-
ing. Although using energy balance as a tool to understand 
the effects of pollutants is limited, studies have shown that 
exposure of the isopod Porcellio scaber to Cd2+ reduces the 
amount of energy intake (Sures and Taraschewski 1995) while 
exposure of the cladoceran Alona guttata to Pb2+ decreases the 
energy reserves devoted to reproduction and survival (Osorio-
Treviño et al. 2019).

In conclusion, as hypothesized, the Cd+2 exposure may 
have induced a trade-off response because energy was reallo-
cated for growth, compared to the control group, but accom-
panied by increased mortality. The trade-off allows animals 
to improve fitness in polluted environments but at reduced 
survival costs. For example, detoxification might use energy 
and alter resources, which are unavailable for other fitness 
traits such as survival. The observed changes in energetics 
and survival could substantially influence the population 
and community structure of P. vannamei exposed to Cd2. 
Although the growth is higher, it is unknown whether it is 
sustained for extended periods (greater than 30 days) and 
the survival rate decreases to 70%, which could negatively 
affect marine biodiversity, fishing, and aquaculture, as it is 
among the most consumed shrimp in the world.
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